Appendix A
Review of Vectors and Matrices

 

 

 

A.1. Vectors

 

 

 

A.1.1 Definition

 

For the purposes of this text, a vector is an object which has magnitude and direction.  Examples include forces, electric fields, and the normal to a surface.  A vector is often represented pictorially as an arrow and symbolically by an underlined letter a ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWGHbaaaaaa@31D5@  or using bold type a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaaaa@31C9@ .  Its magnitude is denoted a ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaadaadaaqaaiaadggaaaaaca GLhWUaayjcSdaaaa@34F7@  or a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHHbaacaGLhWUaayjcSd aaaa@34EB@ .  There are two special cases of vectors: the unit vector n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaaaa@31D6@  has n =1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHUbaacaGLhWUaayjcSd Gaeyypa0JaaGymaaaa@36B9@ ; and the null vector 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCimaaaa@3198@  has 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHWaaacaGLhWUaayjcSd Gaeyypa0JaaGimaaaa@367A@ .

 

 

A.1.2 Vector Operations

 

 

Addition

 

Let a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaaaa@31C9@  and b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CA@  be vectors.  Then c=a+b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9iaahggacqGHRaWkca WHIbaaaa@3588@  is also a vector.  The vector c MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaaaa@31CB@  may be shown diagramatically by placing arrows representing a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaaaa@31C9@  and b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CA@  head to tail, as shown below.


 

 

Multiplication

 

1. Multiplication by a scalar. Let a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaaaa@31C9@  be a vector, and α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  a scalar.  Then b=αa MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iabeg7aHjaaykW7ca WHHbaaaa@36E4@  is a vector.  The direction of b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CA@  is parallel to a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaaaa@31C9@  and its magnitude is given by b =α a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHIbaacaGLhWUaayjcSd Gaeyypa0JaeqySde2aaqWaaeaacaWHHbaacaGLhWUaayjcSdaaaa@3B9D@ .

 

Note that you can form a unit vector n which is parallel to a by setting n= a a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9maalaaabaGaaCyyaa qaamaaemaabaGaaCyyaaGaay5bSlaawIa7aaaaaaa@37E2@ .

 

 

2. Dot Product (also called the scalar product). Let a and b be two vectors.  The dot product of a and b is a scalar denoted by α=ab MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0JaaCyyaiabgwSixl aahkgaaaa@37A3@ , and is defined by

ab= a b cosθ(a,b) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahkgacqGH9aqpda abdaqaaiaahggaaiaawEa7caGLiWoadaabdaqaaiaahkgaaiaawEa7 caGLiWoaciGGJbGaai4BaiaacohacqaH4oqCcaGGOaGaaCyyaiaacY cacaWHIbGaaiykaaaa@4684@ ,

where θ(a,b) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaaiikaiaahggacaGGSaGaaC OyaiaacMcaaaa@3673@  is the angle subtended by a and b, as shown below.

 


 

 Note that ab=ba MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahkgacqGH9aqpca WHIbGaeyyXICTaaCyyaaaa@3A23@ , and aa= a 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahggacqGH9aqpda abdaqaaiaahggaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaa aa@3AF8@ .  If a 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHHbaacaGLhWUaayjcSd GaeyiyIKRaaGimaaaa@376C@  and b 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHIbaacaGLhWUaayjcSd GaeyiyIKRaaGimaaaa@376D@  then ab=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahkgacqGH9aqpca aIWaaaaa@36BE@  if and only if cosθ(a,b)=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaeqiUdeNaai ikaiaahggacaGGSaGaaCOyaiaacMcacqGH9aqpcaaIWaaaaa@3B06@ ; i.e. a and b are perpendicular.

 

3. Cross Product (also called the vector product).  Let a and b be two vectors.  The cross product of a and b is a vector denoted by c=a×b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9iaahggacqGHxdaTca WHIbaaaa@36BD@ The direction of c is perpendicular to a and b, and is chosen so that (a,b,c) form a right handed triad, as shown below.  

 


The magnitude of c is given by

c = a×b = a b sinθ(a,b) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHJbaacaGLhWUaayjcSd Gaeyypa0ZaaqWaaeaacaWHHbGaey41aqRaaCOyaaGaay5bSlaawIa7 aiabg2da9maaemaabaGaaCyyaaGaay5bSlaawIa7amaaemaabaGaaC OyaaGaay5bSlaawIa7aiGacohacaGGPbGaaiOBaiabeI7aXjaacIca caWHHbGaaiilaiaahkgacaGGPaaaaa@4E8C@

Note that a×b=b×a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgEna0kaahkgacqGH9aqpcq GHsislcaWHIbGaey41aqRaaCyyaaaa@3AAA@  and a(a×b)=b(a×b)=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaacIcacaWHHbGaey 41aqRaaCOyaiaacMcacqGH9aqpcaWHIbGaeyyXICTaaiikaiaahgga cqGHxdaTcaWHIbGaaiykaiabg2da9iaaicdaaaa@4498@ .

 

It can sometimes be helpful to re-write a cross product as a tensor product.  For example, c=a×b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9iaahggacqGHxdaTca WHIbaaaa@36BE@  can be re-written as c=Ab MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9iaahgeacaWHIbaaaa@3487@ , where

a= a 1 a 2 a 3 A= 0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9maadmaabaqbaeqabm qaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSba aSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaaabeaaaa aakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaahgeacqGH9aqpdaWadaqaauaabeqa dmaaaeaacaaIWaaabaGaeyOeI0IaamyyamaaBaaaleaacaaIZaaabe aaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacaWGHbWaaSba aSqaaiaaiodaaeqaaaGcbaGaaGimaaqaaiabgkHiTiaadggadaWgaa WcbaGaaGymaaqabaaakeaacqGHsislcaWGHbWaaSbaaSqaaiaaikda aeqaaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaa aacaGLBbGaayzxaaaaaa@6872@

 

Some useful vector identities

a(b×c)=b(c×a)=c(a×b) a×(b×c)=(ac)b(ab)c (a×b)(c×d)=(ac)(bd)(bc)(ad) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHHbGaeyyXICTaaiikaiaahk gacqGHxdaTcaWHJbGaaiykaiabg2da9iaahkgacqGHflY1caGGOaGa aC4yaiabgEna0kaahggacaGGPaGaeyypa0JaaC4yaiabgwSixlaacI cacaWHHbGaey41aqRaaCOyaiaacMcaaeaacaWHHbGaey41aqRaaiik aiaahkgacqGHxdaTcaWHJbGaaiykaiabg2da9iaacIcacaWHHbGaey yXICTaaC4yaiaacMcacaWHIbGaeyOeI0IaaiikaiaahggacqGHflY1 caWHIbGaaiykaiaahogaaeaacaGGOaGaaCyyaiabgEna0kaahkgaca GGPaGaeyyXICTaaiikaiaahogacqGHxdaTcaWHKbGaaiykaiabg2da 9iaacIcacaWHHbGaeyyXICTaaC4yaiaacMcacaGGOaGaaCOyaiabgw SixlaahsgacaGGPaGaeyOeI0IaaiikaiaahkgacqGHflY1caWHJbGa aiykaiaacIcacaWHHbGaeyyXICTaaCizaiaacMcaaaaa@881A@

 

 

A.1.3 Cartesian components of vectors

 

Let ( e 1 , e 2 , e 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3938@  be three mutually perpendicular unit vectors which form a right handed triad, as shown in the figure. Then e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  are said to form and orthonormal basis. The vectors satisfy

e 1 = e 2 = e 3 =1 e 1 × e 2 = e 3 e 1 × e 3 = e 2 e 2 × e 3 = e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaabdaqaaiaahwgadaWgaaWcba GaaGymaaqabaaakiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaahwga daWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoacqGH9aqpdaabda qaaiaahwgadaWgaaWcbaGaaG4maaqabaaakiaawEa7caGLiWoacqGH 9aqpcaaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVdqaaiaahwgadaWgaaWcbaGaaGymaaqa baGccqGHxdaTcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaC yzamaaBaaaleaacaaIZaaabeaaaOqaaiaahwgadaWgaaWcbaGaaGym aaqabaGccqGHxdaTcaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0 JaeyOeI0IaaCyzamaaBaaaleaacaaIYaaabeaaaOqaaiaahwgadaWg aaWcbaGaaGOmaaqabaGccqGHxdaTcaWHLbWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaaCyzamaaBaaaleaacaaIXaaabeaaaaaa@6E43@

 

We may express any vector a as a suitable combination of the unit vectors e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@ , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@  and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B6@ .  For example, we may write

a= a 1 e 1 + a 2 e 2 + a 3 e 3 = i=1 3 a i e i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadggadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amyyamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaakiabg2da9maaqahabaGaamyyamaaBaaale aacaWGPbaabeaakiaahwgadaWgaaWcbaGaamyAaaqabaaabaGaamyA aiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@4A76@

where ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamyyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG HbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3920@  are scalars, called the components of a in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ .   The components of a have a simple physical interpretation.  For example, if we evaluate the dot product a e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahwgadaWgaaWcba GaaGymaaqabaaaaa@35E8@  we find that

a e 1 =( a 1 e 1 + a 2 e 2 + a 3 e 3 ) e 1 = a 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahwgadaWgaaWcba GaaGymaaqabaGccqGH9aqpcaGGOaGaamyyamaaBaaaleaacaaIXaaa beaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGHbWaaS baaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaai aaiodaaeqaaOGaaiykaiabgwSixlaahwgadaWgaaWcbaGaaGymaaqa baGccqGH9aqpcaWGHbWaaSbaaSqaaiaaigdaaeqaaaaa@4C39@

in view of the properties of the three vectors e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@ , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@  and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B6@ .  Recall that

a e 1 = a e 1 cosθ(a, e 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahwgadaWgaaWcba GaaGymaaqabaGccqGH9aqpdaabdaqaaiaahggaaiaawEa7caGLiWoa daabdaqaaiaahwgadaWgaaWcbaGaaGymaaqabaaakiaawEa7caGLiW oaciGGJbGaai4BaiaacohacqaH4oqCcaGGOaGaaCyyaiaacYcacaWH LbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@4960@

 

Then, noting that e 1 =1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaaGccaGLhWUaayjcSdGaeyypa0JaaGymaaaa@37A1@ , we have

a 1 =a e 1 = a cosθ(a, e 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaki abg2da9iaahggacqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGa eyypa0ZaaqWaaeaacaWHHbaacaGLhWUaayjcSdGaci4yaiaac+gaca GGZbGaeqiUdeNaaiikaiaahggacaGGSaGaaCyzamaaBaaaleaacaaI XaaabeaakiaacMcaaaa@473C@

 

Thus, a 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaaa a@32AC@  represents the projected length of the vector a  in the direction of e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@ , as illustrated in the figure above.  Similarly, a 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaa a@32AD@  and a 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIZaaabeaaaa a@32AE@  may be shown to represent the projection of a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaaaa@31C9@  in the directions e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@  and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B6@ , respectively.

 

The advantage of representing vectors in a Cartesian basis is that vector addition and multiplication can be expressed as simple operations on the components of the vectors.  For example, let a, b and c be vectors, with components ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamyyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG HbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3920@ , ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3923@  and ( c 1 , c 2 , c 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaa qabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaWG JbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3926@ , respectively.  Then, it is straightforward to show that

c=a+b c 1 = a 1 + b 1 ; c 2 = a 2 + b 2 ; c 3 = a 3 + b 3 ab= i=1 3 a i b i c=a×b c 1 = a 2 b 3 a 3 b 2 ; c 2 = a 3 b 1 a 1 b 3 ; c 3 = a 1 b 2 a 2 b 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWHJbGaeyypa0JaaCyyaiabgU caRiaahkgacaaMc8UaaGPaVlaaykW7caaMc8Uaeyi1HSTaaGPaVlaa ykW7caaMc8UaaGPaVlaadogadaWgaaWcbaGaaGymaaqabaGccqGH9a qpcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOyamaaBaaa leaacaaIXaaabeaakiaacUdacaaMc8UaaGPaVlaaykW7caaMc8Uaam 4yamaaBaaaleaacaaIYaaabeaakiabg2da9iaadggadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaai 4oaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaa caaIZaaabeaakiabg2da9iaadggadaWgaaWcbaGaaG4maaqabaGccq GHRaWkcaWGIbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyyaiabgwSi xlaahkgacqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaaqaba GccaWGIbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaI XaaabaGaaG4maaqdcqGHris5aaGcbaGaaC4yaiabg2da9iaahggacq GHxdaTcaWHIbGaaGPaVlaaykW7caaMc8UaaGPaVlabgsDiBlaaykW7 caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaey ypa0JaamyyamaaBaaaleaacaaIYaaabeaakiaadkgadaWgaaWcbaGa aG4maaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaam OyamaaBaaaleaacaaIYaaabeaakiaacUdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadogadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpca WGHbWaaSbaaSqaaiaaiodaaeqaaOGaamOyamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadggadaWgaaWcbaGaaGymaaqabaGccaWGIbWaaS baaSqaaiaaiodaaeqaaOGaai4oaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaam4yamaaBaaaleaacaaIZaaabeaakiabg2da9iaadggada WgaaWcbaGaaGymaaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGa eyOeI0IaamyyamaaBaaaleaacaaIYaaabeaakiaadkgadaWgaaWcba GaaGymaaqabaaaaaa@BFDD@

 

 

 

A.1.4 Change of basis

 

Let a be a vector, and let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis.  Suppose that the components of a in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  are known to be ( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamyyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG HbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3920@ .  Now, suppose that we wish to compute the components of a in a second Cartesian basis, m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@ .  This means we wish to find components ( α 1 , α 2 , α 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabeg7aHnaaBaaaleaacaaIXa aabeaakiaacYcacqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGSaGa eqySde2aaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3B4B@ , such that

a= α 1 m 1 + α 2 m 2 + α 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iabeg7aHnaaBaaale aacaaIXaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWHTbWaaSbaaSqaaiaaik daaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaiodaaeqaaOGaaCyB amaaBaaaleaacaaIZaaabeaaaaa@41F4@

To do so, note that

α 1 =a m 1 = a 1 e 1 m 1 + a 2 e 2 m 1 + a 3 e 3 m 1 α 2 =a m 2 = a 1 e 1 m 2 + a 2 e 2 m 2 + a 3 e 3 m 2 α 3 =a m 3 = a 1 e 1 m 3 + a 2 e 2 m 3 + a 3 e 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHXoqydaWgaaWcbaGaaGymaa qabaGccqGH9aqpcaWHHbGaeyyXICTaaCyBamaaBaaaleaacaaIXaaa beaakiabg2da9iaadggadaWgaaWcbaGaaGymaaqabaGccaWHLbWaaS baaSqaaiaaigdaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaS baaSqaaiaaikdaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaS baaSqaaiaaiodaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIXaaa beaaaOqaaiabeg7aHnaaBaaaleaacaaIYaaabeaakiabg2da9iaahg gacqGHflY1caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaamyy amaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqaba GccqGHflY1caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyy amaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaaqaba GccqGHflY1caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyy amaaBaaaleaacaaIZaaabeaakiaahwgadaWgaaWcbaGaaG4maaqaba GccqGHflY1caWHTbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeqySde2a aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaCyyaiabgwSixlaah2gada WgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaigda aeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgwSixlaah2gada WgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikda aeqaaOGaaCyzamaaBaaaleaacaaIYaaabeaakiabgwSixlaah2gada WgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaioda aeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgwSixlaah2gada WgaaWcbaGaaG4maaqabaaaaaa@9A8E@

This transformation is conveniently written as a matrix operation

α = Q a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqaHXoqyaiaawUfacaGLDb aacqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaWadaqaaiaa dggaaiaawUfacaGLDbaaaaa@3B16@ ,

where α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqaHXoqyaiaawUfacaGLDb aaaaa@3470@  is a matrix consisting of the components of a in the basis m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@ , a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGHbaacaGLBbGaayzxaa aaaa@33B7@  is a matrix consisting of the components of a in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ , and Q MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa aaaa@33A7@  is a ‘rotation matrix’ as follows

α = α 1 α 2 α 3 a = a 1 a 2 a 3 Q = m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqaHXoqyaiaawUfacaGLDb aacqGH9aqpdaWadaabaeqabaGaeqySde2aaSbaaSqaaiaaigdaaeqa aaGcbaGaeqySde2aaSbaaSqaaiaaikdaaeqaaaGcbaGaeqySde2aaS baaSqaaiaaiodaaeqaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aam WaaeaacaWGHbaacaGLBbGaayzxaaGaeyypa0ZaamWaaqaabeqaaiaa dggadaWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaik daaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaaabeaaaaGccaGLBbGa ayzxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaacaWGrbaacaGL BbGaayzxaaGaeyypa0ZaamWaaqaabeqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaaca aIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqabaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaai aaigdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIZaaabeaaaOqa aiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHLbWaaSbaaS qaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaCyBamaaBaaaleaacaaIYaaabeaakiabgwSixlaahwgadaWgaa WcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyzamaaBa aaleaacaaIZaaabeaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGc cqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIZaaabeaa kiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqa aOGaeyyXICTaaCyzamaaBaaaleaacaaIZaaabeaaaaGccaGLBbGaay zxaaaaaa@E06B@

Note that the elements of Q MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa aaaa@33A7@  have a simple physical interpretation.  For example, m 1 e 1 =cosθ( m 1 , e 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaki abgwSixlaahwgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpciGGJbGa ai4BaiaacohacqaH4oqCcaGGOaGaaCyBamaaBaaaleaacaaIXaaabe aakiaacYcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@424D@ , where θ( m 1 , e 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaaiikaiaah2gadaWgaaWcba GaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIXaaabeaakiaa cMcaaaa@3864@  is the angle between the m 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BC@  and e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@  axes.  Similarly m 1 e 2 =cosθ( m 1 , e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaki abgwSixlaahwgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpciGGJbGa ai4BaiaacohacqaH4oqCcaGGOaGaaCyBamaaBaaaleaacaaIXaaabe aakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@424F@  where θ( m 1 , e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaaiikaiaah2gadaWgaaWcba GaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaa cMcaaaa@3865@  is the angle between the m 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BC@  and e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@  axes.  In practice, we usually know the angles between the axes that make up the two bases, so it is simplest to assemble the elements of Q MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa aaaa@33A7@  by putting the cosines of the known angles in the appropriate places.

 

Index notation provides another convenient way to write this transformation:

α i = Q ij a j , Q ij = e i m j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamyuamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGHbWa aSbaaSqaaiaadQgaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamyuamaaBaaaleaacaWGPbGaamOAaaqabaGccq GH9aqpcaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaCyBamaa BaaaleaacaWGQbaabeaaaaa@5A42@

You don’t need to know index notation in detail to understand this MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  all you need to know is that

Q ij a j j=1 3 Q ij a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbGaamOAaa qabaGccaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaaGPaVlabggMi6oaa qahabaGaamyuamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGHbWaaS baaSqaaiaadQgaaeqaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaaG4m aaqdcqGHris5aaaa@43B5@

 

The same approach may be used to find an expression for a i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaa a@32E0@  in terms of α i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgaaeqaaa aa@3399@ .  If you work through the details, you will find that

a 1 a 2 a 3 = m 1 e 1 m 2 e 1 m 3 e 1 m 1 e 2 m 2 e 2 m 3 e 2 m 1 e 3 m 2 e 3 m 3 e 3 α 1 α 2 α 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaqaabeqaaiaadggadaWgaaWcba GaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa amyyamaaBaaaleaacaaIZaaabeaaaaGccaGLBbGaayzxaaGaaGPaVl aaykW7caaMc8Uaeyypa0ZaamWaaeaafaqabeWadaaabaGaaCyBamaa BaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGymaa qabaaakeaacaWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyz amaaBaaaleaacaaIXaaabeaaaOqaaiaah2gadaWgaaWcbaGaaG4maa qabaGccqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaCyB amaaBaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaG OmaaqabaaakeaacaWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTa aCyzamaaBaaaleaacaaIYaaabeaaaOqaaiaah2gadaWgaaWcbaGaaG 4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa aCyBamaaBaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcba GaaG4maaqabaaakeaacaWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyyX ICTaaCyzamaaBaaaleaacaaIZaaabeaaaOqaaiaah2gadaWgaaWcba GaaG4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaaa aOGaay5waiaaw2faaiaaykW7caaMc8+aamWaaqaabeqaaiabeg7aHn aaBaaaleaacaaIXaaabeaaaOqaaiabeg7aHnaaBaaaleaacaaIYaaa beaaaOqaaiabeg7aHnaaBaaaleaacaaIZaaabeaaaaGccaGLBbGaay zxaaaaaa@8376@

Comparing this result with the formula for α i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgaaeqaaa aa@3399@  in terms of a i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaa a@32E0@ , we see that

a = Q T α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGHbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGrbaacaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaOWaamWaaeaacqaHXoqyaiaawUfacaGLDbaaaaa@3C26@

where the superscript T denotes the transpose (rows and columns interchanged). The transformation matrix Q MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa aaaa@33A7@  is therefore orthogonal, and satisfies

Q 1 = Q T Q Q T = Q T Q = I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0ZaamWaaeaacaWG rbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aamWaaeaacaWGrbaacaGLBbGaayzxaaWaamWaae aacaWGrbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaeyyp a0ZaamWaaeaacaWGrbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGub aaaOWaamWaaeaacaWGrbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaa caWGjbaacaGLBbGaayzxaaaaaa@5EF5@

where [I] is the identity matrix.

 

 

A.1.5 Useful vector operations

 

· Calculating areas The area of a triangle bounded by vectors a, b¸and b-a is

A= 1 2 |a×b| MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9iaaykW7daWcaaqaai aaigdaaeaacaaIYaaaaiaacYhacaWHHbGaey41aqRaaCOyaiaacYha aaa@3BA9@

The area of the parallelogram shown in the figure is 2A.

 

· Calculating angles The angle between two vectors a and b is

θ= cos 1 ab/ a b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaaGPaVlGacogaca GGVbGaai4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGa aCyyaiabgwSixlaahkgacaGGVaWaaqWaaeaacaWHHbaacaGLhWUaay jcSdWaaqWaaeaacaWHIbaacaGLhWUaayjcSdaacaGLOaGaayzkaaaa aa@484C@

 

· Calculating the normal to a surface. If two vectors a and b can be found which are known to lie in the surface, then the unit normal to the surface is

n=± a×b a×b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iaaykW7cqGHXcqSda WcaaqaaiaahggacqGHxdaTcaWHIbaabaWaaqWaaeaacaWHHbGaey41 aqRaaCOyaaGaay5bSlaawIa7aaaaaaa@415F@

If the surface is specified by a parametric equation of the form r=r(s,t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaaykW7caWHYbGaai ikaiaadohacaGGSaGaamiDaiaacMcaaaa@3960@ , where s and t are two parameters and r is the position vector of a point on the surface, then two vectors which lie in the plane may be computed from

a= r s ,b= r t MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9maalaaabaGaeyOaIy RaaCOCaaqaaiabgkGi2kaadohaaaGaaiilaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWHIbGaeyypa0ZaaSaaaeaacq GHciITcaWHYbaabaGaeyOaIyRaamiDaaaaaaa@49DC@

 

· Calculating Volumes The volume of the parallelopiped defined by three vectors a, b, c as shown in the figure is

V=|c a×b | MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9iaacYhacaaMc8UaaC 4yaiabgwSixpaabmaabaGaaCyyaiabgEna0kaahkgaaiaawIcacaGL PaaacaGG8baaaa@3EF6@

The volume of the tetrahedron is V/6.

 

 

 

 

 

A.2. Vector fields and vector calculus

 

 

A.2.1. Scalar field.

 

Let  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaaykW7caWG4bWaaS baaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaa hwgadaWgaaWcbaGaaG4maaqabaaaaa@4192@

denote the position vector of a point in space.  A scalar field is a scalar valued function of position in space.  A scalar field is a function of the components of the position vector, and so may be expressed as ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3B2D@ . The value of ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  at a particular point in space must be independent of the choice of basis vectors.  A scalar field may be a function of time (and possibly other parameters) as well as position in space.

 

 

A.2.2. Vector field

 

Let  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaaykW7caWG4bWaaS baaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaa hwgadaWgaaWcbaGaaG4maaqabaaaaa@4192@

denote the position vector of a point in space.  A vector field is a vector valued function of position in space.  A vector field is a function of the components of the position vector, and so may be expressed as v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@3A64@ .  The vector may also be expressed as components in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaiaaykW7aa a@3B9B@

v( x 1 , x 2 , x 3 )= v 1 ( x 1 , x 2 , x 3 ) e 1 + v 2 ( x 1 , x 2 , x 3 ) e 2 + v 3 ( x 1 , x 2 , x 3 ) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGym aaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcaca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaai ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaO GaaiykaiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG2bWa aSbaaSqaaiaaiodaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaG 4maaqabaaaaa@621D@

The magnitude and direction of v MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaaaa@31DE@  at a particular point in space is independent of the choice of basis vectors.   A vector field may be a function of time (and possibly other parameters) as well as position in space.

 

 

A.2.3. Change of basis for scalar fields.

 

Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space, as shown below.  Express the position vector of a point relative to O in e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  as

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaaykW7caWG4bWaaS baaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaa hwgadaWgaaWcbaGaaG4maaqabaaaaa@4192@

and let ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaaykW7aaa@3CB8@  be a scalar field.

 


 

Let m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaiaaykW7aa a@3BB3@  be a second Cartesian basis, with origin P.  Let c OP MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabggMi6oaaFiaabaGaam4tai aadcfaaiaawEniaiaaykW7aaa@387C@  denote the position vector of  P relative to O. Express the position vector of a point relative to P in m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaiaaykW7aa a@3BB3@  as

p= ξ 1 m 1 + ξ 2 m 2 + ξ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iabe67a4naaBaaale aacaaIXaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaWHTbWaaSbaaSqaaiaaik daaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaaCyB amaaBaaaleaacaaIZaaabeaaaaa@426F@

 

To find ϕ( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiabe67a4naaBaaale aacaaIXaaabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGc caGGSaGaeqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaaiykaiaaykW7aa a@3F0A@ , use the following procedure.  First, express  p as components in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ , using the procedure outlined in Section 1.4:

p= p 1 e 1 + p 2 e 2 + p 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiCamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaaaaa@3FED@

where

p 1 = ξ 1 e 1 m 1 + ξ 2 e 2 m 1 + ξ 3 e 3 m 1 p 2 = ξ 1 e 1 m 2 + ξ 2 e 2 m 2 + ξ 3 e 3 m 2 p 3 = ξ 1 e 1 m 3 + ξ 2 e 2 m 3 + ξ 3 e 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGWbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaCyzamaa BaaaleaacaaIXaaabeaakiabgwSixlaah2gadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaWHLbWa aSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIXa aabeaakiabgUcaRiabe67a4naaBaaaleaacaaIZaaabeaakiaahwga daWgaaWcbaGaaG4maaqabaGccqGHflY1caWHTbWaaSbaaSqaaiaaig daaeqaaaGcbaGaamiCamaaBaaaleaacaaIYaaabeaakiabg2da9iab e67a4naaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaa qabaGccqGHflY1caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIa eqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgwSixlaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWk cqaH+oaEdaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaio daaeqaaOGaeyyXICTaaCyBamaaBaaaleaacaaIYaaabeaaaOqaaiaa dchadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcqaH+oaEdaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTa aCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiabe67a4naaBaaale aacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHflY1 caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeqOVdG3aaSbaaS qaaiaaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgwSi xlaah2gadaWgaaWcbaGaaG4maaqabaaaaaa@8DEF@

or, using index notation

p i = Q ij ξ j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaki abg2da9iaadgfadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqOVdG3a aSbaaSqaaiaadQgaaeqaaaaa@39C5@

where the transformation matrix Q ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33BE@  is defined in Sect 1.4. Now, express c as components in e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ , and note that

r=p+c x 1 e 1 + x 2 e 2 + x 3 e 3 = p 1 e 1 + p 2 e 2 + p 3 e 3 + c 1 e 1 + c 2 e 2 + c 3 e 3 x 1 = p 1 + c 1 , x 2 = p 2 + c 2 , x 3 = p 3 + c 3 x i = Q ij ξ j + c i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahkhacqGH9aqpcaWHWbGaey4k aSIaaC4yaaqaaiabgkDiElaaykW7caaMc8UaamiEamaaBaaaleaaca aIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaWHYaaabe aakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSba aSqaaiaaiodaaeqaaOGaeyypa0JaamiCamaaBaaaleaacaaIXaaabe aakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaSba aSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaWHYaaabeaakiabgU caRiaadchadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiaahw gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaa ikdaaeqaaOGaaCyzamaaBaaaleaacaWHYaaabeaakiabgUcaRiaado gadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqa aaGcbaGaeyO0H4TaamiEamaaBaaaleaacaaIXaaabeaakiabg2da9i aadchadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaigdaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja amiCamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadogadaWgaaWcba GaaGOmaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGH9aqpca WGWbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4yamaaBaaaleaa caaIZaaabeaaaOqaaiabgkDiElaadIhadaWgaaWcbaGaamyAaaqaba GccqGH9aqpcaWGrbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabe67a 4naaBaaaleaacaWGQbaabeaakiabgUcaRiaadogadaWgaaWcbaGaam yAaaqabaaaaaa@AEF4@

so that

ϕ( x 1 , x 2 , x 3 )=ϕ( p 1 + c 1 , p 2 + c 2 , p 3 + c 3 ) =ϕ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHvpGzcaGGOaGaamiEamaaBa aaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0 Jaeqy1dyMaaiikaiaadchadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadchadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadchadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGJbWaaS baaSqaaiaaiodaaeqaaOGaaiykaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeyypa0Jaeqy1dyMaaiikaiaadgfadaWgaaWcbaGaaGym aiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaey4kaS Iaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaWGrbWaaSbaaSqa aiaaikdacaWGQbaabeaakiabe67a4naaBaaaleaacaWGQbaabeaaki abgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyuamaa BaaaleaacaaIZaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaamOAaa qabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa aa@99FB@

 

 

A.2.4. Change of basis for vector fields.

 

Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space, as shown below.

 


 

Express the position vector of a point relative to O in e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  as

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaaaaa@4007@

and let v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@3A64@  be a vector  field, with components

v( x 1 , x 2 , x 3 )= v 1 ( x 1 , x 2 , x 3 ) e 1 + v 2 ( x 1 , x 2 , x 3 ) e 2 + v 3 ( x 1 , x 2 , x 3 ) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGym aaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcaca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaai ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaO GaaiykaiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG2bWa aSbaaSqaaiaaiodaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaG 4maaqabaaaaa@621D@

Let m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  be a second Cartesian basis, with origin P.  Let c OP MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabggMi6oaaFiaabaGaam4tai aadcfaaiaawEniaaaa@36F1@  denote the position vector of  P relative to O. Express the position vector of a point relative to P in m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  as

p= ξ 1 m 1 + ξ 2 m 2 + ξ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iabe67a4naaBaaale aacaaIXaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaWHTbWaaSbaaSqaaiaaik daaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaaCyB amaaBaaaleaacaaIZaaabeaaaaa@426F@

 

To express the vector field as components in m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  and as a function of the components of p, use the following procedure.  First, express ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadAhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamODamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 2bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@395F@  in terms of ( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabe67a4naaBaaaleaacaaIXa aabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaGGSaGa eqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3BB7@  using the procedure outlined for scalar fields in the preceding section

v k ( x 1 , x 2 , x 3 )= v k ( p 1 + c 1 , p 2 + c 2 , p 3 + c 3 ) = v k ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG2bWaaSbaaSqaaiaadUgaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiE amaaBaaaleaacaaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaio daaeqaaOGaaiykaiabg2da9iaadAhadaWgaaWcbaGaam4AaaqabaGc caGGOaGaamiCamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadogada WgaaWcbaGaaGymaaqabaGccaGGSaGaamiCamaaBaaaleaacaaIYaaa beaakiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaam iCamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadogadaWgaaWcbaGa aG4maaqabaGccaGGPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqGH9aqpcaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadgfada WgaaWcbaGaaGymaiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQga aeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiaacYcaca WGrbWaaSbaaSqaaiaaikdacaWGQbaabeaakiabe67a4naaBaaaleaa caWGQbaabeaakiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGcca GGSaGaamyuamaaBaaaleaacaaIZaGaamOAaaqabaGccqaH+oaEdaWg aaWcbaGaamOAaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaiodaae qaaOGaaiykaaaaaa@9B06@

for k=1,2,3.  Now, find the components  of v in m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  using the procedure outlined in Section 1.4.  Using index notation, the result is

v= Q 1i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 1 + Q 2i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 2 + Q 2i v i ( Q 1j ξ j + c 1 , Q 2j ξ j + c 2 , Q 3j ξ j + c 3 ) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH2bGaeyypa0JaamyuamaaBa aaleaacaaIXaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqa aOGaaiikaiaadgfadaWgaaWcbaGaaGymaiaadQgaaeqaaOGaeqOVdG 3aaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaI XaaabeaakiaacYcacaWGrbWaaSbaaSqaaiaaikdacaWGQbaabeaaki abe67a4naaBaaaleaacaWGQbaabeaakiabgUcaRiaadogadaWgaaWc baGaaGOmaaqabaGccaGGSaGaamyuamaaBaaaleaacaaIZaGaamOAaa qabaGccqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaGymaa qabaaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH RaWkcaWGrbWaaSbaaSqaaiaaikdacaWGPbaabeaakiaadAhadaWgaa WcbaGaamyAaaqabaGccaGGOaGaamyuamaaBaaaleaacaaIXaGaamOA aaqabaGccqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWGJb WaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadgfadaWgaaWcbaGaaGOm aiaadQgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaey4kaS Iaam4yamaaBaaaleaacaaIYaaabeaakiaacYcacaWGrbWaaSbaaSqa aiaaiodacaWGQbaabeaakiabe67a4naaBaaaleaacaWGQbaabeaaki abgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaa BaaaleaacaaIYaaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabgUcaRiaadgfadaWgaaWcbaGaaGOmaiaadMgaaeqa aOGaamODamaaBaaaleaacaWGPbaabeaakiaacIcacaWGrbWaaSbaaS qaaiaaigdacaWGQbaabeaakiabe67a4naaBaaaleaacaWGQbaabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyuam aaBaaaleaacaaIYaGaamOAaaqabaGccqaH+oaEdaWgaaWcbaGaamOA aaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaiilai aadgfadaWgaaWcbaGaaG4maiaadQgaaeqaaOGaeqOVdG3aaSbaaSqa aiaadQgaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaaki aacMcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaaaaa@AEA6@

 

 

A.2.5. Time derivatives of vectors

 

Let a(t) be a vector whose magnitude and direction vary with time, t.  Suppose that i,j,k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHPbGaaiilaiaahQgaca GGSaGaaC4AaaGaay5Eaiaaw2haaaaa@3749@  is a fixed basis, i.e. independent of time.  We may express a(t) in terms of components ( a x , a y , a z ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaamiEaa qabaGccaGGSaGaamyyamaaBaaaleaacaWG5baabeaakiaacYcacaWG HbWaaSbaaSqaaiaadQhaaeqaaOGaaiykaaaa@39E6@  in the basis i,j,k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHPbGaaiilaiaahQgaca GGSaGaaC4AaaGaay5Eaiaaw2haaaaa@3749@  as

a(t)= a x i+ a y j+ a z k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiaacIcacaWG0bGaaiykaiabg2 da9iaadggadaWgaaWcbaGaamiEaaqabaGccaWHPbGaey4kaSIaamyy amaaBaaaleaacaWG5baabeaakiaahQgacqGHRaWkcaWGHbWaaSbaaS qaaiaadQhaaeqaaOGaaC4Aaaaa@400C@ .

The time derivative of a is defined using the usual rules of calculus

a ˙ (t)= d dt a(t)= lim 0 a(t+)a(t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyyayaacaGaaiikaiaadshacaGGPa Gaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadshaaaGaaCyyaiaa cIcacaWG0bGaaiykaiabg2da9maaxababaGaciiBaiaacMgacaGGTb aaleaacqGHiiIZcqGHsgIRcaaIWaaabeaakmaalaaabaGaaCyyaiaa cIcacaWG0bGaey4kaSIaeyicI4SaaiykaiabgkHiTiaahggacaGGOa GaamiDaiaacMcaaeaacqGHiiIZaaaaaa@4EE4@ ,

or in component form as

a ˙ (t)= a ˙ x i+ a ˙ y j+ a ˙ z k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyyayaacaGaaiikaiaadshacaGGPa Gaeyypa0JabmyyayaacaWaaSbaaSqaaiaadIhaaeqaaOGaaCyAaiab gUcaRiqadggagaGaamaaBaaaleaacaWG5baabeaakiaahQgacqGHRa WkceWGHbGbaiaadaWgaaWcbaGaamOEaaqabaGccaWHRbaaaa@4030@

The definition of the time derivative of a vector may be used to show the following rules

d dt α(t)a(t) = α ˙ (t)a(t)+α(t) a ˙ (t) d dt a(t)b(t) = a ˙ (t)b(t)+a(t) b ˙ (t) d dt a(t)×b(t) = a ˙ (t)×b(t)+a(t)× b ˙ (t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgaaeaacaWGKb GaamiDaaaadaWadaqaaiabeg7aHjaacIcacaWG0bGaaiykaiaahgga caGGOaGaamiDaiaacMcaaiaawUfacaGLDbaacqGH9aqpcuaHXoqyga GaaiaacIcacaWG0bGaaiykaiaahggacaGGOaGaamiDaiaacMcacqGH RaWkcqaHXoqycaGGOaGaamiDaiaacMcaceWHHbGbaiaacaGGOaGaam iDaiaacMcaaeaadaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaadaWa daqaaiaahggacaGGOaGaamiDaiaacMcacqGHflY1caWHIbGaaiikai aadshacaGGPaaacaGLBbGaayzxaaGaeyypa0JabCyyayaacaGaaiik aiaadshacaGGPaGaeyyXICTaaCOyaiaacIcacaWG0bGaaiykaiabgU caRiaahggacaGGOaGaamiDaiaacMcacqGHflY1ceWHIbGbaiaacaGG OaGaamiDaiaacMcaaeaadaWcaaqaaiaadsgaaeaacaWGKbGaamiDaa aadaWadaqaaiaahggacaGGOaGaamiDaiaacMcacqGHxdaTcaWHIbGa aiikaiaadshacaGGPaaacaGLBbGaayzxaaGaeyypa0JabCyyayaaca GaaiikaiaadshacaGGPaGaey41aqRaaCOyaiaacIcacaWG0bGaaiyk aiabgUcaRiaahggacaGGOaGaamiDaiaacMcacqGHxdaTceWHIbGbai aacaGGOaGaamiDaiaacMcaaaaa@8EBC@

 

 

A.2.6. Using a rotating basis

 

It is often convenient to express position vectors as components in a basis which rotates with time.  To write equations of motion one must evaluate time derivatives of rotating vectors.

 

Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a basis which rotates with instantaneous angular velocity Ω MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdaaa@3214@ .  Then,

d e 1 dt =Ω× e 1 , d e 2 dt =Ω× e 2 , d e 3 dt =Ω× e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyzamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iaahM6acqGH xdaTcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWH LbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadshaaaGaeyypa0 JaaCyQdiabgEna0kaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGKb GaaCyzamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0baaaiab g2da9iaahM6acqGHxdaTcaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@670B@

 

 

 

A.2.7. Gradient of a scalar field.

 

Let ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  be a scalar field in three dimensional space.  The gradient of ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  is a vector field denoted by grad(ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaae4zaiaabkhacaqGHbGaaeizaiaacI cacqaHvpGzcaGGPaaaaa@37AA@  or ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaey4bIenaaa@342D@ , and is defined so that

(ϕ)a= lim 0 ϕ(r+a)ϕ(r) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabew9aMjabgEGirlaacMcacq GHflY1caWHHbGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqa aiabgIGiolabgkziUkaaicdaaeqaaOWaaSaaaeaacqaHvpGzcaGGOa GaaCOCaiabgUcaRiabgIGiolaaykW7caWHHbGaaiykaiabgkHiTiab ew9aMjaacIcacaWHYbGaaiykaaqaaiabgIGiodaaaaa@5092@

for every position r in space and for every vector a.

 

Let  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaaaaa@4007@

denote the position vector of a point in space.  Express ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  as a function of the components of r ϕ=ϕ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0Jaeqy1dyMaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@3DFB@ .  The gradient of  ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  in this basis is then given by

ϕ= ϕ x 1 e 1 + ϕ x 2 e 2 + ϕ x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaey4bIeTaeyypa0ZaaSaaae aacqGHciITcqaHvpGzaeaacqGHciITcaWG4bWaaSbaaSqaaiaaigda aeqaaaaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaa qaaiabgkGi2kabew9aMbqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOm aaqabaaaaOGaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRmaala aabaGaeyOaIyRaeqy1dygabaGaeyOaIyRaamiEamaaBaaaleaacaaI ZaaabeaaaaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@5046@

 

 

 

A.2.8. Gradient of a vector field

 

Let v be a vector field in three dimensional space.  The gradient of v is a tensor field denoted by grad(v) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaae4zaiaabkhacaqGHbGaaeizaiaacI cacaWH2bGaaiykaaaa@36E1@  or v MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabgEGirdaa@3364@ , and is defined so that

(v)a= lim 0 v(r+a)v(r) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahAhacqGHhis0caGGPaGaey yXICTaaCyyaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaa cqGHiiIZcqGHsgIRcaaIWaaabeaakmaalaaabaGaaCODaiaacIcaca WHYbGaey4kaSIaeyicI4SaaGPaVlaahggacaGGPaGaeyOeI0IaaCOD aiaacIcacaWHYbGaaiykaaqaaiabgIGiodaaaaa@4E37@

for every position r in space and for every vector a.

 

Let  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaaaaa@4007@

denote the position vector of a point in space.  Express v as a function of the components of r, so that v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahAhacaGGOaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@3C69@ .  The gradient of  v in this basis is then given by

v= v 1 x 1 v 1 x 2 v 1 x 3 v 2 x 1 v 2 x 2 v 2 x 3 v 3 x 1 v 3 x 2 v 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabgEGirlabg2da9maadmaaba qbaeqabmWaaaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaI XaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaa GcbaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaigdaaeqaaaGc baGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaa qaaiabgkGi2kaadAhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaOqaamaalaaabaGaeyOaIy RaamODamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWG2bWaaS baaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaI YaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaG OmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa aOqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZaaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaaqaaiabgkGi 2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaS baaSqaaiaaiodaaeqaaaaaaaaakiaawUfacaGLDbaaaaa@72EB@

Alternatively, in index notation

v ij v i x j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWH2bGaey4bIenacaGLBb GaayzxaaWaaSbaaSqaaiaadMgacaWGQbaabeaakiabggMi6oaalaaa baGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamOAaaqabaaaaaaa@4045@

 

The gradient can also be taken from the left (but this is less common).  This operation is defined as

a(v)= lim 0 v(r+a)v(r) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaacIcacqGHhis0ca WH2bGaaiykaiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaa cqGHiiIZcqGHsgIRcaaIWaaabeaakmaalaaabaGaaCODaiaacIcaca WHYbGaey4kaSIaeyicI4SaaGPaVlaahggacaGGPaGaeyOeI0IaaCOD aiaacIcacaWHYbGaaiykaaqaaiabgIGiodaaaaa@4E37@

for every position r in space and for every vector a.  Expressed in component form, the left gradient is

v= v 1 x 1 v 2 x 1 v 3 x 1 v 1 x 2 v 2 x 2 v 3 x 2 v 1 x 3 v 2 x 3 v 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaaCODaiabg2da9maadmaaba qbaeqabmWaaaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaI XaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaa GcbaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaikdaaeqaaaGc baGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaa qaaiabgkGi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIy RaamODamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWG2bWaaS baaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaI YaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaG 4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa aOqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIXaaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGcbaWaaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaaIZaaabeaaaaaakeaadaWcaaqaaiabgkGi 2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaS baaSqaaiaaiodaaeqaaaaaaaaakiaawUfacaGLDbaaaaa@72EB@

Evidently v= v T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaaCODaiabg2da9maabmaaba GaaCODaiabgEGirdGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaa aaa@397F@ .

 

HEALTH WARNING: The notation used for the gradient of a vector is not standard, unfortunately.  Many publications use v MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaaCODaaaa@3365@  to denote the gradient taken from the right.  

 

 

 

A.2.9. Divergence of a vector field

 

Let v be a vector field in three dimensional space.  The divergence of v is a scalar field denoted by div(v) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeizaiaabMgacaqG2bGaaiikaiaahA hacaGGPaaaaa@3603@  or v MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaCODaaaa@35AE@ .  Formally, it is defined as trace(grad(v)) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gacaqGOaGaae4zaiaabkhacaqGHbGaaeizaiaabIcacaWH2bGaaeyk aiaabMcaaaa@3CD4@  (the trace of a tensor is the sum of its diagonal terms). 

 

Let  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaaaaa@4007@

denote the position vector of a point in space.  Express v as a function of the components of r: v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahAhacaGGOaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@3C69@ . The divergence of v is then

 

div(v)= v 1 x 1 + v 2 x 2 + v 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeizaiaabMgacaqG2bGaaeikaiaahA hacaqGPaGaaeypamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaI XaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaO Gaey4kaSYaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGHRa WkdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaaa@4CA3@

 

 

A.2.10. Curl of a vector field.

 

Let v be a vector field in three dimensional space.  The curl of  v  is a vector field denoted by curl(v) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaae4yaiaabwhacaqGYbGaaeiBaiaacI cacaWH2bGaaiykaaaa@36F9@  or ×v MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaey41aqRaaCODaaaa@357B@ .  It is best defined in terms of its components in a given basis, although its magnitude and direction are not dependent on the choice of basis.

 

Let  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis with origin O in three dimensional space.  Let

r= x 1 e 1 + x 2 e 2 + x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaa BaaaleaacaaIZaaabeaaaaa@4007@

denote the position vector of a point in space.  Express v as a function of the components of r  v=v( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahAhacaGGOaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@3C69@ . The curl of  v in this basis is then given by

×v= e 1 e 2 e 3 x 1 x 2 x 3 v 1 v 2 v 3 = v 3 x 2 v 2 x 3 e 1 + v 1 x 3 v 3 x 1 e 2 + v 2 x 1 v 1 x 2 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaey41aqRaaCODaiabg2da9m aaemaabaqbaeqabmWaaaqaaiaahwgadaWgaaWcbaGaaGymaaqabaaa keaacaWHLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaCyzamaaBaaale aacaaIZaaabeaaaOqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamiE amaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaa cqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaO qaaiaadAhadaWgaaWcbaGaaGymaaqabaaakeaacaWG2bWaaSbaaSqa aiaaikdaaeqaaaGcbaGaamODamaaBaaaleaacaaIZaaabeaaaaaaki aawEa7caGLiWoacqGH9aqpdaqadaqaamaalaaabaGaeyOaIyRaamOD amaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaaGOmaaqabaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWG2bWaaSba aSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZa aabeaaaaaakiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSYaaeWaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcba GaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqa aaaakiabgkHiTmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZa aabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGc caGLOaGaayzkaaGaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRm aabmaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccqGHsi sldaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaGymaaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawM caaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@8B94@

Using index notation, this may be expressed as

×v i = ijk v j x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqGHhis0cqGHxdaTcaWH2b aacaGLBbGaayzxaaWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Jaeyic I48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGcdaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadUgaaeqaaaaaaaa@4533@

 

 

A.2.11 The Divergence Theorem.

 

Let V be a closed region in three dimensional space, bounded by an orientable surface S. Let n  denote the unit vector normal to S, taken so that n points out of V as shown in the figure. Let u be a vector field which is continuous and has continuous first partial derivatives in some domain containing V.  Then

V div(u) dV= S un dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaqGKbGaaeyAaiaabAhaca qGOaGaaCyDaiaabMcaaSqaaiaadAfaaeqaniabgUIiYdGccaaMc8Ua amizaiaadAfacqGH9aqpdaWdrbqaaiaahwhacqGHflY1caWHUbaale aacaWGtbaabeqdcqGHRiI8aOGaaGPaVlaadsgacaWGbbaaaa@4829@

alternatively, expressed in index notation

V u i x i dV= S u i n i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadMgaaeqaaaaakiaadsgacaWGwbGaeyypa0Zaa8quaeaacaWG1b WaaSbaaSqaaiaadMgaaeqaaOGaamOBamaaBaaaleaacaWGPbaabeaa kiaadsgacaWGbbaaleaacaWGtbaabeqdcqGHRiI8aaWcbaGaamOvaa qab0Gaey4kIipaaaa@46EF@

For a proof of this extremely useful theorem consult e.g. Kreyzig, (1998).

 

 

 

A.3. Matrices

 

A.3.1 Definition

 

An (n×m) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad6gacqGHxdaTcaWGTbGaai ykaaaa@3634@  matrix [A] MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadgeacaGGDbaaaa@3365@  is a set of numbers, arranged in m rows and n columns

A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaqaabeqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaG OmaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigda caaIZaaabeaakiaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caWGHb WaaSbaaSqaaiaaigdacaWGUbaabeaaaOqaaiaadggadaWgaaWcbaGa aGOmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaale aacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSba aSqaaiaaikdacaaIZaaabeaakiaaykW7caaMc8UaeS47IWKaaGPaVl aaykW7caWGHbWaaSbaaSqaaiaaikdacaWGUbaabeaaaOqaaiaaykW7 caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6Uinjaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIXlYtcaaM c8UaaGPaVlaaykW7cqWIUlstaeaacaWGHbWaaSbaaSqaaiaad2gaca aIXaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaamyB aiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaaca WGTbGaaG4maaqabaGccaaMc8UaaGPaVlabl+UimjaaykW7caaMc8Ua amyyamaaBaaaleaacaWGTbGaamOBaaqabaaaaOGaay5waiaaw2faaa aa@C495@

 

· A square matrix has equal numbers of rows and columns

 

· A diagonal matrix is a square matrix with elements such that a ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaaIWaaaaa@3598@  for ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyAaiabgcMi5kaadQgaaaa@3483@

 

 

· The identity matrix I MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGjbaacaGLBbGaayzxaa aaaa@339F@  is a diagonal matrix for which all diagonal elements a ii =1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamyAaa qabaGccqGH9aqpcaaIXaaaaa@3598@

 

· A symmetric matrix is a square matrix with elements such that a ij = a ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadQgacaWGPbaabeaaaaa@37CD@

 

· A skew symmetric matrix is a square matrix with elements such that a ij = a ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqGHsislcaWGHbWaaSbaaSqaaiaadQgacaWGPbaa beaaaaa@38BA@

 

 

A.3.2 Matrix operations

 

Addition 

 

Let  A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  and B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa aaaa@3398@  be two matrices of order (m×n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad2gacqGHxdaTcaWGUbGaai ykaaaa@3634@  with elements a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CE@  and b ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CF@ .  Then

C = A + B c ij = a ij + b ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGdbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGbbaacaGLBbGaayzxaaGaey4kaSYaamWa aeaacaWGcbaacaGLBbGaayzxaaGaeyi1HSTaam4yamaaBaaaleaaca WGPbGaamOAaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadMgacaWG QbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaa aa@481A@

 

Multiplication 

 

· Multiplication by a scalar.  Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be a matrix with elements a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CE@ , and let k be a scalar.  Then

B =k A b ij =k a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa Gaeyypa0Jaam4AamaadmaabaGaamyqaaGaay5waiaaw2faaiabgsDi BlaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0Jaam4Aai aadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@4281@

 

· Multiplication by a matrix. Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be a matrix of order (m×n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad2gacqGHxdaTcaWGUbGaai ykaaaa@3634@  with elements a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CE@ , and let B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa aaaa@3398@  be a matrix of order (p×q) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadchacqGHxdaTcaWGXbGaai ykaaaa@363A@  with elements b ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CF@ .  The product C = A B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGdbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGbbaacaGLBbGaayzxaaWaamWaaeaacaWG cbaacaGLBbGaayzxaaaaaa@3A10@  is defined only if n=p, and is an (m×q) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad2gacqGHxdaTcaWGXbGaai ykaaaa@3637@  matrix such that

C = A B c ij = k=1 n a ik b kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGdbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGbbaacaGLBbGaayzxaaWaamWaaeaacaWG cbaacaGLBbGaayzxaaGaeyi1HSTaam4yamaaBaaaleaacaWGPbGaam OAaaqabaGccqGH9aqpdaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaa dUgaaeqaaOGaamOyamaaBaaaleaacaWGRbGaamOAaaqabaaabaGaam 4Aaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@4C34@

 

Note that multiplication is distributive and associative, but not commutative, i.e.

A B + C = A B + A C A B C = A B C A B B A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaaiaadgeaaiaawUfaca GLDbaadaqadaqaamaadmaabaGaamOqaaGaay5waiaaw2faaiabgUca RmaadmaabaGaam4qaaGaay5waiaaw2faaaGaayjkaiaawMcaaiabg2 da9maadmaabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaaGa ay5waiaaw2faaiabgUcaRmaadmaabaGaamyqaaGaay5waiaaw2faam aadmaabaGaam4qaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVdqaamaadmaabaGaamyqaaGaay5waiaaw2faam aabmaabaWaamWaaeaacaWGcbaacaGLBbGaayzxaaWaamWaaeaacaWG dbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaada WadaqaaiaadgeaaiaawUfacaGLDbaadaWadaqaaiaadkeaaiaawUfa caGLDbaaaiaawIcacaGLPaaadaWadaqaaiaadoeaaiaawUfacaGLDb aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VdqaamaadmaabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamOqaa Gaay5waiaaw2faaiabgcMi5oaadmaabaGaamOqaaGaay5waiaaw2fa amaadmaabaGaamyqaaGaay5waiaaw2faaaaaaa@7EF9@

 

The multiplication of a vector by a matrix is a particularly important operation.  Let b and c be two vectors with n components, which we think of as (1×n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaaigdacqGHxdaTcaWGUbGaai ykaaaa@35FD@  matrices.  Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be an (m×n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad2gacqGHxdaTcaWGUbGaai ykaaaa@3634@  matrix.  Thus

b= b 1 b 2 b 3 b n c= c 1 c 2 c 3 c n A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9maadmaaeaqabeaaca WGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOyamaaBaaaleaacaaI YaaabeaaaOqaaiaadkgadaWgaaWcbaGaaG4maaqabaaakeaacaaMc8 UaaGPaVlabl6UinbqaaiaadkgadaWgaaWcbaGaamOBaaqabaaaaOGa ay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC4yaiabg2da9maadmaa eaqabeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maaqabaaa keaacaaMc8UaaGPaVlabl6UinbqaaiaadogadaWgaaWcbaGaamOBaa qabaaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaaca WGbbaacaGLBbGaayzxaaGaeyypa0ZaamWaaqaabeqaaiaadggadaWg aaWcbaGaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyyam aaBaaaleaacaaIXaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caWG HbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaaykW7caaMc8UaeS47IW KaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaWGUbaabeaaaOqa aiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaaykW7ca aMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPa VlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaaykW7ca aMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaWG UbaabeaaaOqaaiaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqWIXlYtcaaMc8UaaGPaVlaaykW7cqWIUlstaeaacaWGHb WaaSbaaSqaaiaad2gacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaa dggadaWgaaWcbaGaamyBaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8 UaamyyamaaBaaaleaacaWGTbGaaG4maaqabaGccaaMc8UaaGPaVlab l+UimjaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaamOBaaqaba aaaOGaay5waiaaw2faaaaa@07A4@

Now,

c= A b c i = j=1 n a ij b j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9maadmaabaGaamyqaa Gaay5waiaaw2faaiaahkgacaaMc8UaaGPaVlabgsDiBlaaykW7caaM c8UaaGPaVlaadogadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaaeWb qaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOyamaaBaaa leaacaWGQbaabeaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaad6gaa0 GaeyyeIuoaaaa@4E6E@

i.e.

c 1 = a 11 b 1 + a 12 b 2 + a 13 b 3 + a 1n b n c 2 = a 21 b 1 + a 22 b 2 + a 23 b 3 + a 2n b n c m = a m1 b 1 + a m2 b 2 + a m3 b 3 + a mn b n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGJbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG IbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaaca aIXaGaaGOmaaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaamyyamaaBaaaleaacaaIXaGaaG4maaqabaGccaWGIbWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaaGPaVlaaykW7caaMc8UaeS47IWKa aGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaamOBaaqaba GccaWGIbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaam4yamaaBaaaleaa caaIYaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGOmaiaaigdaae qaaOGaamOyamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadggadaWg aaWcbaGaaGOmaiaaikdaaeqaaOGaamOyamaaBaaaleaacaaIYaaabe aakiabgUcaRiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaamOy amaaBaaaleaacaaIZaaabeaakiabgUcaRiaaykW7caaMc8UaaGPaVl abl+UimjaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaa d6gaaeqaaOGaamOyamaaBaaaleaacaWGUbaabeaaaOqaaiaaykW7ca aMc8UaeSO7I0eabaGaam4yamaaBaaaleaacaWGTbaabeaakiabg2da 9iaadggadaWgaaWcbaGaamyBaiaaigdaaeqaaOGaamOyamaaBaaale aacaaIXaaabeaakiabgUcaRiaadggadaWgaaWcbaGaamyBaiaaikda aeqaaOGaamOyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadggada WgaaWcbaGaamyBaiaaiodaaeqaaOGaamOyamaaBaaaleaacaaIZaaa beaakiabgUcaRiaaykW7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8 UaaGPaVlaadggadaWgaaWcbaGaamyBaiaad6gaaeqaaOGaamOyamaa BaaaleaacaWGUbaabeaaaaaa@9F73@

 

 

 

Transpose.

 

 Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be a matrix of order (m×n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad2gacqGHxdaTcaWGUbGaai ykaaaa@3634@  with elements a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CE@ .  The transpose of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  is denoted A T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa WaaWbaaSqabeaacaWGubaaaaaa@349D@ .  If B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa aaaa@3398@  is an (n×m) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad6gacqGHxdaTcaWGTbGaai ykaaaa@3634@  matrix such that B = A T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGbbaacaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaaaa@385C@ , then b ij = a ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadQgacaWGPbaabeaaaaa@37CE@ , i.e.

A T = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 a mn T = a 11 a 21 a 31 a n1 a 12 a 22 a 3 2 a n2 a 1m a 2m a 3m a nm MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa WaaWbaaSqabeaacaWGubaaaOGaeyypa0ZaamWaaqaabeqaaiaadgga daWgaaWcbaGaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaam yyamaaBaaaleaacaaIXaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaaykW7caaMc8UaeS 47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaWGUbaabeaa aOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaayk W7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccaaMc8Ua aGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaayk W7caaMc8UaeS47IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikda caWGUbaabeaaaOqaaiaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqWIXlYtcaaMc8UaaGPaVlaaykW7cqWIUlstaeaaca WGHbWaaSbaaSqaaiaad2gacaaIXaaabeaakiaaykW7caaMc8UaaGPa VlaadggadaWgaaWcbaGaamyBaiaaikdaaeqaaOGaaGPaVlaaykW7ca aMc8UaamyyamaaBaaaleaacaWGTbGaaG4maaqabaGccaaMc8UaaGPa Vlabl+UimjaaykW7caaMc8UaamyyamaaBaaaleaacaWGTbGaamOBaa qabaaaaOGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiabg2da 9maadmaaeaqabeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaki aaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaaigdaaeqa aOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIZaGaaGymaa qabaGccaaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaamyyamaaBaaa leaacaWGUbGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdaca aIYaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOm aiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaaca aIZaaabeaakmaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaeS47 IWKaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad6gacaaIYaaabeaaaO qaaiaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab l6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq WIXlYtcaaMc8UaaGPaVlaaykW7cqWIUlstaeaacaWGHbWaaSbaaSqa aiaaigdacaWGTbaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaa WcbaGaaGOmaiaad2gaaeqaaOGaaGPaVlaaykW7caaMc8Uaamyyamaa BaaaleaacaaIZaGaamyBaaqabaGccaaMc8UaaGPaVlabl+Uimjaayk W7caaMc8UaamyyamaaBaaaleaacaWGUbGaamyBaaqabaaaaOGaay5w aiaaw2faaaaa@57E9@

Note that

A B T = B T A T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWadaqaaiaadgeaaiaawU facaGLDbaadaWadaqaaiaadkeaaiaawUfacaGLDbaaaiaawIcacaGL PaaadaahaaWcbeqaaiaadsfaaaGccqGH9aqpdaWadaqaaiaadkeaai aawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaWadaqaaiaadgea aiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@4176@

 

 

 

Determinant

 

 The determinant is defined only for a square matrix.  Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be a (2×2) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaaikdacqGHxdaTcaaIYaGaai ykaaaa@35C7@  matrix with components a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CE@ .  The determinant of  A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  is denoted by det A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bWaamWaaeaaca WGbbaacaGLBbGaayzxaaaaaa@3662@  or A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWGbbaacaGLhWUaayjcSd aaaa@34C7@  and is given by

A = a 11 a 12 a 21 a 22 = a 11 a 22 a 12 a 21 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWGbbaacaGLhWUaayjcSd Gaeyypa0ZaaqWaaqaabeqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaa caWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWg aaWcbaGaaGOmaiaaikdaaeqaaaaakiaawEa7caGLiWoacqGH9aqpca WGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadggadaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaG OmaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaaaaa@6B3D@

Now, let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be an n×n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGUbGaey41aqRaamOBaa GaayjkaiaawMcaaaaa@3665@  matrix.  Define the minors M ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33BA@  of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  as the determinant formed by omitting the ith row and jth column of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@ .  For example, the minors M 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaGaaGymaa qabaaaaa@3353@  and M 12 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaGaaGOmaa qabaaaaa@3354@  for a 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIZaGaey41aqRaaG4maa GaayjkaiaawMcaaaaa@35F9@  matrix are computed as follows.   Let

A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaqaabeqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaG OmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaa caaIXaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdacaaIXa aabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGOmaiaa ikdaaeqaaOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYa GaaG4maaqabaGccaaMc8oabaGaamyyamaaBaaaleaacaaIZaGaaGym aaqabaGccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaiodaca aIYaaabeaakiaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG4m aiaaiodaaeqaaaaakiaawUfacaGLDbaaaaa@6CA7@

Then

M 11 = a 22 a 23 a 32 a 33 = a 22 a 33 a 32 a 23 M 12 = a 21 a 23 a 31 a 33 = a 21 a 33 a 31 a 23 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpdaabdaabaeqabaGaamyyamaaBaaaleaacaaIYaGa aGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaa aOqaaiaadggadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamyy amaaBaaaleaacaaIZaGaaG4maaqabaaaaOGaay5bSlaawIa7aiabg2 da9iaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamyyamaaBaaa leaacaaIZaGaaG4maaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaio dacaaIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad2eada WgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaqWaaqaabeqaaiaa dggadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaa leaacaaIYaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaca aIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaa aakiaawEa7caGLiWoacqGH9aqpcaWGHbWaaSbaaSqaaiaaikdacaaI XaaabeaakiaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyOeI0 IaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGccaWGHbWaaSbaaSqa aiaaikdacaaIZaaabeaaaaa@ADBB@

Define the cofactors C ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B0@  of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  as

C ij = 1 i+j M ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaa daahaaWcbeqaaiaadMgacqGHRaWkcaWGQbaaaOGaamytamaaBaaale aacaWGPbGaamOAaaqabaaaaa@3DC2@

Then, the determinant of the n×n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGUbGaey41aqRaamOBaa GaayjkaiaawMcaaaaa@3665@  matrix A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  is computed as follows

A = j=1 n a ij C ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWGbbaacaGLhWUaayjcSd Gaeyypa0ZaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaadoeadaWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4171@

The result is the same whichever row i is chosen for the expansion.  For the particular case of a 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIZaGaey41aqRaaG4maa GaayjkaiaawMcaaaaa@35F9@  matrix

det A =det a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 ( a 22 a 33 a 23 a 32 )+ a 12 ( a 23 a 31 a 21 a 33 )+ a 13 ( a 21 a 32 a 31 a 22 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaciGGKbGaaiyzaiaacshadaWada qaaiaadgeaaiaawUfacaGLDbaacqGH9aqpciGGKbGaaiyzaiaacsha daWadaabaeqabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGcca aMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdaca aIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGa aGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaaqaba GccaaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaikdacaaIZaaa beaakiaaykW7aeaacaWGHbWaaSbaaSqaaiaaiodacaaIXaaabeaaki aaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG4maiaaikdaaeqa aOGaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIZaGaaG4maa qabaaaaOGaay5waiaaw2faaaqaaiabg2da9iaadggadaWgaaWcbaGa aGymaiaaigdaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaGOmaiaaik daaeqaaOGaamyyamaaBaaaleaacaaIZaGaaG4maaqabaGccqGHsisl caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaadggadaWgaaWcba GaaG4maiaaikdaaeqaaOGaaiykaiabgUcaRiaadggadaWgaaWcbaGa aGymaiaaikdaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaGOmaiaaio daaeqaaOGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGccqGHsisl caWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaadggadaWgaaWcba GaaG4maiaaiodaaeqaaOGaaiykaiabgUcaRiaadggadaWgaaWcbaGa aGymaiaaiodaaeqaaOGaaiikaiaadggadaWgaaWcbaGaaGOmaiaaig daaeqaaOGaamyyamaaBaaaleaacaaIZaGaaGOmaaqabaGccqGHsisl caWGHbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaadggadaWgaaWcba GaaGOmaiaaikdaaeqaaOGaaiykaaaaaa@A28F@

 

The determinant may also be evaluated by summing over rows, i.e.

A = i=1 n a ij C ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWGbbaacaGLhWUaayjcSd Gaeyypa0ZaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaadoeadaWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4170@

and as before the result is the same for each choice of column j.  Finally, note that

det A T =det A det A B =det A det B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bWaamWaaeaaca WGbbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaeyypa0Ja ciizaiaacwgacaGG0bWaamWaaeaacaWGbbaacaGLBbGaayzxaaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaciizaiaacwgacaGG0bWaaeWaaeaadaWadaqaaiaadgeaaiaawU facaGLDbaadaWadaqaaiaadkeaaiaawUfacaGLDbaaaiaawIcacaGL PaaacqGH9aqpciGGKbGaaiyzaiaacshadaWadaqaaiaadgeaaiaawU facaGLDbaaciGGKbGaaiyzaiaacshadaWadaqaaiaadkeaaiaawUfa caGLDbaaaaa@61B0@

 

 

Inversion. 

 

Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be an n×n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGUbGaey41aqRaamOBaa GaayjkaiaawMcaaaaa@3665@  matrix.  The inverse of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  is denoted by A 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa WaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@356C@  and is defined such that

A 1 A = I MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOWaamWaaeaacaWGbbaacaGL BbGaayzxaaGaeyypa0ZaamWaaeaacaWGjbaacaGLBbGaayzxaaaaaa@3BF4@

The inverse of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  exists if and only if det A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bWaamWaaeaaca WGbbaacaGLBbGaayzxaaGaeyiyIKRaaGimaaaa@38E3@ .  A matrix which has no inverse is said to be singular.  The inverse of a matrix may be computed explicitly, by forming the cofactor matrix C MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGdbaacaGLBbGaayzxaa aaaa@3399@  with components c ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33D0@  as defined in the preceding section.  Then

A 1 = 1 det A C T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaciizaiaacwgacaGG0bWaamWaaeaacaWGbbaacaGLBbGaay zxaaaaamaadmaabaGaam4qaaGaay5waiaaw2faamaaCaaaleqabaGa amivaaaaaaa@408A@

In practice, it is faster to compute the inverse of a matrix using methods such as Gaussian elimination. 

 

Note that

A B 1 = B 1 A 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWadaqaaiaadgeaaiaawU facaGLDbaadaWadaqaaiaadkeaaiaawUfacaGLDbaaaiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpdaWadaqaai aadkeaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGc daWadaqaaiaadgeaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTi aaigdaaaaaaa@43E3@

For a diagonal matrix, the inverse is

A = a 11 000 0 a 22 00 000 a nn = 1/ a 11 000 01/ a 22 00 0001/ a nn MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa Gaeyypa0JaaGPaVlaaykW7daWadaabaeqabaGaamyyamaaBaaaleaa caaIXaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq WIVlctcaaMc8UaaGPaVlaaykW7caaIWaGaaGPaVdqaaiaaykW7caaI WaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadg gadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeS47IWKaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7cqWI UlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6UinjaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeSy8I8KaaGPaVlaaykW7caaMc8Ua eSO7I0eabaGaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaayk W7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaamyyamaaBaaaleaa caWGUbGaamOBaaqabaaaaOGaay5waiaaw2faaiabg2da9iaaykW7ca aMc8UaaGPaVpaadmaaeaqabeaacaaIXaGaai4laiaadggadaWgaaWc baGaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabl+UimjaaykW7caaMc8UaaGPaVlaaicdacaaMc8oabaGa aGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGymaiaac+cacaaMc8Uaamyyamaa BaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaIWa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPa VlaaykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaeSO7I0KaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqWIUlstcaaMc8UaaGPaVlaaykW7cqWIXlYtcaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0eabaGa aGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlabl+Uimjaa ykW7caaMc8UaaGPaVlaaigdacaGGVaGaamyyamaaBaaaleaacaWGUb GaamOBaaqabaaaaOGaay5waiaaw2faaaaa@CDA5@

For a 2×2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIYaGaey41aqRaaGOmaa GaayjkaiaawMcaaaaa@35F7@  matrix, the inverse is

a 11 a 12 a 21 a 22 = 1 a 11 a 22 a 12 a 21 a 22 a 12 a 21 a 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaqaabeqaaiaadggadaWgaaWcba GaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaG OmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaaakiaawUfacaGL DbaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGHbWaaSbaaSqaaiaaig dacaaIXaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGa eyOeI0IaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGHbWaaS baaSqaaiaaikdacaaIXaaabeaaaaGcdaWadaabaeqabaGaaGPaVlaa ykW7caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaMc8Uaamyy amaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqGHsislcaWGHbWaaS baaSqaaiaaikdacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG ymaiaaigdaaeqaaaaakiaawUfacaGLDbaaaaa@9164@

 

 

 

Eigenvalues and eigenvectors.

 

 Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be an n×n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGUbGaey41aqRaamOBaa GaayjkaiaawMcaaaaa@3665@  matrix, with coefficients a ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33CE@ .  Consider the vector equation

A x=λx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa GaaCiEaiabg2da9iabeU7aSjaahIhaaaa@3853@                                                

where x is a vector with n components, and λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  is a scalar (which may be complex).  The n nonzero vectors x and corresponding scalars λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  which satisfy this equation are the eigenvectors and eigenvalues of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@ .

 

Formally, eigenvalues and eigenvectors may be computed as follows.  Rearrange the preceding equation to

A λ I x=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWadaqaaiaadgeaaiaawU facaGLDbaacqGHsislcqaH7oaBdaWadaqaaiaadMeaaiaawUfacaGL DbaaaiaawIcacaGLPaaacaWH4bGaeyypa0JaaCimaaaa@3D41@

This has nontrivial solutions for x only if the determinant of the matrix A λ I MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWadaqaaiaadgeaaiaawU facaGLDbaacqGHsislcqaH7oaBdaWadaqaaiaadMeaaiaawUfacaGL DbaaaiaawIcacaGLPaaaaaa@3A81@  vanishes.  The equation

det A λ I =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bWaaeWaaeaada WadaqaaiaadgeaaiaawUfacaGLDbaacqGHsislcqaH7oaBdaWadaqa aiaadMeaaiaawUfacaGLDbaaaiaawIcacaGLPaaacqGH9aqpcaaIWa aaaa@3F0C@

is an nth order polynomial which may be solved for λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@ .  In general the polynomial will have n roots, which may be complex.  The eigenvectors may then be computed by finding x satisfying A λ I x=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWadaqaaiaadgeaaiaawU facaGLDbaacqGHsislcqaH7oaBdaWadaqaaiaadMeaaiaawUfacaGL DbaaaiaawIcacaGLPaaacaWH4bGaeyypa0JaaCimaaaa@3D41@ .  For example, a (2×2) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaaikdacqGHxdaTcaaIYaGaai ykaaaa@35C7@  matrix generally has two eigenvectors, which satisfy

[A]λ[I] = a 11 λ a 12 a 21 a 22 λ =( a 11 λ)( a 22 λ) a 12 a 21 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaGGBbGaamyqaiaac2facq GHsislcqaH7oaBcaGGBbGaamysaiaac2faaiaawEa7caGLiWoacqGH 9aqpdaabdaabaeqabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqaba GccqGHsislcqaH7oaBcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdacaaIYa aabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamyyamaa BaaaleaacaaIYaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaa ikdacaaIYaaabeaakiabgkHiTiabeU7aSbaacaGLhWUaayjcSdGaey ypa0JaaiikaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOe I0Iaeq4UdWMaaiykaiaacIcacaWGHbWaaSbaaSqaaiaaikdacaaIYa aabeaakiabgkHiTiabeU7aSjaacMcacqGHsislcaWGHbWaaSbaaSqa aiaaigdacaaIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaigdaae qaaOGaeyypa0JaaGimaaaa@88E3@

Solve the quadratic equation to see that

λ 1 = 1 2 a 11 + a 22 1 2 a 11 + a 22 2 4 a 11 a 22 a 12 a 21 1/2 λ 2 = 1 2 a 11 + a 22 + 1 2 a 11 + a 22 2 4 a 11 a 22 a 12 a 21 1/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGa amyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGHbWaaS baaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaa laaabaGaaGymaaqaaiaaikdaaaWaaiWaaeaadaqadaqaaiaadggada WgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaa caaIYaGaaGOmaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaGccqGHsislcaaI0aWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigda caaIXaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaey OeI0IaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGHbWaaSba aSqaaiaaikdacaaIXaaabeaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2 haamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaGcbaGaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG OmaaaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGa ey4kaSIaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawIcaca GLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaacmaabaWa aeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRi aadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinamaabmaabaGaamyyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbWaaSbaaSqaaiaaikda caaIYaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGymaiaaikdaae qaaOGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaaakiaawIcacaGL PaaaaiaawUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaa aaaaaa@8646@

The two corresponding eigenvectors may be computed from (2), which shows that

a 11 λ i a 12 a 21 a 22 λ i x 1 (i) x 2 (i) =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaqaabeqaaiaadggadaWgaaWcba GaaGymaiaaigdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadMga aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaG OmaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaamyyamaaBaaaleaacaaIYaGaaGOmaa qabaGccqGHsislcqaH7oaBdaWgaaWcbaGaamyAaaqabaaaaOGaay5w aiaaw2faamaadmaaeaqabeaacaWG4bWaa0baaSqaaiaaigdaaeaaca GGOaGaamyAaiaacMcaaaaakeaacaWG4bWaa0baaSqaaiaaikdaaeaa caGGOaGaamyAaiaacMcaaaaaaOGaay5waiaaw2faaiabg2da9iaaic daaaa@7451@

so that, multiplying out the first row of the matrix (you can use the second row too, if you wish MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  since we chose λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  to make the determinant of the matrix vanish, the two equations have the same solutions.  In fact, if a 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaa qabaGccqGH9aqpcaaIWaaaaa@3533@ , you will need to do this, because the first equation will simply give 0=0 when trying to solve for one of the eigenvectors)

1 2 a 11 a 22 + 1 2 a 11 + a 22 2 4 a 11 a 22 a 12 a 21 1/2 x 1 (1) + a 12 x 2 (1) =0 1 2 a 11 a 22 1 2 a 11 + a 22 2 4 a 11 a 22 a 12 a 21 1/2 x 1 (2) + a 12 x 2 (2) =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaqadaqaamaalaaabaGaaGymaa qaaiaaikdaaaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaa beaakiabgkHiTiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaGa daqaamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccq GHRaWkcaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdadaqadaqaai aadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaa caaIYaGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaigdaca aIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGccaGL OaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaai4lai aaikdaaaaakiaawIcacaGLPaaacaWG4bWaa0baaSqaaiaaigdaaeaa caGGOaGaaGymaiaacMcaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaig dacaaIYaaabeaakiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaI XaGaaiykaaaakiabg2da9iaaicdaaeaadaqadaqaamaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaigdacaaI XaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaa GccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaa daGadaqaamaabmaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqaba GccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdadaqada qaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaa leaacaaIYaGaaGOmaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaig dacaaIYaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGc caGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqabeaacaaIXaGaai 4laiaaikdaaaaakiaawIcacaGLPaaacaWG4bWaa0baaSqaaiaaigda aeaacaGGOaGaaGOmaiaacMcaaaGccqGHRaWkcaWGHbWaaSbaaSqaai aaigdacaaIYaaabeaakiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIca caaIYaGaaiykaaaakiabg2da9iaaicdaaaaa@9C9B@

which are satisfied by any vector of the form

x (1) = 2 a 12 a 11 a 22 + a 11 + a 22 2 4 a 11 a 22 a 12 a 21 1/2 p x (2) = 2 a 12 a 11 a 22 a 11 + a 22 2 4 a 11 a 22 a 12 a 21 1/2 q MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH4bWaaWbaaSqabeaacaGGOa GaaGymaiaacMcaaaGccqGH9aqpdaWadaabaeqabaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqGHsislcaaIYaGaamyyamaaBaaaleaacaaIXa GaaGOmaaqabaaakeaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaa igdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaGaaGOmaaqaba aakiaawIcacaGLPaaacqGHRaWkdaGadaqaamaabmaabaGaamyyamaa BaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaai aaikdacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaisdadaqadaqaaiaadggadaWgaaWcbaGaaGymai aaigdaaeqaaOGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH sislcaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadggadaWgaa WcbaGaaGOmaiaaigdaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzF aaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaOGaay5waiaaw2 faaiaadchaaeaacaWH4bWaaWbaaSqabeaacaGGOaGaaGOmaiaacMca aaGccqGH9aqpdaWadaabaeqabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaG OmaiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaWaaeWaaeaa caWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiaadggada WgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Ya aiWaaeaadaqadaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaO Gaey4kaSIaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aWaaeWaae aacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadggadaWgaaWc baGaaGOmaiaaikdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXa GaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaaikdacaaIXaaabeaaaOGa ayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaaleqabaGaaGymaiaac+ cacaaIYaaaaaaakiaawUfacaGLDbaacaWGXbaaaaa@3065@

where p and q are arbitrary real numbers.

 

It is often convenient to normalize eigenvectors so that they have unit ‘length’.  For this purpose, choose p and q so that x (i) x (i) =1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaOGaeyyXICTaaCiEamaaCaaaleqabaGaaiikaiaadMga caGGPaaaaOGaeyypa0JaaGymaaaa@3BE8@ .  (For vectors of dimension n, the generalized dot product is defined such that xx= i=1 n x i x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabgwSixlaahIhacqGH9aqpda aeWaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaWG4bWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcq GHris5aaaa@4002@  )

 

You can calculate explicit expressions for eigenvalues and eigenvectors for any matrix up to order 4×4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaI0aGaey41aqRaaGinaa GaayjkaiaawMcaaaaa@35FB@ , but the results are so cumbersome that, except for the 2×2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIYaGaey41aqRaaGOmaa GaayjkaiaawMcaaaaa@35F7@  results, they are virtually useless.  In practice, numerical values may be computed using several iterative techniques.  Symbolic manipulation programs make calculations like this easy.

 

The eigenvalues of a real symmetric matrix are always real, and its eigenvectors are orthogonal, i.e. the ith and jth eigenvectors (with ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyAaiabgcMi5kaadQgaaaa@3483@  ) satisfy x (i) x (j) =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaOGaeyyXICTaaCiEamaaCaaaleqabaGaaiikaiaadQga caGGPaaaaOGaeyypa0JaaGimaaaa@3BE8@ .

 

The eigenvalues of a skew symmetric matrix are pure imaginary.

 

 

 

Spectral and singular value decomposition.

 

 Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be a real symmetric  n×n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGUbGaey41aqRaamOBaa GaayjkaiaawMcaaaaa@3665@  matrix. Denote the n (real) eigenvalues of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  by λ i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaa aa@33AD@ , and let w (i) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4DamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@  be the corresponding normalized eigenvectors, such that w (i) w (i) =1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4DamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaOGaeyyXICTaaC4DamaaCaaaleqabaGaaiikaiaadMga caGGPaaaaOGaeyypa0JaaGymaaaa@3BE6@ .  Then, for any arbitrary vector b,

A b= i=1 n λ i w (i) b w (i) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa GaaCOyaiabg2da9maaqahabaGaeq4UdW2aaSbaaSqaaiaadMgaaeqa aOWaaeWaaeaacaWH3bWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaa GccqGHflY1caWHIbaacaGLOaGaayzkaaGaaGPaVlaaykW7caWH3bWa aWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaamyAaiabg2da9i aaigdaaeaacaWGUbaaniabggHiLdaaaa@4CFF@

Let Λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHBoataiaawUfacaGLDb aaaaa@3446@  be a diagonal matrix which contains the n eigenvalues of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  as elements of the diagonal, and let Q MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa aaaa@33A7@  be a matrix consisting of the n eigenvectors as columns, i.e.

Λ = λ 1 000 0 λ 2 00 000 λ n Q = w 1 (1) w 1 (2) w 1 (3) w 1 (n) w 2 (1) w 2 (2) w 2 (3) w 2 (n) w n (1) w n (2) w n (3) w n (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHBoataiaawUfacaGLDb aacqGH9aqpcaaMc8+aamWaaqaabeqaaiabeU7aSnaaBaaaleaacaaI XaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeS47IWKaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdaaeaacaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaeq4UdW2aaSbaaSqaaiaaikdaaeqa aOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaeSO7I0 KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0KaaGPa VlaaykW7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6Uinbqaaiaaicda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8Ua eq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiaawUfacaGLDbaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7daWadaqaaiaadgfaaiaawUfacaGL DbaacqGH9aqpcaaMc8+aamWaaqaabeqaaiaadEhadaqhaaWcbaGaaG ymaaqaaiaacIcacaaIXaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaam4DamaaDaaaleaacaaIXaaabaGaaiikaiaaikdaca GGPaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4D amaaDaaaleaacaaIXaaabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVl aaykW7caaMc8UaaGPaVlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaam4DamaaDaaaleaacaaIXaaabaGaaiikaiaad6gacaGGPa aaaOGaaGPaVdqaaiaadEhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaI XaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Dam aaDaaaleaacaaIYaaabaGaaiikaiaaikdacaGGPaaaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaaleaacaaIYa aabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaaykW7caaMc8UaaGPa Vlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDa aaleaacaaIYaaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaaGPaVlaa ykW7caaMc8UaeSO7I0KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0Ka aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeSO7I0Ka aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeSy8I8KaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabl6UinbqaaiaadEhadaqhaaWcbaGaamOBaaqaaiaacIcaca aIXaGaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4D amaaDaaaleaacaWGUbaabaGaaiikaiaaikdacaGGPaaaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4DamaaDaaaleaacaWG UbaabaGaaiikaiaaiodacaGGPaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlabl+UimjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4Damaa DaaaleaacaWGUbaabaGaaiikaiaad6gacaGGPaaaaaaakiaawUfaca GLDbaaaaa@1C8C@

Then

A = Q Λ Q T Q T Q = Q Q T = I Q T A Q = Λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGrbaacaGLBbGaayzxaaWaamWaaeaacqqH BoataiaawUfacaGLDbaadaWadaqaaiaadgfaaiaawUfacaGLDbaada ahaaWcbeqaaiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVpaadmaabaGaamyuaaGaay5waiaaw2faam aaCaaaleqabaGaamivaaaakmaadmaabaGaamyuaaGaay5waiaaw2fa aiabg2da9maadmaabaGaamyuaaGaay5waiaaw2faamaadmaabaGaam yuaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiabg2da9maa dmaabaGaamysaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VpaadmaabaGaamyuaaGaay5waiaaw2faamaaCaaaleqabaGaamivaa aakmaadmaabaGaamyqaaGaay5waiaaw2faamaadmaabaGaamyuaaGa ay5waiaaw2faaiabg2da9maadmaabaGaeu4MdWeacaGLBbGaayzxaa aaaa@7D51@

Note that this gives another (generally quite useless) way to invert A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@

A 1 = Q Λ 1 Q T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0ZaamWaaeaacaWG rbaacaGLBbGaayzxaaWaamWaaeaacqqHBoataiaawUfacaGLDbaada ahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWadaqaaiaadgfaaiaawUfa caGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@4258@

where Λ 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHBoataiaawUfacaGLDb aadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@361B@  is easy to compute since Λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHBoataiaawUfacaGLDb aaaaa@3446@  is diagonal.

 

 

Square root of a matrix.  

 

Let A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  be a real symmetric  n×n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGUbGaey41aqRaamOBaa GaayjkaiaawMcaaaaa@3665@  matrix.  Denote the singular value decomposition of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@  by A = Q Λ Q T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGrbaacaGLBbGaayzxaaWaamWaaeaacqqH BoataiaawUfacaGLDbaadaWadaqaaiaadgfaaiaawUfacaGLDbaada ahaaWcbeqaaiaadsfaaaGccaaMc8oaaa@402F@  as defined above.  Suppose that S = A 1/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGtbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGbbaacaGLBbGaayzxaaWaaWbaaSqabeaa caaIXaGaai4laiaaikdaaaaaaa@39BE@  denotes the square root of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@ , defined so that

S S = A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGtbaacaGLBbGaayzxaa WaamWaaeaacaWGtbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWG bbaacaGLBbGaayzxaaaaaa@3A31@

One way to compute S MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGtbaacaGLBbGaayzxaa aaaa@33A9@  is through the singular value decomposition of A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@

S = Q Λ 1/2 Q T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGtbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaeaacaWGrbaacaGLBbGaayzxaaWaamWaaeaacqqH BoataiaawUfacaGLDbaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaa aakmaadmaabaGaamyuaaGaay5waiaaw2faamaaCaaaleqabaGaamiv aaaaaaa@410D@

where

Λ 1/2 = λ 1 000 0 λ 2 00 000 λ n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHBoataiaawUfacaGLDb aadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiabg2da9iaaykW7 daWadaabaeqabaWaaOaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqaba aabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eS47IWKaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaicdaaeaacaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8+aaOaaaeaacqaH7oaBdaWgaaWcbaGaaG OmaaqabaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl+Uimjaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaabaGa aGPaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl6UinjaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl abl6UinjaaykW7caaMc8UaaGPaVlaaykW7cqWIXlYtcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUl staeaacaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7ca aMc8UaaGPaVpaakaaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaqa baaaaOGaay5waiaaw2faaiaaykW7caaMc8oaaa@143D@