Appendix B
Introduction to Tensors and their properties

 

 

 

B.1. Basic properties of tensors

 

 

B.1.1 Examples of Tensors

 

The gradient of a vector field is a good example of a tensor.  Visualize a vector field: at every point in space, the field has a vector value u( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@3A63@ .  Let G=u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4raiabg2da9iaahwhacqGHhis0ca aMc8oaaa@36C4@  represent the gradient of u.  By definition, G enables you to calculate the change in u when you move from a point x in space to a nearby point at x+dx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabgUcaRiaadsgacaWH4baaaa@34AC@ :

du=Gdx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwhacqGH9aqpcaWHhbGaam izaiaahIhaaaa@3686@

G is a second order tensor.  From this example, we see that when you multiply a vector by a tensor, the result is another vector. 

 

This is a general property of all second order tensors.  A tensor is a linear mapping of a vector onto another vector.  Two examples, together with the vectors they operate on, are:

 

· The stress tensor

t=nσ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9iaaykW7caWHUbGaaC 4Wdaaa@36B3@

where n is a unit vector normal to a surface, σ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdmhaaa@32A2@  is the stress tensor and t is the traction vector acting on the surface.

 

· The deformation gradient tensor

dw=Fdx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahEhacqGH9aqpcaWHgbGaam izaiaahIhaaaa@3687@

where dx is an infinitesimal line element in an undeformed solid, and dw is the vector representing the deformed line element.

 

 

 

B.1.2 Matrix representation of a tensor

 

To evaluate and manipulate tensors, we express them as components in a basis, just as for vectors.  We can use the displacement gradient to illustrate how this is done.  Let u( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@3A63@  be a vector field, and let G=u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4raiabg2da9iaahwhacqGHhis0aa a@3539@  represent the gradient of u.  Recall the definition of G

du=Gdx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwhacqGH9aqpcaWHhbGaam izaiaahIhaaaa@3686@

Now, let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis, and express both du and dx as components.  Then, calculate the components of du in terms of dx using the usual rules of calculus

d u 1 = u 1 x 1 d x 1 + u 1 x 2 d x 2 + u 1 x 3 d x 3 d u 2 = u 2 x 1 d x 1 + u 2 x 2 d x 2 + u 2 x 3 d x 3 d u 3 = u 3 x 1 d x 1 + u 3 x 2 d x 2 + u 3 x 3 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaamyDamaaBaaaleaaca aIXaaabeaakiabg2da9maalaaabaGaeyOaIyRaamyDamaaBaaaleaa caaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqaba aaaOGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWc aaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHci ITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiaadsgacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaS baaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaI ZaaabeaaaaGccaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaOqaai aadsgacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaa cqGHciITcaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaaaaGccaWGKbGaamiEamaaBaaaleaa caaIXaaabeaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaale aacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqa baaaaOGaamizaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkda WcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGOmaaqabaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiaadsgacaWG4bWaaS baaSqaaiaaiodaaeqaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaG4m aaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG 4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa kiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaSaaae aacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaaIYaaabeaaaaGccaWGKbGaamiEamaaBaaale aacaaIYaaabeaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maa qabaaaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaaa@97C1@

We could represent this as a matrix product

d u 1 d u 2 d u 3 = u 1 x 1 u 1 x 2 u 1 x 3 u 2 x 1 u 2 x 2 u 2 x 3 u 3 x 1 u 3 x 2 u 3 x 3 d x 1 d x 2 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamizai aadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamyDamaaBaaa leaacaaIYaaabeaaaOqaaiaadsgacaWG1bWaaSbaaSqaaiaaiodaae qaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabmWaaaqa amaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaa cqGHciITcaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaa dwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaaiodaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaikda aeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaake aadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGOmaaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaOqaamaalaaaba GaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaa dIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGHciITca WG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaaIYaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadwhadaWgaa WcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaioda aeqaaaaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaaca WGKbGaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4bWa aSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG 4maaqabaaaaaGccaGLBbGaayzxaaaaaa@8566@

From this we see that G can be represented as a 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiabgEna0kaaiodaaaa@3470@  matrix.  The elements of the matrix are known as the components of G in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ .  All second order tensors can be represented in this form.  For example, a general second order tensor S could be written as

S S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabggMi6oaadmaabaqbaeqabm WaaaqaaiaadofadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaam4u amaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGtbWaaSbaaSqaai aaigdacaaIZaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaigda aeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaaca WGtbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadofadaWgaaWc baGaaG4maiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaG OmaaqabaaakeaacaWGtbWaaSbaaSqaaiaaiodacaaIZaaabeaaaaaa kiaawUfacaGLDbaaaaa@4C43@

You have probably already seen the matrix representation of stress and strain components in introductory courses.

 

Since S can be represented as a matrix, all operations that can be performed on a 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiabgEna0kaaiodaaaa@3470@  matrix can also be performed on S.  Examples include sums and products, the transpose, inverse, and determinant.  One can also compute eigenvalues and eigenvectors for tensors, and thus define the log of a tensor, the square root of a tensor, etc.  These tensor operations are summarized below.

 

Note that the numbers S 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGymaa qabaaaaa@3359@ , S 12 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaa qabaaaaa@335A@ , … S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaG4maa qabaaaaa@335D@  depend on the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ , just as the components of a vector depend on the basis used to represent the vector.  However, just as the magnitude and direction of a vector are independent of the basis, so the properties of a tensor are independent of the basis.  That is to say, if S is a tensor and u is a vector, then the vector

v=Su MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahofacaWH1baaaa@34BE@

has the same magnitude and direction, irrespective of the basis used to represent u, v, and S.

 

 

 

B.1.3 The difference between a matrix and a tensor

 

If a tensor is a matrix, why is a matrix not the same thing as a tensor?  Well, although you can multiply the three components of a vector u by any 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiabgEna0kaaiodaaaa@3470@  matrix,

b 1 b 2 b 3 = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 u 1 u 2 u 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamOyam aaBaaaleaacaaIXaaabeaaaOqaaiaadkgadaWgaaWcbaGaaGOmaaqa baaakeaacaWGIbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2 faaiabg2da9maadmaabaqbaeqabmWaaaqaaiaadggadaWgaaWcbaGa aGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaa qabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaa dggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaamyyamaaBaaale aacaaIYaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdacaaI ZaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maiaaigdaaeqaaaGcba GaamyyamaaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaWGHbWaaSba aSqaaiaaiodacaaIZaaabeaaaaaakiaawUfacaGLDbaadaWadaqaau aabeqadeaaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyD amaaBaaaleaacaaIYaaabeaaaOqaaiaadwhadaWgaaWcbaGaaG4maa qabaaaaaGccaGLBbGaayzxaaaaaa@5A73@

the resulting three numbers ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3923@  may or may not represent the components of a vector.  If they are the components of a vector, then the matrix represents the components of a tensor A, if not, then the matrix is just an ordinary old matrix.

 

 To check whether ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3923@  are the components of a vector, you need to check how ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3923@  change due to a change of basis.  That is to say, choose a new basis, calculate the new components of u in this basis, and calculate the new matrix in this basis (the new elements of the matrix will depend on how the matrix was defined.  The elements may or may not change MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  if they don’t, then the matrix cannot be the components of a tensor).  Then, evaluate the matrix product to find a new left hand side, say β 1 , β 2 , β 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaHYoGydaWgaaWcbaGaaG ymaaqabaGccaGGSaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaiil aiabek7aInaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@3B81@ .  If  β 1 , β 2 , β 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaHYoGydaWgaaWcbaGaaG ymaaqabaGccaGGSaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaiil aiabek7aInaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@3B81@  are related to ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3923@  by the same transformation that was used to calculate the new components of u, then ( b 1 , b 2 , b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOyamaaBaaaleaacaaIYaaabeaakiaacYcacaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3923@  are the components of a vector, and, therefore, the matrix represents the components of a tensor.

 

 

 

B.1.4 Formal definition of a tensor

 

Tensors are rather more general objects than the preceding discussion suggests.   There are various ways to define a tensor formally.  One way is the following:

 

A tensor is a linear vector valued function defined on the set of all vectors

 

More specifically, let S(v) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaiaacIcacaWH2bGaaiykaaaa@3410@  denote a tensor operating on a vector.  Linearity then requires that, for all vectors v,w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacYcacaWH3baaaa@338F@  and scalars α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@

 

· S(v+w)=S(v)+S(w) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaiaacIcacaWH2bGaey4kaSIaaC 4DaiaacMcacqGH9aqpcaWGtbGaaiikaiaahAhacaGGPaGaey4kaSIa am4uaiaacIcacaWH3bGaaiykaaaa@3E3B@

 

· S(αv)=αS(v) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaiaacIcacqaHXoqycaWH2bGaai ykaiabg2da9iabeg7aHjaadofacaGGOaGaaCODaiaacMcaaaa@3B84@

 

Alternatively, one can define tensors as sets of numbers that transform in a particular way under a change of coordinate system.  In this case, we suppose that n dimensional space can be parameterized by a set of n  real numbers x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@ .   We could change coordinate system by introducing a second set of real numbers x i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiEayaafaWaaSbaaSqaaiaadMgaae qaaOGaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3689@  which are invertible functions of x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@ .   Tensors can then be defined as sets of real numbers that transform in a particular way under this change in coordinate system.  For example

 

· A tensor of zeroth rank is a scalar that is independent of the coordinate system.

 

· A covariant tensor of rank 1 is a vector that transforms as v i = x j x i v j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmODayaafaWaaSbaaSqaaiaadMgaae qaaOGaeyypa0ZaaSaaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaaGcbaGaeyOaIyRabmiEayaafaWaaSbaaSqaaiaadMgaaeqaaa aakiaadAhadaWgaaWcbaGaamOAaaqabaaaaa@3D52@  

· A contravariant tensor of rank 1 is a vector that transforms as v i = x i x j v j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmODayaafaWaaWbaaSqabeaacaWGPb aaaOGaeyypa0ZaaSaaaeaacqGHciITceWG4bGbauaadaWgaaWcbaGa amyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaa aakiaadAhadaahaaWcbeqaaiaadQgaaaaaaa@3D54@

 

· A covariant tensor of rank 2 transforms as S ij = x i x k x j x l S kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaafaWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9maalaaabaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kqadIhagaqbamaaBaaaleaacaWGRb aabeaaaaGcdaWcaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqa baaakeaacqGHciITceWG4bGbauaadaWgaaWcbaGaamiBaaqabaaaaO Gaam4uamaaBaaaleaacaWGRbGaamiBaaqabaaaaa@461C@

 

· A contravariant tensor of rank 2 transforms as S kl = x i x k x i x l S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaafaWaaWbaaSqabeaacaWGRb GaamiBaaaakiabg2da9maalaaabaGaeyOaIyRabmiEayaafaWaaSba aSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGRb aabeaaaaGcdaWcaaqaaiabgkGi2kqadIhagaqbamaaBaaaleaacaWG PbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaaaO Gaam4uamaaCaaaleqabaGaamyAaiaadQgaaaaaaa@461D@

 

· A mixed tensor of rank 2 transforms as S j i = x k x i x j x l S l k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaafaWaa0baaSqaaiaadQgaae aacaWGPbaaaOGaeyypa0ZaaSaaaeaacqGHciITceWG4bGbauaadaWg aaWcbaGaam4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadM gaaeqaaaaakmaalaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaOqaaiabgkGi2kqadIhagaqbamaaBaaaleaacaWGSbaabeaaaa GccaWGtbWaa0baaSqaaiaadYgaaeaacaWGRbaaaaaa@461E@

 

 

Higher rank tensors can be defined in similar ways.  In solid mechanics we nearly always use Cartesian tensors, (i.e. we work with the components of tensors in a Cartesian coordinate system) and this level of generality is not needed (and is rather mysterious).  We might occasionally use a curvilinear coordinate system, in which we do express tensors in terms of covariant or contravariant components (see Chapter 10, for example) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this gives some sense of what these quantities mean.   But since solid mechanics idealizes the world as a Euclidean space we don’t see some of the subtleties that arise, e.g. in the theory of general relativity.

 

 

 

B.1.5 Creating a tensor using a dyadic product of two vectors.

 

Let a and b be two vectors.  The dyadic product of a and b  is a second order tensor S denoted by

S=ab MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaahggacqGHxkcXca WHIbaaaa@36A0@ .

with the property

Su= ab u=a(bu) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabgwSixlaahwhacqGH9aqpda qadaqaaiaahggacqGHxkcXcaWHIbaacaGLOaGaayzkaaGaaCyDaiab g2da9iaahggacaGGOaGaaCOyaiabgwSixlaahwhacaGGPaaaaa@43EB@

for all vectors u.  (Clearly, this maps u onto a vector parallel to a with magnitude a bu MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHHbaacaGLhWUaayjcSd WaaeWaaeaacaWHIbGaeyyXICTaaCyDaaGaayjkaiaawMcaaaaa@3AA8@  )

 

The components of ab MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgEPielaahkgaaaa@34BE@  in a basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  are

a 1 b 1 a 1 b 2 a 1 b 3 a 2 b 1 a 2 b 2 a 2 b 3 a 3 b 1 a 3 b 2 a 3 b 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaamyyam aaBaaaleaacaaIXaaabeaakiaadkgadaWgaaWcbaGaaGymaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamOyamaaBaaaleaaca aIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaaqabaGccaWGIbWa aSbaaSqaaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabe aakiaadkgadaWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaamOyamaaBaaaleaacaaIYaaabeaaaOqaaiaadg gadaWgaaWcbaGaaGOmaaqabaGccaWGIbWaaSbaaSqaaiaaiodaaeqa aaGcbaGaamyyamaaBaaaleaacaaIZaaabeaakiaadkgadaWgaaWcba GaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamOy amaaBaaaleaacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maa qabaGccaWGIbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2fa aaaa@5421@

 

Note that not all tensors can be constructed using a dyadic product of only two vectors (this is because ab u MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHHbGaey4LIqSaaCOyaa GaayjkaiaawMcaaiaahwhaaaa@3745@  always has to be parallel to a, and therefore the representation cannot map a vector onto an arbitrary vector).  However, if a, b, and c are three independent vectors (i.e. no two of them are parallel) then all tensors can be constructed as a sum of scalar multiples of the nine possible dyadic products of these vectors. 

 

 

 

B.2. Operations on Second Order Tensors

 

 

B2.1 Tensor components. 

 

Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis, and let S be a second order tensor.  The components of S in e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  may be represented as a matrix

S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaam4uam aaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaa igdacaaIYaaabeaaaOqaaiaadofadaWgaaWcbaGaaGymaiaaiodaae qaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaWG tbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGOmaiaaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaGym aaqabaaakeaacaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaai aadofadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2fa aaaa@499E@

where

S 11 = e 1 S e 1 , S 12 = e 1 S e 2 , S 13 = e 1 S e 3 , S 21 = e 2 S e 1 , S 22 = e 2 S e 2 , S 23 = e 2 S e 3 , S 31 = e 3 S e 1 , S 32 = e 3 S e 2 , S 33 = e 3 S e 3 , MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9iaahwgadaWgaaWcbaGaaGymaaqabaGccqGH flY1daqadaqaaiaahofacaWHLbWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaale aacaaIXaGaaGOmaaqabaGccqGH9aqpcaWHLbWaaSbaaSqaaiaaigda aeqaaOGaeyyXIC9aaeWaaeaacaWHtbGaaCyzamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9iaahwga daWgaaWcbaGaaGymaaqabaGccqGHflY1daqadaqaaiaahofacaWHLb WaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaaiilaaqaaiaa dofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaeyypa0JaaCyzamaaBa aaleaacaaIYaaabeaakiabgwSixpaabmaabaGaaC4uaiaahwgadaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaGGSaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGtbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9i aahwgadaWgaaWcbaGaaGOmaaqabaGccqGHflY1daqadaqaaiaahofa caWHLbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaiilai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaGOmaiaaio daaeqaaOGaeyypa0JaaCyzamaaBaaaleaacaaIYaaabeaakiabgwSi xpaabmaabaGaaC4uaiaahwgadaWgaaWcbaGaaG4maaqabaaakiaawI cacaGLPaaacaGGSaaabaGaam4uamaaBaaaleaacaaIZaGaaGymaaqa baGccqGH9aqpcaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXIC9aae WaaeaacaWHtbGaaCyzamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaa wMcaaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaG4m aiaaikdaaeqaaOGaeyypa0JaaCyzamaaBaaaleaacaaIZaaabeaaki abgwSixpaabmaabaGaaC4uaiaahwgadaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4u amaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9aqpcaWHLbWaaSbaaS qaaiaaiodaaeqaaOGaeyyXIC9aaeWaaeaacaWHtbGaaCyzamaaBaaa leaacaaIZaaabeaaaOGaayjkaiaawMcaaiaacYcaaaaa@0D61@

 

The representation of a tensor in terms of its components can also be expressed in dyadic form as

S= j=1 3 i=1 3 S ij e i e j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9maaqahabaWaaabCae aacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaahwgadaWgaaWc baGaamyAaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQgaaeqaaa qaaiaadMgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaWcbaGa amOAaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@4723@

This representation is particularly convenient when using polar coordinates, as described in Appendix E.

 

 

 

B2.2 Addition

Let S and T be two tensors.  Then U=S+T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvaiabg2da9iaahofacqGHRaWkca WHubaaaa@355E@  is also a tensor. Denote the Cartesian components of U, S and T by matrices as defined above.  The components of U are then related to the components of S and T by

U 11 U 12 U 13 U 21 U 22 U 23 U 31 U 32 U 33 = S 11 + T 11 S 12 + T 12 S 13 + T 13 S 21 + T 21 S 22 + T 22 S 23 + T 23 S 31 + T 31 S 32 + T 32 S 33 + T 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaamyvam aaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGvbWaaSbaaSqaaiaa igdacaaIYaaabeaaaOqaaiaadwfadaWgaaWcbaGaaGymaiaaiodaae qaaaGcbaGaamyvamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaWG vbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadwfadaWgaaWcba GaaGOmaiaaiodaaeqaaaGcbaGaamyvamaaBaaaleaacaaIZaGaaGym aaqabaaakeaacaWGvbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaai aadwfadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2fa aiabg2da9maadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIXaGaaGym aaqabaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgU caRiaadsfadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4uamaa BaaaleaacaaIXaGaaG4maaqabaGccqGHRaWkcaWGubWaaSbaaSqaai aaigdacaaIZaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaigda aeqaaOGaey4kaSIaamivamaaBaaaleaacaaIYaGaaGymaaqabaaake aacaWGtbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaadsfa daWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaam4uamaaBaaaleaaca aIYaGaaG4maaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaikdacaaI ZaaabeaaaOqaaiaadofadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaey 4kaSIaamivamaaBaaaleaacaaIZaGaaGymaaqabaaakeaacaWGtbWa aSbaaSqaaiaaiodacaaIYaaabeaakiabgUcaRiaadsfadaWgaaWcba GaaG4maiaaikdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaG4m aaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodacaaIZaaabeaaaa aakiaawUfacaGLDbaaaaa@8226@

 

 

 

 

B2.3 Product of a tensor and a vector

 

Let u be a vector and S a second order tensor.  Then

v=Su MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahofacaWH1baaaa@34BE@

is a vector.  Let u 1 , u 2 , u 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWG1bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa amyDamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@398C@  and v 1 , v 2 , v 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWG2bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa amODamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@398F@  denote the components of vectors u and v in a Cartesian basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@ , and denote the Cartesian components of S as described above.  Then

v 1 v 2 v 3 = S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 u 1 u 2 u 3 = S 11 u 1 + S 12 u 2 + S 13 u 3 S 21 u 1 + S 22 u 2 + S 23 u 3 S 31 u 1 + S 32 u 2 + S 33 u 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamODam aaBaaaleaacaaIXaaabeaaaOqaaiaadAhadaWgaaWcbaGaaGOmaaqa baaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2 faaiabg2da9maadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGa aGymaiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaa qabaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaa dofadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaam4uamaaBaaale aacaaIYaGaaGOmaaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdacaaI ZaaabeaaaOqaaiaadofadaWgaaWcbaGaaG4maiaaigdaaeqaaaGcba Gaam4uamaaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaWGtbWaaSba aSqaaiaaiodacaaIZaaabeaaaaaakiaawUfacaGLDbaadaWadaqaau aabeqadeaaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyD amaaBaaaleaacaaIYaaabeaaaOqaaiaadwhadaWgaaWcbaGaaG4maa qabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWabaaa baGaam4uamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIXaGaaGOm aaqabaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4uam aaBaaaleaacaaIXaGaaG4maaqabaGccaWG1bWaaSbaaSqaaiaaioda aeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGymaaqabaGccaWG1b WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaI YaGaaGOmaaqabaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaS Iaam4uamaaBaaaleaacaaIYaGaaG4maaqabaGccaWG1bWaaSbaaSqa aiaaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaGymaaqaba GccaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4uamaaBaaa leaacaaIZaGaaGOmaaqabaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaey4kaSIaam4uamaaBaaaleaacaaIZaGaaG4maaqabaGccaWG1bWa aSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2faaaaa@8A86@

 

The product

v=uS MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahwhacaWHtbaaaa@34BE@

is also a vector.  In component form

v 1 v 2 v 3 = u 1 u 2 u 3 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 = u 1 S 11 + u 2 S 21 + u 3 S 31 u 1 S 12 + u 2 S 22 + u 3 S 32 u 1 S 13 + u 2 S 23 + u 3 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeqadaaabaGaamODam aaBaaaleaacaaIXaaabeaaaOqaaiaadAhadaWgaaWcbaGaaGOmaaqa baaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2 faaiabg2da9maadmaabaqbaeqabeWaaaqaaiaadwhadaWgaaWcbaGa aGymaaqabaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam yDamaaBaaaleaacaaIZaaabeaaaaaakiaawUfacaGLDbaadaWadaqa auaabeqadmaaaeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaO qaaiaadofadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4uamaa BaaaleaacaaIXaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqaaiaaik dacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOmaiaaikdaaeqa aaGcbaGaam4uamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGtb WaaSbaaSqaaiaaiodacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGa aG4maiaaikdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIZaGaaG4maa qabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWabaaa baGaamyDamaaBaaaleaacaaIXaaabeaakiaadofadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaey4kaSIaamyDamaaBaaaleaacaaIYaaabeaa kiaadofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaey4kaSIaamyDam aaBaaaleaacaaIZaaabeaakiaadofadaWgaaWcbaGaaG4maiaaigda aeqaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaakiaadofadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaey4kaSIaamyDamaaBaaaleaacaaI YaaabeaakiaadofadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaey4kaS IaamyDamaaBaaaleaacaaIZaaabeaakiaadofadaWgaaWcbaGaaG4m aiaaikdaaeqaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaakiaado fadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaey4kaSIaamyDamaaBaaa leaacaaIYaaabeaakiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaO Gaey4kaSIaamyDamaaBaaaleaacaaIZaaabeaakiaadofadaWgaaWc baGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2faaaaa@8A86@

Observe that uSSu MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaahofacqGHGjsUcaWHtbGaaC yDaaaa@365A@  (unless S is symmetric).

 

 

 

B2.4 Product of two tensors

 

Let T and S be two second order tensors.  Then U=TS MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvaiabg2da9iaahsfacaWHtbaaaa@347C@  is also a tensor.

 

Denote the components of U, S and T by 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiabgEna0kaaiodaaaa@3470@  matrices.  Then,

U 11 U 12 U 13 U 21 U 22 U 23 U 31 U 32 U 33 = T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 = T 11 S 11 + T 12 S 21 + T 13 S 31 T 11 S 12 + T 12 S 22 + T 13 S 32 T 11 S 13 + T 12 S 23 + T 13 S 33 T 21 S 11 + T 22 S 21 + T 23 S 31 T 21 S 12 + T 22 S 22 + T 23 S 32 T 21 S 12 + T 22 S 22 + T 23 S 32 T 31 S 11 + T 32 S 21 + T 33 S 31 T 31 S 12 + T 32 S 22 + T 33 S 32 T 31 S 13 + T 32 S 23 + T 33 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaauaabeqadmaaaeaaca WGvbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadwfadaWgaaWc baGaaGymaiaaikdaaeqaaaGcbaGaamyvamaaBaaaleaacaaIXaGaaG 4maaqabaaakeaacaWGvbWaaSbaaSqaaiaaikdacaaIXaaabeaaaOqa aiaadwfadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaamyvamaaBa aaleaacaaIYaGaaG4maaqabaaakeaacaWGvbWaaSbaaSqaaiaaioda caaIXaaabeaaaOqaaiaadwfadaWgaaWcbaGaaG4maiaaikdaaeqaaa GcbaGaamyvamaaBaaaleaacaaIZaGaaG4maaqabaaaaaGccaGLBbGa ayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaamivamaaBaaale aacaaIXaGaaGymaaqabaaakeaacaWGubWaaSbaaSqaaiaaigdacaaI YaaabeaaaOqaaiaadsfadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcba GaamivamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaWGubWaaSba aSqaaiaaikdacaaIYaaabeaaaOqaaiaadsfadaWgaaWcbaGaaGOmai aaiodaaeqaaaGcbaGaamivamaaBaaaleaacaaIZaGaaGymaaqabaaa keaacaWGubWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadsfada WgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2faamaadmaa baqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaaGymaiaaigdaaeqaaa GcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGtbWa aSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaadofadaWgaaWcbaGaaG OmaiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGOmaaqa baaakeaacaWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaado fadaWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaa caaIZaGaaGOmaaqabaaakeaacaWGtbWaaSbaaSqaaiaaiodacaaIZa aabeaaaaaakiaawUfacaGLDbaaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabg2da9maadmaabaqbaeqabmWaaaqaaiaadsfadaWgaa WcbaGaaGymaiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIXaGaaGym aaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaigdacaaIYaaabeaaki aadofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaey4kaSIaamivamaa BaaaleaacaaIXaGaaG4maaqabaGccaWGtbWaaSbaaSqaaiaaiodaca aIXaaabeaaaOqaaiaadsfadaWgaaWcbaGaaGymaiaaigdaaeqaaOGa am4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWGubWaaS baaSqaaiaaigdacaaIYaaabeaakiaadofadaWgaaWcbaGaaGOmaiaa ikdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIXaGaaG4maaqaba GccaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadsfadaWg aaWcbaGaaGymaiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIXaGaaG 4maaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaigdacaaIYaaabeaa kiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaey4kaSIaamivam aaBaaaleaacaaIXaGaaG4maaqabaGccaWGtbWaaSbaaSqaaiaaioda caaIZaaabeaaaOqaaiaadsfadaWgaaWcbaGaaGOmaiaaigdaaeqaaO Gaam4uamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGubWa aSbaaSqaaiaaikdacaaIYaaabeaakiaadofadaWgaaWcbaGaaGOmai aaigdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIYaGaaG4maaqa baGccaWGtbWaaSbaaSqaaiaaiodacaaIXaaabeaaaOqaaiaadsfada WgaaWcbaGaaGOmaiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIXaGa aGOmaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaikdacaaIYaaabe aakiaadofadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaey4kaSIaamiv amaaBaaaleaacaaIYaGaaG4maaqabaGccaWGtbWaaSbaaSqaaiaaio dacaaIYaaabeaaaOqaaiaadsfadaWgaaWcbaGaaGOmaiaaigdaaeqa aOGaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWGub WaaSbaaSqaaiaaikdacaaIYaaabeaakiaadofadaWgaaWcbaGaaGOm aiaaikdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIYaGaaG4maa qabaGccaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadsfa daWgaaWcbaGaaG4maiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIXa GaaGymaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodacaaIYaaa beaakiaadofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaey4kaSIaam ivamaaBaaaleaacaaIZaGaaG4maaqabaGccaWGtbWaaSbaaSqaaiaa iodacaaIXaaabeaaaOqaaiaadsfadaWgaaWcbaGaaG4maiaaigdaae qaaOGaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWG ubWaaSbaaSqaaiaaiodacaaIYaaabeaakiaadofadaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIZaGaaG4m aaqabaGccaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaads fadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaam4uamaaBaaaleaacaaI XaGaaG4maaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodacaaIYa aabeaakiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaey4kaSIa amivamaaBaaaleaacaaIZaGaaG4maaqabaGccaWGtbWaaSbaaSqaai aaiodacaaIZaaabeaaaaaakiaawUfacaGLDbaaaaaa@1F4A@

Note that tensor products, like matrix products, are not commutative; i.e. TSST MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaahofacqGHGjsUcaWHtbGaaC ivaaaa@3618@

 

 

 

B2.5 Transpose

 

Let S be a tensor.  The transpose of S is denoted by S T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaamivaaaaaa a@32C2@  and is defined so that

u S T =Su MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaahofadaahaaWcbeqaaiaads faaaGccqGH9aqpcaWHtbGaaCyDaaaa@36A9@

 

Denote the components of S by a 3x3 matrix.  The components of  S T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaamivaaaaaa a@32C2@  are then

S T S 11 S 21 S 31 S 12 S 22 S 32 S 13 S 23 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaamivaaaaki abggMi6oaadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaaGym aiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGymaaqaba aakeaacaWGtbWaaSbaaSqaaiaaiodacaaIXaaabeaaaOqaaiaadofa daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4uamaaBaaaleaaca aIYaGaaGOmaaqabaaakeaacaWGtbWaaSbaaSqaaiaaiodacaaIYaaa beaaaOqaaiaadofadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam 4uamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqa aiaaiodacaaIZaaabeaaaaaakiaawUfacaGLDbaaaaa@4D53@

i.e. the rows and columns of the matrix are switched.


Note that, if A and B are two tensors, then

AB T = B T A T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHbbGaaCOqaaGaayjkai aawMcaamaaCaaaleqabaGaamivaaaakiabg2da9iaahkeadaahaaWc beqaaiaadsfaaaGccaWHbbWaaWbaaSqabeaacaWGubaaaaaa@39BE@

 

 

B2.6 Trace

 

Let S be a tensor, and denote the components of S by a 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiabgEna0kaaiodaaaa@3470@  matrix.  The trace of S is denoted by tr(S) or trace(S), and can be computed by summing the diagonals of the matrix of components

trace S = S 11 + S 22 + S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gadaqadaqaaiaahofaaiaawIcacaGLPaaacqGH9aqpcaWGtbWaaSba aSqaaiaaigdacaaIXaaabeaakiabgUcaRiaadofadaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIZaGaaG4m aaqabaaaaa@4234@

More formally, let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be any Cartesian basis.  Then

trace S = e 1 S e 1 + e 2 S e 2 + e 3 S e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gadaqadaqaaiaahofaaiaawIcacaGLPaaacqGH9aqpcaWHLbWaaSba aSqaaiaaigdaaeqaaOGaeyyXIC9aaeWaaeaacaWHtbGaaCyzamaaBa aaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaahwgadaWg aaWcbaGaaGOmaaqabaGccqGHflY1daqadaqaaiaahofacaWHLbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaaCyzamaa BaaaleaacaaIZaaabeaakiabgwSixpaabmaabaGaaC4uaiaahwgada WgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaaa@53F9@

The trace of a tensor is an example of an invariant of the tensor MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  you get the same value for trace(S) whatever basis you use to define the matrix of components of S.

 

 

 

B2.7 Contraction.

 

Inner Product: Let S and T be two second order tensors.  The inner product of S and T is a scalar, denoted by S:T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiaacQdacaWHubaaaa@3356@ .  Represent S and T by their components in a basis.  Then

S:T= S 11 T 11 + S 12 T 12 + S 13 T 13 + S 21 T 21 + S 22 T 22 + S 23 T 23 + S 31 T 31 + S 32 T 32 + S 33 T 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHtbGaaiOoaiaahsfacqGH9a qpcaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadsfadaWgaaWc baGaaGymaiaaigdaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIXa GaaGOmaaqabaGccaWGubWaaSbaaSqaaiaaigdacaaIYaaabeaakiab gUcaRiaadofadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaamivamaaBa aaleaacaaIXaGaaG4maaqabaaakeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaam 4uamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGubWaaSbaaSqaaiaa ikdacaaIXaaabeaakiabgUcaRiaadofadaWgaaWcbaGaaGOmaiaaik daaeqaaOGaamivamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHRaWk caWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaadsfadaWgaaWcba GaaGOmaiaaiodaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaadofada WgaaWcbaGaaG4maiaaigdaaeqaaOGaamivamaaBaaaleaacaaIZaGa aGymaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaiodacaaIYaaabe aakiaadsfadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaey4kaSIaam4u amaaBaaaleaacaaIZaGaaG4maaqabaGccaWGubWaaSbaaSqaaiaaio dacaaIZaaabeaaaaaa@87BB@

Observe that S:T=T:S MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiaacQdacaWHubGaeyypa0JaaC ivaiaacQdacaWHtbaaaa@36D3@ , and also that S:I=trace(S) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiaacQdacaWHjbGaeyypa0Jaae iDaiaabkhacaqGHbGaae4yaiaabwgacaqGOaGaaC4uaiaabMcaaaa@3B22@ , where I is the identity tensor.

Outer product: Let S and T be two second order tensors.  The outer product of S and T is a scalar, denoted by ST MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabgwSixlabgwSixlaahsfaaa a@372C@ .  Represent S and T by their components in a basis.  Then

ST= S 11 T 11 + S 21 T 12 + S 31 T 13 + S 12 T 21 + S 22 T 22 + S 32 T 23 + S 13 T 31 + S 23 T 32 + S 33 T 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHtbGaeyyXICTaeyyXICTaaC ivaiabg2da9iaadofadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamiv amaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGtbWaaSbaaS qaaiaaikdacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGymaiaaikda aeqaaOGaey4kaSIaam4uamaaBaaaleaacaaIZaGaaGymaaqabaGcca WGubWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq GHRaWkcaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadsfadaWg aaWcbaGaaGOmaiaaigdaaeqaaOGaey4kaSIaam4uamaaBaaaleaaca aIYaGaaGOmaaqabaGccaWGubWaaSbaaSqaaiaaikdacaaIYaaabeaa kiabgUcaRiaadofadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaamivam aaBaaaleaacaaIYaGaaG4maaqabaaakeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaS Iaam4uamaaBaaaleaacaaIXaGaaG4maaqabaGccaWGubWaaSbaaSqa aiaaiodacaaIXaaabeaakiabgUcaRiaadofadaWgaaWcbaGaaGOmai aaiodaaeqaaOGaamivamaaBaaaleaacaaIZaGaaGOmaaqabaGccqGH RaWkcaWGtbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaadsfadaWgaa WcbaGaaG4maiaaiodaaeqaaaaaaa@8B91@

Observe that ST= S T :T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabgwSixlabgwSixlaahsfacq GH9aqpcaWHtbWaaWbaaSqabeaacaWGubaaaOGaaiOoaiaahsfaaaa@3BB9@

 

 

 

B2.8 Determinant

 

The determinant of a tensor is defined as the determinant of the matrix of its components in a basis.  For a second order tensor

detS=det S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 = S 11 ( S 22 S 33 S 23 S 32 )+ S 12 ( S 23 S 31 S 21 S 33 )+ S 13 ( S 21 S 32 S 31 S 22 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaciGGKbGaaiyzaiaacshacaWHtb Gaeyypa0JaciizaiaacwgacaGG0bWaamWaaqaabeqaaiaadofadaWg aaWcbaGaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaam4uam aaBaaaleaacaaIXaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaM c8Uaam4uamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGtbWaaS baaSqaaiaaikdacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaadofa daWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8Uaam 4uamaaBaaaleaacaaIYaGaaG4maaqabaGccaaMc8oabaGaam4uamaa BaaaleaacaaIZaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caWGtb WaaSbaaSqaaiaaiodacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaa dofadaWgaaWcbaGaaG4maiaaiodaaeqaaaaakiaawUfacaGLDbaaae aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaado fadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaaiikaiaadofadaWgaaWc baGaaGOmaiaaikdaaeqaaOGaam4uamaaBaaaleaacaaIZaGaaG4maa qabaGccqGHsislcaWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaa dofadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaaiykaiabgUcaRiaado fadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaaiikaiaadofadaWgaaWc baGaaGOmaiaaiodaaeqaaOGaam4uamaaBaaaleaacaaIZaGaaGymaa qabaGccqGHsislcaWGtbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaa dofadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaiykaiabgUcaRiaado fadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaiikaiaadofadaWgaaWc baGaaGOmaiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIZaGaaGOmaa qabaGccqGHsislcaWGtbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaa dofadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiykaaaaaa@B4FD@

In index notation this would read

det(S)= 1 6 ijk lmn S li S mj S nk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaaho facaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOnaaaacqGHiiIZ daWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiabgIGiopaaBaaale aacaWGSbGaamyBaiaad6gaaeqaaOGaam4uamaaBaaaleaacaWGSbGa amyAaaqabaGccaWGtbWaaSbaaSqaaiaad2gacaWGQbaabeaakiaado fadaWgaaWcbaGaamOBaiaadUgaaeqaaOGaaGPaVdaa@4BDF@

 

Note that if S and T are two tensors, then

det(S)=det S T det(ST)=det(S)det(T) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaaho facaGGPaGaeyypa0JaciizaiaacwgacaGG0bWaaeWaaeaacaWHtbWa aWbaaSqabeaacaWGubaaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlGacsgacaGGLbGaaiiDaiaacIcacaWHtbGaaC ivaiaacMcacqGH9aqpciGGKbGaaiyzaiaacshacaGGOaGaaC4uaiaa cMcaciGGKbGaaiyzaiaacshacaGGOaGaaCivaiaacMcaaaa@6218@

In solid mechanics we often have to find the derivative of the determinant of a tensor with respect to the tensor.   The following formula is helpful

det(A) A =det(A) A T det( A ij ) A ij =det( A ij ) A ji 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITciGGKbGaaiyzai aacshacaGGOaGaaCyqaiaacMcaaeaacqGHciITcaWHbbaaaiabg2da 9iGacsgacaGGLbGaaiiDaiaacIcacaWHbbGaaiykaiaahgeadaahaa WcbeqaaiabgkHiTiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacqGHci ITciGGKbGaaiyzaiaacshacaGGOaGaamyqamaaBaaaleaacaWGPbGa amOAaaqabaGccaGGPaaabaGaeyOaIyRaamyqamaaBaaaleaacaWGPb GaamOAaaqabaaaaOGaeyypa0JaciizaiaacwgacaGG0bGaaiikaiaa dgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiykaiaadgeadaqhaa WcbaGaamOAaiaadMgaaeaacqGHsislcaaIXaaaaaaa@6ACA@

 

 

 

B2.9 Inverse

 

Let S be a second order tensor.  The inverse of S exists if and only if det(S)0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaaho facaGGPaGaeyiyIKRaaGimaaaa@3860@ , and is defined by

S 1 S=I MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaahofacqGH9aqpcaWHjbaaaa@364E@

where S 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaeyOeI0IaaG ymaaaaaaa@3390@  denotes the inverse of S and I is the identity tensor.

 

The inverse of a tensor may be computed by calculating the inverse of the matrix of its components.  Formally, the inverse of a second order tensor can be written in a simple form using index notation as

S ji 1 = 1 2det(S) ipq jkl S pk S ql MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGQbGaamyAaa qaaiabgkHiTiaaigdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaGaciizaiaacwgacaGG0bGaaiikaiaahofacaGGPaaaaiabgIGiop aaBaaaleaacaWGPbGaamiCaiaadghaaeqaaOGaeyicI48aaSbaaSqa aiaadQgacaWGRbGaamiBaaqabaGccaWGtbWaaSbaaSqaaiaadchaca WGRbaabeaakiaadofadaWgaaWcbaGaamyCaiaadYgaaeqaaaaa@4BFC@

In practice it is usually faster to compute the inverse using methods such as Gaussian elimination.

 

 

 

B2.10 Eigenvalues and Eigenvectors (Principal values and direction)

 

Let S be a second order tensor.  The scalars λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  and unit vectors m which satisfy

Sm=λm MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiaah2gacqGH9aqpcqaH7oaBca WHTbaaaa@3661@

are known as the eigenvalues and eigenvectors of S, or the principal values and principal directions of S. Note that λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  may be complex.  For a second order tensor in three dimensions, there are generally three values of λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  and three unique unit vectors m which satisfy this equation.  Occasionally, there may be only two or one value of λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@ .  If this is the case, there are infinitely many possible vectors m that satisfy the equation.  The eigenvalues of a tensor, and the components of the eigenvectors, may be computed by finding the eigenvalues and eigenvectors of the matrix of components.

 

The eigenvalues of a symmetric tensor are always real, and its eigenvectors are mutually perpendicular (these two results are important and are proved below).  The eigenvalues of a skew tensor are always pure imaginary or zero.

 

The eigenvalues of a second order tensor are computed using the condition det(SλI)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaaho facqGHsislcqaH7oaBcaWHjbGaaiykaiabg2da9iaaicdaaaa@3B13@ .  This yields a cubic equation, which can be expressed as

λ 3 I 1 λ 2 + I 2 λ I 3 =0 I 1 =trace(S) I 2 =( I 1 2 SS)/2 I 3 =det(S) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBdaahaaWcbeqaaiaaio daaaGccqGHsislcaWGjbWaaSbaaSqaaiaaigdaaeqaaOGaeq4UdW2a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaamysamaaBaaaleaacaaIYa aabeaakiabeU7aSjabgkHiTiaadMeadaWgaaWcbaGaaG4maaqabaGc cqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacaWGjbWaaSbaaSqa aiaaigdaaeqaaOGaeyypa0JaamiDaiaadkhacaWGHbGaam4yaiaadw gacaGGOaGaaC4uaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGjbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaaiikai aadMeadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHsislcaWHtbGa eyyXICTaeyyXICTaaC4uaiaacMcacaGGVaGaaGOmaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamysamaaBaaa leaacaaIZaaabeaakiabg2da9iGacsgacaGGLbGaaiiDaiaacIcaca WHtbGaaiykaaaaaa@88E5@

There are various ways to solve the resulting cubic equation explicitly MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  a solution for symmetric S is given below, but the results for a general tensor are too messy to be given here.   The eigenvectors are then computed from the condition (SλI)m=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahofacqGHsislcqaH7oaBca WHjbGaaiykaiaah2gacqGH9aqpcaaIWaaaaa@393E@ .

 

 

 

B2.11 Change of Basis.

 

Let S be a tensor, and let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis.  Suppose that the components of S in the basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  are known to be

[ S (e) ]= S 11 (e) S 12 (e) S 13 (e) S 21 (e) S 22 (e) S 23 (e) S 31 (e) S 32 (e) S 33 (e) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadofadaahaaWcbeqaaiaacI cacaWHLbGaaiykaaaakiaac2facqGH9aqpdaWadaqaauaabeqadmaa aeaacaWGtbWaa0baaSqaaiaaigdacaaIXaaabaGaaiikaiaahwgaca GGPaaaaaGcbaGaam4uamaaDaaaleaacaaIXaGaaGOmaaqaaiaacIca caWHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGymaiaaiodaae aacaGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaikda caaIXaaabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIYaGaaGOmaaqaaiaacIcacaWHLbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaGOmaiaaiodaaeaacaGGOaGaaCyzaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaiodacaaIXaaabaGaaiikaiaahwgacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaGOmaaqaaiaacIcaca WHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaiodaaeaa caGGOaGaaCyzaiaacMcaaaaaaaGccaGLBbGaayzxaaaaaa@6442@

 

Now, suppose that we wish to compute the components of  S in a second Cartesian basis, m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@ .  Denote these components by

[ S (m) ]= S 11 (m) S 12 (m) S 13 (m) S 21 (m) S 22 (m) S 23 (m) S 31 (m) S 32 (m) S 33 (m) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadofadaahaaWcbeqaaiaacI cacaWHTbGaaiykaaaakiaac2facqGH9aqpdaWadaqaauaabeqadmaa aeaacaWGtbWaa0baaSqaaiaaigdacaaIXaaabaGaaiikaiaah2gaca GGPaaaaaGcbaGaam4uamaaDaaaleaacaaIXaGaaGOmaaqaaiaacIca caWHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGymaiaaiodaae aacaGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaikda caaIXaaabaGaaiikaiaah2gacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIYaGaaGOmaaqaaiaacIcacaWHTbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaGOmaiaaiodaaeaacaGGOaGaaCyBaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaiodacaaIXaaabaGaaiikaiaah2gacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaGOmaaqaaiaacIcaca WHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaG4maiaaiodaaeaa caGGOaGaaCyBaiaacMcaaaaaaaGccaGLBbGaayzxaaaaaa@6492@

To do so, first compute the components of the transformation matrix [Q]

Q = m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa Gaeyypa0ZaamWaaqaabeqaaiaah2gadaWgaaWcbaGaaGymaaqabaGc cqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIXaaabeaa kiabgwSixlaahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaigdaaeqa aOGaeyyXICTaaCyzamaaBaaaleaacaaIZaaabeaaaOqaaiaah2gada WgaaWcbaGaaGOmaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaigda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBam aaBaaaleaacaaIYaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGOm aaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTb WaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaI ZaaabeaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHflY1ca WHLbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixl aahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXIC TaaCyzamaaBaaaleaacaaIZaaabeaaaaGccaGLBbGaayzxaaaaaa@A4D5@

(this is the same matrix you would use to transform vector components from e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  to m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  ).  Then,

[ S (m) ]=[Q][ S (e) ] [Q] T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadofadaahaaWcbeqaaiaacI cacaWHTbGaaiykaaaakiaac2facqGH9aqpcaGGBbGaamyuaiaac2fa caGGBbGaam4uamaaCaaaleqabaGaaiikaiaahwgacaGGPaaaaOGaai yxaiaacUfacaWGrbGaaiyxamaaCaaaleqabaGaamivaaaaaaa@424B@

or, written out in full

S 11 (m) S 12 (m) S 13 (m) S 21 (m) S 22 (m) S 23 (m) S 31 (m) S 32 (m) S 33 (m) = m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 S 11 (e) S 12 (e) S 13 (e) S 21 (e) S 22 (e) S 23 (e) S 31 (e) S 32 (e) S 33 (e) m 1 e 1 m 2 e 1 m 3 e 1 m 1 e 2 m 2 e 2 m 3 e 2 m 1 e 3 m 2 e 3 m 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaam4uam aaDaaaleaacaaIXaGaaGymaaqaaiaacIcacaWHTbGaaiykaaaaaOqa aiaadofadaqhaaWcbaGaaGymaiaaikdaaeaacaGGOaGaaCyBaiaacM caaaaakeaacaWGtbWaa0baaSqaaiaaigdacaaIZaaabaGaaiikaiaa h2gacaGGPaaaaaGcbaGaam4uamaaDaaaleaacaaIYaGaaGymaaqaai aacIcacaWHTbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGOmaiaa ikdaaeaacaGGOaGaaCyBaiaacMcaaaaakeaacaWGtbWaa0baaSqaai aaikdacaaIZaaabaGaaiikaiaah2gacaGGPaaaaaGcbaGaam4uamaa DaaaleaacaaIZaGaaGymaaqaaiaacIcacaWHTbGaaiykaaaaaOqaai aadofadaqhaaWcbaGaaG4maiaaikdaaeaacaGGOaGaaCyBaiaacMca aaaakeaacaWGtbWaa0baaSqaaiaaiodacaaIZaaabaGaaiikaiaah2 gacaGGPaaaaaaaaOGaay5waiaaw2faaiabg2da9maadmaaeaqabeaa caWHTbWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaCyzamaaBaaale aacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vlaah2gadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWHLbWaaSbaaS qaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaCyBamaaBaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaa WcbaGaaG4maaqabaaakeaacaWHTbWaaSbaaSqaaiaaikdaaeqaaOGa eyyXICTaaCyzamaaBaaaleaacaaIXaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGOmaaqabaGc cqGHflY1caWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIYaaabeaa kiabgwSixlaahwgadaWgaaWcbaGaaG4maaqabaaakeaacaWHTbWaaS baaSqaaiaaiodaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIXaaa beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gada WgaaWcbaGaaG4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaikda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBam aaBaaaleaacaaIZaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaG4m aaqabaaaaOGaay5waiaaw2faamaadmaabaqbaeqabmWaaaqaaiaado fadaqhaaWcbaGaaGymaiaaigdaaeaacaGGOaGaaCyzaiaacMcaaaaa keaacaWGtbWaa0baaSqaaiaaigdacaaIYaaabaGaaiikaiaahwgaca GGPaaaaaGcbaGaam4uamaaDaaaleaacaaIXaGaaG4maaqaaiaacIca caWHLbGaaiykaaaaaOqaaiaadofadaqhaaWcbaGaaGOmaiaaigdaae aacaGGOaGaaCyzaiaacMcaaaaakeaacaWGtbWaa0baaSqaaiaaikda caaIYaaabaGaaiikaiaahwgacaGGPaaaaaGcbaGaam4uamaaDaaale aacaaIYaGaaG4maaqaaiaacIcacaWHLbGaaiykaaaaaOqaaiaadofa daqhaaWcbaGaaG4maiaaigdaaeaacaGGOaGaaCyzaiaacMcaaaaake aacaWGtbWaa0baaSqaaiaaiodacaaIYaaabaGaaiikaiaahwgacaGG PaaaaaGcbaGaam4uamaaDaaaleaacaaIZaGaaG4maaqaaiaacIcaca WHLbGaaiykaaaaaaaakiaawUfacaGLDbaadaWadaabaeqabaGaaCyB amaaBaaaleaacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaG ymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH TbWaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaaca aIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa h2gadaWgaaWcbaGaaG4maaqabaGccqGHflY1caWHLbWaaSbaaSqaai aaigdaaeqaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaakiabgwSi xlaahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyyX ICTaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaG4maaqabaGccqGH flY1caWHLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaCyBamaaBaaale aacaaIXaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaG4maaqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaS qaaiaaikdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaIZaaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaa WcbaGaaG4maaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaaeqa aaaakiaawUfacaGLDbaaaaa@6D0B@

 

To prove this result, let u and v be vectors satisfying

v=Su MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahofacqGHflY1ca WH1baaaa@3708@

Denote the components of u and v in the two bases by  u (e) ¯ , u (m) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1bWaaWbaaSqabeaaca GGOaGaaCyzaiaacMcaaaaaaOGaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7daadaaqaaiaadwhadaahaaWcbeqaaiaacIcacaWHTbGaaiykaa aaaaaaaa@3EC9@  and v (e) ¯ , v (m) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG2bWaaWbaaSqabeaaca GGOaGaaCyzaiaacMcaaaaaaOGaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7daadaaqaaiaadAhadaahaaWcbeqaaiaacIcacaWHTbGaaiykaa aaaaaaaa@3ECB@ , respectively.  Recall that the vector components are related by

u (m) ¯ =[Q] u (e) ¯ u (e) ¯ = Q T u (m) ¯ v (m) ¯ =[Q] v (e) ¯ v (e) ¯ = Q T v (m) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaadaaqaaiaadwhadaahaaWcbe qaaiaacIcacaWHTbGaaiykaaaaaaGccqGH9aqpcaGGBbGaamyuaiaa c2fadaadaaqaaiaadwhadaahaaWcbeqaaiaacIcacaWHLbGaaiykaa aaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7da adaaqaaiaadwhadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaaGc cqGH9aqpdaWadaqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqaai aadsfaaaGcdaadaaqaaiaadwhadaahaaWcbeqaaiaacIcacaWHTbGa aiykaaaaaaaakeaadaadaaqaaiaadAhadaahaaWcbeqaaiaacIcaca WHTbGaaiykaaaaaaGccqGH9aqpcaGGBbGaamyuaiaac2fadaadaaqa aiaadAhadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daadaaqaaiaadA hadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaaaaGccqGH9aqpdaWa daqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcda adaaqaaiaadAhadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaaaa aaa@8C7E@

Now, we could express the tensor-vector product in either basis

v (m) ¯ = S (m) u (m) ¯ v (e) ¯ = S (e) u (e) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG2bWaaWbaaSqabeaaca GGOaGaaCyBaiaacMcaaaaaaOGaeyypa0ZaamWaaeaacaWGtbWaaWba aSqabeaacaGGOaGaaCyBaiaacMcaaaaakiaawUfacaGLDbaadaadaa qaaiaadwhadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaamaaabaGaam ODamaaCaaaleqabaGaaiikaiaahwgacaGGPaaaaaaakiabg2da9maa dmaabaGaam4uamaaCaaaleqabaGaaiikaiaahwgacaGGPaaaaaGcca GLBbGaayzxaaWaaWaaaeaacaWG1bWaaWbaaSqabeaacaGGOaGaaCyz aiaacMcaaaaaaOGaaGPaVlaaykW7aaa@7248@

Substitute for u (e) ¯ , v (e) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1bWaaWbaaSqabeaaca GGOaGaaCyzaiaacMcaaaaaaOGaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7daadaaqaaiaadAhadaahaaWcbeqaaiaacIcacaWHLbGaaiykaa aaaaaaaa@3EC2@  from above into the second of these two relations, we see that

Q T v (m) ¯ = S (e) Q T u (m) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa WaaWbaaSqabeaacaWGubaaaOWaaWaaaeaacaWG2bWaaWbaaSqabeaa caGGOaGaaCyBaiaacMcaaaaaaOGaeyypa0ZaamWaaeaacaWGtbWaaW baaSqabeaacaGGOaGaaCyzaiaacMcaaaaakiaawUfacaGLDbaadaWa daqaaiaadgfaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcda adaaqaaiaadwhadaahaaWcbeqaaiaacIcacaWHTbGaaiykaaaaaaGc caaMc8oaaa@4789@

Recall that

Q Q T = I I v (m) ¯ = v (m) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGrbaacaGLBbGaayzxaa WaamWaaeaacaWGrbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaa aOGaeyypa0ZaamWaaeaacaWGjbaacaGLBbGaayzxaaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVpaadmaabaGaamysaaGaay5waiaaw2faamaamaaabaGaamOD amaaCaaaleqabaGaaiikaiaah2gacaGGPaaaaaaakiabg2da9maama aabaGaamODamaaCaaaleqabaGaaiikaiaah2gacaGGPaaaaaaaaaa@6374@

so multiplying both sides by [Q] shows that

v (m) ¯ = Q S (e) Q T u (m) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG2bWaaWbaaSqabeaaca GGOaGaaCyBaiaacMcaaaaaaOGaeyypa0ZaamWaaeaacaWGrbaacaGL BbGaayzxaaWaamWaaeaacaWGtbWaaWbaaSqabeaacaGGOaGaaCyzai aacMcaaaaakiaawUfacaGLDbaadaWadaqaaiaadgfaaiaawUfacaGL DbaadaahaaWcbeqaaiaadsfaaaGcdaadaaqaaiaadwhadaahaaWcbe qaaiaacIcacaWHTbGaaiykaaaaaaGccaaMc8oaaa@4679@

so, comparing with the first of equation (1)

[ S (m) ]=[Q][ S (e) ] [Q] T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadofadaahaaWcbeqaaiaacI cacaWHTbGaaiykaaaakiaac2facqGH9aqpcaGGBbGaamyuaiaac2fa caGGBbGaam4uamaaCaaaleqabaGaaiikaiaahwgacaGGPaaaaOGaai yxaiaacUfacaWGrbGaaiyxamaaCaaaleqabaGaamivaaaaaaa@424B@

as stated.

 

 

 

B2.12 Invariants

 

Invariants of a tensor are functions of the tensor components which remain constant under a basis change.  That is to say, the invariant has the same value when computed in two arbitrary bases e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  and m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@ .  A symmetric second order tensor always has three independent invariants.

 

Examples of invariants are

 

1. The three eigenvalues

 

2. The determinant

 

3. The trace

 

4. The inner and outer products

 

These are not all independent MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for example any of 2-4 can be calculated in terms of 1.

 

In practice, the most commonly used invariants are:

I 1 =trace(S)= S kk I 2 = 1 2 trace S 2 SS = 1 2 ( S ii S jj S ij S ji ) I 3 =det(S)= 1 6 ijk pqr S ip S jq S kr = ijk S i1 S j2 S k3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGjbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaciiDaiaackhacaGGHbGaai4yaiaacwgaciGGOaGa aC4uaiaacMcacqGH9aqpcaWGtbWaaSbaaSqaaiaadUgacaWGRbaabe aaaOqaaiaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqa aiaaigdaaeaacaaIYaaaamaabmaabaGaciiDaiaackhacaGGHbGaai 4yaiaacwgadaqadaqaaiaahofaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGHsislcaWHtbGaeyyXICTaeyyXICTaaC4uaaGaay jkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiik aiaadofadaWgaaWcbaGaamyAaiaadMgaaeqaaOGaam4uamaaBaaale aacaWGQbGaamOAaaqabaGccqGHsislcaWGtbWaaSbaaSqaaiaadMga caWGQbaabeaakiaadofadaWgaaWcbaGaamOAaiaadMgaaeqaaOGaai ykaaqaaiaadMeadaWgaaWcbaGaaG4maaqabaGccqGH9aqpciGGKbGa aiyzaiaacshacaGGOaGaaC4uaiaacMcacqGH9aqpdaWcaaqaaiaaig daaeaacaaI2aaaaiabgIGiopaaBaaaleaacaWGPbGaamOAaiaadUga aeqaaOGaeyicI48aaSbaaSqaaiaadchacaWGXbGaamOCaaqabaGcca WGtbWaaSbaaSqaaiaadMgacaWGWbaabeaakiaadofadaWgaaWcbaGa amOAaiaadghaaeqaaOGaam4uamaaBaaaleaacaWGRbGaamOCaaqaba GccqGH9aqpcqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaa kiaadofadaWgaaWcbaGaamyAaiaaigdaaeqaaOGaam4uamaaBaaale aacaWGQbGaaGOmaaqabaGccaWGtbWaaSbaaSqaaiaadUgacaaIZaaa beaaaaaa@8E0A@

 

 

 

B2.13 The Cayley-Hamilton Theorem

 

Let S be a second order tensor and let I 1 =trace(S), I 2 =( I 1 2 SS)/2 I 3 =det(S) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iaadshacaWGYbGaamyyaiaadogacaWGLbGaaiikaiaahofa caGGPaGaaiilaiaaygW7caaMc8UaaGPaVlaaykW7caaMc8Uaamysam aaBaaaleaacaaIYaaabeaakiabg2da9iaacIcacaWGjbWaa0baaSqa aiaaigdaaeaacaaIYaaaaOGaeyOeI0IaaC4uaiabgwSixlabgwSixl aahofacaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaaykW7caaMc8Ua amysamaaBaaaleaacaaIZaaabeaakiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHtbGaaiykaaaa@601E@  be the three invariants.   Then

S 3 I 1 S 2 + I 2 S I 3 I=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaaG4maaaaki abgkHiTiaadMeadaWgaaWcbaGaaGymaaqabaGccaWHtbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaamysamaaBaaaleaacaaIYaaabeaaki aahofacqGHsislcaWGjbWaaSbaaSqaaiaaiodaaeqaaOGaaCysaiab g2da9iaahcdaaaa@3FE8@

(i.e. a tensor satisfies its characteristic equation).   There is an obscure trick to show this… Consider the tensor SαI MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabgkHiTiabeg7aHjaahMeaaa a@351A@  (where α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  is an arbitrary scalar), and let T be the adjoint of SαI MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabgkHiTiabeg7aHjaahMeaaa a@351A@ , (the adjoint is just the inverse multiplied by the determinant) which satisfies

T(SαI)=det(SαI)I=( α 3 + I 1 α 2 I 2 α+ I 3 )I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHtbGaeyOeI0Iaeq ySdeMaaCysaiaacMcacqGH9aqpciGGKbGaaiyzaiaacshacaGGOaGa aC4uaiabgkHiTiabeg7aHjaahMeacaGGPaGaaCysaiabg2da9iaacI cacqGHsislcqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWG jbWaaSbaaSqaaiaaigdaaeqaaOGaeqySde2aaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaamysamaaBaaaleaacaaIYaaabeaakiabeg7aHjab gUcaRiaadMeadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCysaaaa@5459@

Assume that T= α 2 T 1 +α T 2 + T 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaWbaaSqabeaacaaIYaaaaO GaaCivamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHjaahsfa daWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWHubWaaSbaaSqaaiaaio daaeqaaaaa@3C38@ .   Substituting in the preceding equation shows that

T 1 =I T 1 S T 2 = I 1 I T 3 T 2 S= I 2 I T 3 S= I 3 I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivamaaBaaaleaacaaIXaaabeaaki abg2da9iaahMeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHubWaaSbaaSqaaiaaigdaaeqaaOGaaC 4uaiabgkHiTiaahsfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWG jbWaaSbaaSqaaiaaigdaaeqaaOGaaCysaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaahsfadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWHubWaaS baaSqaaiaaikdaaeqaaOGaaC4uaiabg2da9iaadMeadaWgaaWcbaGa aGOmaaqabaGccaWHjbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaCivamaaBaaaleaacaaIZaaabeaakiaahofacqGH9a qpcaWGjbWaaSbaaSqaaiaaiodaaeqaaOGaaCysaaaa@8454@

Use these to substitute for I 1 , I 2 , I 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki aacYcacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadMeadaWg aaWcbaGaaG4maaqabaaaaa@3776@  into

S 3 I 1 S 2 + I 2 SI I 3 = S 3 (S T 2 ) S 2 +( T 3 T 2 S)S T 3 S=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaaG4maaaaki abgkHiTiaadMeadaWgaaWcbaGaaGymaaqabaGccaWHtbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaamysamaaBaaaleaacaaIYaaabeaaki aahofacqGHsislcaWHjbGaamysamaaBaaaleaacaaIZaaabeaakiab g2da9iaahofadaahaaWcbeqaaiaaiodaaaGccqGHsislcaGGOaGaaC 4uaiabgkHiTiaahsfadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaC4u amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacIcacaWHubWaaSbaaS qaaiaaiodaaeqaaOGaeyOeI0IaaCivamaaBaaaleaacaaIYaaabeaa kiaahofacaGGPaGaaC4uaiabgkHiTiaahsfadaWgaaWcbaGaaG4maa qabaGccaWHtbGaeyypa0JaaCimaaaa@5683@

 

 

 

B3. Special tensors

 

 

B3.1 Identity tensor 

 

The identity tensor I satisfies

Iv=vI=v SI=IS=S MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHjbGaaCODaiabg2da9iaahA hacaWHjbGaeyypa0JaaCODaaqaaiaahofacaWHjbGaeyypa0JaaCys aiaahofacqGH9aqpcaWHtbaaaaa@3DD7@

for any tensor S or vector v.  In any Cartesian basis, the identity tensor has components

1 0 0 0 1 0 0 0 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaaGymaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faaaaa@3975@

 

 

B3.2 Symmetric Tensors

 

 A symmetric tensor S has the property

S= S T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaahofadaahaaWcbe qaaiaadsfaaaaaaa@34A3@

The components of a symmetric tensor have the form

S 11 S 12 S 13 S 12 S 22 S 23 S 13 S 23 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaam4uam aaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaa igdacaaIYaaabeaaaOqaaiaadofadaWgaaWcbaGaaGymaiaaiodaae qaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWG tbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGOmaiaaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaG4m aaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaai aadofadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2fa aaaa@499E@

so that there are only six independent components of the tensor, instead of nine.   Symmetric tensors have some nice properties:

 

· The eigenvectors of a symmetric tensor with distinct eigenvalues are orthogonal.   To see this, let u,v MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacYcacaWH2baaaa@338D@  be two eigenvectors, with corresponding eigenvalues λ u , λ v MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadwhaaeqaaO GaaiilaiabeU7aSnaaBaaaleaacaWG2baabeaaaaa@374F@ . Then

v Su =u S T v =u Sv v λ u u=u λ v v ( λ u λ v )uv=0 uv=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH2bGaeyyXIC9aamWaaeaaca WHtbGaaCyDaaGaay5waiaaw2faaiabg2da9iaahwhacqGHflY1daWa daqaaiaahofadaahaaWcbeqaaiaadsfaaaGccaWH2baacaGLBbGaay zxaaGaeyypa0JaaCyDaiabgwSixpaadmaabaGaaC4uaiaahAhaaiaa wUfacaGLDbaaaeaacqGHshI3caWH2bGaeyyXICTaeq4UdW2aaSbaaS qaaiaadwhaaeqaaOGaaCyDaiabg2da9iaahwhacqGHflY1cqaH7oaB daWgaaWcbaGaamODaaqabaGccaWH2baabaGaeyO0H4TaaiikaiabeU 7aSnaaBaaaleaacaWG1baabeaakiabgkHiTiabeU7aSnaaBaaaleaa caWG2baabeaakiaacMcacaWH1bGaeyyXICTaaCODaiabg2da9iaaic daaeaacqGHshI3caWH1bGaeyyXICTaaCODaiabg2da9iaaicdaaaaa @73D5@ .

 

· The eigenvalues of a symmetric tensor are real.  To see this, suppose that λ,u MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaaiilaiaahwhaaaa@3442@  are a complex eigenvalue/eigenvector pair, and let λ ¯ , u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4UdWMbaebacaGGSaGabCyDayaara aaaa@3472@  denote their complex conjugates.   Then, by definition Su=λuS u ¯ = λ ¯ u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabgwSixlaahwhacqGH9aqpcq aH7oaBcaWH1bGaeyO0H4TaaC4uaiqahwhagaqeaiabg2da9iqbeU7a SzaaraGabCyDayaaraaaaa@40F3@ .  And hence u ¯ Su =λ u ¯ u,u S u ¯ = λ ¯ u u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyDayaaraGaeyyXIC9aamWaaeaaca WHtbGaaCyDaaGaay5waiaaw2faaiabg2da9iabeU7aSjqahwhagaqe aiabgwSixlaahwhacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaCyDaiabgwSixpaadmaabaGaaC4uaiqahwhagaqeaaGa ay5waiaaw2faaiabg2da9iqbeU7aSzaaraGaaCyDaiabgwSixlqahw hagaqeaaaa@5772@ .  But note that for a symmetric tensor u ¯ Su =u S T u ¯ =u S u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyDayaaraGaeyyXIC9aamWaaeaaca WHtbGaaCyDaaGaay5waiaaw2faaiabg2da9iaahwhacqGHflY1daWa daqaaiaahofadaahaaWcbeqaaiaadsfaaaGcceWH1bGbaebaaiaawU facaGLDbaacqGH9aqpcaWH1bGaeyyXIC9aamWaaeaacaWHtbGabCyD ayaaraaacaGLBbGaayzxaaaaaa@4980@ .  Thus λ u ¯ u= λ ¯ u u ¯ λ= λ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMabCyDayaaraGaeyyXICTaaC yDaiabg2da9iqbeU7aSzaaraGaaCyDaiabgwSixlqahwhagaqeaiab gkDiElabeU7aSjabg2da9iqbeU7aSzaaraaaaa@4505@ .

 

The eigenvalues of a symmetric tensor can be computed as

λ k = I 1 3 +2 p 3 cos 1 3 cos 1 3q 2p 3 p 2(k1)π 3 k=1,2,3 p= I 2 1 3 I 1 2 q= 2 I 1 3 9 I 1 I 2 +27 I 3 27 I 1 =trace(S) I 2 = 1 2 I 1 2 S:S I 3 =det(S) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccqGH9aqpdaWcaaqaaiaadMeadaWgaaWcbaGaaGymaaqabaaa keaacaaIZaaaaiabgUcaRiaaikdadaGcaaqaamaalaaabaGaeyOeI0 IaamiCaaqaaiaaiodaaaaaleqaaOGaci4yaiaac+gacaGGZbWaaiWa aeaadaWcaaqaaiaaigdaaeaacaaIZaaaaiGacogacaGGVbGaai4Cam aaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaSaaaeaacaaI ZaGaamyCaaqaaiaaikdacaWGWbaaamaakaaabaWaaSaaaeaacqGHsi slcaaIZaaabaGaamiCaaaaaSqabaaakiaawIcacaGLPaaacqGHsisl daWcaaqaaiaaikdacaGGOaGaam4AaiabgkHiTiaaigdacaGGPaGaeq iWdahabaGaaG4maaaaaiaawUhacaGL9baacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaam4Aaiabg2da9iaaigdacaGGSaGaaGOmaiaacYca caaIZaaabaGaamiCaiabg2da9iaadMeadaWgaaWcbaGaaGOmaaqaba GccqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaaaiaadMeadaqhaaWc baGaaGymaaqaaiaaikdaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyCaiabg2da9iab gkHiTmaalaaabaGaaGOmaiaadMeadaqhaaWcbaGaaGymaaqaaiaaio daaaGccqGHsislcaaI5aGaamysamaaBaaaleaacaaIXaaabeaakiaa dMeadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIYaGaaG4naiaadM eadaWgaaWcbaGaaG4maaqabaaakeaacaaIYaGaaG4naaaaaeaacaWG jbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamiDaiaadkhacaWGHb Gaam4yaiaadwgacaGGOaGaaC4uaiaacMcacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamysam aaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa ikdaaaWaaeWaaeaacaWGjbWaa0baaSqaaiaaigdaaeaacaaIYaaaaO GaeyOeI0IaaC4uaiaacQdacaWHtbaacaGLOaGaayzkaaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam ysamaaBaaaleaacaaIZaaabeaakiabg2da9iGacsgacaGGLbGaaiiD aiaacIcacaWHtbGaaiykaaaaaa@D419@

The eigenvectors can then be found by back-substitution into SλI m=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWHtbGaeyOeI0Iaeq4UdW MaaCysaaGaay5waiaaw2faaiaah2gacqGH9aqpcaWHWaaaaa@39D6@ . To do this, note that the matrix equation can be written as

S 11 λ S 12 S 13 S 12 S 22 λ S 23 S 13 S 23 S 33 λ m 1 m 2 m 3 = 0 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaam4uam aaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcqaH7oaBaeaacaWG tbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGymaiaaiodaaeqaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOm aaqabaaakeaacaWGtbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgk HiTiabeU7aSbqaaiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGc baGaam4uamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGtbWaaS baaSqaaiaaikdacaaIZaaabeaaaOqaaiaadofadaWgaaWcbaGaaG4m aiaaiodaaeqaaOGaeyOeI0Iaeq4UdWgaaaGaay5waiaaw2faamaadm aabaqbaeqabmqaaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaaakeaa caWGTbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyBamaaBaaaleaaca aIZaaabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqa deaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaaaacaGLBbGaayzxaa aaaa@5E64@

Since the determinant of the matrix is zero, we can discard any row in the equation system and take any column over to the right hand side.   For example, if the tensor has at least one eigenvector with m 3 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaaIZaaabeaaki abgcMi5kaaicdaaaa@3546@  then the values of m 1 , m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaaIXaaabeaaki aacYcacaWGTbWaaSbaaSqaaiaaikdaaeqaaaaa@354D@  for this eigenvector can be found by discarding the third row, and writing

S 11 λ S 12 S 12 S 22 λ m 1 m 2 = m 3 S 13 S 23 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGacaaabaGaam4uam aaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcqaH7oaBaeaacaWG tbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadofadaWgaaWcba GaaGymaiaaikdaaeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGOm aaqabaGccqGHsislcqaH7oaBaaaacaGLBbGaayzxaaWaamWaaeaafa qabeGabaaabaGaamyBamaaBaaaleaacaaIXaaabeaaaOqaaiaad2ga daWgaaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0Jaey OeI0IaamyBamaaBaaaleaacaaIZaaabeaakmaadmaabaqbaeqabiqa aaqaaiaadofadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4uam aaBaaaleaacaaIYaGaaG4maaqabaaaaaGccaGLBbGaayzxaaaaaa@52E2@

 

· Spectral decomposition of a symmetric tensor  Let S be a symmetric second order tensor, and let { λ i , e i } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiabeU7aSnaaBaaaleaacaWGPb aabeaakiaacYcacaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaiyFaaaa @387A@  be the three eigenvalues and eigenvectors of S.  Then S can be expressed as

S= i=1 3 λ i e i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9maaqahabaGaeq4UdW 2aaSbaaSqaaiaadMgaaeqaaOGaaCyzamaaBaaaleaacaWGPbaabeaa kiabgEPielaahwgadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2 da9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@4160@

To see this, note that S can always be expanded as a sum of 9 dyadic products of an orthogonal basis.  S= S ij e i e j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadofadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaCyzamaaBaaaleaacaWGPbaabeaakiab gEPielaahwgadaWgaaWcbaGaamOAaaqabaaaaa@3BD1@ .  But since e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGPbaabeaaaa a@32E8@  are eigenvectors it follows that

e m ( S ij e i e j ) e k = S mk = λ k m=k 0mk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGTbaabeaaki abgwSixlaacIcacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa hwgadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaai aadQgaaeqaaOGaaiykaiabgwSixlaahwgadaWgaaWcbaGaam4Aaaqa baGccqGH9aqpcaWGtbWaaSbaaSqaaiaad2gacaWGRbaabeaakiabg2 da9maaceaabaqbaeqabiqaaaqaaiabeU7aSnaaBaaaleaacaWGRbaa beaakiaaykW7caaMc8UaaGPaVlaaykW7caWGTbGaeyypa0Jaam4Aaa qaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaamyBaiabgcMi5kaadUgaaaaacaGL7baaaaa@6551@

 

 

B3.3 Skew Tensors 

 

A skew tensor W has the property

W T =W MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vamaaCaaaleqabaGaamivaaaaki abg2da9iabgkHiTiaahEfaaaa@35A2@

The components of a skew tensor have the form

0 W 12 W 13 W 12 0 W 23 W 13 W 23 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaaGimaa qaaiaadEfadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4vamaa BaaaleaacaaIXaGaaG4maaqabaaakeaacqGHsislcaWGxbWaaSbaaS qaaiaaigdacaaIYaaabeaaaOqaaiaaicdaaeaacaWGxbWaaSbaaSqa aiaaikdacaaIZaaabeaaaOqaaiabgkHiTiaadEfadaWgaaWcbaGaaG ymaiaaiodaaeqaaaGcbaGaeyOeI0Iaam4vamaaBaaaleaacaaIYaGa aG4maaqabaaakeaacaaIWaaaaaGaay5waiaaw2faaaaa@4719@

 

Dual vector of a skew tensor:  Every skew tensor W has a dual vector ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  that satisfies

Wu=ω×u MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vaiaahwhacqGH9aqpcaWHjpGaey 41aqRaaCyDaaaa@382E@

for all vectors u.  To see this, relate the components of W and ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  as follows

ω= ω 1 ω 2 ω 3 W= 0 ω 3 ω 2 ω 3 0 ω 1 ω 2 ω 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9maadmaabaqbaeqabm qaaaqaaiabeM8a3naaBaaaleaacaaIXaaabeaaaOqaaiabeM8a3naa BaaaleaacaaIYaaabeaaaOqaaiabeM8a3naaBaaaleaacaaIZaaabe aaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahEfacqGH9aqpdaWadaqaauaa beqadmaaaeaacaaIWaaabaGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaio daaeqaaaGcbaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaaGcbaGaeqyY dC3aaSbaaSqaaiaaiodaaeqaaaGcbaGaaGimaaqaaiabgkHiTiabeM 8a3naaBaaaleaacaaIXaaabeaaaOqaaiabgkHiTiabeM8a3naaBaaa leaacaaIYaaabeaaaOqaaiabeM8a3naaBaaaleaacaaIXaaabeaaaO qaaiaaicdaaaaacaGLBbGaayzxaaaaaa@7112@

Then evaluate the tensor-vector product and the cross product to see they are equivalent.

 

 

 

B3.4 Orthogonal Tensors

 

An orthogonal tensor R has the property

R R T = R T R=I R 1 = R T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHsbGaaCOuamaaCaaaleqaba Gaamivaaaakiabg2da9iaahkfadaahaaWcbeqaaiaadsfaaaGccaWH sbGaeyypa0JaaCysaaqaaiaahkfadaahaaWcbeqaaiabgkHiTiaaig daaaGccqGH9aqpcaWHsbWaaWbaaSqabeaacaWGubaaaaaaaa@3EF1@

An orthogonal tensor must have det(R)=±1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaahk facaGGPaGaeyypa0JaeyySaeRaaGymaaaa@398D@ ; a tensor with det(R)=+1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaahk facaGGPaGaeyypa0Jaey4kaSIaaGymaaaa@3881@  is known as a proper orthogonal tensor.  Orthogonal tensors also have some interesting and useful properties:

 

· Orthogonal tensors map a vector onto another vector with the same length.  To see this, let u be an arbitrary vector.  Then, note that Ru 2 = Ru Ru =u R T Ru=uu= u 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHsbGaaCyDaaGaay5bSl aawIa7amaaCaaaleqabaGaaGOmaaaakiabg2da9maadmaabaGaaCOu aiaahwhaaiaawUfacaGLDbaacqGHflY1daWadaqaaiaahkfacaWH1b aacaGLBbGaayzxaaGaeyypa0JaaCyDaiabgwSixlaahkfadaahaaWc beqaaiaadsfaaaGccaWHsbGaaCyDaiabg2da9iaahwhacqGHflY1ca WH1bGaeyypa0ZaaqWaaeaacaWH1baacaGLhWUaayjcSdWaaWbaaSqa beaacaaIYaaaaaaa@5521@

 

· The eigenvalues of an orthogonal tensor are 1, e ±iθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaacYcacaWGLbWaaWbaaSqabe aacqGHXcqScaWGPbGaeqiUdehaaaaa@37F4@  for some value of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ .  To see this, let u MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaaaa@31DE@  be an eigenvector, with corresponding eigenvalue λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@ .  By definition, Ru=λu MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiaahwhacqGH9aqpcqaH7oaBca WH1baaaa@3671@ .  Hence

Ru Ru =λuλuuu= λ 2 uu λ 2 =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWHsbGaaCyDaaGaay5wai aaw2faaiabgwSixpaadmaabaGaaCOuaiaahwhaaiaawUfacaGLDbaa cqGH9aqpcqaH7oaBcaWH1bGaeyyXICTaeq4UdWMaaCyDaiabgkDiEl aahwhacqGHflY1caWH1bGaeyypa0Jaeq4UdW2aaWbaaSqabeaacaaI YaaaaOGaaCyDaiabgwSixlaahwhacqGHshI3cqaH7oaBdaahaaWcbe qaaiaaikdaaaGccqGH9aqpcaaIXaaaaa@58CF@ .

Similarly, λ λ ¯ =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMafq4UdWMbaebacqGH9aqpca aIXaaaaa@3621@ .  Since the characteristic equation is cubic, there must be at most three eigenvalues, and at least one eigenvalue must be real.

 

 

Proper orthogonal tensors can be visualized physically as rotations.  A rotation can also be represented in several other forms besides a proper orthogonal tensor.   For example

 

1. The Rodriguez representation quantifies a rotation as an angle of rotation θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  (in radians) about some axis n (specified by a unit vector).  Given R, there are various ways to compute n  and θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ .  For example, one way would be find the eigenvalues and the real eigenvector.  The real eigenvector (suitably normalized) must correspond to n; the complex eigenvalues give e iθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaCaaaleqabaGaamyAaiabeI 7aXbaaaaa@349B@ .  A faster method is to note that

trace(R)=1+2cosθ2sinθn=dual(R R T ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gacaGGOaGaaCOuaiaacMcacqGH9aqpcaaIXaGaey4kaSIaaGOmaiGa cogacaGGVbGaai4CaiabeI7aXjaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaIYaGaci4CaiaacMgacaGGUbGaeqiUdeNa aCOBaiabg2da9iaabsgacaqG1bGaaeyyaiaabYgacaGGOaGaaCOuai abgkHiTiaahkfadaahaaWcbeqaaiaadsfaaaGccaGGPaaaaa@5A6C@

where ω=dual(W) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iaabsgacaqG1bGaae yyaiaabYgacaqGOaGaaC4vaiaabMcaaaa@3924@  denotes the dual vector of W.

 

2. Alternatively, given n and θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ , R can be computed from

R=cosθI+WW(1cosθ)+Wsinθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabg2da9iGacogacaGGVbGaai 4CaiabeI7aXjaahMeacqGHRaWkcaWHxbGaaC4vaiaacIcacaaIXaGa eyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdeNaaiykaiabgUcaRiaahE faciGGZbGaaiyAaiaac6gacqaH4oqCaaa@4898@

where W is the skew tensor that has n as its dual vector, i.e. W ij = ijk n k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqGHsislcqGHiiIZdaWgaaWcbaGaamyAaiaadQga caWGRbaabeaakiaad6gadaWgaaWcbaGaam4Aaaqabaaaaa@3C58@ .  In index notation, this formula is

R ij =cosθ δ ij + n i n j (1cosθ)sinθ ijk n k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqCcqaH0oazdaWg aaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaamOBamaaBaaaleaaca WGPbaabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccaGGOaGaaGym aiabgkHiTiGacogacaGGVbGaai4CaiabeI7aXjaacMcacqGHsislci GGZbGaaiyAaiaac6gacqaH4oqCcqGHiiIZdaWgaaWcbaGaamyAaiaa dQgacaWGRbaabeaakiaad6gadaWgaaWcbaGaam4Aaaqabaaaaa@55BD@

 

 

Another useful result is the Polar Decomposition Theorem, which states that invertible second order tensors can be expressed as a product of a symmetric tensor with an orthogonal tensor: 

A=RU=VRR R T =IU= U T V= V T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqaiabg2da9iaahkfacaWHvbGaey ypa0JaaCOvaiaahkfacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaahkfacaWHsbWaaWbaaSqabeaacaWGubaaaOGaeyypa0 JaaCysaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaCyvaiabg2da9iaahwfadaahaa WcbeqaaiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa hAfacqGH9aqpcaWHwbWaaWbaaSqabeaacaWGubaaaaaa@7F8F@

Moreover, the tensors R,U,V MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiaacYcacaWHvbGaaiilaiaahA faaaa@34D8@  are unique.  To see this, note that

 

1. A T A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaki aahgeaaaa@3384@  is symmetric and has positive eigenvalues (to see that it’s symmetric, simply take the transpose, and to see that the eigenvalues are positive, note that dx( A T A)dx>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahIhacqGHflY1caGGOaGaaC yqamaaCaaaleqabaGaamivaaaakiaahgeacaGGPaGaamizaiaahIha cqGH+aGpcaaIWaaaaa@3CBD@  for all vectors dx). 

2. Let  λ k 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aa0baaSqaaiaadUgaaeaaca aIYaaaaaaa@346D@  and m k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGRbaabeaaaa a@32F2@  be the three eigenvalues and eigenvectors of A T A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaki aahgeaaaa@3384@ .  Since the eigenvectors are orthogonal, we can write A T A= k=1 3 λ k 2 m k m k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaki aahgeacqGH9aqpdaaeWbqaaiabeU7aSnaaDaaaleaacaWGRbaabaGa aGOmaaaakiaah2gadaWgaaWcbaGaam4AaaqabaGccqGHxkcXcaWHTb WaaSbaaSqaaiaadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIXaaabaGa aG4maaqdcqGHris5aaaa@43FD@ . 

 

3. We can then set U= k=1 3 λ k m k m k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvaiabg2da9maaqahabaGaeq4UdW 2aaSbaaSqaaiaadUgaaeqaaOGaaCyBamaaBaaaleaacaWGRbaabeaa kiabgEPielaah2gadaWgaaWcbaGaam4AaaqabaaabaGaam4Aaiabg2 da9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@417A@  and define R=A U 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabg2da9iaahgeacaWHvbWaaW baaSqabeaacqGHsislcaaIXaaaaaaa@363E@ .  U is clearly symmetric, and also U 2 = A T A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvamaaCaaaleqabaGaaGOmaaaaki abg2da9iaahgeadaahaaWcbeqaaiaadsfaaaGccaWHbbaaaa@365B@ . To see that R is orthogonal note that

R T R= U T A T A U 1 = U T U 2 U 1 =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuamaaCaaaleqabaGaamivaaaaki aahkfacqGH9aqpcaWHvbWaaWbaaSqabeaacqGHsislcaWGubaaaOGa aCyqamaaCaaaleqabaGaamivaaaakiaahgeacaWHvbWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaeyypa0JaaCyvamaaCaaaleqabaGaeyOe I0IaamivaaaakiaahwfadaahaaWcbeqaaiaaikdaaaGccaWHvbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaaCysaaaa@472F@ .

 

 

4. Given that U and R exist we can write RU= RU R T R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiaahwfacqGH9aqpdaWadaqaai aahkfacaWHvbGaaCOuamaaCaaaleqabaGaamivaaaaaOGaay5waiaa w2faaiaahkfaaaa@3A10@  so if we define V=RU R T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaiabg2da9iaahkfacaWHvbGaaC OuamaaCaaaleqabaGaamivaaaaaaa@365F@  then A=VR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqaiabg2da9iaahAfacaWHsbaaaa@346A@ .   It is easy to show that V is symmetric.

 

5. To see that the decomposition is unique, suppose that A= R ^ U ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqaiabg2da9iqahkfagaqcaiqahw fagaqcaaaa@3489@  for some other tensors R ^ , U ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOuayaajaGaaiilaiqahwfagaqcaa aa@3369@ .  Then A T A= U ^ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaki aahgeacqGH9aqpceWHvbGbaKaadaahaaWcbeqaaiaaikdaaaaaaa@3661@ .  But A T A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaki aahgeaaaa@3384@  has a unique square root so U ^ =U MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyvayaajaGaeyypa0JaaCyvaaaa@33B2@ .  The uniqueness of R follows immediately.