Appendix C
Index Notation for Vector and Tensor Operations

 

 

Operations on Cartesian components of vectors and tensors may be expressed very efficiently and clearly using index notation.

 

 

C.1. Vector and tensor components.

 

Let x be a (three dimensional) vector and let S be a second order tensor.   Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis. Denote the components of x in this basis by x 1 , x 2 , x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa amiEamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@3995@ , and denote the components of S by

S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaqaabeqaaiaadofadaWgaaWcba GaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaGymaiaaioda aeqaaaGcbaGaam4uamaaBaaaleaacaaIYaGaaGymaaqabaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaGOmaiaa ikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam 4uamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGtbWaaSbaaSqa aiaaiodacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaam4uamaaBaaaleaacaaIZaGaaGOmaaqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaiodacaaIZa aabeaaaaGccaGLBbGaayzxaaaaaa@7C7A@

Using index notation, we would express x and S as

x x i S S ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabggMi6kaadIhadaWgaaWcba GaamyAaiaaykW7aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWHtbGaeyyyIORaam4uamaaBaaaleaacaWGPbGaamOAaaqa baaaaa@5275@

 

 

 

C.2. Conventions and special symbols for index notation

 

· Range Convention: Lower case Latin subscripts (i, j, k…) have the range 1,2,3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIXaGaaiilaiaaikdaca GGSaGaaG4maaGaayjkaiaawMcaaaaa@35FC@ .  The symbol x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F6@  denotes three components of a vector x 1 , x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki aacYcacaaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaaaaa@3878@  and x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C5@ .  The symbol S ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C0@  denotes nine components of a second order tensor, S 11 , S 12 , S 13 , S 21 S 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGymaa qabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWc baGaaGymaiaaikdaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaayk W7caWGtbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaacYcacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGaaGOmaiaaig daaeqaaOGaaGPaVlaaykW7cqWIMaYscaaMc8UaaGPaVlaadofadaWg aaWcbaGaaG4maiaaiodaaeqaaaaa@5ADE@

 

· Summation convention (Einstein convention): If an index is repeated in a product of vectors or tensors, summation is implied over the repeated index.  Thus

λ= a i b i λ= i=1 3 a i b i λ= a 1 b 1 + a 2 b 2 + a 3 b 3 c i = S ik x k c i = k=1 3 S ik x k c 1 = S 11 x 1 + S 12 x 2 + S 13 x 3 c 2 = S 21 x 1 + S 22 x 2 + S 23 x 3 c 3 = S 31 x 1 + S 32 x 2 + S 33 x 3 λ= S ij S ij λ= i=1 3 j=1 3 S ij S ij λ= S 11 S 11 + S 12 S 12 ++ S 31 S 31 + S 32 S 32 + S 33 S 33 C ij = A ik B kj C ij = k=1 3 A ik B kj C = A B C ij = A ki B kj C ij = k=1 3 A ki B kj C = A T B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBcqGH9aqpcaWGHbWaaS baaSqaaiaadMgaaeqaaOGaamOyamaaBaaaleaacaWGPbaabeaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey yyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4UdWMa eyypa0JaaGPaVpaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaaki aadkgadaWgaaWcbaGaamyAaaqabaGccaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabggMi6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaeq4UdWMaeyypa0JaamyyamaaBaaaleaacaaI XaaabeaakiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGHb WaaSbaaSqaaiaaikdaaeqaaOGaamOyamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWGIbWaaSbaaS qaaiaaiodaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaaG4maaqd cqGHris5aaGcbaGaam4yamaaBaaaleaacaWGPbaabeaakiabg2da9i aadofadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamiEamaaBaaaleaa caWGRbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyyyIO RaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaa dMgaaeqaaOGaeyypa0ZaaabCaeaacaWGtbWaaSbaaSqaaiaadMgaca WGRbaabeaakiaadIhadaWgaaWcbaGaam4AaaqabaaabaGaam4Aaiab g2da9iaaigdaaeaacaaIZaaaniabggHiLdGccqGHHjIUcaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVpaaceaaeaqabeaacaWGJbWaaSbaaSqa aiaaigdaaeqaaOGaeyypa0Jaam4uamaaBaaaleaacaaIXaGaaGymaa qabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4uamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaikdaae qaaOGaey4kaSIaam4uamaaBaaaleaacaaIXaGaaG4maaqabaGccaWG 4bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIYa aabeaakiabg2da9iaadofadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGa amiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadofadaWgaaWcba GaaGOmaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadofadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaamiEamaaBa aaleaacaaIZaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maaqabaGc cqGH9aqpcaWGtbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaadIhada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaioda caaIYaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca WGtbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaadIhadaWgaaWcbaGa aG4maaqabaaaaOGaay5EaaGaaGPaVdqaaiabeU7aSjabg2da9iaado fadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaaBaaaleaacaWG PbGaamOAaaqabaGccaaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH7oaBcqGH9aqpdaaeWbqa amaaqahabaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGtb WaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7caaMc8UaaGPaVlaa ykW7aSqaaiaadQgacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aa WcbaGaamyAaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaakeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVl aaykW7cqaH7oaBcqGH9aqpcaWGtbWaaSbaaSqaaiaaigdacaaIXaaa beaakiaadofadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaam 4uamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGtbWaaSbaaSqaaiaa igdacaaIYaaabeaakiabgUcaRiablAciljabgUcaRiaadofadaWgaa WcbaGaaG4maiaaigdaaeqaaOGaam4uamaaBaaaleaacaaIZaGaaGym aaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaiodacaaIYaaabeaaki aadofadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaey4kaSIaam4uamaa BaaaleaacaaIZaGaaG4maaqabaGccaWGtbWaaSbaaSqaaiaaiodaca aIZaaabeaaaOqaaiaadoeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyypa0JaamyqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWGcbWaaS baaSqaaiaadUgacaWGQbaabeaakiaaykW7caaMc8UaaGPaVlabggMi 6kaaykW7caaMc8UaaGPaVlaadoeadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyypa0ZaaabCaeaacaWGbbWaaSbaaSqaaiaadMgacaWGRbaa beaakiaadkeadaWgaaWcbaGaam4AaiaadQgaaeqaaaqaaiaadUgacq GH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGaaGPaVlaaykW7caaM c8UaaGPaVlabggMi6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aam WaaeaacaWGdbaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWGbbaa caGLBbGaayzxaaWaamWaaeaacaWGcbaacaGLBbGaayzxaaaabaGaam 4qamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWGbbWaaSba aSqaaiaadUgacaWGPbaabeaakiaadkeadaWgaaWcbaGaam4AaiaadQ gaaeqaaOGaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaM c8Uaam4qamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaaeWb qaaiaadgeadaWgaaWcbaGaam4AaiaadMgaaeqaaOGaamOqamaaBaaa leaacaWGRbGaamOAaaqabaaabaGaam4Aaiabg2da9iaaigdaaeaaca aIZaaaniabggHiLdGccaaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWadaqaaiaadoeaaiaawU facaGLDbaacqGH9aqpdaWadaqaaiaadgeaaiaawUfacaGLDbaadaah aaWcbeqaaiaadsfaaaGcdaWadaqaaiaadkeaaiaawUfacaGLDbaaaa aa@E10E@

 

In the last two equations, A MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGbbaacaGLBbGaayzxaa aaaa@3397@ , B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa aaaa@3398@  and C MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGdbaacaGLBbGaayzxaa aaaa@3399@  denote the 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIZaGaey41aqRaaG4maa GaayjkaiaawMcaaaaa@35F9@  component matrices of A, B and C.

 

· The Kronecker Delta:  The symbol δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@348D@  is known as the Kronecker delta, and has the properties

δ ij = 1i=j 0ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maaceaaeaqabeaacaaIXaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGPbGaeyypa0JaamOAaaqaaiaaicdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyAai abgcMi5kaadQgaaaGaay5Eaaaaaa@5F21@

thus

δ 11 = δ 22 = δ 33 =1 δ 12 = δ 21 = δ 13 = δ 31 = δ 23 = δ 32 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabes7aKnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaH0oazdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 JaaGymaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes7aKnaaBaaaleaaca aIXaGaaGOmaaqabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaaGOmaiaa igdaaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaaigdacaaIZaaabe aakiabg2da9iabes7aKnaaBaaaleaacaaIZaGaaGymaaqabaGccqGH 9aqpcqaH0oazdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaeq iTdq2aaSbaaSqaaiaaiodacaaIYaaabeaakiabg2da9iaaicdaaaa@6BF9@

You can also think of δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@348D@  as the components of the identity tensor, or a 3×3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIZaGaey41aqRaaG4maa GaayjkaiaawMcaaaaa@35F9@  identity matrix.  Observe the following useful results

δ ij = δ ji δ kk =3 a i = δ ik a k A ij = δ ik A kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH0oazdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadQgacaWGPbaa beaaaOqaaiabes7aKnaaBaaaleaacaWGRbGaam4AaaqabaGccqGH9a qpcaaIZaaabaGaamyyamaaBaaaleaacaWGPbaabeaakiabg2da9iab es7aKnaaBaaaleaacaWGPbGaam4AaaqabaGccaWGHbWaaSbaaSqaai aadUgaaeqaaaGcbaGaamyqamaaBaaaleaacaWGPbGaamOAaaqabaGc cqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamyqam aaBaaaleaacaWGRbGaamOAaaqabaaaaaa@521A@

 

· The Permutation Symbol: The symbol ijk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4Aaaqabaaaaa@355C@  has properties

ijk = 1i,j,k=1,2,3;2,3,1or3,1,2 1i,j,k=3,2,1;2,1,3or 1,3,2 0otherwise MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccqGH9aqpdaGabaabaeqabaGaaGymaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadM gacaGGSaGaamOAaiaacYcacaWGRbGaeyypa0JaaGymaiaacYcacaaI YaGaaiilaiaaiodacaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGOmaiaacYcacaaIZaGaaiilaiaaigdacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaab+gacaqGYbGaaGPaVlaaykW7caaMc8 UaaGPaVlaaiodacaGGSaGaaGymaiaacYcacaaIYaaabaGaeyOeI0Ia aGymaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyAaiaacYcaca WGQbGaaiilaiaadUgacqGH9aqpcaaMc8UaaG4maiaacYcacaaIYaGa aiilaiaaigdacaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGOmaiaacYcacaaIXaGaaiilaiaaiodacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caqGVbGaaeOCaiaabccacaaMc8UaaG PaVlaaykW7caqGXaGaaeilaiaabodacaqGSaGaaeOmaaqaaiaabcda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Bai aabshacaqGObGaaeyzaiaabkhacaqG3bGaaeyAaiaabohacaqGLbaa aiaawUhaaaaa@B90B@

thus

123 = 231 = 312 =1 321 = 213 = 132 =1 111 = 112 = 113 = 121 = 122 = 131 = 133 =0 211 = 212 = 221 = 222 = 223 = 232 = 233 =0 311 = 313 = 322 = 323 = 321 = 332 = 333 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHiiIZdaWgaaWcbaGaaGymai aaikdacaaIZaaabeaakiabg2da9iabgIGiopaaBaaaleaacaaIYaGa aG4maiaaigdaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaaiodaca aIXaGaaGOmaaqabaGccqGH9aqpcaaIXaaabaGaeyicI48aaSbaaSqa aiaaiodacaaIYaGaaGymaaqabaGccqGH9aqpcqGHiiIZdaWgaaWcba GaaGOmaiaaigdacaaIZaaabeaakiabg2da9iabgIGiopaaBaaaleaa caaIXaGaaG4maiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaqaai abgIGiopaaBaaaleaacaaIXaGaaGymaiaaigdaaeqaaOGaeyypa0Ja eyicI48aaSbaaSqaaiaaigdacaaIXaGaaGOmaaqabaGccqGH9aqpcq GHiiIZdaWgaaWcbaGaaGymaiaaigdacaaIZaaabeaakiabg2da9iab gIGiopaaBaaaleaacaaIXaGaaGOmaiaaigdaaeqaaOGaeyypa0Jaey icI48aaSbaaSqaaiaaigdacaaIYaGaaGOmaaqabaGccqGH9aqpcqGH iiIZdaWgaaWcbaGaaGymaiaaiodacaaIXaaabeaakiabg2da9iabgI GiopaaBaaaleaacaaIXaGaaG4maiaaiodaaeqaaOGaeyypa0JaaGim aaqaaiabgIGiopaaBaaaleaacaaIYaGaaGymaiaaigdaaeqaaOGaey ypa0JaeyicI48aaSbaaSqaaiaaikdacaaIXaGaaGOmaaqabaGccqGH 9aqpcqGHiiIZdaWgaaWcbaGaaGOmaiaaikdacaaIXaaabeaakiabg2 da9iabgIGiopaaBaaaleaacaaIYaGaaGOmaiaaikdaaeqaaOGaeyyp a0JaeyicI48aaSbaaSqaaiaaikdacaaIYaGaaG4maaqabaGccqGH9a qpcqGHiiIZdaWgaaWcbaGaaGOmaiaaiodacaaIYaaabeaakiabg2da 9iabgIGiopaaBaaaleaacaaIYaGaaG4maiaaiodaaeqaaOGaeyypa0 JaaGimaaqaaiabgIGiopaaBaaaleaacaaIZaGaaGymaiaaigdaaeqa aOGaeyypa0JaeyicI48aaSbaaSqaaiaaiodacaaIXaGaaG4maaqaba GccqGH9aqpcqGHiiIZdaWgaaWcbaGaaG4maiaaikdacaaIYaaabeaa kiabg2da9iabgIGiopaaBaaaleaacaaIZaGaaGOmaiaaiodaaeqaaO Gaeyypa0JaeyicI48aaSbaaSqaaiaaiodacaaIYaGaaGymaaqabaGc cqGH9aqpcqGHiiIZdaWgaaWcbaGaaG4maiaaiodacaaIYaaabeaaki abg2da9iabgIGiopaaBaaaleaacaaIZaGaaG4maiaaiodaaeqaaOGa eyypa0JaaGimaaaaaa@BB35@

Note that

ijk = kij = jki = jik = kji = kji kki =0 ijk imn = δ jm δ kn δ jn δ mk ijk lmn = δ il δ jm δ kn δ jn δ km δ im δ jl δ kn δ jn δ kl + δ in δ jl δ km δ jm δ kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHiiIZdaWgaaWcbaGaamyAai aadQgacaWGRbaabeaakiabg2da9iabgIGiopaaBaaaleaacaWGRbGa amyAaiaadQgaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaadQgaca WGRbGaamyAaaqabaGccqGH9aqpcqGHsislcqGHiiIZdaWgaaWcbaGa amOAaiaadMgacaWGRbaabeaakiabg2da9iabgkHiTiabgIGiopaaBa aaleaacaWGRbGaamOAaiaadMgaaeqaaOGaeyypa0JaeyOeI0Iaeyic I48aaSbaaSqaaiaadUgacaWGQbGaamyAaaqabaaakeaacqGHiiIZda WgaaWcbaGaam4AaiaadUgacaWGPbaabeaakiabg2da9iaaicdaaeaa cqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiabgIGiop aaBaaaleaacaWGPbGaamyBaiaad6gaaeqaaOGaeyypa0JaeqiTdq2a aSbaaSqaaiaadQgacaWGTbaabeaakiabes7aKnaaBaaaleaacaWGRb GaamOBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamOAaiaad6ga aeqaaOGaeqiTdq2aaSbaaSqaaiaad2gacaWGRbaabeaaaOqaaiabgI GiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaeyicI48aaSba aSqaaiaadYgacaWGTbGaamOBaaqabaGccqGH9aqpcqaH0oazdaWgaa WcbaGaamyAaiaadYgaaeqaaOWaaeWaaeaacqaH0oazdaWgaaWcbaGa amOAaiaad2gaaeqaaOGaeqiTdq2aaSbaaSqaaiaadUgacaWGUbaabe aakiabgkHiTiabes7aKnaaBaaaleaacaWGQbGaamOBaaqabaGccqaH 0oazdaWgaaWcbaGaam4Aaiaad2gaaeqaaaGccaGLOaGaayzkaaGaey OeI0IaeqiTdq2aaSbaaSqaaiaadMgacaWGTbaabeaakmaabmaabaGa eqiTdq2aaSbaaSqaaiaadQgacaWGSbaabeaakiabes7aKnaaBaaale aacaWGRbGaamOBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamOA aiaad6gaaeqaaOGaeqiTdq2aaSbaaSqaaiaadUgacaWGSbaabeaaaO GaayjkaiaawMcaaiabgUcaRiabes7aKnaaBaaaleaacaWGPbGaamOB aaqabaGcdaqadaqaaiabes7aKnaaBaaaleaacaWGQbGaamiBaaqaba GccqaH0oazdaWgaaWcbaGaam4Aaiaad2gaaeqaaOGaeyOeI0IaeqiT dq2aaSbaaSqaaiaadQgacaWGTbaabeaakiabes7aKnaaBaaaleaaca WGRbGaamiBaaqabaaakiaawIcacaGLPaaaaaaa@BF8F@

 

 

C.3. Rules of index notation

 

1. The same index (subscript) may not appear more than twice in a product of two (or more) vectors or tensors.  Thus

A ik x k , A ik B kj , A ij B ik C nk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbGaam4Aaa qabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGbbWaaSbaaSqaai aadMgacaWGRbaabeaakiaadkeadaWgaaWcbaGaam4AaiaadQgaaeqa aOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa amOqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWGdbWaaSbaaSqaai aad6gacaWGRbaabeaaaaa@5E2D@

are valid, but

A kk x k , A ik B kk , A ij B ik C ik MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGRbGaam4Aaa qabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGbbWaaSbaaSqaai aadMgacaWGRbaabeaakiaadkeadaWgaaWcbaGaam4AaiaadUgaaeqa aOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa amOqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWGdbWaaSbaaSqaai aadMgacaWGRbaabeaaaaa@5E2B@

are meaningless

 

2. Free indices on each term of an equation must agree.  Thus

x i = u i + c i x=u+c a i = A ki B kj x j + C ik u k a= A T Bx+Cu MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG4bWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaamyDamaaBaaaleaacaWGPbaabeaakiabgUcaRiaa dogadaWgaaWcbaGaamyAaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCiEaiabg2da9iaahw hacqGHRaWkcaWHJbaabaGaamyyamaaBaaaleaacaWGPbaabeaakiab g2da9iaadgeadaWgaaWcbaGaam4AaiaadMgaaeqaaOGaamOqamaaBa aaleaacaWGRbGaamOAaaqabaGccaWG4bWaaSbaaSqaaiaadQgaaeqa aOGaey4kaSIaam4qamaaBaaaleaacaWGPbGaam4AaaqabaGccaWG1b WaaSbaaSqaaiaadUgaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHHbGaeyypa0Ja aCyqamaaCaaaleqabaGaamivaaaakiaahkeacaaMc8UaaCiEaiabgU caRiaahoeacaWH1baaaaa@8EFC@

are valid, but

x i = A ij x j = A ik u k x i = A ik u k + c j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG4bWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaamyqamaaBaaaleaacaWGPbGaamOAaaqabaaakeaa caWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaamyqamaaBaaale aacaWGPbGaam4AaaqabaGccaWG1bWaaSbaaSqaaiaadUgaaeqaaaGc baGaamiEamaaBaaaleaacaWGPbaabeaakiabg2da9iaadgeadaWgaa WcbaGaamyAaiaadUgaaeqaaOGaamyDamaaBaaaleaacaWGRbaabeaa kiabgUcaRiaadogadaWgaaWcbaGaamOAaaqabaaaaaa@4A0F@

are meaningless.

 

3. Free and dummy indices may be changed without altering the meaning of an expression, provided that rules 1 and 2 are not violated. Thus

x i = A ik x k x j = A jk x k x j = A ji x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadgeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamiEamaa BaaaleaacaWGRbaabeaakiabgsDiBlaadIhadaWgaaWcbaGaamOAaa qabaGccqGH9aqpcaWGbbWaaSbaaSqaaiaadQgacaWGRbaabeaakiaa dIhadaWgaaWcbaGaam4AaaqabaGccqGHuhY2caWG4bWaaSbaaSqaai aadQgaaeqaaOGaeyypa0JaamyqamaaBaaaleaacaWGQbGaamyAaaqa baGccaWG4bWaaSbaaSqaaiaadMgaaeqaaaaa@4DF9@

 

 

 

C.4. Vector operations expressed using index notation

 

· Addition.   c=a+b c i = a i + b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9iaahggacqGHRaWkca WHIbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaam4yamaaBaaaleaacaWGPbaabeaakiabg2da9iaadggadaWg aaWcbaGaamyAaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadMgaae qaaaaa@5675@

 

· Dot Product  λ=abλ= a i b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaaCyyaiabgwSixl aahkgacaaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqaH7oaBcqGH9aqpcaWGHbWaaSbaaSqaai aadMgaaeqaaOGaamOyamaaBaaaleaacaWGPbaabeaaaaa@4E29@

 

· Vector Product c=a×b c i = ijk a j b k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaiabg2da9iaahggacqGHxdaTca WHIbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadogadaWgaaWcbaGaamyA aaqabaGccqGH9aqpcaaMc8UaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaamOyamaa BaaaleaacaWGRbaabeaaaaa@6309@

 

· Dyadic Product   S=ab S ij = a i b j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaahggacqGHxkcXca WHIbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyyp a0JaamyyamaaBaaaleaacaWGPbaabeaakiaadkgadaWgaaWcbaGaam OAaaqabaaaaa@5915@

 

· Change of Basis.  Let a be a vector. Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis, and denote the components of a in this basis by a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaa a@32DF@ .  Let m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  be a second basis, and denote the components of a in this basis by α i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgaaeqaaa aa@3398@ .  Then, define

Q ij = m i e j =cosθ( m i , e j ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTa aCyzamaaBaaaleaacaWGQbaabeaakiabg2da9iGacogacaGGVbGaai 4CaiabeI7aXjaacIcacaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaaiil aiaahwgadaWgaaWcbaGaamOAaaqabaGccaGGPaaaaa@470A@

where θ( m i , e j ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaaiikaiaah2gadaWgaaWcba GaamyAaaqabaGccaGGSaGaaCyzamaaBaaaleaacaWGQbaabeaakiaa cMcaaaa@38CB@  denotes the angle between the unit vectors m i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaaa a@32EF@   and e j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGQbaabeaaaa a@32E8@ .  Then

α i = Q ij a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamyuamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGHbWa aSbaaSqaaiaadQgaaeqaaaaa@3992@

 

 

 

C.5. Tensor operations expressed using index notation

 

· Addition.   C=A+B C ij = A ij + B ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9iaahgeacqGHRaWkca WHcbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaam4qamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWG bbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiaadkeadaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@5882@

 

· Transpose  A= B T A ij = B ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqaiabg2da9iaahkeadaahaaWcbe qaaiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabggMi6kaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGbbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiabg2da9iaadkeadaWgaaWcbaGaamOAaiaadM gaaeqaaaaa@58C8@

 

· Scalar Products

 

λ=A:Bλ= A ij B ij λ=ABλ= A ji B ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBcqGH9aqpcaWHbbGaai OoaiaahkeacaaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabeU7aSjabg2da9iaadgeadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaaa keaacqaH7oaBcqGH9aqpcaWHbbGaeyyXICTaeyyXICTaaGPaVlaahk eacaaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaeq4UdWMaeyypa0Ja amyqamaaBaaaleaacaWGQbGaamyAaaqabaGccaWGcbWaaSbaaSqaai aadMgacaWGQbaabeaaaaaa@6747@

 

· Product of a tensor and a vector

c=Ab c i = A ij b j c= A T b c i = A ji b j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHJbGaeyypa0JaaCyqaiaahk gacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHHjIUcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaam4yamaaBaaaleaacaWGPbaabeaakiabg2da9iaadgea daWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOyamaaBaaaleaacaWGQb aabeaaaOqaaiaahogacqGH9aqpcaWHbbWaaWbaaSqabeaacaWGubaa aOGaaCOyaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHHjIUcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG JbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamyqamaaBaaaleaaca WGQbGaamyAaaqabaGccaWGIbWaaSbaaSqaaiaadQgaaeqaaaaaaa@7979@

 

· Product of two tensors

C=AB C ij = A ik B kj C= A T B C ij = A ki B kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHdbGaeyypa0JaaCyqaiaahk eacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaam4qamaaBaaaleaacaWGPbGa amOAaaqabaGccqGH9aqpcaWGbbWaaSbaaSqaaiaadMgacaWGRbaabe aakiaadkeadaWgaaWcbaGaam4AaiaadQgaaeqaaaGcbaGaaC4qaiab g2da9iaahgeadaahaaWcbeqaaiaadsfaaaGccaWHcbGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyyy IORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaado eadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamyqamaaBaaa leaacaWGRbGaamyAaaqabaGccaWGcbWaaSbaaSqaaiaadUgacaWGQb aabeaaaaaa@857B@

· Determinant

λ=detAλ= 1 6 ijk lmn A li A mj A nk lmn λ= ijk A li A mj A nk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBcqGH9aqpciGGKbGaai yzaiaacshacaWHbbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqaH7oaBcqGH9aqpcaaMc8UaaGPaVpaalaaabaGaaGym aaqaaiaaiAdaaaGaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4Aaa qabaGccqGHiiIZdaWgaaWcbaGaamiBaiaad2gacaWGUbaabeaakiaa dgeadaWgaaWcbaGaamiBaiaadMgaaeqaaOGaamyqamaaBaaaleaaca WGTbGaamOAaaqabaGccaWGbbWaaSbaaSqaaiaad6gacaWGRbaabeaa kiaaykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8Uaeyi1HSTaaGPaVlaaykW7caaMc8UaeyicI48aaSbaaSqaaiaadY gacaWGTbGaamOBaaqabaGccqaH7oaBcaaMc8UaaGPaVlabg2da9iaa ykW7caaMc8UaaGPaVlabgIGiopaaBaaaleaacaWGPbGaamOAaiaadU gaaeqaaOGaamyqamaaBaaaleaacaWGSbGaamyAaaqabaGccaWGbbWa aSbaaSqaaiaad2gacaWGQbaabeaakiaadgeadaWgaaWcbaGaamOBai aadUgaaeqaaaaaaa@BC13@

 

· Change of Basis.  Let A be a second order tensor. Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis, and denote the components of A in this basis by A ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33AE@ .  Let m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A28@  be a second basis, and denote the components of A in this basis by Λ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4MdW0aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@345D@ .  Then, define

Q ij = m i e j =cosθ( m i , e j ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTa aCyzamaaBaaaleaacaWGQbaabeaakiabg2da9iGacogacaGGVbGaai 4CaiabeI7aXjaacIcacaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaaiil aiaahwgadaWgaaWcbaGaamOAaaqabaGccaGGPaaaaa@470A@

where θ( m i , e j ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaaiikaiaah2gadaWgaaWcba GaamyAaaqabaGccaGGSaGaaCyzamaaBaaaleaacaWGQbaabeaakiaa cMcaaaa@38CB@  denotes the angle between the unit vectors m i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaaa a@32EF@   and e j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGQbaabeaaaa a@32E8@ .  Then

Λ ij = Q ik A km Q jm MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaMaeu4MdWKcdaWgaaqcbawaaiaadM gacaWGQbaabeaajaaycqGH9aqpcaWGrbGcdaWgaaqcbawaaiaadMga caWGRbaabeaajaaycaWGbbGcdaWgaaqcbawaaiaadUgacaWGTbaabe aajaaycaWGrbGcdaWgaaqcbawaaiaadQgacaWGTbaabeaaaaa@4142@

 

 

 

C.6. Calculus using index notation

 

The derivative x i / x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa @3898@  can be deduced by noting that x i / x j =1i=j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGa eyypa0JaaGymaiaaykW7caaMc8UaaGPaVlaaykW7caWGPbGaeyypa0 JaamOAaaaa@4372@  and  x i / x j =0ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGa eyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caWGPbGaeyiyIK RaamOAaaaa@4432@ .  Therefore

                                                                  x i x j = δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG4bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaa aa@3CB2@

The same argument can be used for higher order tensors

                                                               A ij A kl = δ ik δ jl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGbbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadgeadaWgaaWcbaGa am4AaiaadYgaaeqaaaaakiabg2da9iabes7aKnaaBaaaleaacaWGPb Gaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaadYgaaeqaaaaa @41E1@

 

 

 

C.7. Examples of algebraic manipulations using index notation

 

 

1. Let a, b, c, d be vectors.  Prove that

a×b c×d = ac bd bc ad MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHHbGaey41aqRaaCOyaa GaayjkaiaawMcaaiabgwSixpaabmaabaGaaC4yaiabgEna0kaahsga aiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaahggacqGHflY1caWHJb aacaGLOaGaayzkaaWaaeWaaeaacaWHIbGaeyyXICTaaCizaaGaayjk aiaawMcaaiabgkHiTmaabmaabaGaaCOyaiabgwSixlaahogaaiaawI cacaGLPaaadaqadaqaaiaahggacqGHflY1caWHKbaacaGLOaGaayzk aaaaaa@56B2@

 

Express the left hand side of the equation using index notation (check the rules for cross products and dot products of vectors to see how this is done)

a×b c×d ijk a j b k imn c m d n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHHbGaey41aqRaaCOyaa GaayjkaiaawMcaaiabgwSixpaabmaabaGaaC4yaiabgEna0kaahsga aiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaG PaVlaaykW7caaMc8UaaGPaVlabgIGiopaaBaaaleaacaWGPbGaamOA aiaadUgaaeqaaOGaamyyamaaBaaaleaacaWGQbaabeaakiaadkgada WgaaWcbaGaam4AaaqabaGccqGHiiIZdaWgaaWcbaGaamyAaiaad2ga caWGUbaabeaakiaadogadaWgaaWcbaGaamyBaaqabaGccaWGKbWaaS baaSqaaiaad6gaaeqaaaaa@5D7C@

Recall the identity

ijk imn = δ jm δ kn δ jn δ mk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccqGHiiIZdaWgaaWcbaGaamyAaiaad2gacaWGUbaa beaakiabg2da9iabes7aKnaaBaaaleaacaWGQbGaamyBaaqabaGccq aH0oazdaWgaaWcbaGaam4Aaiaad6gaaeqaaOGaeyOeI0IaeqiTdq2a aSbaaSqaaiaadQgacaWGUbaabeaakiabes7aKnaaBaaaleaacaWGTb Gaam4Aaaqabaaaaa@4AD0@

so

ijk a j b k imn c m d n = δ jm δ kn δ jn δ mk a j b k c m d n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7cqGHiiIZdaWgaaWcba GaamyAaiaadQgacaWGRbaabeaakiaadggadaWgaaWcbaGaamOAaaqa baGccaWGIbWaaSbaaSqaaiaadUgaaeqaaOGaeyicI48aaSbaaSqaai aadMgacaWGTbGaamOBaaqabaGccaWGJbWaaSbaaSqaaiaad2gaaeqa aOGaamizamaaBaaaleaacaWGUbaabeaakiabg2da9maabmaabaGaeq iTdq2aaSbaaSqaaiaadQgacaWGTbaabeaakiabes7aKnaaBaaaleaa caWGRbGaamOBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGaamOAai aad6gaaeqaaOGaeqiTdq2aaSbaaSqaaiaad2gacaWGRbaabeaaaOGa ayjkaiaawMcaaiaadggadaWgaaWcbaGaamOAaaqabaGccaWGIbWaaS baaSqaaiaadUgaaeqaaOGaam4yamaaBaaaleaacaWGTbaabeaakiaa dsgadaWgaaWcbaGaamOBaaqabaaaaa@5FE3@

Multiply out, and note that

δ jm a j = a m δ kn b k = b n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaadQgacaWGTb aabeaakiaadggadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWGHbWa aSbaaSqaaiaad2gaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqiT dq2aaSbaaSqaaiaadUgacaWGUbaabeaakiaadkgadaWgaaWcbaGaam 4AaaqabaGccqGH9aqpcaWGIbWaaSbaaSqaaiaad6gaaeqaaaaa@5515@

(multiplying by a Kronecker delta has the effect of switching indices…) so

δ jm δ kn δ jn δ mk a j b k c m d n = a m b n c m d n a n b m c m d n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7caaMc8+aaeWaaeaacq aH0oazdaWgaaWcbaGaamOAaiaad2gaaeqaaOGaeqiTdq2aaSbaaSqa aiaadUgacaWGUbaabeaakiabgkHiTiabes7aKnaaBaaaleaacaWGQb GaamOBaaqabaGccqaH0oazdaWgaaWcbaGaamyBaiaadUgaaeqaaaGc caGLOaGaayzkaaGaamyyamaaBaaaleaacaWGQbaabeaakiaadkgada WgaaWcbaGaam4AaaqabaGccaWGJbWaaSbaaSqaaiaad2gaaeqaaOGa amizamaaBaaaleaacaWGUbaabeaakiabg2da9iaadggadaWgaaWcba GaamyBaaqabaGccaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaam4yamaa BaaaleaacaWGTbaabeaakiaadsgadaWgaaWcbaGaamOBaaqabaGccq GHsislcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamOyamaaBaaaleaa caWGTbaabeaakiaadogadaWgaaWcbaGaamyBaaqabaGccaWGKbWaaS baaSqaaiaad6gaaeqaaaaa@618D@

Finally, note that

a m c m ac MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGTbaabeaaki aadogadaWgaaWcbaGaamyBaaqabaGccaaMc8UaaGPaVlaaykW7caaM c8UaeyyyIORaaCyyaiabgwSixlaahogaaaa@4112@

and similarly for other products with the same index, so that

a m b n c m d n a n b m c m d n = a m c m b n d n b m c m a n d n ac bd bc ad MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGTbaabeaaki aadkgadaWgaaWcbaGaamOBaaqabaGccaWGJbWaaSbaaSqaaiaad2ga aeqaaOGaamizamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadggada WgaaWcbaGaamOBaaqabaGccaWGIbWaaSbaaSqaaiaad2gaaeqaaOGa am4yamaaBaaaleaacaWGTbaabeaakiaadsgadaWgaaWcbaGaamOBaa qabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaam4yamaa BaaaleaacaWGTbaabeaakiaadkgadaWgaaWcbaGaamOBaaqabaGcca WGKbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamOyamaaBaaaleaa caWGTbaabeaakiaadogadaWgaaWcbaGaamyBaaqabaGccaWGHbWaaS baaSqaaiaad6gaaeqaaOGaamizamaaBaaaleaacaWGUbaabeaakiab ggMi6oaabmaabaGaaCyyaiabgwSixlaahogaaiaawIcacaGLPaaada qadaqaaiaahkgacqGHflY1caWHKbaacaGLOaGaayzkaaGaeyOeI0Ya aeWaaeaacaWHIbGaeyyXICTaaC4yaaGaayjkaiaawMcaamaabmaaba GaaCyyaiabgwSixlaahsgaaiaawIcacaGLPaaaaaa@6E1D@

 

 

2. The stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relation for linear elasticity may be expressed as

σ ij = E 1+ν ε ij + ν 12ν ε kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbaacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@4D68@

where σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  and ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@348F@  are the components of the stress and strain tensor, and E MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31A9@  and ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3297@  denote Young’s modulus and Poisson’s ratio.  Find an expression for strain in terms of stress.

 

Set i=j to see that

σ ii = E 1+ν ε ii + ν 12ν ε kk δ ii MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGPb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadMgaaeqaaO Gaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbaacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMgacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@4D65@

Recall that δ ii =3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaWGPb aabeaakiabg2da9iaaiodaaaa@3659@ , and notice that we can replace the remaining ii by kk

σ kk = E 1+ν ε kk + ν 12ν 3 ε kk = E 12ν ε kk ε kk = 12ν E σ kk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaam4Aai aadUgaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGymaiabgUca Riabe27aUbaadaqadaqaaiabew7aLnaaBaaaleaacaWGRbGaam4Aaa qabaGccqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigdacqGHsislcaaI YaGaeqyVd4gaaiaaiodacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaae qaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGym aiabgkHiTiaaikdacqaH9oGBaaGaeqyTdu2aaSbaaSqaaiaadUgaca WGRbaabeaaaOqaaiabgsDiBlaaykW7caaMc8UaaGPaVlabew7aLnaa BaaaleaacaWGRbGaam4AaaqabaGccqGH9aqpdaWcaaqaaiaaigdacq GHsislcaaIYaGaeqyVd4gabaGaamyraaaacqaHdpWCdaWgaaWcbaGa am4AaiaadUgaaeqaaaaaaa@68B8@

Now, substitute for ε kk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadUgacaWGRb aabeaaaaa@3492@  in the given stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relation

σ ij = E 1+ν ε ij + ν E σ kk δ ij ε ij = 1+ν E σ ij ν 1+ν σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGymaiabgUca Riabe27aUbaadaqadaqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGHRaWkdaWcaaqaaiabe27aUbqaaiaadweaaaGaeq4Wdm3a aSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPb GaamOAaaqabaaakiaawIcacaGLPaaaaeaacqGHuhY2cqaH1oqzdaWg aaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaey 4kaSIaeqyVd4gabaGaamyraaaadaqadaqaaiabeo8aZnaaBaaaleaa caWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiabe27aUbqaaiaaig dacqGHRaWkcqaH9oGBaaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaa beaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcaca GLPaaaaaaa@687E@

 

 

3. Solve the equation

 

μ δ kj a i a i + 1 12ν a k a j U k = P j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaiWaaeaacqaH0oazdaWgaa WcbaGaam4AaiaadQgaaeqaaOGaamyyamaaBaaaleaacaWGPbaabeaa kiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaig daaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacaWGHbWaaSbaaSqa aiaadUgaaeqaaOGaamyyamaaBaaaleaacaWGQbaabeaaaOGaay5Eai aaw2haaiaadwfadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWGqbWa aSbaaSqaaiaadQgaaeqaaaaa@4B6A@

for U k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGRbaabeaaaa a@32D5@  in terms of P i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaaa a@32CE@  and a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaa a@32DF@

 

Multiply both sides by a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGQbaabeaaaa a@32E0@  to see that

μ a j δ kj a i a i + 1 12ν a k a j a j U k = P j a j μ a k a i a i + 1 12ν a k a j a j U k = P j a j μ U k a k 2 1ν 12ν a i a i = P j a j U k a k = (12ν) P j a j 2μ 1ν a i a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH8oqBdaGadaqaaiaadggada WgaaWcbaGaamOAaaqabaGccqaH0oazdaWgaaWcbaGaam4AaiaadQga aeqaaOGaamyyamaaBaaaleaacaWGPbaabeaakiaadggadaWgaaWcba GaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaGaeyOe I0IaaGOmaiabe27aUbaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaam yyamaaBaaaleaacaWGQbaabeaakiaadggadaWgaaWcbaGaamOAaaqa baaakiaawUhacaGL9baacaWGvbWaaSbaaSqaaiaadUgaaeqaaOGaey ypa0JaamiuamaaBaaaleaacaWGQbaabeaakiaadggadaWgaaWcbaGa amOAaaqabaaakeaacqGHuhY2caaMc8UaaGPaVlabeY7aTnaacmaaba GaamyyamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaamyA aaqabaGccaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaae aacaaIXaaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaaGaamyyamaa BaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaamOAaaqabaGcca WGHbWaaSbaaSqaaiaadQgaaeqaaaGccaGL7bGaayzFaaGaamyvamaa BaaaleaacaWGRbaabeaakiabg2da9iaadcfadaWgaaWcbaGaamOAaa qabaGccaWGHbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyi1HSTaeqiV d0MaamyvamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaam 4AaaqabaGcdaWcaaqaaiaaikdadaqadaqaaiaaigdacqGHsislcqaH 9oGBaiaawIcacaGLPaaaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUb aacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaamyyamaaBaaaleaacaWG Pbaabeaakiabg2da9iaadcfadaWgaaWcbaGaamOAaaqabaGccaWGHb WaaSbaaSqaaiaadQgaaeqaaOGaaGPaVlaaykW7caaMc8Uaeyi1HSTa amyvamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaam4Aaa qabaGccqGH9aqpdaWcaaqaaiaacIcacaaIXaGaeyOeI0IaaGOmaiab e27aUjaacMcacaWGqbWaaSbaaSqaaiaadQgaaeqaaOGaamyyamaaBa aaleaacaWGQbaabeaaaOqaaiaaikdacqaH8oqBdaqadaqaaiaaigda cqGHsislcqaH9oGBaiaawIcacaGLPaaacaWGHbWaaSbaaSqaaiaadM gaaeqaaOGaamyyamaaBaaaleaacaWGPbaabeaaaaaaaaa@B018@

Substitute back into the equation given for U k a k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGRbaabeaaki aadggadaWgaaWcbaGaam4Aaaqabaaaaa@34E1@  to see that

μ U j a i a i + P k a k 2(1ν) a i a i a j = P j U j = 1 μ a i a i P j P k a k 2(1ν) a n a n a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0MaamyvamaaBaaaleaacaWGQb aabeaakiaadggadaWgaaWcbaGaamyAaaqabaGccaWGHbWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaWGqbWaaSbaaSqaaiaadU gaaeqaaOGaamyyamaaBaaaleaacaWGRbaabeaaaOqaaiaaikdacaGG OaGaaGymaiabgkHiTiabe27aUjaacMcacaWGHbWaaSbaaSqaaiaadM gaaeqaaOGaamyyamaaBaaaleaacaWGPbaabeaaaaGccaWGHbWaaSba aSqaaiaadQgaaeqaaOGaeyypa0JaamiuamaaBaaaleaacaWGQbaabe aakiaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3caWGvbWaaSbaaSqa aiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaeqiVd0Maam yyamaaBaaaleaacaWGPbaabeaakiaadggadaWgaaWcbaGaamyAaaqa baaaaOWaaeWaaeaacaWGqbWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0 YaaSaaaeaacaWGqbWaaSbaaSqaaiaadUgaaeqaaOGaamyyamaaBaaa leaacaWGRbaabeaaaOqaaiaaikdacaGGOaGaaGymaiabgkHiTiabe2 7aUjaacMcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamyyamaaBaaa leaacaWGUbaabeaaaaGccaWGHbWaaSbaaSqaaiaadQgaaeqaaaGcca GLOaGaayzkaaaaaa@727D@

 

 

4. Let r= x k x k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaBaaaleaacaWGRbaabeaakiaadIhadaWgaaWcbaGaam4Aaaqabaaa beaaaaa@3729@ .  Calculate r x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGYbaabaGaey OaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaaaaa@36CA@

 

We can just apply the usual chain and product rules of differentiation

r x i = 1 2 x k x k x k x k x i + x k x i x k = 1 x k x k x k δ ik = x i x k x k = x i r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGYbaabaGaey OaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccqGH9aqpdaWcaaqa aiaaigdaaeaacaaIYaWaaOaaaeaacaWG4bWaaSbaaSqaaiaadUgaae qaaOGaamiEamaaBaaaleaacaWGRbaabeaaaeqaaaaakmaabmaabaGa amiEamaaBaaaleaacaWGRbaabeaakmaalaaabaGaeyOaIyRaamiEam aaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWG4bWaaSbaaS qaaiaadUgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaa beaaaaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaa Gaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaaaeqaaaaaki aadIhadaWgaaWcbaGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyA aiaadUgaaeqaaOGaeyypa0ZaaSaaaeaacaWG4bWaaSbaaSqaaiaadM gaaeqaaaGcbaWaaOaaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGa amiEamaaBaaaleaacaWGRbaabeaaaeqaaaaakiabg2da9maalaaaba GaamiEamaaBaaaleaacaWGPbaabeaaaOqaaiaadkhaaaaaaa@6A66@

 

 

5. Let λ= A ij A ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaamyqamaaBaaale aacaWGPbGaamOAaaqabaGccaWGbbWaaSbaaSqaaiaadMgacaWGQbaa beaaaaa@3942@ .  Calculate λ/ A kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4UdWMaai4laiabgkGi2k aadgeadaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@38E6@

 

Using the product rule

λ A kl = A ij δ ik δ jl + δ ik δ jl A ij =2 A kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaH7oaBaeaacq GHciITcaWGbbWaaSbaaSqaaiaadUgacaWGSbaabeaaaaGccqGH9aqp caWGbbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabes7aKnaaBaaale aacaWGPbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaadYga aeqaaOGaey4kaSIaeqiTdq2aaSbaaSqaaiaadMgacaWGRbaabeaaki abes7aKnaaBaaaleaacaWGQbGaamiBaaqabaGccaWGbbWaaSbaaSqa aiaadMgacaWGQbaabeaakiabg2da9iaaikdacaWGbbWaaSbaaSqaai aadUgacaWGSbaabeaaaaa@5364@