Appendix D

Vectors and Tensor Operations in Polar Coordinates

 

 

Many simple boundary value problems in solid mechanics (such as those that tend to appear in homework assignments or examinations!) are most conveniently solved using spherical or cylindrical-polar coordinate systems.  This appendix reviews the main ideas and procedures associated with polar coordinate systems.  A more sophisticated discussion of general non-orthogonal coordinate systems is given in Chapter 10.

 

The main drawback of using a polar coordinate system is that there is no convenient way to express the various vector and tensor operations using index notation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  everything has to be written out in long-hand.  In this appendix, therefore, we completely abandon index notation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  vector and tensor components are always expressed as matrices.

 

 

 

D.1: Spherical-polar coordinates

 

D.1.1 Specifying points in spherical-polar coordinates

 

 

To specify points in space using spherical-polar coordinates, we first choose two convenient, mutually perpendicular reference directions (i and k in the figure). For example, to specify position on the Earth’s surface, we might choose k to point from the center of the earth towards the North Pole, and choose i to point from the center of the earth towards the intersection of the equator (which has zero degrees latitude) and the Greenwich Meridian (which has zero degrees longitude, by definition).

 

Then, each point P in space is identified by three numbers, R,θ,ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiaacYcacqaH4oqCcaGGSaGaeq y1dyMaaGPaVdaa@381F@  shown in the figure.  These are not components of a vector.

 

In words:

 

· R is the distance of P from the origin

 

· θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3295@  is the angle between the k direction and OP

 

· ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  is the angle between the i direction and the projection of OP onto a plane through O normal to k

 

By convention, we choose  R0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiabgwMiZkaaicdaaaa@3436@ ,  0θ 180 o MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkabeI7aXjabgsMiJk aaigdacaaI4aGaaGimamaaCaaaleqabaGaam4Baaaaaaa@3A11@  and 0ϕ 360 o MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkabew9aMjabgsMiJk aaiodacaaI2aGaaGimamaaCaaaleqabaGaam4Baaaaaaa@3A23@

 

 

 

D.1.2 Converting between Cartesian and Spherical-Polar representations of points

 

When we use a Cartesian basis, we identify points in space by specifying the components of their position vector relative to the origin (x,y,z), such that r=xi+yj+zk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhacaWHPbGaey 4kaSIaamyEaiaahQgacqGHRaWkcaWG6bGaaC4Aaaaa@3A78@   When we use a spherical-polar coordinate system, we locate points by specifying their spherical-polar coordinates R,θ,ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiaacYcacqaH4oqCcaGGSaGaeq y1dygaaa@3694@

 

The formulas below relate the two representations.  They are derived using basic trigonometry

x=Rsinθcosϕy=Rsinθsinϕz=Rcosθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEaiabg2da9iaadkfaciGGZbGaai yAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaamyEaiabg2da9iaadkfaciGGZbGaaiyAaiaac6gacqaH4oqC ciGGZbGaaiyAaiaac6gacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOEaiabg2da 9iaadkfaciGGJbGaai4BaiaacohacqaH4oqCaaa@6F2C@          

R= x 2 + y 2 + z 2 θ= cos 1 z/Rϕ= tan 1 y/x MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiabg2da9maakaaabaGaamiEam aaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWG6bWaaWbaaSqabeaacaaIYaaaaaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqaH4oqCcqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaai abgkHiTiaaigdaaaGccaWG6bGaai4laiaadkfacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq y1dyMaeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaamyEaiaac+cacaWG4baaaa@6BD7@

 

 

 

D.1.3 Spherical-Polar representation of vectors

 

When we work with vectors in spherical-polar coordinates, we abandon the {i,j,k} basis.  Instead, we specify vectors as components in the { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@  basis shown in the figure. For example, an arbitrary vector a is written as a= a R e R + a θ e θ + a ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadggadaWgaaWcba GaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIa amyyamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamyyamaaBaaaleaacqaHvpGzaeqaaOGaaCyz amaaBaaaleaacqaHvpGzaeqaaOGaaGPaVdaa@4588@ , where ( a R , a θ , a ϕ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOuaa qabaGccaGGSaGaamyyamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa dggadaWgaaWcbaGaeqy1dygabeaakiaacMcaaaa@3B42@  denote the components of a.

 

The basis is different for each point P.  In words

 

· e R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaaa a@32D0@  points along OP

 

· e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaa aa@33AF@  is tangent to a line of constant longitude through P

 

· e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaa aa@33C1@  is tangent to a line of constant latitude through P.

 

For example if polar-coordinates are used to specify points on the Earth’s surface,  you can visualize the basis vectors like this.  Suppose you stand at a point P on the Earths surface.  Relative to you: e R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaaa a@32D0@  points vertically upwards; e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaa aa@33AF@  points due South; and e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaa aa@33C1@  points due East. Notice that the basis vectors depend on where you are standing.

 

You can also visualize the directions as follows.  To see the direction of e R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaaa a@32D0@ , keep θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3295@  and ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  fixed, and increase R. P is moving parallel to e R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaaa a@32D0@ .  To see the direction of e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaa aa@33AF@ , keep R and ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  fixed, and increase θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3295@ . P now moves parallel to  e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaa aa@33AF@ .  To see the direction of e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaa aa@33C1@ , keep R and θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3295@  fixed, and increase ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@ .  P now moves parallel to e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaa aa@33C1@ .  Mathematically, this concept can be expressed as follows.  Let r be the position vector of P.  Then

e R = 1 r R r R e θ = 1 r θ r θ e ϕ = 1 r ϕ r ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaki abg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciIT caWHYbaabaGaeyOaIyRaamOuaaaaaiaawEa7caGLiWoaaaWaaSaaae aacqGHciITcaWHYbaabaGaeyOaIyRaamOuaaaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH LbWaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaae aadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7a XbaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaey OaIyRaeqiUdehaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaeqy1dyga beaakiabg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacq GHciITcaWHYbaabaGaeyOaIyRaeqy1dygaaaGaay5bSlaawIa7aaaa daWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcqaHvpGzaaaaaa@9EB9@

By definition, the `natural basis’ for a coordinate system is the derivative of the position vector with respect to the three scalar coordinates that are used to characterize position in space (see Chapter 10 for a more detailed discussion).  The basis vectors for a polar coordinate system are parallel to the natural basis vectors, but are normalized to have unit length.  In addition, the natural basis for a polar coordinate system happens to be orthogonal. Consequently, { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@  is an orthonormal basis (basis vectors have unit length, are mutually perpendicular and form a right handed triad)

 

 

 

D.1.4 Converting vectors between Cartesian and Spherical-Polar bases

 

Let a= a R e R + a θ e θ + a ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadggadaWgaaWcba GaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIa amyyamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamyyamaaBaaaleaacqaHvpGzaeqaaOGaaCyz amaaBaaaleaacqaHvpGzaeqaaOGaaGPaVdaa@4588@  be a vector, with components ( a R , a θ , a ϕ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOuaa qabaGccaGGSaGaamyyamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa dggadaWgaaWcbaGaeqy1dygabeaakiaacMcaaaa@3B42@  in the spherical-polar basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@ .  Let a x , a y , a z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWG4baabeaaki aacYcacaWGHbWaaSbaaSqaaiaadMhaaeqaaOGaaiilaiaadggadaWg aaWcbaGaamOEaaqabaaaaa@3883@  denote the components of a in the basis {i,j,k}.

 

The two sets of components are related by

a x a y a z = sinθcosϕ cosθcosϕ sinϕ sinθsinϕ cosθsinϕ cosϕ cosθ sinθ 0 a R a θ a ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyam aaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqa baaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaaw2 faaiabg2da9maadmaabaqbaeqabmWaaaqaaiGacohacaGGPbGaaiOB aiabeI7aXjGacogacaGGVbGaai4Caiabew9aMbqaaiGacogacaGGVb Gaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMbqaaiabgkHi TiGacohacaGGPbGaaiOBaiabew9aMbqaaiGacohacaGGPbGaaiOBai abeI7aXjGacohacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGa ai4CaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMbqaaiGacogaca GGVbGaai4Caiabew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXbqa aiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaaicdaaaaaca GLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaa caWGsbaabeaaaOqaaiaadggadaWgaaWcbaGaeqiUdehabeaaaOqaai aadggadaWgaaWcbaGaeqy1dygabeaaaaaakiaawUfacaGLDbaacaaM c8oaaa@80FC@

while the inverse relationship is

a R a θ a ϕ = sinθcosϕ sinθsinϕ cosθ cosθcosϕ cosθsinϕ sinθ sinϕ cosϕ 0 a x a y a z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyam aaBaaaleaacaWGsbaabeaaaOqaaiaadggadaWgaaWcbaGaeqiUdeha beaaaOqaaiaadggadaWgaaWcbaGaeqy1dygabeaaaaaakiaawUfaca GLDbaacqGH9aqpdaWadaqaauaabeqadmaaaeaaciGGZbGaaiyAaiaa c6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzaeaaciGGZbGaai yAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzaeaaciGG JbGaai4BaiaacohacqaH4oqCaeaaciGGJbGaai4BaiaacohacqaH4o qCciGGJbGaai4BaiaacohacqaHvpGzaeaaciGGJbGaai4Baiaacoha cqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzaeaacqGHsislciGGZb GaaiyAaiaac6gacqaH4oqCaeaacqGHsislciGGZbGaaiyAaiaac6ga cqaHvpGzaeaaciGGJbGaai4BaiaacohacqaHvpGzaeaacaaIWaaaaa Gaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiaadggadaWgaaWc baGaamiEaaqabaaakeaacaWGHbWaaSbaaSqaaiaadMhaaeqaaaGcba GaamyyamaaBaaaleaacaWG6baabeaaaaaakiaawUfacaGLDbaacaaM c8oaaa@80FC@

 

Observe that the two 3x3 matrices involved in this transformation are transposes (and inverses) of one another.   The transformation matrix is therefore orthogonal, satisfying [Q] [Q] T =[I] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadgfacaGGDbGaai4waiaadg facaGGDbWaaWbaaSqabeaacaWGubaaaOGaeyypa0Jaai4waiaadMea caGGDbaaaa@3AB0@ , where [I] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadMeacaGGDbaaaa@336E@  denotes the 3x3 identity matrix.

 

Derivation: It is easiest to do the transformation by expressing each basis vector { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@  as components in {i,j,k}, and then substituting.  To do this, recall that r=xi+yj+zk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhacaWHPbGaey 4kaSIaamyEaiaahQgacqGHRaWkcaWG6bGaaC4Aaaaa@3A77@ , recall also the conversion

x=Rsinθcosϕy=Rsinθsinϕz=Rcosθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEaiabg2da9iaadkfaciGGZbGaai yAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da9i aadkfaciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6ga cqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG6bGaeyypa0JaamOu aiGacogacaGGVbGaai4CaiabeI7aXbaa@6DA1@

and finally recall that by definition

e R = 1 r R r R e θ = 1 r θ r θ e ϕ = 1 r ϕ r ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaki abg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciIT caWHYbaabaGaeyOaIyRaamOuaaaaaiaawEa7caGLiWoaaaWaaSaaae aacqGHciITcaWHYbaabaGaeyOaIyRaamOuaaaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWg aaWcbaGaeqiUdehabeaakiabg2da9maalaaabaGaaGymaaqaamaaem aabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqiUdehaaaGa ay5bSlaawIa7aaaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcq aH4oqCaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCyzamaaBaaaleaacqaHvpGzaeqaaOGa eyypa0ZaaSaaaeaacaaIXaaabaWaaqWaaeaadaWcaaqaaiabgkGi2k aahkhaaeaacqGHciITcqaHvpGzaaaacaGLhWUaayjcSdaaamaalaaa baGaeyOaIyRaaCOCaaqaaiabgkGi2kabew9aMbaaaaa@9D2E@

Hence, substituting for x,y,z and differentiating

r=Rsinθcosϕi+Rsinθsinϕj+Rcosθk r R =sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHYbGaeyypa0JaamOuaiGaco hacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaa hMgacqGHRaWkcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdeNaci4Cai aacMgacaGGUbGaeqy1dyMaaCOAaiabgUcaRiaadkfaciGGJbGaai4B aiaacohacqaH4oqCcaWHRbGaaGPaVdqaaiabgkDiEpaalaaabaGaey OaIyRaaCOCaaqaaiabgkGi2kaadkfaaaGaeyypa0Jaci4CaiaacMga caGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgU caRiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiab ew9aMjaahQgacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHRb aaaaa@7602@

Conveniently we find that r R =1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaadaWcaaqaaiabgkGi2kaahk haaeaacqGHciITcaWGsbaaaaGaay5bSlaawIa7aiabg2da9iaaigda aaa@3A70@ . Therefore

e R =sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaki abg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4C aiabew9aMjaahMgacqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCci GGZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaey4kaSIaci4yaiaac+ga caGGZbGaeqiUdeNaaC4AaiaaykW7aaa@50E8@

Similarly

r θ =Rcosθcosϕi+RcosθsinϕjRsinθk r ϕ =Rsinθsinϕi+Rsinθcosϕj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaahkhaae aacqGHciITcqaH4oqCaaGaeyypa0JaamOuaiGacogacaGGVbGaai4C aiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacqGHRaWkca WGsbGaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGa eqy1dyMaaCOAaiabgkHiTiaadkfaciGGZbGaaiyAaiaac6gacqaH4o qCcaWHRbGaaGPaVdqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi 2kabew9aMbaacqGH9aqpcqGHsislcaWGsbGaci4CaiaacMgacaGGUb GaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiabgUcaRiaa dkfaciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4Baiaacohacq aHvpGzcaWHQbGaaGPaVdaaaa@76F5@

while r θ =R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaadaWcaaqaaiabgkGi2kaahk haaeaacqGHciITcqaH4oqCaaaacaGLhWUaayjcSdGaeyypa0JaamOu aaaa@3B6B@ , r ϕ =Rsinθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaadaWcaaqaaiabgkGi2kaahk haaeaacqGHciITcqaHvpGzaaaacaGLhWUaayjcSdGaeyypa0JaamOu aiGacohacaGGPbGaaiOBaiabeI7aXbaa@400B@  so that

e θ =cosθcosϕi+cosθsinϕjsinθk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaO Gaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGG ZbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXj GacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHsislciGGZbGaaiyA aiaac6gacqaH4oqCcaWHRbGaaGPaVdaa@51CD@      e ϕ =sinϕi+cosϕj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaO Gaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiab gUcaRiGacogacaGGVbGaai4Caiabew9aMjaahQgacaaMc8oaaa@434B@

Finally, substituting

a= a R [sinθcosϕi+sinθsinϕj+cosθk] + a θ [cosθcosϕi+cosθsinϕjsinθk] + a ϕ [sinϕi+cosϕj] MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHHbGaeyypa0JaamyyamaaBa aaleaacaWGsbaabeaakiaacUfaciGGZbGaaiyAaiaac6gacqaH4oqC ciGGJbGaai4BaiaacohacqaHvpGzcaWHPbGaey4kaSIaci4CaiaacM gacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOAaiab gUcaRiGacogacaGGVbGaai4CaiabeI7aXjaahUgacaGGDbGaaGPaVd qaaiaaygW7caaMb8UaaGzaVlaaygW7caaMc8UaaGPaVlaaykW7caaM c8Uaey4kaSIaamyyamaaBaaaleaacqaH4oqCaeqaaOGaai4waiGaco gacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaa hMgacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCciGGZbGaaiyAai aac6gacqaHvpGzcaWHQbGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiU deNaaC4Aaiaac2faaeaacaaMb8UaaGzaVlaaygW7caaMb8UaaGzaVl aaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaWGHbWaaSbaaSqaaiab ew9aMbqabaGccaGGBbGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dy MaaCyAaiabgUcaRiGacogacaGGVbGaai4Caiabew9aMjaahQgacaGG Dbaaaaa@A130@

Collecting terms in i, j and k, we see that

a x =sinθcosϕ a R +cosθcosϕ a θ sinϕ a ϕ a y =sinθsinϕ a R +cosθsinϕ a θ +cosϕ a ϕ a z =cosθ a R sinθ a θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGHbWaaSbaaSqaaiaadIhaae qaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+ga caGGZbGaeqy1dyMaamyyamaaBaaaleaacaWGsbaabeaakiabgUcaRi GacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9a MjaadggadaWgaaWcbaGaeqiUdehabeaakiabgkHiTiGacohacaGGPb GaaiOBaiabew9aMjaadggadaWgaaWcbaGaeqy1dygabeaaaOqaaiaa dggadaWgaaWcbaGaamyEaaqabaGccqGH9aqpciGGZbGaaiyAaiaac6 gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWGHbWaaSbaaSqa aiaadkfaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaci 4CaiaacMgacaGGUbGaeqy1dyMaamyyamaaBaaaleaacqaH4oqCaeqa aOGaey4kaSIaci4yaiaac+gacaGGZbGaeqy1dyMaamyyamaaBaaale aacqaHvpGzaeqaaaGcbaGaamyyamaaBaaaleaacaWG6baabeaakiab g2da9iGacogacaGGVbGaai4CaiabeI7aXjaadggadaWgaaWcbaGaam OuaaqabaGccqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWGHbWa aSbaaSqaaiabeI7aXbqabaGccaaMc8oaaaa@8B5F@

This is the result stated.

 

To show the inverse result, start by noting that

a= a R e R + a θ e θ + a ϕ e ϕ = a x i+ a y j+ a z k a e R = a R = a x i e R + a y j e R + a z k e R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHHbGaeyypa0JaamyyamaaBa aaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGH RaWkcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaai abeI7aXbqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabew9aMbqabaGc caWHLbWaaSbaaSqaaiabew9aMbqabaGccqGH9aqpcaWGHbWaaSbaaS qaaiaadIhaaeqaaOGaaCyAaiabgUcaRiaadggadaWgaaWcbaGaamyE aaqabaGccaWHQbGaey4kaSIaamyyamaaBaaaleaacaWG6baabeaaki aahUgacaaMc8oabaGaeyO0H4TaaCyyaiabgwSixlaahwgadaWgaaWc baGaamOuaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadkfaaeqaaO Gaeyypa0JaamyyamaaBaaaleaacaWG4baabeaakiaahMgacqGHflY1 caWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaamyyamaaBaaale aacaWG5baabeaakiaahQgacqGHflY1caWHLbWaaSbaaSqaaiaadkfa aeqaaOGaey4kaSIaamyyamaaBaaaleaacaWG6baabeaakiaahUgacq GHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaaaaaa@74BB@

(where we have used e θ e R = e ϕ e R =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaO GaeyyXICTaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iaahwga daWgaaWcbaGaeqy1dygabeaakiabgwSixlaahwgadaWgaaWcbaGaam OuaaqabaGccqGH9aqpcaaIWaaaaa@41F5@  ).  Recall that

e R =sinθcosϕi+sinθsinϕj+cosθk i e R =sinθcosϕj e R =sinθsinϕk e R =cosθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHLbWaaSbaaSqaaiaadkfaae qaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+ga caGGZbGaeqy1dyMaaCyAaiabgUcaRiGacohacaGGPbGaaiOBaiabeI 7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHRaWkciGGJbGa ai4BaiaacohacqaH4oqCcaWHRbGaaGPaVdqaaiabgkDiElaahMgacq GHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0Jaci4Caiaa cMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHQbGa eyyXICTaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iGacohaca GGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaC4AaiabgwSixlaahwgadaWgaa WcbaGaamOuaaqabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqC aaaa@90F5@

Substituting, we get

a R =sinθcosϕ a x +sinθsinϕ a y +cosθ a z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGsbaabeaaki abg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4C aiabew9aMjaadggadaWgaaWcbaGaamiEaaqabaGccqGHRaWkciGGZb GaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWG HbWaaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZb GaeqiUdeNaamyyamaaBaaaleaacaWG6baabeaakiaaykW7aaa@5455@

Proceeding in exactly the same way for the other two components gives the remaining expressions

a θ =cosθcosϕ a x +cosθsinϕ a y sinθ a z a ϕ =sinϕ a x +cosϕ a y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGHbWaaSbaaSqaaiabeI7aXb qabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqCciGGJbGaai4B aiaacohacqaHvpGzcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaey4kaS Iaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1 dyMaamyyamaaBaaaleaacaWG5baabeaakiabgkHiTiGacohacaGGPb GaaiOBaiabeI7aXjaadggadaWgaaWcbaGaamOEaaqabaGccaaMc8oa baGaamyyamaaBaaaleaacqaHvpGzaeqaaOGaeyypa0JaeyOeI0Iaci 4CaiaacMgacaGGUbGaeqy1dyMaamyyamaaBaaaleaacaWG4baabeaa kiabgUcaRiGacogacaGGVbGaai4Caiabew9aMjaadggadaWgaaWcba GaamyEaaqabaaaaaa@685E@

Re-writing the last three equations in matrix form gives the result stated.

 

 

 

D.1.5 Spherical-Polar representation of tensors

 

The triad of vectors { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@  is an orthonormal basis (i.e. the three basis vectors have unit length, and are mutually perpendicular).  Consequently, tensors can be represented as components in this basis in exactly the same way as for a fixed Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39DF@ .  In particular, a general second order tensor S can be represented as a 3x3 matrix

S S RR S Rθ S Rϕ S θR S θθ S θϕ S ϕR S ϕθ S ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabggMi6oaadmaabaqbaeqabm WaaaqaaiaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaam4u amaaBaaaleaacaWGsbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcba GaamOuaiabew9aMbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaa dkfaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaa GcbaGaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaam4u amaaBaaaleaacqaHvpGzcaWGsbaabeaaaOqaaiaadofadaWgaaWcba Gaeqy1dyMaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaeqy1dyMa eqy1dygabeaaaaaakiaawUfacaGLDbaaaaa@5909@

You can think of S RR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGsbGaamOuaa qabaaaaa@3392@  as being equivalent to S 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGymaa qabaaaaa@335A@ , S Rθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGsbGaeqiUde habeaaaaa@3471@  as S 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaa qabaaaaa@335B@ , and so on. All tensor operations such as addition, multiplication by a vector, tensor products, etc can be expressed in terms of the corresponding operations on this matrix, as discussed in Section B2 of Appendix B.

 

 

The component representation of a tensor can also be expressed in dyadic form as

S= S RR e R e R + S Rθ e R e θ + S Rϕ e R e ϕ + S θR e θ e R + S θθ e θ e θ + S θϕ e θ e ϕ + S ϕR e ϕ e R + S ϕθ e ϕ e θ + S ϕϕ e ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHtbGaeyypa0JaaGPaVlaayk W7caaMc8UaaGPaVlaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaOGa aCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgadaWgaaWcba GaamOuaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkfacqaH4oqC aeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgada WgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOu aiabew9aMbqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIq SaaCyzamaaBaaaleaacqaHvpGzaeqaaaGcbaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGPaVlaadofadaWgaaWcba GaeqiUdeNaamOuaaqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGc cqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uam aaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH 4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey 4kaSIaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaOGaaCyzamaa BaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaHvp GzaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua ey4kaSIaam4uamaaBaaaleaacqaHvpGzcaWGsbaabeaakiaahwgada WgaaWcbaGaeqy1dygabeaakiabgEPielaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabew9aMjabeI7aXbqaba GccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcXcaWHLbWaaSba aSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabew9aMj abew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcX caWHLbWaaSbaaSqaaiabew9aMbqabaaaaaa@B85E@

 

Furthermore, the physical significance of the components can be interpreted in exactly the same way as for tensor components in a Cartesian basis.  For example, the spherical-polar coordinate representation for the Cauchy stress tensor has the form

σ σ RR σ Rθ σ Rϕ σ θR σ θθ σ θϕ σ ϕR σ ϕθ σ ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdiabggMi6oaadmaabaqbaeqabm Waaaqaaiabeo8aZnaaBaaaleaacaWGsbGaamOuaaqabaaakeaacqaH dpWCdaWgaaWcbaGaamOuaiabeI7aXbqabaaakeaacqaHdpWCdaWgaa WcbaGaamOuaiabew9aMbqabaaakeaacqaHdpWCdaWgaaWcbaGaeqiU deNaamOuaaqabaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUde habeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGc baGaeq4Wdm3aaSbaaSqaaiabew9aMjaadkfaaeqaaaGcbaGaeq4Wdm 3aaSbaaSqaaiabew9aMjabeI7aXbqabaaakeaacqaHdpWCdaWgaaWc baGaeqy1dyMaeqy1dygabeaaaaaakiaawUfacaGLDbaaaaa@61BF@

The component σ θR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjaadk faaeqaaaaa@355C@  represents the traction component in direction e R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaaa a@32D1@  acting on an internal material plane with normal e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaa aa@33B0@ , and so on (see the figure).  Of course, the Cauchy stress tensor is symmetric, with σ θR = σ Rθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjaadk faaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadkfacqaH4oqCaeqa aaaa@3AE8@

 

 

 

D.1.6 Constitutive equations in spherical-polar coordinates

 

The constitutive equations listed in Chapter 3 all relate some measure of stress in the solid (expressed as a tensor) to some measure of local internal deformation (deformation gradient, Eulerian strain, rate of deformation tensor, etc), also expressed as a tensor.  The constitutive equations can be used without modification in spherical-polar coordinates, as long as the matrices of Cartesian components of the various tensors are replaced by their equivalent matrices in spherical-polar coordinates.

 

For example, the stress-strain relations for an isotropic, linear elastic material in spherical-polar coordinates read

 


 

HEALTH WARNING: If you are solving a problem involving anisotropic materials using spherical-polar coordinates, it is important to remember that the orientation of the basis vectors { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@  vary with position.   For example, for an anisotropic, linear elastic solid you could write the constitutive equation as

 


however, the elastic constants c 11 , c 12 ,... MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGymaa qabaGccaGGSaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccaGG SaGaaiOlaiaac6cacaGGUaaaaa@397F@  would need to represent the material properties in the basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@ , and would therefore be functions of position (you would have to calculate them using the lengthy basis change formulas listed in Section 3.2.11).  In practice the results are so complicated that there would be very little advantage in working with a spherical-polar coordinate system in this situation.

 

 

 

D.1.7 Converting tensors between Cartesian and Spherical-Polar bases

 

Let S be a tensor, with components

S S RR S Rθ S Rϕ S θR S θθ S θϕ S ϕR S ϕθ S ϕϕ S xx S xy S xz S yx S yy S yz S zx S xy S zz MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabggMi6oaadmaabaqbaeqabm WaaaqaaiaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaam4u amaaBaaaleaacaWGsbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcba GaamOuaiabew9aMbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaa dkfaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaa GcbaGaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaam4u amaaBaaaleaacqaHvpGzcaWGsbaabeaaaOqaaiaadofadaWgaaWcba Gaeqy1dyMaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaeqy1dyMa eqy1dygabeaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaa dmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamiEaiaadIhaae qaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWG tbWaaSbaaSqaaiaadIhacaWG6baabeaaaOqaaiaadofadaWgaaWcba GaamyEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamyE aaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG6baabeaaaOqaai aadofadaWgaaWcbaGaamOEaiaadIhaaeqaaaGcbaGaam4uamaaBaaa leaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhaca WG6baabeaaaaaakiaawUfacaGLDbaaaaa@8763@

in the spherical-polar basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@  and the Cartesian basis {i,j,k}, respectively.  The two sets of components are related by

 


 

These results follow immediately from the general basis change formulas for tensors given in Appendix B.

 

 

 

D.1.8 Vector Calculus using Spherical-Polar Coordinates

 

Calculating derivatives of scalar, vector and tensor functions of position in spherical-polar coordinates is complicated by the fact that the basis vectors are functions of position.  The results can be expressed in a compact form by defining the gradient operator, which, in spherical-polar coordinates, has the representation

e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyyIO7aaeWaaeaacaWHLb WaaSbaaSqaaiaadkfaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciIT caWGsbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaala aabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITaeaacqGHciIT cqaH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacqaHvpGzaeqaaOWaaS aaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaa daWcaaqaaiabgkGi2cqaaiabgkGi2kabew9aMbaaaiaawIcacaGLPa aaaaa@53F8@

In addition, the derivatives of the basis vectors are

e R R = e θ R = e ϕ R =0 e R θ = e θ e θ θ = e R e ϕ θ =0 e R ϕ =sinθ e ϕ e θ ϕ =cosθ e ϕ e ϕ ϕ =sinθ e R cosθ e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaahwgada WgaaWcbaGaamOuaaqabaaakeaacqGHciITcaWGsbaaaiabg2da9maa laaabaGaeyOaIyRaaCyzamaaBaaaleaacqaH4oqCaeqaaaGcbaGaey OaIyRaamOuaaaacqGH9aqpdaWcaaqaaiabgkGi2kaahwgadaWgaaWc baGaeqy1dygabeaaaOqaaiabgkGi2kaadkfaaaGaeyypa0JaaGimai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+a aSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiaadkfaaeqaaaGcbaGaey OaIyRaeqiUdehaaiabg2da9iaahwgadaWgaaWcbaGaeqiUdehabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 +aaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiabeI7aXbqabaaakeaa cqGHciITcqaH4oqCaaGaeyypa0JaeyOeI0IaaCyzamaaBaaaleaaca WGsbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8+aaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiabew9aMb qabaaakeaacqGHciITcqaH4oqCaaGaeyypa0JaaGimaaqaamaalaaa baGaeyOaIyRaaCyzamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2k abew9aMbaacqGH9aqpciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWa aSbaaSqaaiabew9aMbqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGa eyOaIyRaaCyzamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeq y1dygaaiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaahwgadaWg aaWcbaGaeqy1dygabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaaCyzamaa BaaaleaacqaHvpGzaeqaaaGcbaGaeyOaIyRaeqy1dygaaiabg2da9i abgkHiTiGacohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGa amOuaaqabaGccqGHsislciGGJbGaai4BaiaacohacqaH4oqCcaWHLb WaaSbaaSqaaiabeI7aXbqabaaaaaa@E1E0@

You can derive these formulas by differentiating the expressions for the basis vectors in terms of {i,j,k}

e R =sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaaki abg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4C aiabew9aMjaahMgacqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCci GGZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaey4kaSIaci4yaiaac+ga caGGZbGaeqiUdeNaaC4AaiaaykW7aaa@50E8@   

e θ =cosθcosϕi+cosθsinϕjsinθk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaO Gaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGG ZbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXj GacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHsislciGGZbGaaiyA aiaac6gacqaH4oqCcaWHRbGaaGPaVdaa@51CD@     

e ϕ =sinϕi+cosϕj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaO Gaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiab gUcaRiGacogacaGGVbGaai4Caiabew9aMjaahQgacaaMc8oaaa@434B@

and evaluating the various derivatives. When differentiating, note that {i,j,k} are fixed, so their derivatives are zero.  The details are left as an exercise.

 

The various derivatives of scalars, vectors and tensors can be expressed using operator notation as follows. 

 

 

Gradient of a scalar function: Let f(R,θ,ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWGsbGaaiilaiabeI 7aXjaacYcacqaHvpGzcaGGPaaaaa@38D9@  denote a scalar function of position.  The gradient of f is denoted by

f=f e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ = e R f R + e θ 1 R f θ + e ϕ 1 Rsinθ f ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHhis0caWGMbGaeyypa0Jaam OzamaabmaabaGaaCyzamaaBaaaleaacaWGsbaabeaakmaalaaabaGa eyOaIylabaGaeyOaIyRaamOuaaaacqGHRaWkcaWHLbWaaSbaaSqaai abeI7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGa eyOaIylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahwgadaWgaaWcba Gaeqy1dygabeaakmaalaaabaGaaGymaaqaaiaadkfaciGGZbGaaiyA aiaac6gacqaH4oqCaaWaaSaaaeaacqGHciITaeaacqGHciITcqaHvp GzaaaacaGLOaGaayzkaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaWHLbWaaSbaaSqaaiaadk faaeqaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamOuaaaa cqGHRaWkcaWHLbWaaSbaaSqaaiabeI7aXbqabaGcdaWcaaqaaiaaig daaeaacaWGsbaaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kab eI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiabew9aMbqabaGcdaWcaa qaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaa laaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabew9aMbaaaaaa@8371@

Alternatively, in matrix form

f= f R , 1 R f θ , 1 Rsinθ f ϕ T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaamOzaiabg2da9maadmaaba WaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamOuaaaacaGGSaWa aSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2kaadAgaae aacqGHciITcqaH4oqCaaGaaiilamaalaaabaGaaGymaaqaaiaadkfa ciGGZbGaaiyAaiaac6gacqaH4oqCaaWaaSaaaeaacqGHciITcaWGMb aabaGaeyOaIyRaeqy1dygaaaGaay5waiaaw2faamaaCaaaleqabaGa amivaaaaaaa@502B@

 

 

Gradient of a vector function Let v= v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIa amODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamODamaaBaaaleaacqaHvpGzaeqaaOGaaCyz amaaBaaaleaacqaHvpGzaeqaaaaa@4448@  be a vector function of position. The gradient of v is a tensor, which can be represented as a dyadic product of the vector with the gradient operator as

v= v R e R + v θ e θ + v ϕ e ϕ e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabgEGirlabg2da9maabmaaba GaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiab ew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaaakiaawIcaca GLPaaacqGHxkcXdaqadaqaaiaahwgadaWgaaWcbaGaamOuaaqabaGc daWcaaqaaiabgkGi2cqaaiabgkGi2kaadkfaaaGaey4kaSIaaCyzam aaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaaaa daWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLb WaaSbaaSqaaiabew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGa ci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIylabaGaey OaIyRaeqy1dygaaaGaayjkaiaawMcaaaaa@6933@

The dyadic product can be expanded MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  but when evaluating the derivatives it is important to recall that the basis vectors are functions of the coordinates (R,θ,ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkfacaGGSaGaeqiUdeNaai ilaiabew9aMjaacMcaaaa@37EE@  and consequently their derivatives do not vanish.  For example

1 R θ v R e R e θ = 1 R v R θ e R e θ + v R R e R θ e θ = 1 R v R θ e R e θ + v R R e θ e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaaigdaaeaacaWGsb aaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqiUdehaamaabmaabaGa amODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaa qabaaakiaawIcacaGLPaaacqGHxkcXcaWHLbWaaSbaaSqaaiabeI7a XbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaaba GaeyOaIyRaamODamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kab eI7aXbaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIqSaaCyzam aaBaaaleaacqaH4oqCaeqaaOGaey4kaSYaaSaaaeaacaWG2bWaaSba aSqaaiaadkfaaeqaaaGcbaGaamOuaaaadaWcaaqaaiabgkGi2kaahw gadaWgaaWcbaGaamOuaaqabaaakeaacqGHciITcqaH4oqCaaGaey4L IqSaaCyzamaaBaaaleaacqaH4oqCaeqaaaGcbaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGH9aqpdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaaba GaeyOaIyRaamODamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kab eI7aXbaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIqSaaCyzam aaBaaaleaacqaH4oqCaeqaaOGaey4kaSYaaSaaaeaacaWG2bWaaSba aSqaaiaadkfaaeqaaaGcbaGaamOuaaaacaWHLbWaaSbaaSqaaiabeI 7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaaaaaa@C072@

Verify for yourself that the matrix representing the components of the gradient of a vector is

 


 

Divergence of a vector function Let v= v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIa amODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamODamaaBaaaleaacqaHvpGzaeqaaOGaaCyz amaaBaaaleaacqaHvpGzaeqaaaaa@4448@  be a vector function of position. The divergence of v is a scalar, which can be represented as a dot product of the vector with the gradient operator as

v= e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaCODaiabg2da9m aabmaabaGaaCyzamaaBaaaleaacaWGsbaabeaakmaalaaabaGaeyOa IylabaGaeyOaIyRaamOuaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI 7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOa IylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahwgadaWgaaWcbaGaeq y1dygabeaakmaalaaabaGaaGymaaqaaiaadkfaciGGZbGaaiyAaiaa c6gacqaH4oqCaaWaaSaaaeaacqGHciITaeaacqGHciITcqaHvpGzaa aacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWG2bWaaSbaaSqaaiaa dkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadA hadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdeha beaakiabgUcaRiaadAhadaWgaaWcbaGaeqy1dygabeaakiaahwgada WgaaWcbaGaeqy1dygabeaaaOGaayjkaiaawMcaaaaa@6BBE@

Again, when expanding the dot product, it is important to remember to differentiate the basis vectors. Alternatively, the divergence can be expressed as trace(v) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gacaGGOaGaaCODaiabgEGirlaacMcaaaa@395C@ , which immediately gives

v v R R +2 v R R + 1 R v θ θ + 1 Rsinθ v ϕ ϕ +cotθ v θ R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaCODaiabggMi6o aalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGsbaabeaaaOqaaiab gkGi2kaadkfaaaGaey4kaSIaaGOmamaalaaabaGaamODamaaBaaale aacaWGsbaabeaaaOqaaiaadkfaaaGaey4kaSYaaSaaaeaacaaIXaaa baGaamOuaaaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaeqiUde habeaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiaaigda aeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaey OaIyRaamODamaaBaaaleaacqaHvpGzaeqaaaGcbaGaeyOaIyRaeqy1 dygaaiabgUcaRiGacogacaGGVbGaaiiDaiabeI7aXnaalaaabaGaam ODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaamOuaaaaaaa@63A6@

 

 

Curl of a vector function Let v= v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIa amODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamODamaaBaaaleaacqaHvpGzaeqaaOGaaCyz amaaBaaaleaacqaHvpGzaeqaaaaa@4448@  be a vector function of position. The curl of v is a vector, which can be represented as a cross product of the vector with the gradient operator as

×v= e R R + e θ 1 R θ + e ϕ 1 Rsinθ ϕ × v R e R + v θ e θ + v ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaey41aqRaaCODaiabg2da9m aabmaabaGaaCyzamaaBaaaleaacaWGsbaabeaakmaalaaabaGaeyOa IylabaGaeyOaIyRaamOuaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI 7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOa IylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahwgadaWgaaWcbaGaeq y1dygabeaakmaalaaabaGaaGymaaqaaiaadkfaciGGZbGaaiyAaiaa c6gacqaH4oqCaaWaaSaaaeaacqGHciITaeaacqGHciITcqaHvpGzaa aacaGLOaGaayzkaaGaey41aq7aaeWaaeaacaWG2bWaaSbaaSqaaiaa dkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadA hadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdeha beaakiabgUcaRiaadAhadaWgaaWcbaGaeqy1dygabeaakiaahwgada WgaaWcbaGaeqy1dygabeaaaOGaayjkaiaawMcaaaaa@6B58@

The curl rarely appears in solid mechanics so the components will not be expanded in full

 

 

Divergence of a tensor function.   Let S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaaaa@31BC@  be a tensor, with dyadic representation

S= S RR e R e R + S Rθ e R e θ + S Rϕ e R e ϕ + S θR e θ e R + S θθ e θ e θ + S θϕ e θ e ϕ + S ϕR e ϕ e R + S ϕθ e ϕ e θ + S ϕϕ e ϕ e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHtbGaeyypa0JaaGPaVlaayk W7caaMc8UaaGPaVlaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaOGa aCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgadaWgaaWcba GaamOuaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkfacqaH4oqC aeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgada WgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOu aiabew9aMbqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIq SaaCyzamaaBaaaleaacqaHvpGzaeqaaaGcbaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGPaVlaadofadaWgaaWcba GaeqiUdeNaamOuaaqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGc cqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uam aaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH 4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey 4kaSIaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaOGaaCyzamaa BaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaHvp GzaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua ey4kaSIaam4uamaaBaaaleaacqaHvpGzcaWGsbaabeaakiaahwgada WgaaWcbaGaeqy1dygabeaakiabgEPielaahwgadaWgaaWcbaGaamOu aaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabew9aMjabeI7aXbqaba GccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcXcaWHLbWaaSba aSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiabew9aMj abew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcX caWHLbWaaSbaaSqaaiabew9aMbqabaaaaaa@B85E@

The divergence of S is a vector, which can be represented as

 


 

Evaluating the components of the divergence is an extremely tedious operation, because each of the basis vectors in the dyadic representation of S must be differentiated, in addition to the components themselves.  The final result (expressed as a column vector) is

 


 

 

 

 

D.2: Cylindrical-polar coordinates

 

 

D.2.1 Specifying points in space using in cylindrical-polar coordinates

 

To specify the location of a point in cylindrical-polar coordinates, we choose an origin at some point on the axis of the cylinder, select a unit vector k to be parallel to the axis of the cylinder, and choose a convenient direction for the basis vector i, as shown in the figure. We then use the three numbers r,θ,z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiaacYcacqaH4oqCcaGGSaGaam OEaaaa@35EB@  to locate a point inside the cylinder, as shown in the picture.  These are not components of a vector.

 

In words

 

· r is the radial distance of P from the axis of the cylinder

 

· ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  is the angle between the i direction and the projection of OP onto the i,j plane

 

· z is the length of the projection of OP on the axis of the cylinder.

 

By convention r>0 and 0θ 360 o MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkabeI7aXjabgsMiJk aaiodacaaI2aGaaGimamaaCaaaleqabaGaam4Baaaaaaa@3A11@

 

 

 

D.2.2 Converting between cylindrical polar and rectangular cartesian coordinates

 

When we use a Cartesian basis, we identify points in space by specifying the components of their position vector relative to the origin (x,y,z), such that r=xi+yj+zk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadIhacaWHPbGaey 4kaSIaamyEaiaahQgacqGHRaWkcaWG6bGaaC4Aaaaa@3A78@   When we use a spherical-polar coordinate system, we locate points by specifying their spherical-polar coordinates r,θ,z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiaacYcacqaH4oqCcaGGSaGaam OEaaaa@35EB@

 

The formulas below relate the two representations.  They are derived using basic trigonometry

x=rcosθy=rsinθz=z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEaiabg2da9iaadkhaciGGJbGaai 4BaiaacohacqaH4oqCcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadMhacqGH9aqpcaWGYbGaci4CaiaacMgaca GGUbGaeqiUdeNaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamOEaiabg2da9iaadQhaaaa@5D2A@             

r= x 2 + y 2 θ= tan 1 y/xz=z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbeqaaiaa ikdaaaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqaH4oqCcqGH9aqpciGG0bGaaiyy aiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWG5bGaai4lai aadIhacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamOEaiabg2da9iaadQhaaaa@63A9@

 

 

 

D.2.3 Cylindrical-polar representation of vectors

 

When we work with vectors in spherical-polar coordinates, we specify vectors as components in the { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B57@  basis shown in the figure. For example, an arbitrary vector a is written as a= a r e r + a θ e θ + a z e z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadggadaWgaaWcba GaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIa amyyamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWG6baabeaakiaahwga daWgaaWcbaGaamOEaaqabaGccaaMc8oaaa@4436@ , where ( a r , a θ , a z ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOCaa qabaGccaGGSaGaamyyamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa dggadaWgaaWcbaGaamOEaaqabaGccaGGPaaaaa@3A99@  denote the components of a.

 

The basis vectors are selected as follows

 

· e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGYbaabeaaaa a@32F0@  is a unit vector normal to the cylinder at P

 

· e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaa aa@33AF@  is a unit vector circumferential to the cylinder at P, chosen to make { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B57@  a right handed triad

 

· e z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWG6baabeaaaa a@32F8@  is parallel to the k vector.

 

 

You will see that the position vector of point P would be expressed as

r=r e r +z e z =rcosθi+rsinθj+zk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadkhacaWHLbWaaS baaSqaaiaadkhaaeqaaOGaey4kaSIaamOEaiaahwgadaWgaaWcbaGa amOEaaqabaGccqGH9aqpcaWGYbGaci4yaiaac+gacaGGZbGaeqiUde NaaCyAaiabgUcaRiaadkhaciGGZbGaaiyAaiaac6gacqaH4oqCcaWH QbGaey4kaSIaamOEaiaahUgacaaMc8oaaa@4D28@

 

Note also that the basis vectors are intentionally chosen to satisfy

e r = 1 r r r r e ϕ = 1 r θ r θ e z = 1 r z r z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGYbaabeaaki abg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciIT caWHYbaabaGaeyOaIyRaamOCaaaaaiaawEa7caGLiWoaaaWaaSaaae aacqGHciITcaWHYbaabaGaeyOaIyRaamOCaaaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH LbWaaSbaaSqaaiabew9aMbqabaGccqGH9aqpdaWcaaqaaiaaigdaae aadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7a XbaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaey OaIyRaeqiUdehaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaamOEaaqa baGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaamaalaaabaGaey OaIyRaaCOCaaqaaiabgkGi2kaadQhaaaaacaGLhWUaayjcSdaaamaa laaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadQhaaaGaaGPaVdaa@9E5B@

The basis vectors have unit length, are mutually perpendicular, and form a right handed triad and therefore { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B57@  is an orthonormal basis.  The basis vectors are parallel to (but not equivalent to) the natural basis vectors for a cylindrical polar coordinate system (see Chapter 10 for a more detailed discussion).

 

 

 

D.2.4 Converting vectors between Cylindrical and Cartesian bases

 

Let a= a r e r + a θ e θ + a z e z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadggadaWgaaWcba GaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIa amyyamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWG6baabeaakiaahwga daWgaaWcbaGaamOEaaqabaGccaaMc8oaaa@4436@  be a vector, with components ( a r , a θ , a z ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOCaa qabaGccaGGSaGaamyyamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa dggadaWgaaWcbaGaamOEaaqabaGccaGGPaaaaa@3A99@  in the spherical-polar basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C00@ .  Let a x , a y , a z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWG4baabeaaki aacYcacaWGHbWaaSbaaSqaaiaadMhaaeqaaOGaaiilaiaadggadaWg aaWcbaGaamOEaaqabaaaaa@3883@  denote the components of a in the basis {i,j,k}.

 

The two sets of components are related by

a x a y a z = cosθ sinθ 0 sinθ cosθ 0 0 0 1 a r a θ a z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyam aaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqa baaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaaw2 faaiabg2da9maadmaabaqbaeqabmWaaaqaaiGacogacaGGVbGaai4C aiabeI7aXbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaai aaicdaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaaciGGJbGaai4B aiaacohacqaH4oqCaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIXaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiaadgga daWgaaWcbaGaamOCaaqabaaakeaacaWGHbWaaSbaaSqaaiabeI7aXb qabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaa w2faaiaaykW7aaa@5D87@  

a r a θ a z = cosθ sinθ 0 sinθ cosθ 0 0 0 1 a x a y a z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyam aaBaaaleaacaWGYbaabeaaaOqaaiaadggadaWgaaWcbaGaeqiUdeha beaaaOqaaiaadggadaWgaaWcbaGaamOEaaqabaaaaaGccaGLBbGaay zxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaci4yaiaac+gacaGG ZbGaeqiUdehabaGaci4CaiaacMgacaGGUbGaeqiUdehabaGaaGimaa qaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiGacogacaGG VbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaigdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaamyy amaaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaa qabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaa w2faaiaaykW7aaa@5D87@

 

Observe that the two 3x3 matrices involved in this transformation are transposes (and inverses) of one another.   The transformation matrix is therefore orthogonal, satisfying [Q] [Q] T =[I] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadgfacaGGDbGaai4waiaadg facaGGDbWaaWbaaSqabeaacaWGubaaaOGaeyypa0Jaai4waiaadMea caGGDbaaaa@3AB0@ , where [I] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadMeacaGGDbaaaa@336E@  denotes the 3x3 identity matrix.

 

The derivation of these results follows the procedure outlined in D.1.4 exactly, and is left as an exercise.

 

 

 

D.2.5 Cylindrical-Polar representation of tensors

 

The triad of vectors { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B57@  is an orthonormal basis (i.e. the three basis vectors have unit length, and are mutually perpendicular).  Consequently, tensors can be represented as components in this basis in exactly the same way as for a fixed Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39DF@ .  In particular, a general second order tensor S can be represented as a 3x3 matrix

S S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabggMi6oaadmaabaqbaeqabm WaaaqaaiaadofadaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaam4u amaaBaaaleaacaWGYbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcba GaamOCaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG YbaabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaO qaaiaadofadaWgaaWcbaGaeqiUdeNaamOEaaqabaaakeaacaWGtbWa aSbaaSqaaiaadQhacaWGYbaabeaaaOqaaiaadofadaWgaaWcbaGaam OEaiabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacaWG6baa beaaaaaakiaawUfacaGLDbaaaaa@5513@

You can think of S rr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGYbGaamOCaa qabaaaaa@33D2@  as being equivalent to S 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGymaa qabaaaaa@335A@ , S rθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGYbGaeqiUde habeaaaaa@3491@  as S 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGOmaa qabaaaaa@335B@ , and so on. All tensor operations such as addition, multiplication by a vector, tensor products, etc can be expressed in terms of the corresponding operations on this matrix, as discussed in Section B2 of Appendix B.

 

The component representation of a tensor can also be expressed in dyadic form as

S= S rr e r e r + S rθ e r e θ + S rz e r e z + S θr e θ e r + S θθ e θ e θ + S θz e θ e z + S zr e z e r + S zθ e z e θ + S zz e z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHtbGaeyypa0JaaGPaVlaayk W7caaMc8UaaGPaVlaadofadaWgaaWcbaGaamOCaiaadkhaaeqaaOGa aCyzamaaBaaaleaacaWGYbaabeaakiabgEPielaahwgadaWgaaWcba GaamOCaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkhacqaH4oqC aeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgEPielaahwgada WgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOC aiaadQhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgEPiel aahwgadaWgaaWcbaGaamOEaaqabaaakeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8Uaam4uamaaBaaaleaacq aH4oqCcaWGYbaabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiab gEPielaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGtbWaaS baaSqaaiabeI7aXjabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7a XbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRa WkcaWGtbWaaSbaaSqaaiabeI7aXjaadQhaaeqaaOGaaCyzamaaBaaa leaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baabe aaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUca RiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaOGaaCyzamaaBaaale aacaWG6baabeaakiabgEPielaahwgadaWgaaWcbaGaamOCaaqabaGc cqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacqaH4oqCaeqaaOGaaCyzam aaBaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWcbaGaeqiU dehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaO GaaCyzamaaBaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWc baGaamOEaaqabaaaaaa@B072@

The remarks in Section D.1.5 regarding the physical significance of tensor components also applies to tensor components in cylindrical-polar coordinates.

 

 

 

D.2.6 Constitutive equations in cylindrical-polar coordinates

 

The constitutive equations listed in Chapter 3 all relate some measure of stress in the solid (expressed as a tensor) to some measure of local internal deformation (deformation gradient, Eulerian strain, rate of deformation tensor, etc), also expressed as a tensor.  The constitutive equations can be used without modification in cylindrical-polar coordinates, as long as the matrices of Cartesian components of the various tensors are replaced by their equivalent matrices in spherical-polar coordinates.

 

For example, the stress-strain relations for an isotropic, linear elastic material in cylindrical-polar coordinates read

 


 

The cautionary remarks regarding anisotropic materials in D.1.6 also applies to cylindrical-polar coordinate systems.

 

 

 

D.2.7 Converting tensors between Cartesian and Spherical-Polar bases

 

Let S be a tensor, with components

S S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz S xx S xy S xz S yx S yy S yz S zx S xy S zz MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabggMi6oaadmaabaqbaeqabm WaaaqaaiaadofadaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaam4u amaaBaaaleaacaWGYbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcba GaamOCaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG YbaabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaO qaaiaadofadaWgaaWcbaGaeqiUdeNaamOEaaqabaaakeaacaWGtbWa aSbaaSqaaiaadQhacaWGYbaabeaaaOqaaiaadofadaWgaaWcbaGaam OEaiabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacaWG6baa beaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabggMi6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaa dmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamiEaiaadIhaae qaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWG tbWaaSbaaSqaaiaadIhacaWG6baabeaaaOqaaiaadofadaWgaaWcba GaamyEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamyE aaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG6baabeaaaOqaai aadofadaWgaaWcbaGaamOEaiaadIhaaeqaaaGcbaGaam4uamaaBaaa leaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhaca WG6baabeaaaaaakiaawUfacaGLDbaaaaa@8536@

in the cylindrical-polar basis { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B57@  and the Cartesian basis {i,j,k}, respectively.  The two sets of components are related by

S xx S xy S xz S yx S yy S yz S zx S xy S zz = cosθ sinθ 0 sinθ cosθ 0 0 0 1 S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz cosθ sinθ 0 sinθ cosθ 0 0 0 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaam4uam aaBaaaleaacaWG4bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaa dIhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadQhaae qaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamiEaaqabaaakeaacaWG tbWaaSbaaSqaaiaadMhacaWG5baabeaaaOqaaiaadofadaWgaaWcba GaamyEaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamiE aaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaai aadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2fa aiabg2da9maadmaabaqbaeqabmWaaaqaaiGacogacaGGVbGaai4Cai abeI7aXbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaa icdaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaaciGGJbGaai4Bai aacohacqaH4oqCaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI XaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmWaaaqaaiaadofada WgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG YbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOCaiaadQhaae qaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWGYbaabeaaaOqaaiaa dofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiaadofadaWgaa WcbaGaeqiUdeNaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQha caWGYbaabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiabeI7aXbqaba aakeaacaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaaaaaakiaawUfa caGLDbaacaaMc8+aamWaaeaafaqabeWadaaabaGaci4yaiaac+gaca GGZbGaeqiUdehabaGaci4CaiaacMgacaGGUbGaeqiUdehabaGaaGim aaqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiGacogaca GGVbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaigdaaaaacaGLBbGaayzxaaaaaa@A3EE@

S rr S rθ S rz S θr S θθ S θz S zr S zθ S zz = cosθ sinθ 0 sinθ cosθ 0 0 0 1 S xx S xy S xz S yx S yy S yz S zx S xy S zz cosθ sinθ 0 sinθ cosθ 0 0 0 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaam4uam aaBaaaleaacaWGYbGaamOCaaqabaaakeaacaWGtbWaaSbaaSqaaiaa dkhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWGYbGaamOEaa qabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaaGcbaGa am4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam4uamaaBa aaleaacqaH4oqCcaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamOE aiaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaeqiUdehabe aaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5w aiaaw2faaiabg2da9iaaykW7daWadaqaauaabeqadmaaaeaaciGGJb Gaai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyAaiaac6gacqaH4oqC aeaacaaIWaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehaba Gaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaGaaGymaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadm aaaeaacaWGtbWaaSbaaSqaaiaadIhacaWG4baabeaaaOqaaiaadofa daWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaaca WG4bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG4baa beaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadMhaaeqaaaGcbaGaam 4uamaaBaaaleaacaWG5bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqa aiaadQhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadM haaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaaaaGc caGLBbGaayzxaaWaamWaaeaafaqabeWadaaabaGaci4yaiaac+gaca GGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdeha baGaaGimaaqaaiGacohacaGGPbGaaiOBaiabeI7aXbqaaiGacogaca GGVbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaigdaaaaacaGLBbGaayzxaaaaaa@A3EE@

 

 

 

D.2.8 Vector Calculus using Cylindrical-Polar Coordinates

 

Calculating derivatives of scalar, vector and tensor functions of position in cylindrical-polar coordinates is complicated by the fact that the basis vectors are functions of position.  The results can be expressed in a compact form by defining the gradient operator, which, in spherical-polar coordinates, has the representation

e r r + e θ 1 r θ + e z z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyyIO7aaeWaaeaacaWHLb WaaSbaaSqaaiaadkhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciIT caWGYbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaala aabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciIT cqaH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacaWG6baabeaakmaala aabaGaeyOaIylabaGaeyOaIyRaamOEaaaaaiaawIcacaGLPaaaaaa@4C96@

In addition, the nonzero derivatives of the basis vectors are

e r θ = e θ e θ θ = e r (all other derivatives are zero) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWHLbWaaSbaaS qaaiaadkhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabg2da9iaahwga daWgaaWcbaGaeqiUdehabeaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacqGHciITcaWHLbWaaSba aSqaaiabeI7aXbqabaaakeaacqGHciITcqaH4oqCaaGaeyypa0Jaey OeI0IaaCyzamaaBaaaleaacaWGYbaabeaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaacIcacaqGHb GaaeiBaiaabYgacaqGGaGaae4BaiaabshacaqGObGaaeyzaiaabkha caqGGaGaaeizaiaabwgacaqGYbGaaeyAaiaabAhacaqGHbGaaeiDai aabMgacaqG2bGaaeyzaiaabohacaqGGaGaaeyyaiaabkhacaqGLbGa aeiiaiaabQhacaqGLbGaaeOCaiaab+gacaqGPaaaaa@7D4D@

 

The various derivatives of scalars, vectors and tensors can be expressed using operator notation as follows. 

 

 

Gradient of a scalar function: Let f(r,θ,z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWGYbGaaiilaiabeI 7aXjaacYcacaWG6bGaaiykaaaa@3830@  denote a scalar function of position.  The gradient of f is denoted by

f= e r r + e θ 1 r θ + e z z f= e r f r + e θ 1 r f θ + e z f z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaamOzaiabg2da9maabmaaba GaaCyzamaaBaaaleaacaWGYbaabeaakmaalaaabaGaeyOaIylabaGa eyOaIyRaamOCaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI7aXbqaba GcdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIylabaGa eyOaIyRaeqiUdehaaiabgUcaRiaahwgadaWgaaWcbaGaamOEaaqaba GcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadQhaaaaacaGLOaGaayzk aaGaamOzaiabg2da9iaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaa qaaiabgkGi2kaadAgaaeaacqGHciITcaWGYbaaaiabgUcaRiaahwga daWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkhaaa WaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeqiUdehaaiabgUca RiaahwgadaWgaaWcbaGaamOEaaqabaGcdaWcaaqaaiabgkGi2kaadA gaaeaacqGHciITcaWG6baaaaaa@684E@

Alternatively, in matrix form

f= f r , 1 r f θ , f z T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaamOzaiabg2da9maadmaaba WaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamOCaaaacaGGSaWa aSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadAgaae aacqGHciITcqaH4oqCaaGaaiilamaalaaabaGaeyOaIyRaamOzaaqa aiabgkGi2kaadQhaaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGub aaaaaa@4972@

 

 

Gradient of a vector function Let v= v r e r + v θ e θ + v z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIa amODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG6baabeaakiaahwga daWgaaWcbaGaamOEaaqabaaaaa@42F6@  be a vector function of position. The gradient of v is a tensor, which can be represented as a dyadic product of the vector with the gradient operator as

v= v r e r + v θ e θ + v z e z e r r + e θ 1 r θ + e z z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabgEGirlabg2da9maabmaaba GaamODamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOC aaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLb WaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaa dQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaaaOGaayjkaiaawM caaiabgEPiepaabmaabaGaaCyzamaaBaaaleaacaWGYbaabeaakmaa laaabaGaeyOaIylabaGaeyOaIyRaamOCaaaacqGHRaWkcaWHLbWaaS baaSqaaiabeI7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGYbaaamaa laaabaGaeyOaIylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahwgada WgaaWcbaGaamOEaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dQhaaaaacaGLOaGaayzkaaaaaa@607F@

The dyadic product can be expanded MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  but when evaluating the derivatives it is important to recall that the basis vectors are functions of the coordinate θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and consequently their derivatives may not vanish.  For example

1 r θ v r e r e θ = 1 r v r θ e r e θ + v r r e r θ e θ = 1 r v r θ e r e θ + v r r e θ e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaamOCaaaada WcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaadaqadaqaaiaadAha daWgaaWcbaGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaa GccaGLOaGaayzkaaGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqa aOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcqaH4oqC aaGaaCyzamaaBaaaleaacaWGYbaabeaakiabgEPielaahwgadaWgaa WcbaGaeqiUdehabeaakiabgUcaRmaalaaabaGaamODamaaBaaaleaa caWGYbaabeaaaOqaaiaadkhaaaWaaSaaaeaacqGHciITcaWHLbWaaS baaSqaaiaadkhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgEPielaa hwgadaWgaaWcbaGaeqiUdehabeaakiabg2da9maalaaabaGaaGymaa qaaiaadkhaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadkha aeqaaaGcbaGaeyOaIyRaeqiUdehaaiaahwgadaWgaaWcbaGaamOCaa qabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWk daWcaaqaaiaadAhadaWgaaWcbaGaamOCaaqabaaakeaacaWGYbaaai aahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWc baGaeqiUdehabeaaaaa@7E47@

Verify for yourself that the matrix representing the components of the gradient of a vector is

 


 

 

Divergence of a vector function Let v= v r e r + v θ e θ + v z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIa amODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG6baabeaakiaahwga daWgaaWcbaGaamOEaaqabaaaaa@42F6@  be a vector function of position. The divergence of v is a scalar, which can be represented as a dot product of the vector with the gradient operator as

v= e r r + e θ 1 r θ + e z z v r e r + v θ e θ + v z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaCODaiabg2da9m aabmaabaGaaCyzamaaBaaaleaacaWGYbaabeaakmaalaaabaGaeyOa IylabaGaeyOaIyRaamOCaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI 7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOa IylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahwgadaWgaaWcbaGaam OEaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadQhaaaaacaGL OaGaayzkaaGaeyyXIC9aaeWaaeaacaWG2bWaaSbaaSqaaiaadkhaae qaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadAhadaWg aaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaaki abgUcaRiaadAhadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqa aiaadQhaaeqaaaGccaGLOaGaayzkaaaaaa@630A@

Again, when expanding the dot product, it is important to remember to differentiate the basis vectors. Alternatively, the divergence can be expressed as trace(v) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gacaGGOaGaaCODaiabgEPielabgEGirlaacMcaaaa@3B65@ , which immediately gives

v v r r + v r r + 1 r v θ θ + v z z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaCODaiabggMi6o aalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGYbaabeaaaOqaaiab gkGi2kaadkhaaaGaey4kaSYaaSaaaeaacaWG2bWaaSbaaSqaaiaadk haaeqaaaGcbaGaamOCaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWG YbaaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacqaH4oqCaeqaaa GcbaGaeyOaIyRaeqiUdehaaiabgUcaRmaalaaabaGaeyOaIyRaamOD amaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2kaadQhaaaaaaa@528E@

 

Curl of a vector function Let v= v R e R + v θ e θ + v z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIa amODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG6baabeaakiaahwga daWgaaWcbaGaamOEaaqabaaaaa@42B6@  be a vector function of position. The curl of v is a vector, which can be represented as a cross product of the vector with the gradient operator as

×v= e r r + e θ 1 r θ + e z z × v r e r + v θ e θ + v z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaey41aqRaaCODaiabg2da9m aabmaabaGaaCyzamaaBaaaleaacaWGYbaabeaakmaalaaabaGaeyOa IylabaGaeyOaIyRaamOCaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI 7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOa IylabaGaeyOaIyRaeqiUdehaaiabgUcaRiaahwgadaWgaaWcbaGaam OEaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadQhaaaaacaGL OaGaayzkaaGaey41aq7aaeWaaeaacaWG2bWaaSbaaSqaaiaadkhaae qaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadAhadaWg aaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaaki abgUcaRiaadAhadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqa aiaadQhaaeqaaaGccaGLOaGaayzkaaaaaa@62A4@

The curl rarely appears in solid mechanics so the components will not be expanded in full

 

 

Divergence of a tensor function.   Let S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaaaa@31BC@  be a tensor, with dyadic representation

S= S rr e r e r + S rθ e r e θ + S rz e r e z + S θr e θ e r + S θθ e θ e θ + S θz e θ e z + S zr e z e r + S zθ e z e θ + S zz e z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHtbGaeyypa0JaaGPaVlaayk W7caaMc8UaaGPaVlaadofadaWgaaWcbaGaamOCaiaadkhaaeqaaOGa aCyzamaaBaaaleaacaWGYbaabeaakiabgEPielaahwgadaWgaaWcba GaamOCaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkhacqaH4oqC aeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgEPielaahwgada WgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOC aiaadQhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgEPiel aahwgadaWgaaWcbaGaamOEaaqabaaakeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8Uaam4uamaaBaaaleaacq aH4oqCcaWGYbaabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiab gEPielaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGtbWaaS baaSqaaiabeI7aXjabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7a XbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRa WkcaWGtbWaaSbaaSqaaiabeI7aXjaadQhaaeqaaOGaaCyzamaaBaaa leaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baabe aaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUca RiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaOGaaCyzamaaBaaale aacaWG6baabeaakiabgEPielaahwgadaWgaaWcbaGaamOCaaqabaGc cqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacqaH4oqCaeqaaOGaaCyzam aaBaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWcbaGaeqiU dehabeaakiabgUcaRiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaO GaaCyzamaaBaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWc baGaamOEaaqabaaaaaa@B072@

The divergence of S is a vector, which can be represented as

S= e r r + e θ 1 r θ + e z z S rr e r e r + S rθ e r e θ + S rz e r e z + S θr e θ e r + S θθ e θ e θ + S θz e θ e z + S zr e z e r + S zθ e z e θ + S zz e z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaC4uaiabg2da9i aaykW7caaMc8UaaGPaVpaabmaabaGaaCyzamaaBaaaleaacaWGYbaa beaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaacqGHRaWkca WHLbWaaSbaaSqaaiabeI7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWG YbaaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqiUdehaaiabgUcaRi aahwgadaWgaaWcbaGaamOEaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadQhaaaaacaGLOaGaayzkaaGaeyyXICTaaGPaVpaabmaaea qabeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaakiaahw gadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaa dkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGYbGaeqiUdehabe aakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSba aSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkhaca WG6baabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWH LbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaey4kaSIaaGPaVlaadofadaWgaaWcbaGaeqiU deNaamOCaaqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxk cXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaa leaacqaH4oqCcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4oqCae qaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIa am4uamaaBaaaleaacqaH4oqCcaWG6baabeaakiaahwgadaWgaaWcba GaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaamOEaaqabaaa keaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkca WGtbWaaSbaaSqaaiaadQhacaWGYbaabeaakiaahwgadaWgaaWcbaGa amOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey 4kaSIaam4uamaaBaaaleaacaWG6bGaeqiUdehabeaakiaahwgadaWg aaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXb qabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaakiaa hwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaai aadQhaaeqaaaaakiaawIcacaGLPaaacaaMc8oaaa@DFF4@

Evaluating the components of the divergence is an extremely tedious operation, because each of the basis vectors in the dyadic representation of S must be differentiated, in addition to the components themselves.  The final result (expressed as a column vector) is

S S rr r + S rr r + 1 r S θr θ + S zR z S θθ r 1 r S θθ θ + S rθ r + S rθ r + S θr r + S zθ z S zz z + S rz r + S rz r + 1 r S θz θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaeyyXICTaaC4uaiabggMi6o aadmaabaqbaeqabmqaaaqaamaalaaabaGaeyOaIyRaam4uamaaBaaa leaacaWGYbGaamOCaaqabaaakeaacqGHciITcaWGYbaaaiabgUcaRm aalaaabaGaam4uamaaBaaaleaacaWGYbGaamOCaaqabaaakeaacaWG YbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacq GHciITcaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaaGcbaGaeyOa IyRaeqiUdehaaiabgUcaRmaalaaabaGaeyOaIyRaam4uamaaBaaale aacaWG6bGaamOuaaqabaaakeaacqGHciITcaWG6baaaiabgkHiTmaa laaabaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam OCaaaaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOa IyRaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeyOaIy RaeqiUdehaaiabgUcaRmaalaaabaGaeyOaIyRaam4uamaaBaaaleaa caWGYbGaeqiUdehabeaaaOqaaiabgkGi2kaadkhaaaGaey4kaSYaaS aaaeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaamOC aaaacqGHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaeqiUdeNaamOCaa qabaaakeaacaWGYbaaaiabgUcaRmaalaaabaGaeyOaIyRaam4uamaa BaaaleaacaWG6bGaeqiUdehabeaaaOqaaiabgkGi2kaadQhaaaaaba WaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaa aOqaaiabgkGi2kaadQhaaaGaey4kaSYaaSaaaeaacqGHciITcaWGtb WaaSbaaSqaaiaadkhacaWG6baabeaaaOqaaiabgkGi2kaadkhaaaGa ey4kaSYaaSaaaeaacaWGtbWaaSbaaSqaaiaadkhacaWG6baabeaaaO qaaiaadkhaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCaaaadaWc aaqaaiabgkGi2kaadofadaWgaaWcbaGaeqiUdeNaamOEaaqabaaake aacqGHciITcqaH4oqCaaaaaaGaay5waiaaw2faaaaa@A395@