Appendix E
Miscellaneous derivations

 

 

 

 

E.1. Relation between the areas of the faces of a tetrahedron

 

 

For the tetrahedron shown in the figure, we prove that:

d A 1 d A (n) = n 1 d A 2 d A (n) = n 2 d A 3 d A (n) = n 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamyqamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWGbbWaaWbaaSqabeaacaGGOaGa amOBaiaacMcaaaaaaOGaeyypa0JaamOBamaaBaaaleaacaaIXaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaik daaeqaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGa aiykaaaaaaGccqGH9aqpcaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSaaaeaacaWGKbGaamyqamaaBaaaleaacaaIZaaabeaaaOqaai aadsgacaWGbbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaOGa eyypa0JaamOBamaaBaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7aaa@7667@

where d A (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaaaaa@3507@  is the area of the face with normal n, and d A i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaamyAaa qabaaaaa@33A8@  is the face with normal e i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaWGPb aabeaaaaa@33D4@

 

Note that

d A 1 = 1 2 bcd A 2 = 1 2 acd A 3 = 1 2 ab MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadkgacaWG JbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGKbGaamyqamaaBaaaleaacaaIYaaa beaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamyyaiaado gacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamizaiaadgeadaWgaaWcbaGaaG4maaqabaGccq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadggacaWGIbaaaa@663A@

Note also that we can compute the area of the face with normal n by taking cross products of the vectors defining the sides of the face:

d A (n) n= 1 2 c e 3 b e 2 × a e 1 b e 2 = 1 2 bc e 1 +ac e 2 +ab e 3 d A (n) n=d A 1 e 1 +d A 2 e 2 +d A 3 e 3 n= d A 1 d A (n) e 1 + d A 2 d A (n) e 2 + d A 3 d A (n) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaamyqamaaCaaaleqaba Gaaiikaiaad6gacaGGPaaaaOGaaCOBaiabg2da9maalaaabaGaaGym aaqaaiaaikdaaaWaaeWaaeaacaWGJbGaaCyzamaaBaaaleaacaaIZa aabeaakiabgkHiTiaadkgacaWHLbWaaSbaaSqaaiaaikdaaeqaaaGc caGLOaGaayzkaaGaey41aq7aaeWaaeaacaWGHbGaaCyzamaaBaaale aacaaIXaaabeaakiabgkHiTiaadkgacaWHLbWaaSbaaSqaaiaaikda aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG OmaaaadaqadaqaaiaadkgacaWGJbGaaCyzamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadggacaWGJbGaaCyzamaaBaaaleaacaaIYaaabe aakiabgUcaRiaadggacaWGIbGaaCyzamaaBaaaleaacaaIZaaabeaa aOGaayjkaiaawMcaaaqaaiabgkDiElaadsgacaWGbbWaaWbaaSqabe aacaGGOaGaamOBaiaacMcaaaGccaWHUbGaeyypa0Jaamizaiaadgea daWgaaWcbaGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaamizaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaWHLbWa aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamizaiaadgeadaWgaaWcba GaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyO0 H4TaaCOBaiabg2da9maalaaabaGaamizaiaadgeadaWgaaWcbaGaaG ymaaqabaaakeaacaWGKbGaamyqamaaCaaaleqabaGaaiikaiaad6ga caGGPaaaaaaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkda WcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamiz aiaadgeadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaGccaWHLb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacaWGKbGaamyq amaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWGbbWaaWbaaSqabe aacaGGOaGaamOBaiaacMcaaaaaaOGaaCyzamaaBaaaleaacaaIZaaa beaaaaaa@93D0@

so that

d A 1 d A (n) = n 1 d A 2 d A (n) = n 2 d A 3 d A (n) = n 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamyqamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWGbbWaaWbaaSqabeaacaGGOaGa amOBaiaacMcaaaaaaOGaeyypa0JaamOBamaaBaaaleaacaaIXaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaik daaeqaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGa aiykaaaaaaGccqGH9aqpcaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSaaaeaacaWGKbGaamyqamaaBaaaleaacaaIZaaabeaaaOqaai aadsgacaWGbbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaOGa eyypa0JaamOBamaaBaaaleaacaaIZaaabeaakiaaykW7aaa@6D25@

as required.

 

 

 

E.2. Relation between area elements before and after deformation

 

Consider an element of area d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGimaa qabaaaaa@3374@  with normal n 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaGimaaaaaa a@32BD@  in a deformable solid, as shown below. 

 


Suppose the solid is deformed by subjecting it to some loading, and let F ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B3@  denote the components of the deformation gradient tensor field in the solid. The area element deforms with the solid, and has a new area dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeaaaa@328E@  and normal n, as shown in the figure.  We plan to prove that the deformed area element is related to its undeformed area through

dA n i =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaa0baaSqaai aadMgaaeaaaaGccqGH9aqpcaWGkbGaamOramaaDaaaleaacaWGRbGa amyAaaqaaiabgkHiTiaaigdaaaGccaWGUbWaa0baaSqaaiaadUgaae aacaaIWaaaaOGaamizaiaadgeadaWgaaWcbaGaaGimaaqabaaaaa@406C@

where J=det( F ij ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacMca aaa@39B6@

 

Start by noting that the area d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGimaa qabaaaaa@3374@  before deformation can be computed by taking the cross product of two infinitesimal vectors d v i ,d w i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaaGPaVlaaykW7caaMc8UaamizaiaadEhadaWgaaWc baGaamyAaaqabaaaaa@3C37@  bounding the area element in the undeformed configuration

d A 0 n i 0 = ijk d v j d w k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGimaa qabaGccaWGUbWaa0baaSqaaiaadMgaaeaacaaIWaaaaOGaeyypa0Ja eyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaWGKbGaam ODamaaBaaaleaacaWGQbaabeaakiaadsgacaWG3bWaaSbaaSqaaiaa dUgaaeqaaaaa@41E7@

Note that the infinitesimal vectors map to F ij d w j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccaWGKbGaam4DamaaBaaaleaacaWGQbaabeaaaaa@36BE@ , F ij d v j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccaWGKbGaamODamaaBaaaleaacaWGQbaabeaaaaa@36BD@  in the deformed configuration.  Therefore the area after deformation is given by

dA n i = ijk F jm d v m F kn d w n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaa0baaSqaai aadMgaaeaaaaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaamyAaiaadQga caWGRbaabeaakiaadAeadaWgaaWcbaGaamOAaiaad2gaaeqaaOGaam izaiaadAhadaWgaaWcbaGaamyBaaqabaGccaWGgbWaaSbaaSqaaiaa dUgacaWGUbaabeaakiaadsgacaWG3bWaaSbaaSqaaiaad6gaaeqaaa aa@4609@

Let F ij 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbGaamOAaa qaaiabgkHiTiaaigdaaaaaaa@355C@  denote the inverse of the deformation gradient tensor, i.e. F ik F kj 1 = δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaam4Aaa qabaGccaWGgbWaa0baaSqaaiaadUgacaWGQbaabaGaeyOeI0IaaGym aaaakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3CFB@ . Then, we could write

dA n i = F pl F li 1 pjk F jm F kn d v m d w n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaa0baaSqaai aadMgaaeaaaaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadchacaWGSbaa beaakiaadAeadaqhaaWcbaGaamiBaiaadMgaaeaacqGHsislcaaIXa aaaOGaeyicI48aaSbaaSqaaiaadchacaWGQbGaam4AaaqabaGccaWG gbWaaSbaaSqaaiaadQgacaWGTbaabeaakiaadAeadaWgaaWcbaGaam 4Aaiaad6gaaeqaaOGaamizaiaadAhadaWgaaWcbaGaamyBaaqabaGc caWGKbGaam4DamaaBaaaleaacaWGUbaabeaaaaa@4D80@

Now, recall the identity

λ=detAλ= 1 6 ijk lmn A li A mj A nk lmn λ= ijk A il A jm A kn MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH7oaBcqGH9aqpciGGKbGaai yzaiaacshacaWHbbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqaH7oaBcqGH9aqpcaaMc8UaaGPaVpaalaaabaGaaGym aaqaaiaaiAdaaaGaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4Aaa qabaGccqGHiiIZdaWgaaWcbaGaamiBaiaad2gacaWGUbaabeaakiaa dgeadaWgaaWcbaGaamiBaiaadMgaaeqaaOGaamyqamaaBaaaleaaca WGTbGaamOAaaqabaGccaWGbbWaaSbaaSqaaiaad6gacaWGRbaabeaa kiaaykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8Uaeyi1HSTaaGPaVlaaykW7caaMc8UaeyicI48aaSbaaSqaaiaadY gacaWGTbGaamOBaaqabaGccqaH7oaBcaaMc8UaaGPaVlabg2da9iaa ykW7caaMc8UaaGPaVlabgIGiopaaBaaaleaacaWGPbGaamOAaiaadU gaaeqaaOGaamyqamaaBaaaleaacaWGPbGaamiBaaqabaGccaWGbbWa aSbaaSqaaiaadQgacaWGTbaabeaakiaadgeadaWgaaWcbaGaam4Aai aad6gaaeqaaaaaaa@BC13@

so that

dA n i = F li 1 J lmn d v m d w n = F li 1 Jd A 0 n l 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaa0baaSqaai aadMgaaeaaaaGccqGH9aqpcaWGgbWaa0baaSqaaiaadYgacaWGPbaa baGaeyOeI0IaaGymaaaakiaadQeacqGHiiIZdaWgaaWcbaGaamiBai aad2gacaWGUbaabeaakiaadsgacaWG2bWaaSbaaSqaaiaad2gaaeqa aOGaamizaiaadEhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaWGgb Waa0baaSqaaiaadYgacaWGPbaabaGaeyOeI0IaaGymaaaakiaadQea caWGKbGaamyqamaaBaaaleaacaaMc8UaaGimaaqabaGccaWGUbWaa0 baaSqaaiaadYgaaeaacaaIWaaaaaaa@5301@

where J=det( F ij ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacMca aaa@39B6@ , giving the required result.

 

 

 

E.3. Time derivatives of integrals over volumes within a deforming solid

 

Consider the deformable solid sketched below. 

 


 

Let ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3385@  denote the mass density of the solid in the original configuration, and let ρ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@329F@  denote the mass density in the deformed configuration. (Both ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3385@  and ρ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@329F@  can vary with position in the solid). Let  V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa a@32A0@  denote a closed region within the undeformed solid, and let V be the same region of the solid in the deformed configuration.  Suppose that

v i = u i t MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki abg2da9maalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadshaaaaaaa@39F7@

denotes the velocity field within the body.  We shall show that

d dt V ρ v i dV = V ρ d v i dt dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaiWaaeaadaWdrbqaaiabeg8aYjaaykW7caWG2bWaaSbaaSqa aiaadMgaaeqaaaqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamOvaa Gaay5Eaiaaw2haaiabg2da9maapefabaGaeqyWdi3aaSaaaeaacaWG KbGaamODamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaa WcbaGaamOvaaqab0Gaey4kIipakiaadsgacaWGwbaaaa@4CE6@

and also that

d dt V ijk y j ρ v k dV = V ρ ijk y j d v k dt dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaiWaaeaadaWdrbqaaiabgIGiopaaBaaaleaacaWGPbGaamOA aiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGQbaabeaakiabeg8aYj aaykW7caWG2bWaaSbaaSqaaiaadUgaaeqaaaqaaiaadAfaaeqaniab gUIiYdGccaWGKbGaamOvaaGaay5Eaiaaw2haaiabg2da9maapefaba GaeqyWdiNaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGc caWG5bWaaSbaaSqaaiaadQgaaeqaaOWaaSaaaeaacaWGKbGaamODam aaBaaaleaacaWGRbaabeaaaOqaaiaadsgacaWG0baaaaWcbaGaamOv aaqab0Gaey4kIipakiaadsgacaWGwbGaaGPaVdaa@5BC9@

At first glance, this looks obvious MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  why not just take the derivative under the integral sign?  You can’t do this, however, because the volume V changes with time, as the solid is deforming.  In addition, the mass density varies with time, because of the deformation, so even if we could take the time derivative under the integral, we’d end up with an additional term. To do the derivative properly, we first need to change variables so the integral is evaluated over the undeformed volume (which is independent of time). Thus

V ρ v i dV= V 0 ρ v i Jd V 0 = V 0 ρ 0 v i d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHbpGCcaWG2bWaaSbaaS qaaiaadMgaaeqaaOGaamizaiaadAfacqGH9aqpdaWdrbqaaiabeg8a YjaadAhadaWgaaWcbaGaamyAaaqabaGccaWGkbGaamizaiaadAfada WgaaWcbaGaaGimaaqabaGccqGH9aqpdaWdrbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaaabaGaam OvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipaaSqaaiaadAfa daWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdaaleaacaWGwbaabe qdcqGHRiI8aOGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaaaaa@52B1@

where

J=det( F ij )= dV d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacMca cqGH9aqpdaWcaaqaaiaadsgacaWGwbaabaGaamizaiaadAfadaWgaa WcbaGaaGimaaqabaaaaaaa@3F3A@

and we have recalled a result from the Kinematics section

Jρ= ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabeg8aYjabg2da9iabeg8aYn aaBaaaleaacaaIWaaabeaaaaa@371A@

Now, we can happily differentiate.  The mass density in the undeformed configuration does not vary with time, so that

d dt V 0 ρ 0 v i d V 0 = V 0 ρ 0 d v i dt d V 0 = V ρ d v i dt dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaiWaaeaadaWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaa kiaaykW7caWG2bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadAfadaWgaa adbaGaaGimaaqabaaaleqaniabgUIiYdGccaWGKbGaamOvamaaBaaa leaacaaIWaaabeaaaOGaay5Eaiaaw2haaiabg2da9maapefabaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOWaaSaaaeaacaWGKbGaamODamaa BaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaaWcbaGaamOvam aaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipakiaadsgacaWGwbWa aSbaaSqaaiaaicdaaeqaaOGaeyypa0Zaa8quaeaacqaHbpGCaSqaai aadAfaaeqaniabgUIiYdGcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqa aiaadMgaaeqaaaGcbaGaamizaiaadshaaaGaamizaiaadAfaaaa@5F3D@

The last expression was obtained by changing variables in the integral back to the deformed configuration.  This is the first result we wanted.

 

To show the second result, follow exactly the same procedure, until you obtain

d dt V 0 ijk y j v k ρ 0 d V 0 = V 0 ρ 0 ijk d y j dt v k + y j d v k dt d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaiWaaeaadaWdrbqaaiabgIGiopaaBaaaleaacaWGPbGaamOA aiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGQbaabeaakiaaykW7ca WG2bWaaSbaaSqaaiaadUgaaeqaaaqaaiaadAfadaWgaaadbaGaaGim aaqabaaaleqaniabgUIiYdGccqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaaMc8UaamizaiaadAfadaWgaaWcbaGaaGimaaqabaaakiaawUha caGL9baacqGH9aqpdaWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabe aakiabgIGiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOWaaeWa aeaadaWcaaqaaiaadsgacaWG5bWaaSbaaSqaaiaadQgaaeqaaaGcba GaamizaiaadshaaaGaamODamaaBaaaleaacaWGRbaabeaakiabgUca RiaadMhadaWgaaWcbaGaamOAaaqabaGcdaWcaaqaaiaadsgacaWG2b WaaSbaaSqaaiaadUgaaeqaaaGcbaGaamizaiaadshaaaaacaGLOaGa ayzkaaaaleaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRi I8aOGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaaaaa@6AED@

Now, observe that

ijk d y j dt v k = ijk v j v k =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGcdaWcaaqaaiaadsgacaWG5bWaaSbaaSqaaiaadQga aeqaaaGcbaGaamizaiaadshaaaGaamODamaaBaaaleaacaWGRbaabe aakiabg2da9iabgIGiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqa aOGaamODamaaBaaaleaacaWGQbaabeaakiaadAhadaWgaaWcbaGaam 4AaaqabaGccqGH9aqpcaaIWaaaaa@4813@

(the cross product of two parallel vectors is zero) so substituting this into the preceding equation and changing variables in the integral as before gives the required result.

 

 

 

E.4. Time Derivatives of the Curvature Vector for a Deforming Rod

 

Consider a deforming rod, as shown below.

 


 

· Let x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  denote arc-length coordinate of a material particle on the axis of the undeformed rod;

 

· Let s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caaaa@31D8@  denote the arc-length coordinate of this particle after deformation.

 

· Define basis vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  attached to the deformed rod, following the convention described in Section 10.2.

 

· Define an angular velocity vector ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  and curvature vector κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdaaa@3226@  through

d m i dt =ω× m i d m i ds =κ× m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaWGPbaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iaahM8acqGH xdaTcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVpaalaaabaGaamizaiaah2gadaWgaaWcbaGaamyAaaqabaaake aacaWGKbGaam4CaaaacqGH9aqpcaWH6oGaey41aqRaaCyBamaaBaaa leaacaWGPbaabeaaaaa@72FC@

 

 

We shall show that the gradient of the angular velocity vector characterizing the rotation of the rod’s cross-section is related to the time derivative of the curvature vector by

dω ds = κ = dκ dt ω×κ+ d x 3 ds d s ˙ d x 3 κ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyYdaqaaiaads gacaWGZbaaaiabg2da9maaxacabaGaaCOUdaWcbeqaaiabgEGirdaa kiabg2da9maalaaabaGaamizaiaahQ7aaeaacaWGKbGaamiDaaaacq GHsislcaWHjpGaey41aqRaaCOUdiabgUcaRmaalaaabaGaamizaiaa dIhadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaam4CaiaaxcW7aa WaaSaaaeaacaWGKbGabm4CayaacaaabaGaamizaiaadIhadaWgaaWc baGaaG4maaqabaaaaOGaaCOUdaaa@5146@

To see this, start by differentiating the definition of the angular velocity vector with respect to arc length

d 2 m i dsdt = dω ds × m i +ω× d m i ds = dω ds × m i +ω×(κ× m i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaOGaaCyBamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG ZbGaamizaiaadshaaaGaeyypa0ZaaSaaaeaacaWGKbGaaCyYdaqaai aadsgacaWGZbaaaiabgEna0kaah2gadaWgaaWcbaGaamyAaaqabaGc cqGHRaWkcaWHjpGaey41aq7aaSaaaeaacaWGKbGaaCyBamaaBaaale aacaWGPbaabeaaaOqaaiaadsgacaWGZbaaaiabg2da9maalaaabaGa amizaiaahM8aaeaacaWGKbGaam4CaaaacqGHxdaTcaWHTbWaaSbaaS qaaiaadMgaaeqaaOGaey4kaSIaaCyYdiabgEna0kaacIcacaWH6oGa ey41aqRaaCyBamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@5FD5@

and, similarly, differentiating the definition of the curvature vector with respect to time

d dt d m i ds = d dt d x 3 ds d m i d x 3 = d s ˙ d x 3 d x 3 ds d m i ds + d 2 m i dsdt = dκ dt × m i +κ×(ω× m i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaSaaaeaacaWGKbGaaCyBamaaBaaaleaacaWGPbaabeaaaOqa aiaadsgacaWGZbaaaiabg2da9maalaaabaGaamizaaqaaiaadsgaca WG0baaamaabmaabaWaaSaaaeaacaWGKbGaamiEamaaBaaaleaacaaI ZaaabeaaaOqaaiaadsgacaWGZbaaamaalaaabaGaamizaiaah2gada WgaaWcbaGaamyAaaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaI ZaaabeaaaaaakiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaai aadsgaceWGZbGbaiaaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaa beaaaaGcdaWcaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaa GcbaGaamizaiaadohaaaWaaSaaaeaacaWGKbGaaCyBamaaBaaaleaa caWGPbaabeaaaOqaaiaadsgacaWGZbaaaiabgUcaRmaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaah2gadaWgaaWcbaGaamyAaaqa baaakeaacaWGKbGaam4CaiaadsgacaWG0baaaiabg2da9maalaaaba GaamizaiaahQ7aaeaacaWGKbGaamiDaaaacqGHxdaTcaWHTbWaaSba aSqaaiaadMgaaeqaaOGaey4kaSIaaCOUdiabgEna0kaacIcacaWHjp Gaey41aqRaaCyBamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@7674@

where s ˙ =(ds/dt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4CayaacaGaeyypa0Jaaiikaiaads gacaWGZbGaai4laiaadsgacaWG0bGaaiykaaaa@38B6@  with x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  held fixed. The preceding two results show that

dω ds × m i +ω×(κ× m i )= dκ dt × m i +κ×(ω× m i )+ d s ˙ d x 3 d x 3 ds κ× m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyYdaqaaiaads gacaWGZbaaaiabgEna0kaah2gadaWgaaWcbaGaamyAaaqabaGccqGH RaWkcaWHjpGaey41aqRaaiikaiaahQ7acqGHxdaTcaWHTbWaaSbaaS qaaiaadMgaaeqaaOGaaiykaiabg2da9maalaaabaGaamizaiaahQ7a aeaacaWGKbGaamiDaaaacqGHxdaTcaWHTbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSIaaCOUdiabgEna0kaacIcacaWHjpGaey41aqRaaCyB amaaBaaaleaacaWGPbaabeaakiaacMcacqGHRaWkdaWcaaqaaiaads gaceWGZbGbaiaaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aaGcdaWcaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaGcba GaamizaiaadohaaaGaaCOUdiabgEna0kaah2gadaWgaaWcbaGaamyA aaqabaaaaa@68C0@

Next, note that we can expand the triple cross-products (see Appendix A) as

κ×(ω× m i )ω×(κ× m i )= κ m i ω ωκ m i ω m i κ ωκ m i = κ m i ω ω m i κ= m i × κ×ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH6oGaey41aqRaaiikaiaahM 8acqGHxdaTcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgkHi TiaahM8acqGHxdaTcaGGOaGaaCOUdiabgEna0kaah2gadaWgaaWcba GaamyAaaqabaGccaGGPaGaeyypa0ZaaeWaaeaacaWH6oGaeyyXICTa aCyBamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaahM8acq GHsisldaqadaqaaiaahM8acqGHflY1caWH6oaacaGLOaGaayzkaaGa aCyBamaaBaaaleaacaWGPbaabeaakiabgkHiTmaadmaabaWaaeWaae aacaWHjpGaeyyXICTaaCyBamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaiaahQ7acqGHsisldaqadaqaaiaahM8acqGHflY1caWH6o aacaGLOaGaayzkaaGaaCyBamaaBaaaleaacaWGPbaabeaaaOGaay5w aiaaw2faaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyyp a0ZaaeWaaeaacaWH6oGaeyyXICTaaCyBamaaBaaaleaacaWGPbaabe aaaOGaayjkaiaawMcaaiaahM8acqGHsisldaqadaqaaiaahM8acqGH flY1caWHTbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaC OUdiabg2da9iabgkHiTiaah2gadaWgaaWcbaGaamyAaaqabaGccqGH xdaTdaqadaqaaiaahQ7acqGHxdaTcaWHjpaacaGLOaGaayzkaaaaaa a@ED37@

Hence, we conclude that

dω ds × m i = dκ dt × m i +(κ×ω)× m i + d s ˙ d x 3 d x 3 ds κ× m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyYdaqaaiaads gacaWGZbaaaiabgEna0kaah2gadaWgaaWcbaGaamyAaaqabaGccqGH 9aqpdaWcaaqaaiaadsgacaWH6oaabaGaamizaiaadshaaaGaey41aq RaaCyBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaacIcacaWH6oGa ey41aqRaaCyYdiaacMcacqGHxdaTcaWHTbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaWGKbGabm4CayaacaaabaGaamizaiaa dIhadaWgaaWcbaGaaG4maaqabaaaaOWaaSaaaeaacaWGKbGaamiEam aaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWGZbaaaiaahQ7acqGH xdaTcaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@5DA2@

This result must hold for all three vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ , and therefore

dω ds = dκ dt (ω×κ)+ d s ˙ d x 3 d x 3 ds κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyYdaqaaiaads gacaWGZbaaaiabg2da9maalaaabaGaamizaiaahQ7aaeaacaWGKbGa amiDaaaacqGHsislcaGGOaGaaCyYdiabgEna0kaahQ7acaGGPaGaey 4kaSYaaSaaaeaacaWGKbGabm4CayaacaaabaGaamizaiaadIhadaWg aaWcbaGaaG4maaqabaaaaOWaaSaaaeaacaWGKbGaamiEamaaBaaale aacaaIZaaabeaaaOqaaiaadsgacaWGZbaaaiaahQ7aaaa@4CF3@

as stated.