10.2 Motion and Deformation of slender rods

 

 

The figure below illustrates the problem to be solved.   We suppose that a long, initially straight rod with length L 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaaIWaaabeaaaa a@3297@  is subjected to forces and moments that cause it to stretch to a new total length L, as well as to bend and twist into a complex three dimensional shape, which we wish to determine.  The initial shape need not necessarily be stress free.  Consequently, we can solve problems involving a rod that is bent and twisted in its unloaded configuration (such as a helical spring) by first mapping it onto an intermediate, straight reference configuration, and then analyzing the deformation of this shape.

 

 


 

 

10.2.1 Variables characterizing the geometry of the rod’s cross-section

 

The figure above illustrates a generic cross-section of the (undeformed) rod. We will characterize the shape of the cross-section as follows:

 

1. We introduce three mutually perpendicular, unit basis vectors e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@ , with e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  pointing parallel to the axis of the undeformed cylinder, and e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  parallel to the principal moments of area of the (undeformed) cross section. 

 

2. We introduce a coordinate system ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@36C6@  within the cross section, with origin at the centroid of the cross-section.

 

3. The cross-sectional area of the rod is denoted by A= A d A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9maapefabaGaamizaa WcbaGaamyqaaqab0Gaey4kIipakiaadgeaaaa@3775@

 

4. The principal moments of area of the cross-section are defined as

I 1 = A x 2 2 dA I 2 = A x 1 2 dA I 3 = A x 1 2 + x 2 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9maapefabaGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaa kiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamysamaaBaaaleaaca aIYaaabeaakiabg2da9maapefabaGaamiEamaaDaaaleaacaaIXaaa baGaaGOmaaaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamysam aaBaaaleaacaaIZaaabeaakiabg2da9maapefabaWaaeWaaeaacaWG 4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamiEamaaDa aaleaacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadsgacaWG bbaaleaacaWGbbaabeqdcqGHRiI8aaaa@82E6@

 

5. We define a moment of area tensor H for the cross-section, with components H 11 = I 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamisamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcaWGjbWaaSbaaSqaaiaaigdaaeqaaaaa@3614@ , H 22 = I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamisamaaBaaaleaacaaIYaGaaGOmaa qabaGccqGH9aqpcaWGjbWaaSbaaSqaaiaaikdaaeqaaaaa@3617@ , H 33 = I 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamisamaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcaWGjbWaaSbaaSqaaiaaiodaaeqaaaaa@361A@  and all other components zero.

 

6. In calculations to follow, it will be helpful to note that, because of the choice of origin and coordinate system,

A x 1 dA = A x 2 dA = A x 1 x 2 dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccqGH 9aqpcaaMc8+aa8quaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaam izaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccqGH9aqpcaaMc8+a a8quaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaale aacaaIYaaabeaakiaadsgacaWGbbGaeyypa0JaaGimaaWcbaGaamyq aaqab0Gaey4kIipaaaa@4DCD@

 

Principal moments of area and their directions are listed for a few simple geometries in the table below.  Recall also that area moments of inertia for hollow sections can be calculated by subtraction.

 


 

 

 

10.2.2 Coordinate systems and variables characterizing the deformation of a rod

 

A generic twisted rod is illustrated in the figure. The deformation of the rod is described as follows:

 

· The orientation of the straight rod is characterized using the e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  basis described in the preceding section.

 

· The position vector of a material particle in the reference configuration is x= x i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iaadIhadaWgaaWcba GaamyAaaqabaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaaaa@3710@ , where x 1 = x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaa aa@3783@  corresponds to the centroid of the cross section, and x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  is the height above the base of the cylinder.

 

· After deformation, the axis of the cylinder lies on a smooth curve.  The point that lies at x= x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iaadIhadaWgaaWcba GaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@36AE@  in the undeformed solid moves to a new position y=r( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiabg2da9iaahkhacaGGOaGaam iEamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@372C@  after deformation.

 

· The orientation of the cross-section after deformation will be described by introducing a basis of mutually perpendicular unit vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ , chosen so that m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  is parallel to the axis of the deformed rod, and is m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  parallel to the line of material points that lay along e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  in the reference configuration (or, more precisely, parallel to the projection of this line perpendicular to m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  ).  Note that the three basis vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  are all functions of x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@ , and if the rod is moving, they are also functions of time.

 

· The orientation of m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  can be specified by three Euler angles (θ,ϕ,ψ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabeI7aXjaacYcacqaHvpGzca GGSaGaeqiYdKNaaiykaaaa@38E5@ , which characterize the rigid rotation that maps e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  onto  m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ .   To visualize the significance of the three angles, note that the rotation can be accomplished in three stages, as shown below: (i) rotate the basis vectors through an angle ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@  about the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis.   This results in a new set of vectors e ^ 1 , e ^ 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaaceWHLbGbaKaadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyzayaajaWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaahwgadaWgaaWcbaGaaG4maaqabaaakiaawUhacaGL9b aaaaa@3A31@ ; (ii) Rotate these new vectors through an angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  about the e ^ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyzayaajaWaaSbaaSqaaiaaikdaae qaaaaa@32C6@  axis.  This rotates the vectors onto a second configuration e ˜ 1 , e ^ 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaaceWHLbGbaGaadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyzayaajaWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaah2gadaWgaaWcbaGaaG4maaqabaaakiaawUhacaGL9b aaaaa@3A38@ ; (iii) finally, rotate these vectors through angle ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@  about the m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  direction, to create the m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  vectors.   


 

 

· Relationships between the Euler angles and the curve characterizing the axis of the rod will be given shortly: these results will show that the angles ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@  and θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  can be determined from the shape of the axis.   The angle ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@  is an independent degree of freedom, and quantifies the rotation of the rod’s cross-section about its axis.  

 

· We let s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caaaa@31D8@  denote the arc length measured along the axis of the rod in the deformed configuration.

 

· The velocity of the rod is characterized by the velocity vector of its axis, v=dr/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadsgacaWHYbGaai 4laiaadsgacaWG0baaaa@375E@

 

· The rate of rotation of the rod is characterized by the angular velocity ω= ω i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iabeM8a3naaBaaale aacaWGPbaabeaakiaah2gadaWgaaWcbaGaamyAaaqabaaaaa@383C@  of the basis vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ .  It will be shown in Sect 10.2.3 that the angular velocity can be related to the velocity v of the bar’s axis and its twist ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@  by

ω= m 3 × dv ds + ψ ˙ m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iaah2gadaWgaaWcba GaaG4maaqabaGccqGHxdaTdaWcaaqaaiaadsgacaWH2baabaGaamiz aiaadohaaaGaey4kaSIafqiYdKNbaiaacaWHTbWaaSbaaSqaaiaaio daaeqaaaaa@3FAC@

 

· The acceleration of the rod is characterized by the acceleration vector of its axis, a=dv/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadsgacaWH2bGaai 4laiaadsgacaWG0baaaa@374D@

 

· The angular acceleration of the rod is characterized by the angular acceleration α= α i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9iabeg7aHnaaBaaale aacaWGPbaabeaakiaah2gadaWgaaWcbaGaamyAaaqabaaaaa@37F6@  of the basis vectors.  It will be shown below that the angular acceleration can be related to the acceleration a and velocity v of the bar’s axis and its twist ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@  by

α= dω dt = m 3 × da ds 2 dv ds m 3 m 3 × dv ds + dψ dt dv ds dv ds m 3 m 3 + d 2 ψ d t 2 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9maalaaabaGaamizai aahM8aaeaacaWGKbGaamiDaaaacqGH9aqpcaWHTbWaaSbaaSqaaiaa iodaaeqaaOGaey41aq7aaSaaaeaacaWGKbGaaCyyaaqaaiaadsgaca WGZbaaaiabgkHiTiaaikdadaqadaqaamaalaaabaGaamizaiaahAha aeaacaWGKbGaam4CaaaacqGHflY1caWHTbWaaSbaaSqaaiaaiodaae qaaaGccaGLOaGaayzkaaGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0oaalaaabaGaamizaiaahAhaaeaacaWGKbGaam4CaaaacqGHRa WkdaWcaaqaaiaadsgacqaHipqEaeaacaWGKbGaamiDaaaadaGadaqa amaalaaabaGaamizaiaahAhaaeaacaWGKbGaam4CaaaacqGHsislda qadaqaamaalaaabaGaamizaiaahAhaaeaacaWGKbGaam4CaaaacqGH flY1caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaaC yBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaiabgUcaRmaa laaabaGaamizamaaCaaaleqabaGaaGOmaaaakiabeI8a5bqaaiaads gacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaah2gadaWgaaWcbaGa aG4maaqabaaaaa@7483@

 

 

 

10.2.3 Additional deformation measures and useful kinematic relations

 

In this section we introduce some additional measures of the deformation of the rod, as well as several useful relations between the various deformation measures.

 

· The curve corresponding to the axis of the deformed rod is often characterized by its tangent, normal and binormal vectors, together with its curvature, and its torsion.   These are defined as follows.

 

1. The tangent vector t= dr ds = dr d x 3 d x 3 ds = m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9maalaaabaGaamizai aahkhaaeaacaWGKbGaam4CaaaacqGH9aqpdaWcaaqaaiaadsgacaWH YbaabaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG Zbaaaiabg2da9iaah2gadaWgaaWcbaGaaG4maaqabaaaaa@443A@

 

2. The normal vector and curvature are defined so that

κn= dt ds = d m 3 d x 3 d x 3 ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSMaaCOBaiabg2da9maalaaaba GaamizaiaahshaaeaacaWGKbGaam4CaaaacqGH9aqpdaWcaaqaaiaa dsgacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadIhada WgaaWcbaGaaG4maaqabaaaaOWaaSaaaeaacaWGKbGaamiEamaaBaaa leaacaaIZaaabeaaaOqaaiaadsgacaWGZbaaaaaa@43F1@ ,

where n is a unit vector

 

3. The binormal vector is defined as b=t×n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaahshacqGHxdaTca WHUbaaaa@36DC@

 

4. The triad of unit vectors {t,n,b} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahshacaGGSaGaaCOBaiaacY cacaWHIbGaaiyFaaaa@371F@  defines the Frenet Basis for the curve

 

5. The torsion of the curve is defined as τ=n db ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0JaeyOeI0IaaCOBai abgwSixpaalaaabaGaamizaiaahkgaaeaacaWGKbGaam4Caaaaaaa@3B9E@ .  Note that the torsion is simply a geometric property of the curve MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it is not necessarily related to the rod’s twist.

 

These variables are not sufficient to completely describe the deformation, however, since the twist of the rod can vary independently of the shape of its axis.

 

· The two bases e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@ , m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  can be related in terms of the Euler angles as follows.

m 1 = cosψcosθcosϕsinψsinϕ e 1 + cosψcosθsinϕ+sinψcosϕ e 2 cosψsinθ e 3 m 2 = cosψsinϕ+sinψcosθcosϕ e 1 + cosψcosϕsinψcosθsinϕ e 2 +sinψsinθ e 3 m 3 =sinθ cosϕ e 1 +sinϕ e 2 +cosθ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaeWaaeaaciGGJbGaai4BaiaacohacqaHipqEciGG JbGaai4BaiaacohacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcq GHsislciGGZbGaaiyAaiaac6gacqaHipqEciGGZbGaaiyAaiaac6ga cqaHvpGzaiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSYaaeWaaeaaciGGJbGaai4BaiaacohacqaHipqEciGGJbGa ai4BaiaacohacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcqGHRa WkciGGZbGaaiyAaiaac6gacqaHipqEciGGJbGaai4BaiaacohacqaH vpGzaiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0Iaci4yaiaac+gacaGGZbGaeqiYdKNaci4CaiaacMgacaGGUbGa eqiUdeNaaCyzamaaBaaaleaacaaIZaaabeaaaOqaaiaah2gadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcqGHsisldaqadaqaaiGacogacaGG VbGaai4CaiabeI8a5jGacohacaGGPbGaaiOBaiabew9aMjabgUcaRi GacohacaGGPbGaaiOBaiabeI8a5jGacogacaGGVbGaai4CaiabeI7a XjGacogacaGGVbGaai4Caiabew9aMbGaayjkaiaawMcaaiaahwgada WgaaWcbaGaaGymaaqabaGccqGHRaWkdaqadaqaaiGacogacaGGVbGa ai4CaiabeI8a5jGacogacaGGVbGaai4Caiabew9aMjabgkHiTiGaco hacaGGPbGaaiOBaiabeI8a5jGacogacaGGVbGaai4CaiabeI7aXjGa cohacaGGPbGaaiOBaiabew9aMbGaayjkaiaawMcaaiaahwgadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaHipqE ciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaiodaae qaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaakiabg2da9iGacoha caGGPbGaaiOBaiabeI7aXnaabmaabaGaci4yaiaac+gacaGGZbGaeq y1dyMaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacohacaGG PbGaaiOBaiabew9aMjaahwgadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWa aSbaaSqaaiaaiodaaeqaaaaaaa@DCF7@

These results can be derived by calculating the effects of the sequence of three rotations.  Note also that since both sets of basis vectors are triads of mutually perpendicular unit vectors, they must be related by

m i =R e i e i = R T m i = m i R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaki abg2da9iaahkfacaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaamyAaaqabaGc cqGH9aqpcaWHsbWaaWbaaSqabeaacaWGubaaaOGaaCyBamaaBaaale aacaWGPbaabeaakiabg2da9iaah2gadaWgaaWcbaGaamyAaaqabaGc caWHsbaaaa@5614@

where R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaaaa@31BB@  is a proper orthogonal tensor that can be visualized as a rigid rotation.   The rotation tensor can be expressed in several different forms:

 

1. It can be expressed as the sum of three dyadic products R= m i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabg2da9iaah2gadaWgaaWcba GaamyAaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadMgaaeqaaaaa @38EC@

 

2. It can be expressed as components in either e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  or m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ , which can be written in dyadic notation as R ij ee e i e j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbGaamOAaa qaaiaahwgacaWHLbaaaOGaaCyzamaaBaaaleaacaWGPbaabeaakiab gEPielaahwgadaWgaaWcbaGaamOAaaqabaaaaa@3BCB@  or R ij mm m i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbGaamOAaa qaaiaah2gacaWHTbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaakiab gEPielaah2gadaWgaaWcbaGaamOAaaqabaaaaa@3BEB@ .  Surprisingly, the components both bases are equal, and are given by R ij mm = R ij ee = e i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbGaamOAaa qaaiaah2gacaWHTbaaaOGaeyypa0JaamOuamaaDaaaleaacaWGPbGa amOAaaqaaiaahwgacaWHLbaaaOGaeyypa0JaaCyzamaaBaaaleaaca WGPbaabeaakiabgwSixlaah2gadaWgaaWcbaGaamOAaaqabaaaaa@42F7@ . The components can be expressed in terms of the Euler angles as a matrix

 


· In further calculations the variation of basis vectors m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaaa a@32F0@  with distance s along the deformed rod will play a central role.  To visualize this quantity, imagine that the basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  travels up the deformed rod. The basis vectors will then rotate with an angular velocity that depends on the curvature and twist of the deformed rod, suggesting that we can characterize the rate of change of orientation with arc-length by a vector κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdaaa@3226@ , analogous to an angular velocity vector.  The curvature vector can be expressed as components in the basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  as κ= κ i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9iabeQ7aRnaaBaaale aacaWGPbaabeaakiaah2gadaWgaaWcbaGaamyAaaqabaaaaa@3812@ .  This vector has the following properties

 

1. The curvature vector is (by definition) related to the rate of change of  m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaaa a@32F0@  with s by

d m i ds =κ× m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaWGPbaabeaaaOqaaiaadsgacaWGZbaaaiabg2da9iaahQ7acqGH xdaTcaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@3C47@

which can be expanded out to show that

d m 1 ds = κ 2 m 3 + κ 3 m 2 d m 2 ds = κ 1 m 3 κ 3 m 1 d m 3 ds = κ 1 m 2 + κ 2 m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWGZbaaaiabg2da9iabgkHiTiab eQ7aRnaaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaG4maa qabaGccqGHRaWkcqaH6oWAdaWgaaWcbaGaaG4maaqabaGccaWHTbWa aSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8+aaSaaaeaacaWGKbGaaCyBamaaBaaaleaacaaIYaaabeaa aOqaaiaadsgacaWGZbaaaiabg2da9iabeQ7aRnaaBaaaleaacaaIXa aabeaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHsislcqaH6oWA daWgaaWcbaGaaG4maaqabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 daWcaaqaaiaadsgacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaam izaiaadohaaaGaeyypa0JaeyOeI0IaeqOUdS2aaSbaaSqaaiaaigda aeqaaOGaaCyBamaaBaaaleaacaaIYaaabeaakiabgUcaRiabeQ7aRn aaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaaa aa@779B@

 

2. The components κ 1 , κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeQ7aRnaaBaaaleaacaaIYaaabeaaaaa@36CD@  quantify the bending of the rod, and are related the curvature κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  and the binormal vector b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CB@  of the curve traced by the axis of the deformed rod by κ 1 m 1 + κ 2 m 2 =κb MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaaCyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeQ7aRnaaBaaa leaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGH9a qpcqaH6oWAcaWHIbaaaa@3E7B@ .  You can show this result by comparing the formula for d m 3 /ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah2gadaWgaaWcbaGaaG4maa qabaGccaGGVaGaamizaiaadohaaaa@3646@  with the formula for b.

 

3. The curvature vector can also be expressed in terms of the position vector of the rod’s centroid as

κ i m i = dr ds × d 2 r d s 2 + κ 3 dr ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaadMgaaeqaaO GaaCyBamaaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGaamiz aiaahkhaaeaacaWGKbGaam4CaaaacqGHxdaTdaWcaaqaaiaadsgada ahaaWcbeqaaiaaikdaaaGccaWHYbaabaGaamizaiaadohadaahaaWc beqaaiaaikdaaaaaaOGaey4kaSIaeqOUdS2aaSbaaSqaaiaaiodaae qaaOWaaSaaaeaacaWGKbGaaCOCaaqaaiaadsgacaWGZbaaaiaaykW7 aaa@4B64@

The component of curvature κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@  cannot in general be expressed in terms of r, because the rotation of the rod’s cross-section about its centroid axis may provide an additional, independent contribution to κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@ .  For the special case where m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  and m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaaaa a@32BE@  are everywhere parallel to the normal vector n and binormal b, respectively, it follows that κ 3 =bdn/ds=ndb/ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaaCOyaiabgwSixlaadsgacaWHUbGaai4laiaadsgacaWG ZbGaeyypa0JaeyOeI0IaaCOBaiabgwSixlaadsgacaaMc8UaaCOyai aac+cacaWGKbGaam4Caaaa@475B@ .  In this case, κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@  is equal to the torsion of the curve. 

 

· The rate of change of  m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaaa a@32F0@  with distance s can also be expressed in terms of the Euler angles.  For example, the derivative of m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  can be calculated as follows

m 3 =sinθ cosϕ e 1 +sinϕ e 2 +cosθ e 3 d m 3 ds =cosθ dθ ds cosϕ e 1 +sinϕ e 2 +sinθ sinϕ e 1 +cosϕ e 2 dϕ ds sinθ dθ ds e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaSbaaSqaaiaaiodaae qaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUde3aaeWaaeaaciGG JbGaai4BaiaacohacqaHvpGzcaWHLbWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaci4CaiaacMgacaGGUbGaeqy1dyMaaCyzamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiGacogacaGGVbGaai 4CaiabeI7aXjaahwgadaWgaaWcbaGaaG4maaqabaaakeaacqGHshI3 daWcaaqaaiaadsgacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaam izaiaadohaaaGaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUde3aaSaa aeaacaWGKbGaeqiUdehabaGaamizaiaadohaaaWaaeWaaeaaciGGJb Gaai4BaiaacohacqaHvpGzcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaci4CaiaacMgacaGGUbGaeqy1dyMaaCyzamaaBaaaleaaca aIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiGacohacaGGPbGaaiOB aiabeI7aXnaabmaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dy MaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacogacaGGVbGa ai4Caiabew9aMjaahwgadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaadaWcaaqaaiaadsgacqaHvpGzaeaacaWGKbGaam4CaaaacqGH sislciGGZbGaaiyAaiaac6gacqaH4oqCdaWcaaqaaiaadsgacqaH4o qCaeaacaWGKbGaam4CaaaacaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa aa@95FE@

Similar results for m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  and m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaaaa a@32BE@  are left as exercises.

 

· The bending curvatures κ 1 , κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeQ7aRnaaBaaaleaacaaIYaaabeaaaaa@36CD@  and the twist rate κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@  are related to the Euler angles by

κ 1 =sin(ψ) dθ ds cos(ψ)sinθ dϕ ds κ 2 =cos(ψ) dθ ds +sin(ψ)sinθ dϕ ds κ 3 = dψ ds + dϕ ds cosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaci4CaiaacMgacaGGUbGaaiikaiabeI8a5jaacMcadaWc aaqaaiaadsgacqaH4oqCaeaacaWGKbGaam4CaaaacqGHsislciGGJb Gaai4BaiaacohacaGGOaGaeqiYdKNaaiykaiGacohacaGGPbGaaiOB aiabeI7aXnaalaaabaGaamizaiabew9aMbqaaiaadsgacaWGZbaaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eqOUdS2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaci4yaiaac+gaca GGZbGaaiikaiabeI8a5jaacMcadaWcaaqaaiaadsgacqaH4oqCaeaa caWGKbGaam4CaaaacqGHRaWkciGGZbGaaiyAaiaac6gacaGGOaGaeq iYdKNaaiykaiGacohacaGGPbGaaiOBaiabeI7aXnaalaaabaGaamiz aiabew9aMbqaaiaadsgacaWGZbaaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH6oWAdaWg aaWcbaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaadsgacqaHipqEae aacaWGKbGaam4CaaaacqGHRaWkdaWcaaqaaiaadsgacqaHvpGzaeaa caWGKbGaam4CaaaaciGGJbGaai4BaiaacohacqaH4oqCaaa@9B9A@

These results can be derived from the two different formulas for d m i /ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah2gadaWgaaWcbaGaamyAaa qabaGccaGGVaGaamizaiaadohaaaa@3677@ , together with the equations relating   e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  and m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  in terms of the Euler angles. 

 

· The arc length s along the rod’s centerline is related to the position vector of the rod’s axis by

ds d x 3 = dr d x 3 dr d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4Caaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9maakaaabaWa aSaaaeaacaWGKbGaaCOCaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaio daaeqaaaaakiabgwSixpaalaaabaGaamizaiaahkhaaeaacaWGKbGa amiEamaaBaaaleaacaaIZaaabeaaaaaabeaaaaa@4299@

 

· Some relationships between the time derivatives of these various kinematic quantities are also useful in subsequent calculations.  The rate of change in shape of the rod can be characterized by the velocity of the axis v s =dr/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaabmaabaGaam4CaaGaayjkai aawMcaaiabg2da9iaadsgacaWHYbGaai4laiaadsgacaWG0baaaa@39DF@  and the time rate of change of the cross-sectional rotation dψ/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeI8a5jaac+cacaWGKbGaam iDaaaa@362C@ .

 

· The time derivative of the tangent vector is a convenient way to characterize the rate of change of bending of the rod.   This is related to the velocity of the rod’s centerline by

dt dt d m 3 dt = τ ˙ 1 m 1 + τ ˙ 2 m 2 = d ds dr dt dr ds dr ds d ds dr dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCiDaaqaaiaads gacaWG0baaaiabggMi6oaalaaabaGaamizaiaah2gadaWgaaWcbaGa aG4maaqabaaakeaacaWGKbGaamiDaaaacqGH9aqpcuaHepaDgaGaam aaBaaaleaacaaIXaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcuaHepaDgaGaamaaBaaaleaacaaIYaaabeaakiaah2gada WgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaadsgaaeaacaWG KbGaam4CaaaadaqadaqaamaalaaabaGaamizaiaahkhaaeaacaWGKb GaamiDaaaaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaadsgacaWH YbaabaGaamizaiaadohaaaWaamWaaeaadaWcaaqaaiaadsgacaWHYb aabaGaamizaiaadohaaaGaeyyXIC9aaSaaaeaacaWGKbaabaGaamiz aiaadohaaaWaaeWaaeaadaWcaaqaaiaadsgacaWHYbaabaGaamizai aadshaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@64C6@

If we express the velocity in components dr/dt= v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahkhacaGGVaGaamizaiaads hacqGH9aqpcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaCyBamaaBaaa leaacaWGPbaabeaaaaa@3A8E@  and recall m 3 =dr/ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaki abg2da9iaadsgacaWHYbGaai4laiaadsgacaWGZbaaaa@3847@  we can write this as

τ ˙ 1 m 1 + τ ˙ 2 m 2 = d v 1 ds v 2 κ 3 + v 3 κ 2 m 1 + d v 2 ds + v 1 κ 3 v 3 κ 1 m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiXdqNbaiaadaWgaaWcbaGaaGymaa qabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIafqiXdqNb aiaadaWgaaWcbaGaaGOmaaqabaGccaWHTbWaaSbaaSqaaiaaikdaae qaaOGaeyypa0ZaaeWaaeaadaWcaaqaaiaadsgacaWG2bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamizaiaadohaaaGaeyOeI0IaamODamaaBa aaleaacaaIYaaabeaakiabeQ7aRnaaBaaaleaacaaIZaaabeaakiab gUcaRiaadAhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAdaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaacaWHTbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSYaaeWaaeaadaWcaaqaaiaadsgacaWG2bWaaSbaaS qaaiaaikdaaeqaaaGcbaGaamizaiaadohaaaGaey4kaSIaamODamaa BaaaleaacaaIXaaabeaakiabeQ7aRnaaBaaaleaacaaIZaaabeaaki abgkHiTiaadAhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAdaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaacaWHTbWaaSbaaSqaaiaaik daaeqaaaaa@6340@

It is important to note that the components τ ˙ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiXdqNbaiaadaWgaaWcbaGaamyAaa qabaaaaa@33C8@  are not equal to the time derivatives of the components of the tangent vector t, because the basis m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  varies with time.

 

· The time derivatives of the basis vectors can also be quantified by an angular velocity vector ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@ , which satisfies m ˙ i =ω× m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaacaWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaaCyYdiabgEna0kaah2gadaWgaaWcbaGaamyAaaqa baaaaa@3985@ .   The components of ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  are readily shown to be

ω= m 3 × dv ds + ψ ˙ m 3 = τ ˙ 2 m 1 + τ ˙ 1 m 2 + ψ ˙ m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iaah2gadaWgaaWcba GaaG4maaqabaGccqGHxdaTdaWcaaqaaiaadsgacaWH2baabaGaamiz aiaadohaaaGaey4kaSIafqiYdKNbaiaacaWHTbWaaSbaaSqaaiaaio daaeqaaOGaeyypa0JaeyOeI0IafqiXdqNbaiaadaWgaaWcbaGaaGOm aaqabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIafqiXdq NbaiaadaWgaaWcbaGaaGymaaqabaGccaWHTbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIafqiYdKNbaiaacaWHTbWaaSbaaSqaaiaaiodaae qaaaaa@5071@

 

· The time derivatives of the remaining basis vectors follow as

d m 1 dt = τ ˙ 1 m 3 + ψ ˙ m 2 d m 2 dt = τ ˙ 2 m 3 ψ ˙ m 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iabgkHiTiqb es8a0zaacaWaaSbaaSqaaiaaigdaaeqaaOGaaCyBamaaBaaaleaaca aIZaaabeaakiabgUcaRiqbeI8a5zaacaGaaCyBamaaBaaaleaacaaI YaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaa aeaacaWGKbGaaCyBamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgaca WG0baaaiabg2da9iabgkHiTiqbes8a0zaacaWaaSbaaSqaaiaaikda aeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiabgkHiTiqbeI8a5z aacaGaaCyBamaaBaaaleaacaaIXaaabeaaaaa@6677@

 

· The time derivative of the arc length of the centerline is related to its velocity as follows

d dt ds d x 3 = m 3 ds d x 3 d ds dr dt = ds d x 3 d v 3 ds v 1 κ 2 + v 2 κ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaeWaaeaadaWcaaqaaiaadsgacaWGZbaabaGaamizaiaadIha daWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaGaeyypa0JaaC yBamaaBaaaleaacaaIZaaabeaakiabgwSixpaalaaabaGaamizaiaa dohaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGcdaWcaa qaaiaadsgaaeaacaWGKbGaam4CaaaadaqadaqaamaalaaabaGaamiz aiaahkhaaeaacaWGKbGaamiDaaaaaiaawIcacaGLPaaacqGH9aqpda WcaaqaaiaadsgacaWGZbaabaGaamizaiaadIhadaWgaaWcbaGaaG4m aaqabaaaaOWaaeWaaeaadaWcaaqaaiaadsgacaWG2bWaaSbaaSqaai aaiodaaeqaaaGcbaGaamizaiaadohaaaGaeyOeI0IaamODamaaBaaa leaacaaIXaaabeaakiabeQ7aRnaaBaaaleaacaaIYaaabeaakiabgU caRiaadAhadaWgaaWcbaGaaGOmaaqabaGccqaH6oWAdaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaaaaa@635A@

 

· We shall also require the gradient of the angular velocity ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@ , which quantifies the rate of change of bending. We give this vector the symbol κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWH6oaaleqabaGaey4bIe naaaaa@33F5@  to denote its physical significance: it can be interpreted (see Appendix E) as the co-rotational time derivative of the curvature vector, as follows

κ = κ i m i = dω ds = dκ dt ω×κ+ d x 3 ds d s ˙ d x 3 κ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWH6oaaleqabaGaey4bIe naaOGaeyypa0ZaaCbiaeaacqaH6oWAdaWgaaWcbaGaamyAaaqabaaa beqaaiabgEGirdaakiaah2gadaWgaaWcbaGaamyAaaqabaGccqGH9a qpdaWcaaqaaiaadsgacaWHjpaabaGaamizaiaadohaaaGaeyypa0Za aSaaaeaacaWGKbGaaCOUdaqaaiaadsgacaWG0baaaiabgkHiTiaahM 8acqGHxdaTcaWH6oGaey4kaSYaaSaaaeaacaWGKbGaamiEamaaBaaa leaacaaIZaaabeaaaOqaaiaadsgacaWGZbGaaCjaVdaadaWcaaqaai aadsgaceWGZbGbaiaaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaa beaaaaGccaWH6oaaaa@5900@

Evaluating the derivatives of ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  shows that

κ 1 = d τ ˙ 2 ds τ ˙ 1 κ 3 + ψ ˙ κ 2 κ 2 = d τ ˙ 1 ds τ ˙ 2 κ 3 ψ ˙ κ 1 κ 3 = d ψ ˙ ds + τ ˙ 1 κ 1 + τ ˙ 2 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaH6oWAaSqabeaacqGHhi s0aaGcdaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqa aiaadsgacuaHepaDgaGaamaaBaaaleaacaaIYaaabeaaaOqaaiaads gacaWGZbaaaiabgkHiTiqbes8a0zaacaWaaSbaaSqaaiaaigdaaeqa aOGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIafqiYdKNbai aacqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7daWfGaqaaiabeQ7aRbWcbeqaaiabgEGird aakmaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaamizaiqb es8a0zaacaWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadohaaa GaeyOeI0IafqiXdqNbaiaadaWgaaWcbaGaaGOmaaqabaGccqaH6oWA daWgaaWcbaGaaG4maaqabaGccqGHsislcuaHipqEgaGaaiabeQ7aRn aaBaaaleaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaCbiaeaacqaH6oWAaSqabeaacqGHhis0aaGcdaWgaaWcbaGaaG 4maaqabaGccqGH9aqpdaWcaaqaaiaadsgacuaHipqEgaGaaaqaaiaa dsgacaWGZbaaaiabgUcaRiqbes8a0zaacaWaaSbaaSqaaiaaigdaae qaaOGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIafqiXdqNb aiaadaWgaaWcbaGaaGOmaaqabaGccqaH6oWAdaWgaaWcbaGaaGOmaa qabaaaaa@871A@

The co-rotational time derivative of curvature must be used to quantify bending rate (instead of the time derivative dκ/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahQ7acaGGVaGaamizaiaads haaaa@35A4@  ) to correct for the fact that rigid rotations and pure stretching do not change bending.

 

· Finally, to solve dynamic problems, we will need to be able to describe the linear and angular acceleration of the bar.  The linear acceleration is most conveniently characterized by the acceleration of the centerline of the bar a=dv/ds= d 2 r/d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadsgacaWH2bGaai 4laiaadsgacaWGZbGaeyypa0JaamizamaaCaaaleqabaGaaGOmaaaa kiaahkhacaGGVaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaa@3EA7@

 

· The angular acceleration of the bar’s cross-section can be characterized by the angular acceleration α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdaaa@321D@  of the basis vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ .  A straightforward calculation shows that

α= dω dt = m 3 × da ds 2 dv ds m 3 m 3 × dv ds + dψ dt dv ds dv ds m 3 m 3 + d 2 ψ d t 2 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9maalaaabaGaamizai aahM8aaeaacaWGKbGaamiDaaaacqGH9aqpcaWHTbWaaSbaaSqaaiaa iodaaeqaaOGaey41aq7aaSaaaeaacaWGKbGaaCyyaaqaaiaadsgaca WGZbaaaiabgkHiTiaaikdadaqadaqaamaalaaabaGaamizaiaahAha aeaacaWGKbGaam4CaaaacqGHflY1caWHTbWaaSbaaSqaaiaaiodaae qaaaGccaGLOaGaayzkaaGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0oaalaaabaGaamizaiaahAhaaeaacaWGKbGaam4CaaaacqGHRa WkdaWcaaqaaiaadsgacqaHipqEaeaacaWGKbGaamiDaaaadaGadaqa amaalaaabaGaamizaiaahAhaaeaacaWGKbGaam4CaaaacqGHsislda qadaqaamaalaaabaGaamizaiaahAhaaeaacaWGKbGaam4CaaaacqGH flY1caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaaC yBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaiabgUcaRmaa laaabaGaamizamaaCaaaleqabaGaaGOmaaaakiabeI8a5bqaaiaads gacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaah2gadaWgaaWcbaGa aG4maaqabaaaaa@7483@

 

· The second time derivative of the basis vectors can then be calculated as

d 2 m i d t 2 = d dt ω× m i = dω dt × m i +ω× d m i dt =α× m i +ω× ω× m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaOGaaCyBamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG 0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaamizaa qaaiaadsgacaWG0baaamaabmaabaGaaCyYdiabgEna0kaah2gadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aadsgacaWHjpaabaGaamizaiaadshaaaGaey41aqRaaCyBamaaBaaa leaacaWGPbaabeaakiabgUcaRiaahM8acqGHxdaTdaWcaaqaaiaads gacaWHTbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaaCySdiabgEna0kaah2gadaWgaaWcbaGaamyAaaqabaGccq GHRaWkcaWHjpGaey41aq7aaeWaaeaacaWHjpGaey41aqRaaCyBamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@6726@

 

 

 

10.2.4 Approximating the displacement, velocity and acceleration in the rod

 

The position vector after deformation of the material point that has coordinates x k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGRbaabeaaaa a@32F9@  in the undeformed rod can be expressed as

y( x k )=r( x 3 )+ η i ( x k ) m i ( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiaacIcacaWG4bWaaSbaaSqaai aadUgaaeqaaOGaaiykaiabg2da9iaahkhacaGGOaGaamiEamaaBaaa leaacaaIZaaabeaakiaacMcacqGHRaWkcqaH3oaAdaWgaaWcbaGaam yAaaqabaGccaGGOaGaamiEamaaBaaaleaacaWGRbaabeaakiaacMca caWHTbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcba GaaG4maaqabaGccaGGPaaaaa@4739@

This is a completely general expression.   We now introduce a series of approximations that are based on the assumptions that

 

1. The rod is thin compared with its length;

 

2. The radius of curvature of the rod (due to bending) is much larger than the characteristic dimension of its cross section;

 

3. The rate of change of twist of the rod dψ/ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeI8a5jaac+cacaWGKbGaam 4Caaaa@362B@  has the same order of magnitude as the bending curvature of the rod.

 

4. The material in the rod experiences small distorsions MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  i.e. the change in length of any infinitesimal material fiber in the rod is much less than its undeformed length.  

 

 

With this in mind, we assume that  η i ( x j ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaO GaaiikaiaadIhadaWgaaWcbaGaamOAaaqabaGccaGGPaaaaa@372B@  can be approximated by a function of the form

η α = x α + f αβ ( x 3 ) x β η 3 = u 3 ( x β , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaSbaaSqaaiabeg7aHbqaba GccqGH9aqpcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkcaWG MbWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaGGOaGaamiEamaaBa aaleaacaaIZaaabeaakiaacMcacaWG4bWaaSbaaSqaaiabek7aIbqa baGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4TdG2aaSbaaSqa aiaaiodaaeqaaOGaeyypa0JaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiabek7aIbqabaGccaGGSaGaamiEamaa BaaaleaacaaIZaaabeaakiaacMcaaaa@6407@

where the Greek indices α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@  can have values 1 and 2, and f αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3537@  can be regarded as the first term in a Taylor expansion of η α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaSbaaSqaaiabeg7aHbqaba aaaa@3457@ .  The definition of m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  requires that f 21 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIYaGaaGymaa qabaGccqGH9aqpcaaIWaaaaa@3538@ .  We assume in addition that

d f αβ d x 3 x β 0 d u 3 d x 3 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamOzamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGa aG4maaqabaaaaOGaamiEamaaBaaaleaacqaHYoGyaeqaaOGaeyisIS RaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7daWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaaiodaaeqaaaGc baGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaaGPaVlabgI Ki7kaaicdacaaMc8oaaa@6242@

for all possible choices of α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@ .  The constants f αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3537@  can be thought of as the components of a homogeneous in-plane deformation applied to the cross section, while the function u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  describes the warping of the cross-section.  To decouple the warping from the axial displacement of the rod, we require that

A u 3 ( x α , x 3 )dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaapefabaGaamyDamaaBaaale aacaaIZaaabeaakiaacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGc caGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacaWGKbGaam yqaiabg2da9iaaicdaaSqaaiaadgeaaeqaniabgUIiYdaaaa@41A2@

In addition, for small distorsions, the deformation must satisfy f αβ <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyipaWJaeyipaWJaaGymaaaa@3804@  and d u 3 /d x γ <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaG4maa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaeq4SdCgabeaakiab gYda8iabgYda8iaaigdaaaa@3AEF@ , the rod curvatures must satisfy κ β x α <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiabek7aIbqaba GccaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGH8aapcqGH8aapcaaI Xaaaaa@39FE@  for all α,β=1,2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIjabg2da9i aaigdacaGGSaGaaGOmaaaa@37FD@ , and the variation of arc-length s along the axis of the deformed rod with x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  must satisfy ds/d x 3 1<<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadohacaGGVaGaamizaiaadI hadaWgaaWcbaGaaG4maaqabaGccqGHsislcaaIXaGaeyipaWJaeyip aWJaaGymaaaa@3AB8@ .

 

The velocity field in the bar can be approximated as

dy dt =v+ f ˙ αβ x β m α + x α m ˙ α + u ˙ 3 m 3 =v+ f ˙ αβ x β m α + x α ω× m α + u ˙ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyEaaqaaiaads gacaWG0baaaiabg2da9iaahAhacqGHRaWkceWGMbGbaiaadaWgaaWc baGaeqySdeMaeqOSdigabeaakiaadIhadaWgaaWcbaGaeqOSdigabe aakiaah2gadaWgaaWcbaGaeqySdegabeaakiabgUcaRiaadIhadaWg aaWcbaGaeqySdegabeaakiqah2gagaGaamaaBaaaleaacqaHXoqyae qaaOGaey4kaSIabmyDayaacaWaaSbaaSqaaiaaiodaaeqaaOGaaCyB amaaBaaaleaacaaIZaaabeaakiabg2da9iaahAhacqGHRaWkceWGMb GbaiaadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaadIhadaWgaaWc baGaeqOSdigabeaakiaah2gadaWgaaWcbaGaeqySdegabeaakiabgU caRiaadIhadaWgaaWcbaGaeqySdegabeaakiaahM8acqGHxdaTcaWH TbWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkceWG1bGbaiaadaWgaa WcbaGaaG4maaqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@6888@

where it has been assumed that u 3 << x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abgYda8iabgYda8iaadIhadaWgaaWcbaGaeqySdegabeaaaaa@379D@  and f αβ << x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyipaWJaeyipaWJaamiEamaaBaaaleaacqaHXoqyaeqa aaaa@3A11@  for all α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@ .

 

Finally, the acceleration field within the bar will be approximated as

d 2 y d t 2 =a+ x α d 2 m α d t 2 =a+ x α α× m α +ω× ω× m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaOGaaCyEaaqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaa aaaakiabg2da9iaahggacqGHRaWkcaWG4bWaaSbaaSqaaiabeg7aHb qabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWHTbWa aSbaaSqaaiabeg7aHbqabaaakeaacaWGKbGaamiDamaaCaaaleqaba GaaGOmaaaaaaGccqGH9aqpcaWHHbGaey4kaSIaamiEamaaBaaaleaa cqaHXoqyaeqaaOWaaiWaaeaacaWHXoGaey41aqRaaCyBamaaBaaale aacqaHXoqyaeqaaOGaey4kaSIaaCyYdiabgEna0oaabmaabaGaaCyY diabgEna0kaah2gadaWgaaWcbaGaeqySdegabeaaaOGaayjkaiaawM caaaGaay5Eaiaaw2haaaaa@5DD5@

Here, all time derivatives of u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  and f αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3537@  have been neglected.  This is not so much because they are small, but because they represent a crude approximation to the distortion of the cross-section.  The time derivatives of these quantities are associated with short wavelength oscillations in the bar, which cannot be modeled accurately using the approximate displacement field. 

 

 

 

10.2.5 Approximating the deformation gradient

 

Based on the assumptions listed in Section 10.2.3, the deformation gradient in the rod can be approximated by

F ds d x 3 (1 κ 2 x 1 + κ 1 x 2 ) m 3 e 3 + ds d x 3 x 1 κ 3 m 2 e 3 ds d x 3 x 2 κ 3 m 1 e 3 +( δ αβ + f αβ ) m α e β + d u 3 d x β m 3 e β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHgbGaaGPaVlaaykW7cqGHij YUdaWcaaqaaiaadsgacaWGZbaabaGaamizaiaadIhadaWgaaWcbaGa aG4maaqabaaaaOGaaiikaiaaigdacqGHsislcqaH6oWAdaWgaaWcba GaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa eqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYa aabeaakiaacMcacaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4LIqSa aCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRmaalaaabaGaamizai aadohaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGccaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaeqOUdS2aaSbaaSqaaiaaiodaae qaaOGaaCyBamaaBaaaleaacaaIYaaabeaakiabgEPielaahwgadaWg aaWcbaGaaG4maaqabaGccaaMc8UaeyOeI0YaaSaaaeaacaWGKbGaam 4CaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiaadIha daWgaaWcbaGaaGOmaaqabaGccqaH6oWAdaWgaaWcbaGaaG4maaqaba GccaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4LIqSaaCyzamaaBaaa leaacaaIZaaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaey4kaSIaaiikaiabes7aKnaaBaaaleaacqaHXoqy cqaHYoGyaeqaaOGaey4kaSIaamOzamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaaiykaiaah2gadaWgaaWcbaGaeqySdegabeaakiabgEPi elaahwgadaWgaaWcbaGaeqOSdigabeaakiabgUcaRmaalaaabaGaam izaiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaamiEamaa BaaaleaacqaHYoGyaeqaaaaakiaah2gadaWgaaWcbaGaaG4maaqaba GccqGHxkcXcaWHLbWaaSbaaSqaaiabek7aIbqabaaaaaa@B5BA@

The first three terms in this expression quantify the effects of axial stretching, bending and twisting of the rod.  The last two approximate the distorsion of its cross-section.

 

The deformation gradient can also be decomposed as

F=RG=HR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHhbGaey ypa0JaaCisaiaahkfaaaa@3712@

where R is the rigid rotation satisfying m i =R e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaki abg2da9iaahkfacaWHLbWaaSbaaSqaaiaadMgaaeqaaaaa@36E3@ , and G and H are deformation gradient like tensors that describe the change in shape of the rod.  These tensors are most conveniently expressed as components in  e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  and m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ , respectively MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  we can represent this in diadic notation as G= G ij ee e i e j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4raiabg2da9iaadEeadaqhaaWcba GaamyAaiaadQgaaeaacaWHLbGaaCyzaaaakiaahwgadaWgaaWcbaGa amyAaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQgaaeqaaaaa@3D96@  or H= H ij mm m i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCisaiabg2da9iaadIeadaqhaaWcba GaamyAaiaadQgaaeaacaWHTbGaaCyBaaaakiaah2gadaWgaaWcbaGa amyAaaqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiaadQgaaeqaaaaa@3DB8@ .  The components can be expressed in matrix form as

 


 

 

Derivation: The deformation gradient is, by definition, the derivative of the position vector of material particles with respect to their position in the reference configuration, i.e.

F= dy dx = dr d x 3 e 3 + d η i d x j m i e j + η i ( x j ) d m i d x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9maalaaabaGaamizai aahMhaaeaacaWGKbGaaCiEaaaacqGH9aqpdaWcaaqaaiaadsgacaWH YbaabaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaey4LIq SaaCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRmaalaaabaGaamiz aiabeE7aOnaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG4bWaaS baaSqaaiaadQgaaeqaaaaakiaah2gadaWgaaWcbaGaamyAaaqabaGc cqGHxkcXcaWHLbWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeq4TdG 2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamOA aaqabaGccaGGPaWaaSaaaeaacaWGKbGaaCyBamaaBaaaleaacaWGPb aabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiab gEPielaahwgadaWgaaWcbaGaaG4maaqabaaaaa@5F3C@

To reduce this to the expression given,

 

1. Note that

dr d x 3 = dr ds ds d x 3 = m 3 ds d x 3 d m i d x 3 = d m i ds ds d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCOCaaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9maalaaabaGa amizaiaahkhaaeaacaWGKbGaam4CaaaadaWcaaqaaiaadsgacaWGZb aabaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaeyypa0Ja aCyBamaaBaaaleaacaaIZaaabeaakmaalaaabaGaamizaiaadohaae aacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 daWcaaqaaiaadsgacaWHTbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaam izaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaeyypa0ZaaSaaaeaa caWGKbGaaCyBamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWGZb aaamaalaaabaGaamizaiaadohaaeaacaWGKbGaamiEamaaBaaaleaa caaIZaaabeaaaaaaaa@7377@

 

2. Recall that

d m 1 ds = κ 2 m 3 + κ 3 m 2 d m 2 ds = κ 1 m 3 κ 3 m 1 d m 3 ds = κ 1 m 2 + κ 2 m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWGZbaaaiabg2da9iabgkHiTiab eQ7aRnaaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaG4maa qabaGccqGHRaWkcqaH6oWAdaWgaaWcbaGaaG4maaqabaGccaWHTbWa aSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8+aaSaaaeaacaWGKbGaaCyBamaaBaaaleaacaaIYaaabeaa aOqaaiaadsgacaWGZbaaaiabg2da9iabeQ7aRnaaBaaaleaacaaIXa aabeaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHsislcqaH6oWA daWgaaWcbaGaaG4maaqabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 daWcaaqaaiaadsgacaWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaam izaiaadohaaaGaeyypa0JaeyOeI0IaeqOUdS2aaSbaaSqaaiaaigda aeqaaOGaaCyBamaaBaaaleaacaaIYaaabeaakiabgUcaRiabeQ7aRn aaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaaa aa@779B@

 

3. Substitute η α = x α + f αβ ( x 3 ) x β , η 3 = u 3 ( x β , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaSbaaSqaaiabeg7aHbqaba GccqGH9aqpcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkcaWG MbWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaGGOaGaamiEamaaBa aaleaacaaIZaaabeaakiaacMcacaWG4bWaaSbaaSqaaiabek7aIbqa baGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlabeE7aOnaaBaaale aacaaIZaaabeaakiabg2da9iaadwhadaWgaaWcbaGaaG4maaqabaGc caGGOaGaamiEamaaBaaaleaacqaHYoGyaeqaaOGaaiilaiaadIhada WgaaWcbaGaaG4maaqabaGccaGGPaaaaa@56D4@  and neglect the derivatives of f and u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  with respect to x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@

 

The decomposition F=RG MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHhbaaaa@3460@  follows trivially by substituting m i =R e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaki abg2da9iaahkfacaWHLbWaaSbaaSqaaiaadMgaaeqaaaaa@36E3@  into the dyadic representation of F and rearranging the result.  A similar approach gives F=HR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahIeacaWHsbaaaa@3461@ .

 

 

 

10.2.6 Other strain measures

 

It is straightforward to compute additional strain measures from the deformation gradient.  Only a partial list will be given here.

 

1. The determinant of the deformation gradient follows as

J=det(F)=det(G)=det(H)=(1+ f 11 )(1+ f 22 ) 1+ κ 1 x 2 κ 2 x 1 ds d x 3 ds d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaiabg2da9iGacsgacaGGLbGaaiiDaiaa cIcacaWHhbGaaiykaiabg2da9iGacsgacaGGLbGaaiiDaiaacIcaca WHibGaaiykaiabg2da9iaacIcacaaIXaGaey4kaSIaamOzamaaBaaa leaacaaIXaGaaGymaaqabaGccaGGPaGaaiikaiaaigdacqGHRaWkca WGMbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaacMcadaqadaqaaiaa igdacqGHRaWkcqaH6oWAdaWgaaWcbaGaaGymaaqabaGccaWG4bWaaS baaSqaaiaaikdaaeqaaOGaeyOeI0IaeqOUdS2aaSbaaSqaaiaaikda aeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaam aalaaabaGaamizaiaadohaaeaacaWGKbGaamiEamaaBaaaleaacaaI ZaaabeaaaaGccqGHijYUdaWcaaqaaiaadsgacaWGZbaabaGaamizai aadIhadaWgaaWcbaGaaG4maaqabaaaaaaa@6831@

 

2. The components of the left and right Cauchy-Green tensors can be computed from B=F F T =H H T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iaahAeacaWHgbWaaW baaSqabeaacaWGubaaaOGaeyypa0JaaCisaiaahIeadaahaaWcbeqa aiaadsfaaaaaaa@390D@  and C= F T F= G T G MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9iaahAeadaahaaWcbe qaaiaadsfaaaGccaWHgbGaeyypa0JaaC4ramaaCaaaleqabaGaamiv aaaakiaahEeaaaa@3916@ , where G and H were defined in 10.2.4.   C and B are most conveniently expressed as components in e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  and m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ , respectively MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  we can represent this in diadic notation as C= C ij ee e i e j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9iaadoeadaqhaaWcba GaamyAaiaadQgaaeaacaWHLbGaaCyzaaaakiaahwgadaWgaaWcbaGa amyAaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQgaaeqaaaaa@3D8E@  or B= B ij mm m i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iaadkeadaqhaaWcba GaamyAaiaadQgaaeaacaWHTbGaaCyBaaaakiaah2gadaWgaaWcbaGa amyAaaqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiaadQgaaeqaaaaa@3DAC@ . For small distorsions, the result can be approximated by

 


 

3. The Lagrange strain is defined as E=(CI)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyraiabg2da9iaacIcacaWHdbGaey OeI0IaaCysaiaacMcacaGGVaGaaGOmaaaa@3807@ .  Its components follow trivially from the preceding formula.  Note that the matrix of components for E resembles the formula for the infinitesimal strain components in a straight bar subjected to axial stretching, bending and twist deformation.   However, if the bent rod does not lie in one plane, the twisting measure κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@  includes contributions from both the rotation of the rod’s cross section about its axis, and also from the bending of the rod.

 

4. The rate of deformation tensor D=sym( F ˙ F 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiraiabg2da9iaabohacaqG5bGaae yBaiaacIcaceWHgbGbaiaacaWHgbWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaaiykaaaa@3A74@  will also be required. It is simplest to calculate the velocity gradient L= F ˙ F 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCitaiabg2da9iqahAeagaGaaiaahA eadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3637@  by differentiating the expression given for the velocity vector in the preceding section.

dy dt = dr dt + f ˙ αβ x β m α + x α ω× m α + u ˙ 3 m 3 F ˙ = d dt ds d x 3 dr ds e 3 + f ˙ αβ m α + u ˙ 3 x β m 3 e β + f ˙ αβ x β ds d x 3 d m α ds e 3 + ω× m α e α + ds d x 3 d ds ω× m α e 3 + u ˙ 3 ds d x 3 d m 3 ds e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWH5baaba GaamizaiaadshaaaGaeyypa0ZaaSaaaeaacaWGKbGaaCOCaaqaaiaa dsgacaWG0baaaiabgUcaRiqadAgagaGaamaaBaaaleaacqaHXoqycq aHYoGyaeqaaOGaamiEamaaBaaaleaacqaHYoGyaeqaaOGaaCyBamaa BaaaleaacqaHXoqyaeqaaOGaey4kaSIaamiEamaaBaaaleaacqaHXo qyaeqaaOGaaCyYdiabgEna0kaah2gadaWgaaWcbaGaeqySdegabeaa kiabgUcaRiqadwhagaGaamaaBaaaleaacaaIZaaabeaakiaah2gada WgaaWcbaGaaG4maaqabaaakeaacqGHshI3ceWHgbGbaiaacqGH9aqp daWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaadaqadaqaamaalaaaba GaamizaiaadohaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aaGcdaWcaaqaaiaadsgacaWHYbaabaGaamizaiaadohaaaaacaGLOa GaayzkaaGaey4LIqSaaCyzamaaBaaaleaacaaIZaaabeaakiabgUca RmaadmaabaGabmOzayaacaWaaSbaaSqaaiabeg7aHjabek7aIbqaba GccaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkdaWcaaqaaiab gkGi2kqadwhagaGaamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaeqOSdigabeaaaaGccaWHTbWaaSbaaSqaaiaa iodaaeqaaaGccaGLBbGaayzxaaGaey4LIqSaaCyzamaaBaaaleaacq aHYoGyaeqaaOGaey4kaSIabmOzayaacaWaaSbaaSqaaiabeg7aHjab ek7aIbqabaGccaWG4bWaaSbaaSqaaiabek7aIbqabaGcdaWcaaqaai aadsgacaWGZbaabaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaa aOWaaSaaaeaacaWGKbGaaCyBamaaBaaaleaacqaHXoqyaeqaaaGcba GaamizaiaadohaaaGaey4LIqSaaCyzamaaBaaaleaacaaIZaaabeaa aOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqGHRaWkdaqadaqaaiaahM8acqGHxdaTcaWH TbWaaSbaaSqaaiabeg7aHbqabaaakiaawIcacaGLPaaacqGHxkcXca WHLbWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkdaWcaaqaaiaadsga caWGZbaabaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOWaaS aaaeaacaWGKbaabaGaamizaiaadohaaaWaaeWaaeaacaWHjpGaey41 aqRaaCyBamaaBaaaleaacqaHXoqyaeqaaaGccaGLOaGaayzkaaGaey 4LIqSaaCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRiqadwhagaGa amaaBaaaleaacaaIZaaabeaakmaalaaabaGaamizaiaadohaaeaaca WGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGcdaWcaaqaaiaadsga caWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadohaaaGaey 4LIqSaaCyzamaaBaaaleaacaaIZaaabeaaaaaa@D971@

Substitute dr/ds= m 3 ,d m i /ds=κ× m i ,dω/ds= κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahkhacaGGVaGaamizaiaado hacqGH9aqpcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaaykW7 caaMc8UaaGPaVlaadsgacaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaai 4laiaadsgacaWGZbGaeyypa0JaaCOUdiabgEna0kaah2gadaWgaaWc baGaamyAaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaadsgacaWHjpGaai4laiaadsgacaWGZbGaeyyp a0ZaaCbiaeaacaWH6oaaleqabaGaey4bIenaaaaa@5E16@ , and note that

F 1 d x 3 ds (1+ κ 2 x 1 κ 1 x 2 ) e 3 m 3 ds d x 3 x 1 κ 3 e 2 m 3 + ds d x 3 x 2 κ 3 e 1 m 3 +( δ αβ f αβ ) e α m β d u 3 d x β e 3 m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHgbWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaGPaVlaaykW7cqGHijYUdaWcaaqaaiaadsgacaWG 4bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadohaaaGaaiikai aaigdacqGHRaWkcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOUdS2aaSbaaSqaaiaaig daaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacaWHLbWa aSbaaSqaaiaaiodaaeqaaOGaey4LIqSaaCyBamaaBaaaleaacaaIZa aabeaakiabgkHiTmaalaaabaGaamizaiaadohaaeaacaWGKbGaamiE amaaBaaaleaacaaIZaaabeaaaaGccaWG4bWaaSbaaSqaaiaaigdaae qaaOGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBaaaleaa caaIYaaabeaakiabgEPielaah2gadaWgaaWcbaGaaG4maaqabaGcca aMc8Uaey4kaSYaaSaaaeaacaWGKbGaam4CaaqaaiaadsgacaWG4bWa aSbaaSqaaiaaiodaaeqaaaaakiaadIhadaWgaaWcbaGaaGOmaaqaba GccqaH6oWAdaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSbaaSqaaiaa igdaaeqaaOGaey4LIqSaaCyBamaaBaaaleaacaaIZaaabeaaaOqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIa aiikaiabes7aKnaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0 IaamOzamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaiykaiaahwga daWgaaWcbaGaeqySdegabeaakiabgEPielaah2gadaWgaaWcbaGaeq OSdigabeaakiabgkHiTmaalaaabaGaamizaiaadwhadaWgaaWcbaGa aG4maaqabaaakeaacaWGKbGaamiEamaaBaaaleaacqaHYoGyaeqaaa aakiaahwgadaWgaaWcbaGaaG4maaqabaGccqGHxkcXcaWHTbWaaSba aSqaaiabek7aIbqabaaaaaa@B7AF@

Evaluating D=sym( F ˙ F 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiraiabg2da9iaabohacaqG5bGaae yBaiaacIcaceWHgbGbaiaacaWHgbWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaaiykaaaa@3A74@  then shows that the components of D in m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  are

 


to within second order terms in curvature, f ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33D4@  and d u 3 /d x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaG4maa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaeqySdegabeaaaaa@381A@ .

 

 

 

10.2.7 Kinematics of rods that are bent and twisted in the unstressed state

 

It is straightforward to generalize the results in sections 10.2.3-10.2.5 to calculate strain measures for rods that are not straight in their initial configuration, as shown below.

 


In this case we must start by describing the geometry of the undeformed rod.  To this end

 

1. We denote the distance measured along the axis of the initial, unstressed, twisted rod by s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4Cayaaraaaaa@31F0@

 

2. At each point s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4Cayaaraaaaa@31F0@  on the initial rod, we introduce a set of three mutually perpendicular unit vectors { m ¯ 1 , m ¯ 2 , m ¯ 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiqah2gagaqeamaaBaaaleaaca aIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqabaGc caGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@3A40@ , where m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaae qaaaaa@32D7@  is chosen to be tangent to the axis of the undeformed rod; while m ¯ 1 , m ¯ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaigdaae qaaOGaaiilaiqah2gagaqeamaaBaaaleaacaaIYaaabeaaaaa@3585@  are parallel to the principal moments of inertia of the cross-section.

 

3.  We also introduce an arbitrary Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  where the unit vectors denote three fixed directions in space.

 

4. The basis vectors { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  and { m ¯ 1 , m ¯ 2 , m ¯ 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiqah2gagaqeamaaBaaaleaaca aIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqabaGc caGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@3A40@  together define a set of three Euler angles ϕ ¯ (s), θ ¯ (s), ψ ¯ (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacuaHvpGzgaqeaiaacIcaca WGZbGaaiykaiaacYcacuaH4oqCgaqeaiaacIcacaWGZbGaaiykaiaa cYcacuaHipqEgaqeaiaacIcacaWGZbGaaiykaaGaayjkaiaawMcaaa aa@4050@ , which completely describe the shape of the undeformed rod.

 

5. We define a rotation tensor R ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOuayaaraaaaa@31D3@  satisfying m ¯ i = R ¯ e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JabCOuayaaraGaaCyzamaaBaaaleaacaWGPbaabeaa aaa@3713@  that characterizes the orientation of { m ¯ 1 , m ¯ 2 , m ¯ 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiqah2gagaqeamaaBaaaleaaca aIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqabaGc caGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@3A40@  with respect to { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@ .  The components of R ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOuayaaraaaaa@31D3@  can be found using the formulas in Section 10.2.3.

 

6. We define three curvature components κ ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaebadaWgaaWcbaGaamyAaa qabaaaaa@33C4@  that characterize the bending and twisting of the initial rod, as follows

κ ¯ 1 =sin( ψ ¯ ) d θ ¯ d s ¯ cos( ψ ¯ )sin θ ¯ d ϕ ¯ d s ¯ κ ¯ 2 =cos( ψ ¯ ) d θ ¯ d s ¯ +sin( ψ ¯ )sin θ ¯ d ϕ ¯ d s ¯ κ ¯ 3 = d ψ ¯ d s ¯ + d ϕ ¯ d s ¯ cos θ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH6oWAgaqeamaaBaaaleaaca aIXaaabeaakiabg2da9iGacohacaGGPbGaaiOBaiaacIcacuaHipqE gaqeaiaacMcadaWcaaqaaiaadsgacuaH4oqCgaqeaaqaaiaadsgace WGZbGbaebaaaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaiikaiqbeI8a 5zaaraGaaiykaiGacohacaGGPbGaaiOBaiqbeI7aXzaaraWaaSaaae aacaWGKbGafqy1dyMbaebaaeaacaWGKbGabm4CayaaraaaaiaaykW7 caaMc8oabaGafqOUdSMbaebadaWgaaWcbaGaaGOmaaqabaGccqGH9a qpciGGJbGaai4BaiaacohacaGGOaGafqiYdKNbaebacaGGPaWaaSaa aeaacaWGKbGafqiUdeNbaebaaeaacaWGKbGabm4CayaaraaaaiabgU caRiGacohacaGGPbGaaiOBaiaacIcacuaHipqEgaqeaiaacMcaciGG ZbGaaiyAaiaac6gacuaH4oqCgaqeamaalaaabaGaamizaiqbew9aMz aaraaabaGaamizaiqadohagaqeaaaacaaMc8oabaGafqOUdSMbaeba daWgaaWcbaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaadsgacuaHip qEgaqeaaqaaiaadsgaceWGZbGbaebaaaGaey4kaSYaaSaaaeaacaWG KbGafqy1dyMbaebaaeaacaWGKbGabm4CayaaraaaaiGacogacaGGVb Gaai4CaiqbeI7aXzaaraaaaaa@868D@

 

 

The deformed shape of the rod is characterized exactly as described in Section 10.2.1, except that the axial distance x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  is replaced by the arc-length s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4Cayaaraaaaa@31F0@  of the undeformed rod.

 

Assuming small distorsions, the deformation gradient can be expressed in dyadic notation as F= F ij m i m ¯ j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaadAeadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaCyBamaaBaaaleaacaWGPbaabeaakiab gEPielqah2gagaqeamaaBaaaleaacaWGQbaabeaaaaa@3BDF@ , where the coefficients F ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B4@  are given below.  The deformation gradient can also be decomposed into two successive rotations and a small distorsion

F=R G ¯ R ¯ T =HR R ¯ T =R R ¯ T G MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfaceWHhbGbae baceWHsbGbaebadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaWHibGa aCOuaiqahkfagaqeamaaCaaaleqabaGaamivaaaakiabg2da9iaahk faceWHsbGbaebadaahaaWcbeqaaiaadsfaaaGccaWHhbaaaa@3FE4@

where the rotation tensors R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaaaa@31BB@  and R ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOuayaaraaaaa@31D3@  satisfy m ¯ i = R ¯ e i m i =R e i m i =R R ¯ T m ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JabCOuayaaraGaaCyzamaaBaaaleaacaWGPbaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTb WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaCOuaiaahwgadaWgaaWc baGaamyAaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaamyAaaqabaGccqGH9aqp caWHsbGabCOuayaaraWaaWbaaSqabeaacaWGubaaaOGabCyBayaara WaaSbaaSqaaiaadMgaaeqaaaaa@5C75@ , and the tensors G ¯ ,H,G MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4rayaaraGaaiilaiaahIeacaGGSa GaaC4raaaa@34C9@  can be expressed in component form as    G ¯ = G ¯ ij ee e i e j , H ij mm m i m j , G ij m ¯ m ¯ m ¯ i m ¯ j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4rayaaraGaeyypa0Jabm4rayaara Waa0baaSqaaiaadMgacaWGQbaabaGaaCyzaiaahwgaaaGccaWHLbWa aSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGQb aabeaakiaacYcacaaMc8UaaGPaVlaadIeadaqhaaWcbaGaamyAaiaa dQgaaeaacaWHTbGaaCyBaaaakiaah2gadaWgaaWcbaGaamyAaaqaba GccqGHxkcXcaWHTbWaaSbaaSqaaiaadQgaaeqaaOGaaiilaiaaykW7 caaMc8UaaGPaVlaaykW7caWGhbWaa0baaSqaaiaadMgacaWGQbaaba GabCyBayaaraGabCyBayaaraaaaOGabCyBayaaraWaaSbaaSqaaiaa dMgaaeqaaOGaey4LIqSabCyBayaaraWaaSbaaSqaaiaadQgaaeqaaa aa@5EDD@ .  Their components are given by

 


 

The deformation gradient can be written down immediately, by mapping the initial rod onto a fictitious intermediate configuration in which the rod is straight, chosen as follows:

 

1. The straight rod has axis parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction

 

2. The point at arc-length s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4Cayaaraaaaa@31F0@  in the unstressed rod has coordinates x= s ¯ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iqadohagaqeaiaahw gadaWgaaWcbaGaaG4maaqabaaaaa@35CE@  in the intermediate configuration.

 

3. The principal axes of the cross section are parallel to ( e 1 , e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@36A8@  in the intermediate configuration

 

4. The cross-section of the rod has the same shape in the intermediate configuration as in the undeformed configuration.

 

The deformed state can be reached in two steps (i) Deform the rod from the unstressed configuration to the intermediate configuration, with a deformation gradient F ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOrayaaraaaaa@31C7@ .  The components of F ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOrayaaraaaaa@31C7@  can be calculated as the inverse of the deformation gradient that maps the intermediate straight rod onto the undeformed shape.  (ii) Deform the rod from the straight configuration to the deformed configuration, with a deformation gradient F ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOrayaajaaaaa@31BF@ .  The total deformation gradient follows as F= F ^ F ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iqahAeagaqcaiqahA eagaqeaaaa@347B@ . 

 

 

 

10.2.8 Representation of forces and moments in slender rods

 

The figure shows a generic cross-section of the rod, in the deformed configuration. To describe measures of internal and external force acting on the rod, we first define a basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@ , with the unit vectors chosen using the scheme described in 10.2.2.  We then define the following vector components in this basis:

 

· The body force acting on the rod b i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E1@ .  For simplicity, we shall assume that the body force is uniform within the cross section (but b i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E1@  may vary along the length of the rod).

 

· The tractions acting on the exterior surface of the rod t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F3@

 

· The Cauchy stress within the rod σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@ .

 

 

External forces and moments acting on the rod are characterized by

 

1. The force per unit length acting on the rod, p= p i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaWgaaWcba GaamyAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@3708@ .  The force components can be calculated from the tractions and body force acting on the rod as f i ( x 3 )=A b i + C t i ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaa dgeacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaa8quaeaaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadohaaSqaaiaadoea aeqaniabgUIiYdaaaa@4201@

 

2. The moment per unit length acting on the rod, q= q i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyCaiabg2da9iaadghadaWgaaWcba GaamyAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@370A@ .  The moment components can  be calculated from the tractions acting on the exterior surface of the rod as as

q 1 = C x 2 t 3 ds q 2 = C x 1 t 3 ds q 3 = C ( x 1 t 2 x 2 t 1 )ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacaaIXaaabeaaki abg2da9maapefabaGaamiEamaaBaaaleaacaaIYaaabeaakiaadsha daWgaaWcbaGaaG4maaqabaGccaWGKbGaam4CaaWcbaGaam4qaaqab0 Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyCamaaBaaaleaacaaIYa aabeaakiabg2da9iabgkHiTmaapefabaGaamiEamaaBaaaleaacaaI XaaabeaakiaadshadaWgaaWcbaGaaG4maaqabaGccaWGKbGaam4Caa WcbaGaam4qaaqab0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGXbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0Zaa8quaeaacaGGOaGaamiEamaaBaaa leaacaaIXaaabeaakiaadshadaWgaaWcbaGaaGOmaaqabaGccqGHsi slcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiDamaaBaaaleaacaaI XaaabeaakiaacMcacaWGKbGaam4CaaWcbaGaam4qaaqab0Gaey4kIi paaaa@7B98@

 

3. The resultant force acting on each end of the rod.  Each force can be expressed as components as P= P i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadcfadaWgaaWcba GaamyAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36C8@ .  The components are related to the tractions acting on the end of the rod by P i = A t i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaki abg2da9maapefabaGaamiDamaaBaaaleaacaWGPbaabeaakiaadsga caWGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@3ABB@ , where the area integral is taken over the cross section at the appropriate end of the rod.

 

4. The resultant moment acting on each end of the rod.  Each moment can be expressed as components as Q= Q i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iaadgfadaWgaaWcba GaamyAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36CA@ .  The components are related to the tractions acting on the end of the rod by

Q 1 = A x 2 t 3 dA Q 2 = A x 1 t 3 dA Q 3 = A ( x 1 t 2 x 2 t 1 )dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaaIXaaabeaaki abg2da9maapefabaGaamiEamaaBaaaleaacaaIYaaabeaakiaadsha daWgaaWcbaGaaG4maaqabaGccaWGKbGaamyqaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyuamaaBaaaleaa caaIYaaabeaaaeaacaWGbbaabeqdcqGHRiI8aOGaeyypa0JaeyOeI0 Yaa8quaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiDamaaBaaa leaacaaIZaaabeaakiaadsgacaWGbbGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7aSqaaiaadgeaaeqaniabgUIi YdGccaWGrbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Zaa8quaeaaca GGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaadshadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaam iDamaaBaaaleaacaaIXaaabeaakiaacMcacaWGKbGaamyqaaWcbaGa amyqaaqab0Gaey4kIipaaaa@72D0@

 

 

Internal forces and moments in the rod are characterized by the following quantities:

 

1. The variation of internal shear stress in the cross section σ α3 ( x β , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjaaio daaeqaaOGaaiikaiaadIhadaWgaaWcbaGaeqOSdigabeaakiaacYca caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3C02@

 

2. The average in-plane stress components

S αβ = A σ αβ dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0Zaa8quaeaacqaHdpWCdaWgaaWcbaGaeqySdeMa eqOSdigabeaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aO GaaGPaVdaa@41C1@

 

3. Three components of a vector bending moment, defined as

M 1 ( x 3 )= A σ 33 x 2 dA M 2 ( x 3 )= A σ 33 x 1 dA M 3 ( x 3 )= A σ 23 x 1 σ 13 x 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9maa pefabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaakiaadIhada WgaaWcbaGaaGOmaaqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Ga ey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamytamaaBaaaleaacaaIYaaa beaakiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2 da9iabgkHiTmaapefabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaa beaakiaadIhadaWgaaWcbaGaaGymaaqabaGccaWGKbGaamyqaaWcba Gaamyqaaqab0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGnbWaaSbaaSqaai aaiodaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGG PaGaeyypa0Zaa8quaeaadaqadaqaaiabeo8aZnaaBaaaleaacaaIYa GaaG4maaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia eq4Wdm3aaSbaaSqaaiaaigdacaaIZaaabeaakiaadIhadaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaaaSqaaiaadgeaaeqaniabgUIi YdGccaWGKbGaamyqaaaa@8AC1@

 

4. The axial force on the cross-section T 3 ( x 3 )= A σ 33 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9maa pefabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaakiaadsgaca WGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaaGPaVdaa@40C2@

 

5. Two additional generalized forces T 1 ( x 3 ), T 2 ( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG 4maaqabaGccaGGPaaaaa@3BB7@ , which represent the transverse shear forces acting on the rod’s cross section.  Unlike the axial force, however, these forces cannot be directly related to the deformation of the rod.  Instead, they are calculated from the bending moments, using the equilibrium equations listed in the next section.  

 

 

The forces T i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaaa a@32D3@  and moments M i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGPbaabeaaaa a@32CC@  define components of a vector force and moment

 

1. T= T i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaadsfadaWgaaWcba GaamyAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36D0@  is the resultant force acting on an internal cross-section of the rod;

 

2. M= M i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaad2eadaWgaaWcba GaamyAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36C2@  is the resultant moment (about the centroid of the cross section) acting on the cross-section.

 

 

 

10.2.9 Equations of motion and boundary conditions

 

The internal forces and moments must satisfy the equations of motion

  σ α3 x α σ 31 κ 2 + σ 32 κ 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaeqySdeMaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaaaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaiodaca aIXaaabeaakiabeQ7aRnaaBaaaleaacaaIYaaabeaakiabgUcaRiab eo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaGccqaH6oWAdaWgaaWcba GaaGymaaqabaGccqGH9aqpcaaIWaaaaa@4A9C@        

dT ds +p=ρAa dM ds + m 3 ×T+q=ρΗα+ω×ρΗω MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCivaaqaaiaads gacaWGZbaaaiabgUcaRiaahchacqGH9aqpcqaHbpGCcaWGbbGaaCyy aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGKbGaaCytaaqaai aadsgacaWGZbaaaiabgUcaRiaah2gadaWgaaWcbaGaaG4maaqabaGc cqGHxdaTcaWHubGaey4kaSIaaCyCaiabg2da9iabeg8aYjaahE5aca WHXoGaey4kaSIaaCyYdiabgEna0kabeg8aYjaahE5acaWHjpaaaa@72BA@

Here, σ α3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjaaio daaeqaaaaa@352B@ , T and M are the internal forces and moments in the rod; p,q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiaacYcacaWHXbaaaa@3383@  are the external force and couple per unit length; ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  is the mass density of the rod; A is its cross-sectional area, H is the area moment of inertia tensor defined in Sect 10.2.1, while a,ω,α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiaacYcacaWHjpGaaiilaiaahg 7aaaa@35BC@  are the acceleration, angular velocity and angular acceleration of the rod’s centerline, respectively. The two equations of motion for T and M clearly represent linear and angular moment balance for an infinitesimal segment of the rod.

 

The equations of motion for T and M are often expressed as components in the m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  basis, as

d T 1 ds κ 3 T 2 + κ 2 T 3 + p 1 =ρA a 1 d T 2 ds + κ 3 T 2 κ 1 T 3 + p 2 =ρA a 2 d T 3 ds + κ 1 T 2 κ 2 T 1 + p 3 =ρA a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWGubWaaS baaSqaaiaaigdaaeqaaaGcbaGaamizaiaadohaaaGaeyOeI0IaeqOU dS2aaSbaaSqaaiaaiodaaeqaaOGaamivamaaBaaaleaacaaIYaaabe aakiabgUcaRiabeQ7aRnaaBaaaleaacaaIYaaabeaakiaadsfadaWg aaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeqyWdiNaamyqaiaadggadaWgaaWcbaGaaGymaaqa baGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVdqaamaalaaabaGaamizaiaadsfadaWgaaWcbaGaaGOmaaqabaaa keaacaWGKbGaam4CaaaacqGHRaWkcqaH6oWAdaWgaaWcbaGaaG4maa qabaGccaWGubWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqOUdS2a aSbaaSqaaiaaigdaaeqaaOGaamivamaaBaaaleaacaaIZaaabeaaki abgUcaRiaadchadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaHbpGC caWGbbGaamyyamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaWaaSaaaeaacaWG KbGaamivamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWGZbaaai abgUcaRiabeQ7aRnaaBaaaleaacaaIXaaabeaakiaadsfadaWgaaWc baGaaGOmaaqabaGccqGHsislcqaH6oWAdaWgaaWcbaGaaGOmaaqaba GccaWGubWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaBaaa leaacaaIZaaabeaakiabg2da9iabeg8aYjaadgeacaWGHbWaaSbaaS qaaiaaiodaaeqaaaaaaa@900C@

d M 1 ds κ 3 M 2 + κ 2 M 3 T 2 + q 1 =ρ I 1 α 1 +ρ( I 3 I 2 ) ω 2 ω 3 d M 2 ds + κ 3 M 1 κ 1 M 3 + T 1 + q 2 =ρ I 2 α 2 ρ( I 3 I 1 ) ω 1 ω 3 d M 3 ds κ 2 M 1 + κ 1 M 2 + q 3 = I 3 α 3 +( I 2 I 1 ) ω 2 ω 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWGnbWaaS baaSqaaiaaigdaaeqaaaGcbaGaamizaiaadohaaaGaeyOeI0IaeqOU dS2aaSbaaSqaaiaaiodaaeqaaOGaamytamaaBaaaleaacaaIYaaabe aakiabgUcaRiabeQ7aRnaaBaaaleaacaaIYaaabeaakiaad2eadaWg aaWcbaGaaG4maaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaikdaae qaaOGaey4kaSIaamyCamaaBaaaleaacaaIXaaabeaakiabg2da9iab eg8aYjaadMeadaWgaaWcbaGaaGymaaqabaGccqaHXoqydaWgaaWcba GaaGymaaqabaGccqGHRaWkcqaHbpGCcaGGOaGaamysamaaBaaaleaa caaIZaaabeaakiabgkHiTiaadMeadaWgaaWcbaGaaGOmaaqabaGcca GGPaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqyYdC3aaSbaaSqa aiaaiodaaeqaaaGcbaWaaSaaaeaacaWGKbGaamytamaaBaaaleaaca aIYaaabeaaaOqaaiaadsgacaWGZbaaaiabgUcaRiabeQ7aRnaaBaaa leaacaaIZaaabeaakiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHsi slcqaH6oWAdaWgaaWcbaGaaGymaaqabaGccaWGnbWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaamivamaaBaaaleaacaaIXaaabeaakiabgU caRiaadghadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaHbpGCcaWG jbWaaSbaaSqaaiaaikdaaeqaaOGaeqySde2aaSbaaSqaaiaaikdaae qaaOGaeyOeI0IaeqyWdiNaaiikaiaadMeadaWgaaWcbaGaaG4maaqa baGccqGHsislcaWGjbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabeM 8a3naaBaaaleaacaaIXaaabeaakiabeM8a3naaBaaaleaacaaIZaaa beaaaOqaamaalaaabaGaamizaiaad2eadaWgaaWcbaGaaG4maaqaba aakeaacaWGKbGaam4CaaaacqGHsislcqaH6oWAdaWgaaWcbaGaaGOm aaqabaGccaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqOUdS 2aaSbaaSqaaiaaigdaaeqaaOGaamytamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadghadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGjb WaaSbaaSqaaiaaiodaaeqaaOGaeqySde2aaSbaaSqaaiaaiodaaeqa aOGaey4kaSIaaiikaiaadMeadaWgaaWcbaGaaGOmaaqabaGccqGHsi slcaWGjbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabeM8a3naaBaaa leaacaaIYaaabeaakiabeM8a3naaBaaaleaacaaIXaaabeaaaaaa@A7D9@

 

Note that:

 

1. If the system is in static equilibrium, the right hand sides of all the equations of motion are zero.

 

2. In addition, in many dynamic problems, the right hand sides of the angular momentum balance equations may be taken to be approximately zero, since the area moments of inertia are small.   For example, the rotational inertia may be ignored when modeling the vibration of a beam.  The rotational inertia terms can be important if the rod is rotating rapidly: examples include a spinning shaft, or a rotating propeller.

 

 

Boundary Conditions: The internal stresses, forces and moments must satisfy the following boundary conditions

 

1. S αβ = C x β t α dξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0Zaa8quaeaadaqadaqaaiaadIhadaWgaaWcbaGa eqOSdigabeaakiaadshadaWgaaWcbaGaeqySdegabeaaaOGaayjkai aawMcaaiaadsgacqaH+oaEaSqaaiaadoeaaeqaniabgUIiYdaaaa@431D@

 

2. σ 3α n α = t 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacqaHXo qyaeqaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaamiD amaaBaaaleaacaaIZaaabeaaaaa@3AE5@  on C

 

3. The ends of the rod may be subjected to a prescribed displacement.   Alternatively, the transverse or axial tractions may be prescribed on the ends of the bar: in this case the internal forces must satisfy T=P MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaahcfaaaa@339C@  for s=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caiabg2da9iaadYeaaaa@33AF@  and T=P MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iabgkHiTiaahcfaaa a@3489@  for s=0.

 

4. The ends of the rod may be subjected to a prescribed rotation.  Alternatively, if the ends are free to rotate, the internal moments must satisfy M=Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaahgfaaaa@3396@  for s=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caiabg2da9iaadYeaaaa@33AF@  and M=Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iabgkHiTiaahgfaaa a@3483@  for s=0.

 

 

Derivation: Measures of internal force and the equilibrium equations emerge naturally from the principle of virtual work, which states that the Cauchy stress distribution must satisfy

V 0 J σ ij δ D ij d V 0 + V 0 ρ d 2 y i d t 2 δ v i d V 0 V 0 b i δ v i d V 0 S 2 t i δ v i dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGkbGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiabes7aKjaadseadaWgaaWcbaGaamyA aiaadQgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaaaba GaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipakiabgUca RmaapefabaGaeqyWdi3aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYa aaaOGaamyEamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG0bWa aWbaaSqabeaacaaIYaaaaaaakiabes7aKjaadAhadaWgaaWcbaGaam yAaaqabaGccaWGKbGaamOvamaaBaaaleaacaaIWaaabeaaaeaacaWG wbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aOGaeyOeI0Yaa8 quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamODamaa BaaaleaacaWGPbaabeaakiaadsgacaWGwbWaaSbaaSqaaiaaicdaae qaaaqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdGc cqGHsisldaWdrbqaaiaadshadaWgaaWcbaGaamyAaaqabaGccqaH0o azcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaa dofadaWgaaadbaGaaGOmaaqabaaaleqaniabgUIiYdGccqGH9aqpca aIWaaaaa@70A8@

for all virtual velocity fields δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  and compatible stretch rates δ D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamiramaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3557@ .  The virtual velocity field and virtual stretch rates in the bar must have the same general form as the actual velocity and stretch rates, as outlined in Section 10.2.4 and 10.2.5.  The virtual velocity and stretch rate can therefore be characterized by δ f ˙ αβ ,δ u 3 ( x α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmOzayaacaWaaSbaaSqaai abeg7aHjabek7aIbqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaeqiTdqMaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaaaaa@489E@  and compatible sets of δv,δω,δ s ˙ ,δ κ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacYcacqaH0oazca WHjpGaaiilaiabes7aKjqadohagaGaaiaacYcacqaH0oazdaWfGaqa aiabeQ7aRbWcbeqaaiabgEGirdaakmaaBaaaleaacaWGPbaabeaaaa a@417E@ .  This has two consequences:

 

· The virtual work principle can be expressed in terms of the generalized deformation measures and forces defined in the preceding sections as

0 L 0 ds d x 3 S αβ δ f ˙ αβ + A σ α3 dδ u ˙ 3 d x α +( σ 31 κ 2 σ 32 κ 1 )δ u ˙ 3 b 3 δ u ˙ 3 dA d x 3 + 0 L 0 dδ s ˙ d x 3 T 3 +δ κ i M i ds d x 3 d x 3 + 0 L ρA a i δ v i ds + 0 L ρ I 1 α 1 + ω 2 ω 3 δ ω 1 ds+ 0 L ρ I 2 α 2 ω 1 ω 3 δ ω 2 ds+ 0 L ρ I 3 α 3 +( I 1 I 2 ) ω 1 ω 2 δ ω 3 ds 0 L C x β t α δ f ˙ αβ + t 3 δ u 3 dξ ds 0 L p i δ v i + q i δ ω i ds P i δ v i + Q i δ ω i x 3 =0 P i δ v i + Q i δ ω i x 3 = L 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdXbqaamaacmaabaWaaSaaae aacaWGKbGaam4CaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqa aaaakiaadofadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabes7aKj qadAgagaGaamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSYa a8quaeaadaqadaqaaiabeo8aZnaaBaaaleaacqaHXoqycaaIZaaabe aakmaalaaabaGaamizaiabes7aKjqadwhagaGaamaaBaaaleaacaaI ZaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaO Gaey4kaSIaaiikaiabeo8aZnaaBaaaleaacaaIZaGaaGymaaqabaGc cqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHdpWCdaWgaa WcbaGaaG4maiaaikdaaeqaaOGaeqOUdS2aaSbaaSqaaiaaigdaaeqa aOGaaiykaiabes7aKjqadwhagaGaamaaBaaaleaacaaIZaaabeaaki abgkHiTiaadkgadaWgaaWcbaGaaG4maaqabaGccqaH0oazceWG1bGb aiaadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacaWGKbGaam yqaaWcbaGaamyqaaqab0Gaey4kIipaaOGaay5Eaiaaw2haaiaadsga caWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiaaicdaaeaacaWGmbWaaS baaWqaaiaaicdaaeqaaaqdcqGHRiI8aaGcbaGaey4kaSYaa8qCaeaa daGadaqaamaalaaabaGaamizaiabes7aKjqadohagaGaaaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiaadsfadaWgaaWcbaGa aG4maaqabaGccqGHRaWkcqaH0oazdaWfGaqaaiabeQ7aRbWcbeqaai abgEGirdaakmaaBaaaleaacaWGPbaabeaakiaad2eadaWgaaWcbaGa amyAaaqabaGcdaWcaaqaaiaadsgacaWGZbaabaGaamizaiaadIhada WgaaWcbaGaaG4maaqabaaaaaGccaGL7bGaayzFaaGaamizaiaadIha daWgaaWcbaGaaG4maaqabaaabaGaaGimaaqaaiaadYeadaWgaaadba GaaGimaaqabaaaniabgUIiYdGccqGHRaWkdaWdXbqaaiabeg8aYjaa dgeacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamODamaaBa aaleaacaWGPbaabeaaaeaacaaIWaaabaGaamitaaqdcqGHRiI8aOGa amizaiaadohaaeaacqGHRaWkdaWdXbqaaiabeg8aYjaadMeadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiabeg7aHnaaBaaaleaacaaIXaaa beaakiabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaakiabeM8a3n aaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabes7aKjabeM8a 3naaBaaaleaacaaIXaaabeaaaeaacaaIWaaabaGaamitaaqdcqGHRi I8aOGaamizaiaadohacqGHRaWkdaWdXbqaaiabeg8aYjaadMeadaWg aaWcbaGaaGOmaaqabaGcdaqadaqaaiabeg7aHnaaBaaaleaacaaIYa aabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaakiabeM8a 3naaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabes7aKjabeM 8a3naaBaaaleaacaaIYaaabeaaaeaacaaIWaaabaGaamitaaqdcqGH RiI8aOGaamizaiaadohacqGHRaWkdaWdXbqaaiabeg8aYnaabmaaba GaamysamaaBaaaleaacaaIZaaabeaakiabeg7aHnaaBaaaleaacaaI ZaaabeaakiabgUcaRiaacIcacaWGjbWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaamysamaaBaaaleaacaaIYaaabeaakiaacMcacqaHjpWD daWgaaWcbaGaaGymaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaacqaH0oazcqaHjpWDdaWgaaWcbaGaaG4maaqa baaabaGaaGimaaqaaiaadYeaa0Gaey4kIipakiaadsgacaWGZbaaba GaeyOeI0Yaa8qCaeaadaqadaqaamaapefabaWaaeWaaeaacaWG4bWa aSbaaSqaaiabek7aIbqabaGccaWG0bWaaSbaaSqaaiabeg7aHbqaba GccqaH0oazceWGMbGbaiaadaWgaaWcbaGaeqySdeMaeqOSdigabeaa kiabgUcaRiaadshadaWgaaWcbaGaaG4maaqabaGccqaH0oazcaWG1b WaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaamizaiabe67a 4bWcbaGaam4qaaqab0Gaey4kIipaaOGaayjkaiaawMcaaaWcbaGaaG imaaqaaiaadYeaa0Gaey4kIipakiaadsgacaWGZbGaeyOeI0Yaa8qC aeaadaqadaqaaiaadchadaWgaaWcbaGaamyAaaqabaGccqaH0oazca WG2bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamyCamaaBaaaleaa caWGPbaabeaakiabes7aKjabeM8a3naaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIipakiaa dsgacaWGZbGaaGPaVdqaaiabgkHiTmaadmaabaGaamiuamaaBaaale aacaWGPbaabeaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaGc cqGHRaWkcaWGrbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaeqyYdC 3aaSbaaSqaaiaadMgaaeqaaaGccaGLBbGaayzxaaWaaSbaaSqaaiaa dIhadaWgaaadbaGaaG4maaqabaWccqGH9aqpcaaIWaaabeaakiabgk HiTmaadmaabaGaamiuamaaBaaaleaacaWGPbaabeaakiabes7aKjaa dAhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGrbWaaSbaaSqaai aadMgaaeqaaOGaeqiTdqMaeqyYdC3aaSbaaSqaaiaadMgaaeqaaaGc caGLBbGaayzxaaWaaSbaaSqaaiaadIhadaWgaaadbaGaaG4maaqaba WccqGH9aqpcaWGmbWaaSbaaWqaaiaaicdaaeqaaaWcbeaakiabg2da 9iaaicdaaaaa@5BB0@

 

· If the virtual work equation is satisfied for all δ f ˙ αβ ,δ u 3 ( x α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmOzayaacaWaaSbaaSqaai abeg7aHjabek7aIbqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaeqiTdqMaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaaaaa@489E@  and compatible sets of δv,δω,δ s ˙ ,δ κ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacYcacqaH0oazca WHjpGaaiilaiabes7aKjqadohagaGaaiaacYcacqaH0oazdaWfGaqa aiabeQ7aRbWcbeqaaiabgEGirdaakmaaBaaaleaacaWGPbaabeaaaa a@417E@ , then the internal forces and moments must satisfy the equilibrium equations and boundary conditions listed above.

 

 

It is straightforward to derive the first result.  The Jacobian is approximated as Jds/d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabgIKi7kaadsgacaWGZbGaai 4laiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@38C3@ ; the components of   δ D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamiramaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3557@  follow from the formulas given in Section 10.2.6, and the velocity field is approximated using the formula in 10.2.5.  Substituting the definitions given in Section 10.2.7 for generalized internal and external forces immediately gives the required result.  The algebra involved is lengthy and tedious and is left as an exercise.

 

The equilibrium equations and boundary conditions are obtained by substituting various choices of δ f ˙ αβ ,δ u 3 ( x α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmOzayaacaWaaSbaaSqaai abeg7aHjabek7aIbqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaeqiTdqMaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaaaaa@489E@  and compatible sets of δv,δω,δ ψ ˙ ,δ s ˙ ,δ κ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacYcacqaH0oazca WHjpGaaiilaiabes7aKjqbeI8a5zaacaGaaiilaiabes7aKjqadoha gaGaaiaacYcacqaH0oazdaWfGaqaaiabeQ7aRbWcbeqaaiabgEGird aakmaaBaaaleaacaWGPbaabeaaaaa@45AA@  into the virtual work equation.

 

1. Choosing δ u 3 ( x α )=δv=δ ψ ˙ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaaIZa aabeaakiaacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaGa eyypa0JaeqiTdqMaaCODaiabg2da9iabes7aKjqbeI8a5zaacaGaey ypa0JaaGimaaaa@4289@  reduces the virtual work equation to

0 L 0 A σ αβ δ f ˙ αβ dA d x 3 0 L C x β t α δ f ˙ αβ dξ ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaGadaqaamaapefabaGaeq 4Wdm3aaSbaaSqaaiabeg7aHjabek7aIbqabaGccqaH0oazceWGMbGb aiaadaWgaaWcbaGaeqySdeMaeqOSdigabeaaaeaacaWGbbaabeqdcq GHRiI8aOGaamizaiaadgeaaiaawUhacaGL9baacaWGKbGaamiEamaa BaaaleaacaaIZaaabeaaaeaacaaIWaaabaGaamitamaaBaaameaaca aIWaaabeaaa0Gaey4kIipakiaaykW7cqGHsisldaWdXbqaamaabmaa baWaa8quaeaadaqadaqaaiaadIhadaWgaaWcbaGaeqOSdigabeaaki aadshadaWgaaWcbaGaeqySdegabeaakiabes7aKjqadAgagaGaamaa BaaaleaacqaHXoqycqaHYoGyaeqaaaGccaGLOaGaayzkaaGaamizai abe67a4bWcbaGaam4qaaqab0Gaey4kIipaaOGaayjkaiaawMcaaaWc baGaaGimaaqaaiaadYeaa0Gaey4kIipakiaadsgacaWGZbaaaa@6798@

The condition S αβ = C x β t α dξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0Zaa8quaeaadaqadaqaaiaadIhadaWgaaWcbaGa eqOSdigabeaakiaadshadaWgaaWcbaGaeqySdegabeaaaOGaayjkai aawMcaaiaadsgacqaH+oaEaSqaaiaadoeaaeqaniabgUIiYdaaaa@431D@  follows immediately. 

 

2. Choosing δ f αβ =δv=δ ψ ˙ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOzamaaBaaaleaacqaHXo qycqaHYoGyaeqaaOGaeyypa0JaeqiTdqMaaCODaiabg2da9iabes7a KjqbeI8a5zaacaGaeyypa0JaaGimaaaa@40D2@  reduces the virtual work equation to

0 L 0 A σ α3 dδ u ˙ 3 d x α +( σ 31 κ 2 σ 32 κ 1 )δ u ˙ 3 b 3 δ u ˙ 3 dA d x 3 0 L 0 C t 3 δ u ˙ 3 dξ ds d x 3 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaGadaqaamaapefabaWaae WaaeaacqaHdpWCdaWgaaWcbaGaeqySdeMaaG4maaqabaGcdaWcaaqa aiaadsgacqaH0oazceWG1bGbaiaadaWgaaWcbaGaaG4maaqabaaake aacaWGKbGaamiEamaaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaa cIcacqaHdpWCdaWgaaWcbaGaaG4maiaaigdaaeqaaOGaeqOUdS2aaS baaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaioda caaIYaaabeaakiabeQ7aRnaaBaaaleaacaaIXaaabeaakiaacMcacq aH0oazceWG1bGbaiaadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWG IbWaaSbaaSqaaiaaiodaaeqaaOGaeqiTdqMabmyDayaacaWaaSbaaS qaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaamizaiaadgeaaSqaaiaa dgeaaeqaniabgUIiYdaakiaawUhacaGL9baacaWGKbGaamiEamaaBa aaleaacaaIZaaabeaaaeaacaaIWaaabaGaamitamaaBaaameaacaaI Waaabeaaa0Gaey4kIipakiabgkHiTmaapehabaWaaeWaaeaadaWdrb qaamaabmaabaGaamiDamaaBaaaleaacaaIZaaabeaakiabes7aKjqa dwhagaGaamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiaads gacqaH+oaEaSqaaiaadoeaaeqaniabgUIiYdaakiaawIcacaGLPaaa aSqaaiaaicdaaeaacaWGmbWaaSbaaWqaaiaaicdaaeqaaaqdcqGHRi I8aOWaaSaaaeaacaWGKbGaam4CaaqaaiaadsgacaWG4bWaaSbaaSqa aiaaiodaaeqaaaaakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaa aa@82CA@

Recall that (by definition) δ u ˙ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmyDayaacaWaaSbaaSqaai aaiodaaeqaaaaa@3471@  must be chosen to satisfy

A δ u ˙ 3 dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaH0oazceWG1bGbaiaada WgaaWcbaGaaG4maaqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Ga ey4kIipakiabg2da9iaaicdaaaa@3B03@

Since the body force is uniform, the term involving b 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaaIZaaabeaaaa a@32B0@  is zero.  The first integral can then be integrated by parts as follows

A σ α3 δ u 3 x α dA = A x α σ α3 δ u 3 σ α3 x α δ u 3 dA = C σ α3 δ u 3 n α A δ u 3 σ α3 x α dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaeq ySdeMaaG4maaqabaGcdaWcaaqaaiabgkGi2kabes7aKjaadwhadaWg aaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiabeg 7aHbqabaaaaOGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGc cqGH9aqpdaWdrbqaamaabmaabaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaOWaaeWaaeaacqaHdpWC daWgaaWcbaGaeqySdeMaaG4maaqabaGccqaH0oazcaWG1bWaaSbaaS qaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacqGH ciITcqaHdpWCdaWgaaWcbaGaeqySdeMaaG4maaqabaaakeaacqGHci ITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaOGaeqiTdqMaamyDamaa BaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiaadsgacaWGbbaale aacaWGbbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacqaHdpWCdaWg aaWcbaGaeqySdeMaaG4maaqabaGccqaH0oazcaWG1bWaaSbaaSqaai aaiodaaeqaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaaqaaiaadoea aeqaniabgUIiYdGccqGHsisldaWdrbqaaiabes7aKjaadwhadaWgaa WcbaGaaG4maaqabaGcdaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaa cqaHXoqycaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaeq ySdegabeaaaaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipa aaa@8A33@

Choosing δ u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaaIZa aabeaaaaa@3468@  to vanish on the boundary or the interior yields the equilibrium equation

  σ α3 / x α σ 31 κ 2 + σ 32 κ 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiabeg 7aHjaaiodaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaeqyS degabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaGaaGymaaqaba GccqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHdpWCdaWg aaWcbaGaaG4maiaaikdaaeqaaOGaeqOUdS2aaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaGimaaaa@4B3F@

choosing any other δ u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaaIZa aabeaaaaa@3468@  gives the boundary condition σ 3α n α = t 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacqaHXo qyaeqaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaamiD amaaBaaaleaacaaIZaaabeaaaaa@3AE5@ .

 

3. Choosing δ u 3 ( x α )= f αβ =δ r ˙ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaaIZa aabeaakiaacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaGa eyypa0JaamOzamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0 JaeqiTdqMabCOCayaacaGaeyypa0JaaGimaaaa@4373@ , using δ κ 1 =δ ψ ˙ κ 2 δ κ 2 =δ ψ ˙ κ 1 δ κ 3 =dδ ψ ˙ /ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaCbiaeaacqaH6oWAaSqabe aacqGHhis0aaGcdaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH0oaz cuaHipqEgaGaaiabeQ7aRnaaBaaaleaacaaIYaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes7aKnaaxacabaGaeqOU dSgaleqabaGaey4bIenaaOWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0 JaeyOeI0IaeqiTdqMafqiYdKNbaiaacqaH6oWAdaWgaaWcbaGaaGym aaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes7aKnaaxa cabaGaeqOUdSgaleqabaGaey4bIenaaOWaaSbaaSqaaiaaiodaaeqa aOGaeyypa0Jaamizaiabes7aKjqbeI8a5zaacaGaai4laiaadsgaca WGZbaaaa@6B76@  as well as δ ω 3 =δ ψ ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaaio daaeqaaOGaeyypa0JaeqiTdqMafqiYdKNbaiaaaaa@39C7@  yields

0 L 0 + κ 2 M 1 κ 1 M 2 δ ψ ˙ + dδ ψ ˙ ds M 3 d x 3 + 0 L ρ I 3 α 3 +( I 1 I 2 ) ω 1 ω 2 δ ψ ˙ ds 0 L q 3 δ ψ ˙ ds Q 3 δ ψ ˙ x 3 =0 Q 3 δ ψ ˙ x 3 = L 0 =0 0 L 0 d M 3 ds + κ 2 M 1 κ 1 M 2 q 3 ρ I 3 α 3 +( I 1 I 2 ) ω 1 ω 2 δ ψ ˙ d x 3 + ( M 3 Q 3 )δ ψ ˙ x 3 = L 0 ( M 3 + Q 3 )δ ψ ˙ x 3 =0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdXbqaamaacmaabaWaaeWaae aacqGHRaWkcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccaWGnbWaaSba aSqaaiaaigdaaeqaaOGaeyOeI0IaeqOUdS2aaSbaaSqaaiaaigdaae qaaOGaamytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiab es7aKjqbeI8a5zaacaGaey4kaSYaaSaaaeaacaWGKbGaeqiTdqMafq iYdKNbaiaaaeaacaWGKbGaam4CaaaacaWGnbWaaSbaaSqaaiaaioda aeqaaaGccaGL7bGaayzFaaGaamizaiaadIhadaWgaaWcbaGaaG4maa qabaGccqGHRaWkdaWdXbqaaiabeg8aYnaabmaabaGaamysamaaBaaa leaacaaIZaaabeaakiabeg7aHnaaBaaaleaacaaIZaaabeaakiabgU caRiaacIcacaWGjbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaamys amaaBaaaleaacaaIYaaabeaakiaacMcacqaHjpWDdaWgaaWcbaGaaG ymaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqaH0oazcuaHipqEgaGaaaWcbaGaaGimaaqaaiaadYeaa0Gaey 4kIipakiaadsgacaWGZbaaleaacaaIWaaabaGaamitamaaBaaameaa caaIWaaabeaaa0Gaey4kIipaaOqaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHsisldaWdXbqaamaabmaabaGaamyCamaaBaaaleaaca aIZaaabeaakiabes7aKjqbeI8a5zaacaaacaGLOaGaayzkaaaaleaa caaIWaaabaGaamitaaqdcqGHRiI8aOGaamizaiaadohacqGHsislda WadaqaaiaadgfadaWgaaWcbaGaaG4maaqabaGccqaH0oazcuaHipqE gaGaaaGaay5waiaaw2faamaaBaaaleaacaWG4bWaaSbaaWqaaiaaio daaeqaaSGaeyypa0JaaGimaaqabaGccqGHsisldaWadaqaaiaadgfa daWgaaWcbaGaaG4maaqabaGccqaH0oazcuaHipqEgaGaaaGaay5wai aaw2faamaaBaaaleaacaWG4bWaaSbaaWqaaiaaiodaaeqaaSGaeyyp a0JaamitamaaBaaameaacaaIWaaabeaaaSqabaGccqGH9aqpcaaMc8 UaaGimaaqaaiabgkDiEpaapehabaWaaiWaaeaadaqadaqaaiabgkHi TmaalaaabaGaamizaiaad2eadaWgaaWcbaGaaG4maaqabaaakeaaca WGKbGaam4CaaaacqGHRaWkcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGc caWGnbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOUdS2aaSbaaS qaaiaaigdaaeqaaOGaamytamaaBaaaleaacaaIYaaabeaakiabgkHi TiaadghadaWgaaWcbaGaaG4maaqabaGccqGHsislcqaHbpGCdaqada qaaiaadMeadaWgaaWcbaGaaG4maaqabaGccqaHXoqydaWgaaWcbaGa aG4maaqabaGccqGHRaWkcaGGOaGaamysamaaBaaaleaacaaIXaaabe aakiabgkHiTiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaeqyY dC3aaSbaaSqaaiaaigdaaeqaaOGaeqyYdC3aaSbaaSqaaiaaikdaae qaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaeqiTdqMafqiYdKNb aiaaaiaawUhacaGL9baacaWGKbGaamiEamaaBaaaleaacaaIZaaabe aaaeaacaaIWaaabaGaamitamaaBaaameaacaaIWaaabeaaa0Gaey4k IipaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqGHRaWkdaWadaqaaiaacIcacaWGnbWa aSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamyuamaaBaaaleaacaaIZa aabeaakiaacMcacqaH0oazcuaHipqEgaGaaaGaay5waiaaw2faamaa BaaaleaacaWG4bWaaSbaaWqaaiaaiodaaeqaaSGaeyypa0Jaamitam aaBaaameaacaaIWaaabeaaaSqabaGccqGHsisldaWadaqaaiaacIca caWGnbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamyuamaaBaaale aacaaIZaaabeaakiaacMcacqaH0oazcuaHipqEgaGaaaGaay5waiaa w2faamaaBaaaleaacaWG4bWaaSbaaWqaaiaaiodaaeqaaSGaeyypa0 JaaGimaaqabaGccqGH9aqpcaaIWaaaaaa@14D6@

where we have integrated by parts to obtain the second line.   Choosing δ ψ ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiYdKNbaiaaaaa@345C@  to vanish on the ends of the rod yields the equation of motion d M 3 /ds κ 2 M 1 + κ 1 M 2 + q 3 =ρ I 3 α 3 +( I 1 I 2 ) ω 1 ω 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaad2eadaWgaaWcbaGaaG4maa qabaGccaGGVaGaamizaiaadohacqGHsislcqaH6oWAdaWgaaWcbaGa aGOmaaqabaGccaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq OUdS2aaSbaaSqaaiaaigdaaeqaaOGaamytamaaBaaaleaacaaIYaaa beaakiabgUcaRiaadghadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcq aHbpGCdaqadaqaaiaadMeadaWgaaWcbaGaaG4maaqabaGccqaHXoqy daWgaaWcbaGaaG4maaqabaGccqGHRaWkcaGGOaGaamysamaaBaaale aacaaIXaaabeaakiabgkHiTiaadMeadaWgaaWcbaGaaGOmaaqabaGc caGGPaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@5850@ . Any other choice of   δ ψ ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiYdKNbaiaaaaa@345C@  yields the boundary conditions M 3 =± Q 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIZaaabeaaki abg2da9iabgglaXkaadgfadaWgaaWcbaGaaG4maaqabaaaaa@3758@  on the ends of the rod.

 

4. Choosing δ u 3 ( x α )= f αβ =δ ψ ˙ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaaIZa aabeaakiaacIcacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaGa eyypa0JaamOzamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0 JaeqiTdqMafqiYdKNbaiaacqGH9aqpcaaIWaaaaa@4446@  and substituting δ ω 1 =δ τ ˙ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaaig daaeqaaOGaeyypa0JaeyOeI0IaeqiTdqMafqiXdqNbaiaadaWgaaWc baGaaGOmaaqabaaaaa@3B91@ , δ ω 2 =δ τ ˙ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaaik daaeqaaOGaeyypa0JaeqiTdqMafqiXdqNbaiaadaWgaaWcbaGaaGym aaqabaaaaa@3AA4@ , where δ τ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiXdqNbaiaadaWgaaWcba GaeqySdegabeaaaaa@361E@  are the components of a virtual rate of change of the tangent vector t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaaaa@31DD@  reduces the virtual work equation to

0 L 0 dδ s ˙ d x 3 T 3 +δ κ i M i ds d x 3 d x 3 0 L p i δ v i q 2 d τ ˙ 1 + q 1 δ τ ˙ 2 ds + 0 L ρA a i δ v i ds+ 0 L ρ I 1 α 1 + ω 2 ω 3 δ τ ˙ 2 ds 0 L ρ I 2 α 2 ω 1 ω 3 δ τ ˙ 1 ds P i δ v i Q 2 δ τ ˙ 1 + Q 1 δ τ ˙ 2 x 3 =0 P i δ v i Q 2 δ τ ˙ 1 + Q 1 δ τ ˙ 2 x 3 = L 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdXbqaamaacmaabaWaaSaaae aacaWGKbGaeqiTdqMabm4CayaacaaabaGaamizaiaadIhadaWgaaWc baGaaG4maaqabaaaaOGaamivamaaBaaaleaacaaIZaaabeaakiabgU caRiabes7aKnaaxacabaGaeqOUdSgaleqabaGaey4bIenaaOWaaSba aSqaaiaadMgaaeqaaOGaamytamaaBaaaleaacaWGPbaabeaakmaala aabaGaamizaiaadohaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaa beaaaaaakiaawUhacaGL9baacaWGKbGaamiEamaaBaaaleaacaaIZa aabeaaaeaacaaIWaaabaGaamitamaaBaaameaacaaIWaaabeaaa0Ga ey4kIipakiabgkHiTmaapehabaWaaeWaaeaacaWGWbWaaSbaaSqaai aadMgaaeqaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiab gkHiTiaadghadaWgaaWcbaGaaGOmaaqabaGccaWGKbGafqiXdqNbai aadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGXbWaaSbaaSqaaiaa igdaaeqaaOGaeqiTdqMafqiXdqNbaiaadaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaaaSqaaiaaicdaaeaacaWGmbaaniabgUIiYdGc caWGKbGaam4CaaqaaiabgUcaRmaapehabaGaeqyWdiNaamyqaiaadg gadaWgaaWcbaGaamyAaaqabaGccqaH0oazcaWG2bWaaSbaaSqaaiaa dMgaaeqaaaqaaiaaicdaaeaacaWGmbaaniabgUIiYdGccaWGKbGaam 4CaiabgUcaRmaapehabaGaeqyWdiNaamysamaaBaaaleaacaaIXaaa beaakmaabmaabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqyYdC3aaSbaaSqaaiaa iodaaeqaaaGccaGLOaGaayzkaaGaeqiTdqMafqiXdqNbaiaadaWgaa WcbaGaaGOmaaqabaaabaGaaGimaaqaaiaadYeaa0Gaey4kIipakiaa dsgacaWGZbGaeyOeI0Yaa8qCaeaacqaHbpGCcaWGjbWaaSbaaSqaai aaikdaaeqaaOWaaeWaaeaacqaHXoqydaWgaaWcbaGaaGOmaaqabaGc cqGHsislcqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaHjpWDdaWgaa WcbaGaaG4maaqabaaakiaawIcacaGLPaaacqaH0oazcuaHepaDgaGa amaaBaaaleaacaaIXaaabeaaaeaacaaIWaaabaGaamitaaqdcqGHRi I8aOGaamizaiaadohacaaMc8UaaGPaVlaaykW7caaMc8oabaGaeyOe I0YaamWaaeaacaWGqbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaam ODamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadgfadaWgaaWcbaGa aGOmaaqabaGccqaH0oazcuaHepaDgaGaamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadgfadaWgaaWcbaGaaGymaaqabaGccqaH0oazcuaH epaDgaGaamaaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faamaaBa aaleaacaWG4bWaaSbaaWqaaiaaiodaaeqaaSGaeyypa0JaaGimaaqa baGccqGHsisldaWadaqaaiaadcfadaWgaaWcbaGaamyAaaqabaGccq aH0oazcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iaamyuamaa BaaaleaacaaIYaaabeaakiabes7aKjqbes8a0zaacaWaaSbaaSqaai aaigdaaeqaaOGaey4kaSIaamyuamaaBaaaleaacaaIXaaabeaakiab es7aKjqbes8a0zaacaWaaSbaaSqaaiaaikdaaeqaaaGccaGLBbGaay zxaaWaaSbaaSqaaiaadIhadaWgaaadbaGaaG4maaqabaWccqGH9aqp caWGmbWaaSbaaWqaaiaaicdaaeqaaaWcbeaakiabg2da9iaaicdaaa aa@EC4D@

To proceed, it is necessary to express δ κ ˙ i ,δ τ ˙ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqOUdSMbaiaadaWgaaWcba GaamyAaaqabaGccaGGSaGaeqiTdqMafqiXdqNbaiaadaWgaaWcbaGa amyAaaqabaaaaa@3AA1@  and δ s ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabm4Cayaacaaaaa@3386@  in terms of the virtual velocity components δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@ . The algebra and the resulting equilibrium equations are greatly simplified if the tangent vector t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaaaa@31DD@  is regarded as an independent kinematic variable.   The relationship between t and dr/ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahkhacaGGVaGaamizaiaado haaaa@3558@  must be enforced by a vector valued Lagrange multiplier T = T 1 m 1 + T 2 m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCivayaafaGaeyypa0JaamivamaaBa aaleaacaaIXaaabeaakiaah2gadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaaCyBamaaBaaaleaaca aIYaaabeaaaaa@3B0B@ , which must satisfy

0 L dr ds t δ T ˙ ds + 0 L dδv ds δ t ˙ T ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaqadaqaamaalaaabaGaam izaiaahkhaaeaacaWGKbGaam4CaaaacqGHsislcaWH0baacaGLOaGa ayzkaaGaeyyXICTaeqiTdqMabCivayaacyaafaGaamizaiaadohaaS qaaiaaicdaaeaacaWGmbaaniabgUIiYdGccqGHRaWkdaWdXbqaamaa bmaabaWaaSaaaeaacaWGKbGaeqiTdqMaaCODaaqaaiaadsgacaWGZb aaaiabgkHiTiabes7aKjqahshagaGaaaGaayjkaiaawMcaaiabgwSi xlqahsfagaqbaiaadsgacaWGZbaaleaacaaIWaaabaGaamitaaqdcq GHRiI8aOGaeyypa0JaaGimaaaa@5939@

for all variations δ t ˙ ,δ r ˙ ,δ T ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabCiDayaacaGaaiilaiabes 7aKjqahkhagaGaaiaacYcacqaH0oazceWHubGbaiGbauaaaaa@3A2A@ . The second integral can be expressed in component form as

0 L dδ v α ds T α + δ v 2 κ 3 +δ v 3 κ 2 T 1 + δ v 1 κ 3 δ v 3 κ 1 T 2 δ τ ˙ α T α ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaqadaqaamaalaaabaGaam izaiabes7aKjaadAhadaWgaaWcbaGaeqySdegabeaaaOqaaiaadsga caWGZbaaaiaadsfadaWgaaWcbaGaeqySdegabeaakiabgUcaRmaabm aabaGaeyOeI0IaeqiTdqMaamODamaaBaaaleaacaaIYaaabeaakiab eQ7aRnaaBaaaleaacaaIZaaabeaakiabgUcaRiabes7aKjaadAhada WgaaWcbaGaaG4maaqabaGccqaH6oWAdaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS YaaeWaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaeqOU dS2aaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaeqiTdqMaamODamaaBa aaleaacaaIZaaabeaakiabeQ7aRnaaBaaaleaacaaIXaaabeaaaOGa ayjkaiaawMcaaiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHsislcq aH0oazcuaHepaDgaGaamaaBaaaleaacqaHXoqyaeqaaOGaamivamaa BaaaleaacqaHXoqyaeqaaaGccaGLOaGaayzkaaaaleaacaaIWaaaba GaamitaaqdcqGHRiI8aOGaamizaiaadohacqGH9aqpcaaIWaaaaa@70E9@

This equation can simply be added to the virtual work equation to ensure that δ τ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiXdqNbaiaadaWgaaWcba GaeqySdegabeaaaaa@361E@  and δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  are consistent.   Finally, recall that the curvature rates and stretch rate are related to δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@   δ τ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiXdqNbaiaadaWgaaWcba GaeqySdegabeaaaaa@361E@  by

dδ s ˙ d x 3 = ds d x 3 dδ v 3 ds δ v 1 κ 2 +δ v 2 κ 1 δ κ 1 = dδ τ ˙ 2 ds δ τ ˙ 1 κ 3 δ κ 2 = dδ τ ˙ 1 ds δ τ ˙ 2 κ 3 δ κ 3 =δ τ ˙ 1 κ 1 +δ τ ˙ 2 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacqaH0oazce WGZbGbaiaaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGc cqGH9aqpdaWcaaqaaiaadsgacaWGZbaabaGaamizaiaadIhadaWgaa WcbaGaaG4maaqabaaaaOWaaeWaaeaadaWcaaqaaiaadsgacqaH0oaz caWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadohaaaGaey OeI0IaeqiTdqMaamODamaaBaaaleaacaaIXaaabeaakiabeQ7aRnaa BaaaleaacaaIYaaabeaakiabgUcaRiabes7aKjaadAhadaWgaaWcba GaaGOmaaqabaGccqaH6oWAdaWgaaWcbaGaaGymaaqabaaakiaawIca caGLPaaacaaMc8oabaGaeqiTdq2aaCbiaeaacqaH6oWAdaWgaaWcba GaaGymaaqabaaabeqaaiabgEGirdaakiabg2da9iabgkHiTmaalaaa baGaamizaiabes7aKjqbes8a0zaacaWaaSbaaSqaaiaaikdaaeqaaa GcbaGaamizaiaadohaaaGaeyOeI0IaeqiTdqMafqiXdqNbaiaadaWg aaWcbaGaaGymaaqabaGccqaH6oWAdaWgaaWcbaGaaG4maaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH0oazdaWfGaqa aiabeQ7aRnaaBaaaleaacaaIYaaabeaaaeqabaGaey4bIenaaOGaey ypa0ZaaSaaaeaacaWGKbGaeqiTdqMafqiXdqNbaiaadaWgaaWcbaGa aGymaaqabaaakeaacaWGKbGaam4CaaaacqGHsislcqaH0oazcuaHep aDgaGaamaaBaaaleaacaaIYaaabeaakiabeQ7aRnaaBaaaleaacaaI ZaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqiTdq2aaC biaeaacqaH6oWAdaWgaaWcbaGaaG4maaqabaaabeqaaiabgEGirdaa kiabg2da9iabes7aKjqbes8a0zaacaWaaSbaaSqaaiaaigdaaeqaaO GaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiTdqMafqiX dqNbaiaadaWgaaWcbaGaaGOmaaqabaGccqaH6oWAdaWgaaWcbaGaaG Omaaqabaaaaaa@A95A@

Substituting these results into the augmented virtual work equation gives

0 L dδ v α ds T α +δ v 1 κ 3 T 2 δ v 2 κ 3 T 1 +δ v 3 ( κ 1 T 2 + κ 2 T 1 ) δ τ ˙ α T α ds + 0 L dδ v 3 ds + δ v 1 κ 2 +δ v 2 κ 1 T 3 ds + 0 L ρA a i δ v i ds+ 0 L ρ I 1 α 1 + ω 2 ω 3 δ τ ˙ 2 ds 0 L ρ I 2 α 2 ω 1 ω 3 δ τ ˙ 1 ds + 0 L dδ τ ˙ 2 ds κ 3 δ τ ˙ 1 M 1 + dδ τ ˙ 1 ds κ 3 δ τ ˙ 2 M 2 + κ 1 δ τ ˙ 1 + κ 2 δ τ ˙ 2 M 3 ds 0 L p i δ v i + q 2 δ τ ˙ 1 q 1 δ τ ˙ 2 ds P i δ v i + Q 2 δ τ ˙ 1 Q 1 δ τ ˙ 2 x 3 =0 P i δ v i + Q 2 δ τ ˙ 1 Q 1 δ τ ˙ 2 x 3 = L 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdXbqaamaabmaabaWaaeWaae aadaWcaaqaaiaadsgacqaH0oazcaWG2bWaaSbaaSqaaiabeg7aHbqa baaakeaacaWGKbGaam4CaaaacaWGubWaaSbaaSqaaiabeg7aHbqaba GccqGHRaWkcqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaeqOU dS2aaSbaaSqaaiaaiodaaeqaaOGaamivamaaBaaaleaacaaIYaaabe aakiabgkHiTiabes7aKjaadAhadaWgaaWcbaGaaGOmaaqabaGccqaH 6oWAdaWgaaWcbaGaaG4maaqabaGccaWGubWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaa cIcacqGHsislcqaH6oWAdaWgaaWcbaGaaGymaaqabaGccaWGubWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaeqOUdS2aaSbaaSqaaiaaikda aeqaaOGaamivamaaBaaaleaacaaIXaaabeaakiaacMcaaiaawIcaca GLPaaacqGHsislcqaH0oazcuaHepaDgaGaamaaBaaaleaacqaHXoqy aeqaaOGaamivamaaBaaaleaacqaHXoqyaeqaaaGccaGLOaGaayzkaa aaleaacaaIWaaabaGaamitaaqdcqGHRiI8aOGaamizaiaadohaaeaa cqGHRaWkdaWdXbqaamaacmaabaWaaeWaaeaadaWcaaqaaiaadsgacq aH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadoha aaGaey4kaSYaaeWaaeaacqGHsislcqaH0oazcaWG2bWaaSbaaSqaai aaigdaaeqaaOGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIa eqiTdqMaamODamaaBaaaleaacaaIYaaabeaakiabeQ7aRnaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadsfa daWgaaWcbaGaaG4maaqabaaakiaawUhacaGL9baaaSqaaiaaicdaae aacaWGmbaaniabgUIiYdGccaWGKbGaam4CaaqaaiabgUcaRmaapeha baGaeqyWdiNaamyqaiaadggadaWgaaWcbaGaamyAaaqabaGccqaH0o azcaWG2bWaaSbaaSqaaiaadMgaaeqaaaqaaiaaicdaaeaacaWGmbaa niabgUIiYdGccaWGKbGaam4CaiabgUcaRmaapehabaGaeqyWdiNaam ysamaaBaaaleaacaaIXaaabeaakmaabmaabaGaeqySde2aaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaeqyYdC3aaSbaaSqaaiaaikdaaeqaaO GaeqyYdC3aaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeqiT dqMafqiXdqNbaiaadaWgaaWcbaGaaGOmaaqabaaabaGaaGimaaqaai aadYeaa0Gaey4kIipakiaadsgacaWGZbGaeyOeI0Yaa8qCaeaacqaH bpGCcaWGjbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacqaHXoqyda WgaaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaaGym aaqabaGccqaHjpWDdaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPa aacqaH0oazcuaHepaDgaGaamaaBaaaleaacaaIXaaabeaaaeaacaaI WaaabaGaamitaaqdcqGHRiI8aOGaamizaiaadohacaaMc8UaaGPaVd qaaiabgUcaRmaapehabaWaaiWaaeaadaqadaqaaiabgkHiTmaalaaa baGaamizaiabes7aKjqbes8a0zaacaWaaSbaaSqaaiaaikdaaeqaaa GcbaGaamizaiaadohaaaGaeyOeI0IaeqOUdS2aaSbaaSqaaiaaioda aeqaaOGaeqiTdqMafqiXdqNbaiaadaWgaaWcbaGaaGymaaqabaaaki aawIcacaGLPaaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYa aeWaaeaadaWcaaqaaiaadsgacqaH0oazcuaHepaDgaGaamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWGZbaaaiabgkHiTiabeQ7aRnaa BaaaleaacaaIZaaabeaakiabes7aKjqbes8a0zaacaWaaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaGaamytamaaBaaaleaacaaIYaaa beaakiabgUcaRmaabmaabaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaeqiTdqMafqiXdqNbaiaadaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccqaH0oazcuaHepaDgaGaam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaad2eadaWgaaWc baGaaG4maaqabaaakiaawUhacaGL9baaaSqaaiaaicdaaeaadaWgaa adbaGaamitaaqabaaaniabgUIiYdGccaWGKbGaam4CaaqaaiabgkHi TmaapehabaWaaeWaaeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaeq iTdqMaamODamaaBaaaleaacaWGPbaabeaakiabgUcaRiaadghadaWg aaWcbaGaaGOmaaqabaGccqaH0oazcuaHepaDgaGaamaaBaaaleaaca aIXaaabeaakiabgkHiTiaadghadaWgaaWcbaGaaGymaaqabaGccqaH 0oazcuaHepaDgaGaamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIipakiaadsgacaWGZbGa aGPaVlaaykW7caaMc8UaaGPaVdqaaiabgkHiTmaadmaabaGaamiuam aaBaaaleaacaWGPbaabeaakiabes7aKjaadAhadaWgaaWcbaGaamyA aaqabaGccqGHRaWkcaWGrbWaaSbaaSqaaiaaikdaaeqaaOGaeqiTdq MafqiXdqNbaiaadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGrbWa aSbaaSqaaiaaigdaaeqaaOGaeqiTdqMafqiXdqNbaiaadaWgaaWcba GaaGOmaaqabaaakiaawUfacaGLDbaadaWgaaWcbaGaamiEamaaBaaa meaacaaIZaaabeaaliabg2da9iaaicdaaeqaaOGaeyOeI0YaamWaae aacaWGqbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamODamaaBaaa leaacaWGPbaabeaakiabgUcaRiaadgfadaWgaaWcbaGaaGOmaaqaba GccqaH0oazcuaHepaDgaGaamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadgfadaWgaaWcbaGaaGymaaqabaGccqaH0oazcuaHepaDgaGaam aaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faamaaBaaaleaacaWG 4bWaaSbaaWqaaiaaiodaaeqaaSGaeyypa0JaamitamaaBaaameaaca aIWaaabeaaaSqabaGccqGH9aqpcaaIWaaaaaa@7494@

This equation must be satisfied for all admissible δ v i ,δ τ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiaacYcacqaH0oazcuaHepaDgaGaamaaBaaaleaacqaHXoqy aeqaaaaa@3A92@ . Considering each component in turn, and integrating by parts appropriately and using I 3 = I 1 + I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIZaaabeaaki abg2da9iaadMeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGjbWa aSbaaSqaaiaaikdaaeqaaaaa@37FE@  gives the last five equations of motion, as well as the boundary conditions T=±PM=±Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iabgglaXkaahcfaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHnbGaeyypa0Ja eyySaeRaaCyuaaaa@4370@  on s=0 and s=L. 

 

 

 

10.2.10 Constitutive equations relating forces to deformation measures in elastic rods

 

Constitutive equations must relate the deformation measures defined in Section 10.2.3 to the forces defined in 10.2.8.  In this section we list the relationships between these quantities for an isotropic, elastic rod that is subjected to small distorsions.  For simplicity, the sides of the rod are assumed to be traction free.

 

The results depend on the geometry of the rod’s cross-section, which is characterized as follows. 

 

1. Introduce a Cartesian coordinate system ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3966@  as shown in the figure. The coordinates have origin at the centroid of the cross-section, with basis vectors e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  parallel to the principal axes of inertia for the cross-section, and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  parallel to the rod’s axis.

 

2. We denote the cross-sectional area of the rod by A, and the curve bounding the cross-section by C, and let I i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaWGPbaabeaaaa a@32C8@  denote the three principal moments of area of the cross-section (see Sect 10.2.1).

 

3. We introduce a warping function w( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@37C2@  to describe the out-of-plane displacement component u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  in the cross-section of the rod.  The warping function is related to the out-of-plane displacement u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  by

u 3 ( x 1 , x 2 , x 3 )= κ 3 ( x 3 ) κ ¯ 3 ( x 3 ) w( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabe aakiaacMcacqGH9aqpdaqadaqaaiabeQ7aRnaaBaaaleaacaaIZaaa beaakiaacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgk HiTiqbeQ7aRzaaraWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaadIha daWgaaWcbaGaaG4maaqabaGccaGGPaaacaGLOaGaayzkaaGaam4Dai aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaaaaa@51A5@

The warping function depends only on the geometry of the cross-section, and satisfies the following governing equations and boundary conditions

2 w x 1 2 + 2 w x 2 2 w x 1 κ 2 + w x 2 κ 1 =0in A w x α n α = x 2 n 1 x 1 n 2 = x α x α s on C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiaadEhaaeaacqGHciITcaWG4bWaa0baaSqaaiaa igdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadIhadaqhaaWcbaGa aGOmaaqaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWG3b aabaGaeyOaIyRaamiEamaaBaaaleaacqGHXaqmaeqaaaaakiabeQ7a RnaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaeyOaIyRaam 4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaeqOU dS2aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaeyAaiaab6gacaqGGaGaaeyqaiaaykW7 aeaadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4bWaaSbaaS qaaiabeg7aHbqabaaaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGa eyypa0JaamiEamaaBaaaleaacaaIYaaabeaakiaad6gadaWgaaWcba GaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa amOBamaaBaaaleaacaaIYaaabeaakiabg2da9iaadIhadaWgaaWcba GaeqySdegabeaakmaalaaabaGaeyOaIyRaamiEamaaBaaaleaacqaH XoqyaeqaaaGcbaGaeyOaIyRaam4CaaaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gacaqGUbGaaeiiaiaa boeaaaaa@8EFF@

You can easily show that this choice of u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  will automatically satisfy the shear stress equilibrium equation σ α3 / x α σ 31 κ 2 + σ 32 κ 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiabeg 7aHjaaiodaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaeqyS degabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaGaaGymaaqaba GccqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHdpWCdaWg aaWcbaGaaG4maiaaikdaaeqaaOGaeqOUdS2aaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaGimaaaa@4B3F@  as well as the boundary condition σ 3α n α =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacqaHXo qyaeqaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaaGim aaaa@39BD@  on C.

 

4. Finally we define a modified polar moment of inertia for the cross section as

J 3 = I 3 A x 2 w x 1 x 1 w x 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaaIZaaabeaaki abg2da9iaadMeadaWgaaWcbaGaaG4maaqabaGccqGHsisldaWdrbqa amaabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakmaalaaabaGaey OaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaa aOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaakmaalaaabaGaey OaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaa aaGccaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8aOGaamizai aadgeaaaa@4CFE@

 

 

Calculating the warping function is a nuisance, because it requires the solution to a PDE.  In desperation, you can take w=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this will overestimate the torsional stiffness of the rod, but in many practical applications the error is not significant.   For a better approximation, warping functions can be estimated by neglecting the terms involving κ β w/ x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiabek7aIbqaba GccqGHciITcaWG3bGaai4laiabgkGi2kaadIhadaWgaaWcbaGaeqyS degabeaaaaa@3BAC@  in the governing equation.  A few such approximate warping functions and modified polar moments of area are listed in the table below. 

 

The force-deformation relations for the rod are

T 3 = EA 2 ds d s ¯ 2 1 EA ds d s ¯ 1 M α =E I α ( κ α κ ¯ α ) M 3 =μ J 3 ( κ 3 κ ¯ 3 ) σ 13 =μ( κ 3 κ ¯ 3 ) w x 1 x 2 σ 23 =μ( κ 3 κ ¯ 3 ) w x 2 + x 1 f 11 = f 22 = ν 2 ds d s ¯ 2 1 f 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGubWaaSbaaSqaaiaaiodaae qaaOGaeyypa0ZaaSaaaeaacaWGfbGaamyqaaqaaiaaikdaaaWaaeWa aeaadaqadaqaamaalaaabaGaamizaiaadohaaeaacaWGKbGabm4Cay aaraaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaaigdaaiaawIcacaGLPaaacaaMc8UaeyisISRaamyraiaadgeada qadaqaamaalaaabaGaamizaiaadohaaeaacaWGKbGabm4Cayaaraaa aiabgkHiTiaaigdaaiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGaamyt amaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaamyraiaadMeadaWgaa WcbaGaeqySdegabeaakiaacIcacqaH6oWAdaWgaaWcbaGaeqySdega beaakiabgkHiTiqbeQ7aRzaaraWaaSbaaSqaaiabeg7aHbqabaGcca GGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGnbWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaeqiVd0MaamOsamaaBaaaleaacaaIZaaabeaakiaacIca cqaH6oWAdaWgaaWcbaGaaG4maaqabaGccqGHsislcuaH6oWAgaqeam aaBaaaleaacaaIZaaabeaakiaacMcaaeaacqaHdpWCdaWgaaWcbaGa aGymaiaaiodaaeqaaOGaeyypa0JaaGPaVlaaykW7cqaH8oqBcaGGOa GaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IafqOUdSMbaeba daWgaaWcbaGaaG4maaqabaGccaGGPaWaaeWaaeaadaWcaaqaaiabgk Gi2kaadEhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa kiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaHdpWCdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaeyypa0 JaeqiVd0MaaiikaiabeQ7aRnaaBaaaleaacaaIZaaabeaakiabgkHi TiqbeQ7aRzaaraWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaaykW7da qadaqaamaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWg aaWcbaGaaGOmaaqabaaaaOGaey4kaSIaamiEamaaBaaaleaacaaIXa aabeaaaOGaayjkaiaawMcaaaqaaiaadAgadaWgaaWcbaGaaGymaiaa igdaaeqaaOGaeyypa0JaamOzamaaBaaaleaacaaIYaGaaGOmaaqaba GccqGH9aqpcqGHsisldaWcaaqaaiabe27aUbqaaiaaikdaaaWaaiWa aeaadaqadaqaamaalaaabaGaamizaiaadohaaeaacaWGKbGabm4Cay aaraaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaaigdaaiaawUhacaGL9baacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWGMbWaaSbaaSqaaiaaigdacaaIYaaabeaaki abg2da9iaaicdaaaaa@FD50@

The two shear force components T α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqyaeqaaa aa@3384@  cannot be related to the deformation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  they are Lagrange multipliers that enforce the condition that the rod does not experience transverse shear, as discussed in the preceding section.

 

Derivation: These results can be derived as follows:

 

1. The elastic constitutive equations for materials subjected to small distorsions, but arbitrary rotations, are listed in Section 3.3.   They have the form

Σ ij = E 1+ν E ij + ν 12ν ( E kk ) δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaamyraaqaamaabmaabaGaaGymaiab gUcaRiabe27aUbGaayjkaiaawMcaaaaadaGadaqaaiaadweadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaey4kaSYaaSaaaeaacqaH9oGBaeaa caaIXaGaeyOeI0IaaGOmaiabe27aUbaacaGGOaGaamyramaaBaaale aacaWGRbGaam4AaaqabaGccaGGPaGaeqiTdq2aaSbaaSqaaiaadMga caWGQbaabeaaaOGaay5Eaiaaw2haaaaa@4EF9@

where Σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@346D@  are the components of the material stress tensor, and E ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B3@  are the components of the Lagrange strain tensor. The components of E ij ee =( F ki ee F kj ee δ ij )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaDaaaleaacaWGPbGaamOAaa qaaiaahwgacaWHLbaaaOGaeyypa0JaaiikaiaadAeadaqhaaWcbaGa am4AaiaadMgaaeaacaWHLbGaaCyzaaaakiaadAeadaqhaaWcbaGaam 4AaiaadQgaaeaacaWHLbGaaCyzaaaakiabgkHiTiabes7aKnaaBaaa leaacaWGPbGaamOAaaqabaGccaGGPaGaai4laiaaikdaaaa@4786@  in the basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  can be found using the formulas for F MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraaaa@31AF@  given in Section 10.2.7, and when substituted into the constitutive laws give expressions for the components of material stress Σ ij ee MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aa0baaSqaaiaadMgacaWGQb aabaGaaCyzaiaahwgaaaaaaa@364A@  in terms of the deformation measures f αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3537@ , u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@ , κ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaadMgaaeqaaa aa@33AC@  and ds/d s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadohacaGGVaGaamizaiqado hagaqeaaaa@356D@ .

 

2. The Cauchy stress is related to the material stress by σ=FΣ F T /J MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iaahAeacaWHJoGaaC OramaaCaaaleqabaGaamivaaaakiaac+cacaWGkbaaaa@3894@ .  For small distorsions, but arbitrary rotations, we may approximate this by σRΣ R T = Σ ij ee R e i R T e j = Σ ij ee m i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdiabgIKi7kaahkfacaWHJoGaaC OuamaaCaaaleqabaGaamivaaaakiabg2da9iabfo6atnaaDaaaleaa caWGPbGaamOAaaqaaiaahwgacaWHLbaaaOGaaCOuaiaahwgadaWgaa WcbaGaamyAaaqabaGccqGHxkcXcaWHsbWaaWbaaSqabeaacaWGubaa aOGaaCyzamaaBaaaleaacaWGQbaabeaakiabg2da9iabfo6atnaaDa aaleaacaWGPbGaamOAaaqaaiaahwgacaWHLbaaaOGaaCyBamaaBaaa leaacaWGPbaabeaakiabgEPielaah2gadaWgaaWcbaGaamOAaaqaba aaaa@53F1@ , so the components of the material stress tensor in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  can be used as an approximation to the components of the Cauchy stress tensor in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@ .  

 

3. Since we have assumed that the tractions on the sides of the rod vanish, the in-plane stress components must satisfy A σ αβ dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaeq ySdeMaeqOSdigabeaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGH RiI8aOGaaGPaVlabg2da9iaaicdaaaa@3E2D@ .  Substituting the formulas for stresses from (2) and noting that A x α dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWG4bWaaSbaaSqaaiabeg 7aHbqabaaabaGaamyqaaqab0Gaey4kIipakiaadsgacaWGbbGaeyyp a0JaaGimaaaa@3A26@   (because the origin for the coordinate system coincides with the centroid of the cross section) shows that f 11 = f 22 =ν (ds/d s ¯ ) 2 1 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcaWGMbWaaSbaaSqaaiaaikdacaaIYaaabeaakiab g2da9iabgkHiTiabe27aUnaabmaabaGaaiikaiaadsgacaWGZbGaai 4laiaadsgaceWGZbGbaebacaGGPaWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaaGymaaGaayjkaiaawMcaaiaac+cacaaIYaaaaa@463A@ , f 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIXaGaaGOmaa qabaGccqGH9aqpcaaIWaaaaa@3538@ , and

σ 33 = E 2 ds d s ¯ 2 1+2( κ 1 κ ¯ 1 ) x 2 2( κ 2 κ ¯ 2 ) x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9maalaaabaGaamyraaqaaiaaikdaaaWaaeWaaeaa daqadaqaamaalaaabaGaamizaiaadohaaeaacaWGKbGabm4Cayaara aaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa igdacqGHRaWkcaaIYaGaaiikaiabeQ7aRnaaBaaaleaacaaIXaaabe aakiabgkHiTiqbeQ7aRzaaraWaaSbaaSqaaiaaigdaaeqaaOGaaiyk aiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaaIYaGaaiikai abeQ7aRnaaBaaaleaacaaIYaaabeaakiabgkHiTiqbeQ7aRzaaraWa aSbaaSqaaiaaikdaaeqaaOGaaiykaiaadIhadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaaaaa@56F4@

 

4. Substituting the formula for σ 33 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaaaaa@3449@  into the definitions of T 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaaa a@32A2@ , M 1 , M 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaki aacYcacaWGnbWaaSbaaSqaaiaaikdaaeqaaaaa@350D@  given in Section 10.2.8 and noting that A x 1 x 2 dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaeaacaWGbbaabeqd cqGHRiI8aOGaamizaiaadgeacqGH9aqpcaaIWaaaaa@3B31@  (because the basis vectors coincide with the principal axes of inertia) yields

T 3 = EA 2 ds d s ¯ 2 1 EA ds d s ¯ 1 M α =E I α ( κ α κ ¯ α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaki abg2da9maalaaabaGaamyraiaadgeaaeaacaaIYaaaamaabmaabaWa aeWaaeaadaWcaaqaaiaadsgacaWGZbaabaGaamizaiqadohagaqeaa aaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI XaaacaGLOaGaayzkaaGaaGPaVlabgIKi7kaadweacaWGbbWaaeWaae aadaWcaaqaaiaadsgacaWGZbaabaGaamizaiqadohagaqeaaaacqGH sislcaaIXaaacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamytamaaBaaaleaacqaHXoqyaeqaaOGaey ypa0JaamyraiaadMeadaWgaaWcbaGaeqySdegabeaakiaacIcacqaH 6oWAdaWgaaWcbaGaeqySdegabeaakiabgkHiTiqbeQ7aRzaaraWaaS baaSqaaiabeg7aHbqabaGccaGGPaaaaa@7337@

 

5. Recall that the shear stress components σ α3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjaaio daaeqaaaaa@352B@  must satisfy the equilibrium equation and boundary condition

σ α3 x α σ 31 κ 2 + σ 32 κ 1 =0in A σ αβ n α =0on C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaeqySdeMaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaaaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaiodaca aIXaaabeaakiabeQ7aRnaaBaaaleaacaaIYaaabeaakiabgUcaRiab eo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaGccqaH6oWAdaWgaaWcba GaaGymaaqabaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caqGPbGaaeOB aiaabccacaqGbbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacqaHXoqy cqaHYoGyaeqaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0 JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caqGVbGaaeOBaiaabccacaqGdbaaaa@783E@

Substituting the shear stress components from step (2) into this equilibrium equation and setting u 3 = κ 3 w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iabeQ7aRnaaBaaaleaacaaIZaaabeaakiaadEhaaaa@3774@  gives the governing equation for w

2 w x 1 2 + 2 w x 2 2 w x 1 κ 2 + w x 2 κ 1 =0in A w x α n α = x 2 n 1 x 1 n 2 = x α x α s on C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiaadEhaaeaacqGHciITcaWG4bWaa0baaSqaaiaa igdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadIhadaqhaaWcbaGa aGOmaaqaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWG3b aabaGaeyOaIyRaamiEamaaBaaaleaacqGHXaqmaeqaaaaakiabeQ7a RnaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaeyOaIyRaam 4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaeqOU dS2aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaeyAaiaab6gacaqGGaGaaeyqaiaaykW7 aeaadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4bWaaSbaaS qaaiabeg7aHbqabaaaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGa eyypa0JaamiEamaaBaaaleaacaaIYaaabeaakiaad6gadaWgaaWcba GaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa amOBamaaBaaaleaacaaIYaaabeaakiabg2da9iaadIhadaWgaaWcba GaeqySdegabeaakmaalaaabaGaeyOaIyRaamiEamaaBaaaleaacqaH XoqyaeqaaaGcbaGaeyOaIyRaam4CaaaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gacaqGUbGaaeiiaiaa boeaaaaa@8EFF@

 

6. The shear stresses now follow as

σ 13 =μ( κ 3 κ ¯ 3 ) w x 1 x 2 σ 23 =μ( κ 3 κ ¯ 3 ) w x 2 + x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIZa aabeaakiabg2da9iaaykW7caaMc8UaeqiVd0MaaiikaiabeQ7aRnaa BaaaleaacaaIZaaabeaakiabgkHiTiqbeQ7aRzaaraWaaSbaaSqaai aaiodaaeqaaOGaaiykamaabmaabaWaaSaaaeaacqGHciITcaWG3baa baGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccqGHsislca WG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaakiabg2da9iabeY7aTjaa cIcacqaH6oWAdaWgaaWcbaGaaG4maaqabaGccqGHsislcuaH6oWAga qeamaaBaaaleaacaaIZaaabeaakiaacMcacaaMc8+aaeWaaeaadaWc aaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaik daaeqaaaaakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaaakiaa wIcacaGLPaaaaaa@735A@

Substituting these results into the equation defining M 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIZaaabeaaaa a@329B@  in Section 10.2.6 gives the last equation

M 3 =μ J 3 ( κ 3 κ ¯ 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIZaaabeaaki abg2da9iabeY7aTjaadQeadaWgaaWcbaGaaG4maaqabaGccaGGOaGa eqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IafqOUdSMbaebada WgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3ECB@

 

 

 

10.2.11 Strain energy of an elastic rod

 

The total strain energy of an elastic rod can be computed from its curvatures as

Φ= 1 2 0 L EA ds d s ¯ 1 2 +E I 1 ( κ 1 κ ¯ 1 ) 2 +E I 2 ( κ 2 κ ¯ 2 ) 2 +μ J 3 ( κ 3 κ ¯ 3 ) 2 ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOmaaaadaWdXbqaamaacmaabaGaamyraiaadgeadaqadaqa amaalaaabaGaamizaiaadohaaeaacaWGKbGabm4Cayaaraaaaiabgk HiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaWGfbGaamysamaaBaaaleaacaaIXaaabeaakiaacIcacqaH6o WAdaWgaaWcbaGaaGymaaqabaGccqGHsislcuaH6oWAgaqeamaaBaaa leaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGfbGaamysamaaBaaaleaacaaIYaaabeaakiaacIcacqaH6oWA daWgaaWcbaGaaGOmaaqabaGccqGHsislcuaH6oWAgaqeamaaBaaale aacaaIYaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWk cqaH8oqBcaWGkbWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiabeQ7aRn aaBaaaleaacaaIZaaabeaakiabgkHiTiqbeQ7aRzaaraWaaSbaaSqa aiaaiodaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaOGaay5Eai aaw2haaiaadsgacaWGZbaaleaacaaIWaaabaGaamitaaqdcqGHRiI8 aaaa@6B87@

 

Derivation:  The derivation is similar to the procedure used to compute elastic moment-curvature relations.

1. The strain energy density in the rod can be computed from the Lagrange strain E ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B3@  and the Material Stress Σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@346D@  as U= Σ ij E ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9iabfo6atnaaBaaale aacaWGPbGaamOAaaqabaGccaWGfbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaac+cacaaIYaaaaa@3AA3@ .  The material stress can be related to the Lagrange strain using the formulas in Section 10.2.10, while the Lagrange strain can be expressed in terms of of the deformation measures f αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3537@ , u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@ , κ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaadMgaaeqaaa aa@33AC@  and ds/d s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadohacaGGVaGaamizaiqado hagaqeaaaa@356D@  using the formulas for the deformation gradient listed in Sections 10.2.7.

 

2. The results can be simplified by recalling that f 11 = f 22 =ν (ds/d s ¯ ) 2 1 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcaWGMbWaaSbaaSqaaiaaikdacaaIYaaabeaakiab g2da9iabgkHiTiabe27aUnaabmaabaGaaiikaiaadsgacaWGZbGaai 4laiaadsgaceWGZbGbaebacaGGPaWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaaGymaaGaayjkaiaawMcaaiaac+cacaaIYaaaaa@463A@ , f 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIXaGaaGOmaa qabaGccqGH9aqpcaaIWaaaaa@3538@ , which shows that the strain energy density can be approximated as

U= E 2 ds d s ¯ 1 +( κ 1 κ ¯ 1 ) x 2 ( κ 2 κ ¯ 2 ) x 1 2 + μ 2 κ 3 κ ¯ 3 2 w x 1 x 2 2 + w x 2 + x 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGvbGaeyypa0ZaaSaaaeaaca WGfbaabaGaaGOmaaaadaqadaqaamaabmaabaWaaSaaaeaacaWGKbGa am4CaaqaaiaadsgaceWGZbGbaebaaaGaeyOeI0IaaGymaaGaayjkai aawMcaaiabgUcaRiaacIcacqaH6oWAdaWgaaWcbaGaaGymaaqabaGc cqGHsislcuaH6oWAgaqeamaaBaaaleaacaaIXaaabeaakiaacMcaca WG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaiikaiabeQ7aRnaa BaaaleaacaaIYaaabeaakiabgkHiTiqbeQ7aRzaaraWaaSbaaSqaai aaikdaaeqaaOGaaiykaiaadIhadaWgaaWcbaGaaGymaaqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGPaVpaalaaa baGaeqiVd0gabaGaaGOmaaaadaqadaqaaiabeQ7aRnaaBaaaleaaca aIZaaabeaakiabgkHiTiqbeQ7aRzaaraWaaSbaaSqaaiaaiodaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaiWaaeaada qadaqaamaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWg aaWcbaGaaGymaaqabaaaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaykW7 cqGHRaWkdaqadaqaamaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSIaamiEamaaBaaa leaacaaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aaaOGaay5Eaiaaw2haaaaaaa@8640@

where w is the warping function defined in Section 10.2.9. The two terms in this expression represent the strain energy density due to stretching and bending the rod, and twisting the rod, respectively.

 

3. The total strain energy follows by integrating U over the volume of the rod.  Using the measures of cross-sectional geometry listed in Section 10.2.1, it is straightforward to show that

V E 2 ds d s ¯ 1 +( κ 1 κ ¯ 1 ) x 2 ( κ 2 κ ¯ 2 ) x 1 2 dV= E 2 0 L A ds d s ¯ 1 2 + I 1 ( κ 1 κ ¯ 1 ) 2 + I 2 ( κ 2 κ ¯ 2 ) 2 ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaalaaabaGaamyraa qaaiaaikdaaaWaaeWaaeaadaqadaqaamaalaaabaGaamizaiaadoha aeaacaWGKbGabm4CayaaraaaaiabgkHiTiaaigdaaiaawIcacaGLPa aacqGHRaWkcaGGOaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IafqOUdSMbaebadaWgaaWcbaGaaGymaaqabaGccaGGPaGaamiEam aaBaaaleaacaaIYaaabeaakiabgkHiTiaacIcacqaH6oWAdaWgaaWc baGaaGOmaaqabaGccqGHsislcuaH6oWAgaqeamaaBaaaleaacaaIYa aabeaakiaacMcacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadAfaaeqaniabgUIiYd GccaWGKbGaamOvaiabg2da9aqaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7daWcaaqaaiaadweaaeaacaaIYaaaamaapehabaWaaiWa aeaacaWGbbWaaeWaaeaadaWcaaqaaiaadsgacaWGZbaabaGaamizai qadohagaqeaaaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaamysamaaBaaaleaacaaIXaaabeaaki aacIcacqaH6oWAdaWgaaWcbaGaaGymaaqabaGccqGHsislcuaH6oWA gaqeamaaBaaaleaacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiab eQ7aRnaaBaaaleaacaaIYaaabeaakiabgkHiTiqbeQ7aRzaaraWaaS baaSqaaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaOGa ay5Eaiaaw2haaiaadsgacaWGZbaaleaacaaIWaaabaGaamitaaqdcq GHRiI8aaaaaa@C6CB@

 

4. Some additional algebra is required to calculate the energy associated with twisting the rod. Begin by noting that

A w x 1 x 2 2 + w x 2 + x 1 2 dA=J+ A w x α w x α x 2 w x 1 + x 1 w x 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaGadaqaamaabmaabaWaaS aaaeaacqGHciITcaWG3baabaGaeyOaIyRaamiEamaaBaaaleaacaaI XaaabeaaaaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGPaVlabgUcaRmaa bmaabaWaaSaaaeaacqGHciITcaWG3baabaGaeyOaIyRaamiEamaaBa aaleaacaaIYaaabeaaaaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL7b GaayzFaaaaleaacaWGbbaabeqdcqGHRiI8aOGaamizaiaadgeacqGH 9aqpcaWGkbGaey4kaSYaa8quaeaadaqadaqaamaalaaabaGaeyOaIy Raam4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaaGc daWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4bWaaSbaaSqaai abeg7aHbqabaaaaOGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaa kmaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWcba GaaGymaaqabaaaaOGaey4kaSIaamiEamaaBaaaleaacaaIXaaabeaa kmaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWcba GaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaamizaiaadgeaaSqaaiaa dgeaaeqaniabgUIiYdaaaa@7804@

We need to show that the integral on the right hand side of this expression is zero.

 

5. To this end, note that

A w x α w x α dA= A x α w w x α dA= C w w x α n α ds = C w x 2 n 1 x 1 n 2 ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWcaaqaaiabgkGi2kaadE haaeaacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaaqaaiaa dgeaaeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaadEhaaeaacqGHci ITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaOGaamizaiaadgeacqGH 9aqpdaWdrbqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBa aaleaacqaHXoqyaeqaaaaakmaabmaabaGaam4DamaalaaabaGaeyOa IyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaa aakiaawIcacaGLPaaaaSqaaiaadgeaaeqaniabgUIiYdGccaWGKbGa amyqaiabg2da9maapefabaGaam4DamaalaaabaGaeyOaIyRaam4Daa qaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaaGccaWGUbWa aSbaaSqaaiabeg7aHbqabaGccaWGKbGaam4CaaWcbaGaam4qaaqab0 Gaey4kIipakiabg2da9maapefabaGaam4DamaabmaabaGaamiEamaa BaaaleaacaaIYaaabeaakiaad6gadaWgaaWcbaGaaGymaaqabaGccq GHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamOBamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWGdb aabeqdcqGHRiI8aaaa@7915@

where we have recalled that the warping function w satisfies 2 w/ x α x α =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO Gaam4Daiaac+cacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGc cqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpcaaIWa aaaa@3F18@  in A as well as w/ x α n α = x 2 n 1 x 1 n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqGHciITcaWG3bGaai4lai abgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaOGaayjkaiaawMca aiaad6gadaWgaaWcbaGaeqySdegabeaakiabg2da9iaadIhadaWgaa WcbaGaaGOmaaqabaGccaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaamiEamaaBaaaleaacaaIXaaabeaakiaad6gadaWgaaWcbaGaaG Omaaqabaaaaa@460D@  on C, and have used the divergence theorem.

 

6. Secondly, note that

A x 2 w x 1 + x 1 w x 2 dA = A x 1 x 2 w + x 2 w x 1 dA = C x 2 w n 1 + w x 1 n 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaabmaabaGaeyOeI0 IaamiEamaaBaaaleaacaaIYaaabeaakmaalaaabaGaeyOaIyRaam4D aaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaS IaamiEamaaBaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIyRaam4D aaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOa GaayzkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccqGH 9aqpdaWdrbqaamaabmaabaWaaSaaaeaacqGHciITaeaacqGHciITca WG4bWaaSbaaSqaaiaaigdaaeqaaaaakmaabmaabaGaeyOeI0IaamiE amaaBaaaleaacaaIYaaabeaakiaadEhaaiaawIcacaGLPaaacqGHRa WkdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOm aaqabaaaaOWaaeWaaeaacaWG3bGaamiEamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadsgacaWGbbaaleaa caWGbbaabeqdcqGHRiI8aaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabg2da9maapefabaWaaeWaaeaadaqadaqaaiab gkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG3baacaGLOaGaay zkaaGaamOBamaaBaaaleaacaaIXaaabeaakiabgUcaRmaabmaabaGa am4DaiaadIhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaca WGUbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamizaiaa dgeaaSqaaiaadoeaaeqaniabgUIiYdaaaaa@CEC1@

The sum of (5) and (6) is zero.  Using this result and (4) gives the expression for the strain energy of the rod.