10.3 Simplified versions of the general theory of deformable rods

 

In many practical cases of interest the general equations governing deformation and deformation of generally curved rods can be vastly simplified.  In this section, we summarize the governing equations for a number of special solids, including flexible strings, and various forms of beam theory.

 

 

 

10.3.1 Stretched flexible string with small transverse deflections.

 

This is the simplest possible version of the general theory outlined in 10.2.   The problem to be solved is illustrated in the figure. A `string’ with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@ , mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , cross-sectional area A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaaaa@31A6@  and negligible area moments of inertia I 1 = I 2 = I 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGjbWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaaaa@39EC@  is initially straight and parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction. The ends of the string are subjected to an axial load T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaaaa a@329F@  and are prevented from moving transverse to the string.  A force per unit length p= p 1 e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaaaa@369A@  acts on the string, inducing a small, time dependent, transverse deflection u= u 1 ( x 3 ) e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaa cMcacaWHLbWaaSbaaSqaaiaaigdaaeqaaaaa@39ED@ .

 

The general governing equations can be simplified to the following form:

 

1. The curvature of the string can be approximated as κ d 2 u 1 d x 3 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabgIKi7oaalaaabaGaamizam aaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaa keaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaGOmaaaaaaGcca WHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3D1A@

 

2. The stretch of the string can be approximated as ds d x 3 =1+ T 0 /EA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4Caaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9iaaigdacqGH RaWkcaWGubWaaSbaaSqaaiaaicdaaeqaaOGaai4laiaadweacaWGbb aaaa@3C59@

 

3. The only nonzero internal force is the axial force T 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaaa a@32A2@  (the moment-curvature relations show that the internal moments vanish; the angular momentum balance equations show T 1 = T 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaki abg2da9iaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaa aa@373B@  )

 

4. The equations of motion reduce to κ 2 T 3 + p 1 =ρA a 1 d T 3 ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaO GaamivamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadchadaWgaaWc baGaaGymaaqabaGccqGH9aqpcqaHbpGCcaWGbbGaamyyamaaBaaale aacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aaSaaaeaacaWGKbGaamivamaaBaaaleaacaaIZa aabeaaaOqaaiaadsgacaWGZbaaaiabg2da9iaaicdaaaa@5039@

 

5. Combining 1-4 shows T 3 = T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaki abg2da9iaadsfadaWgaaWcbaGaaGimaaqabaaaaa@3571@  and gives the equation of motion for the stretched string

T 0 d 2 u 1 d x 3 2 + p 1 =ρA d 2 u 1 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaakm aalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWc baGaaGymaaqabaaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaaba GaaGOmaaaaaaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGa eyypa0JaeqyWdiNaamyqamaalaaabaGaamizamaaCaaaleqabaGaaG OmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiD amaaCaaaleqabaGaaGOmaaaaaaaaaa@470C@

 

6. The boundary conditions are u 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348B@  at x 3 =0, x 3 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdacaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiab g2da9iaadYeaaaa@3907@

 

 

Large deflection equations for a flexible string can also be found by substituting M 1 = M 2 = M 3 = T 1 = T 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaki abg2da9iaad2eadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGnbWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamivamaaBaaaleaacaaIXa aabeaakiabg2da9iaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqp caaIWaaaaa@3F99@  into the general equations of motion for a rod.  The details are left as an exercise.

 

 

 

10.3.2 Straight elastic beam with small deflections and no axial force (Euler-Bernoulli beam theory)

 

The figure illustrates the problem to be solved: an initially straight beam, with axis parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction is subjected to transverse forces per unit length p= p 1 e 1 + p 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiCamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B43@ .  The beam has Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , and its cross-section has area A and area moments of inertia ( I 11 , I 12 , I 22 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadMeadaWgaaWcbaGaaGymai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGymaiaaikdaaeqa aOGaaiilaiaadMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiykaa aa@3B0A@  defined as

I 11 = A x 2 x ¯ 2 2 dA I 22 = A x 1 x ¯ 1 2 dA I 12 = A x 1 x ¯ 1 x 2 x ¯ 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGjbWaaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9maapefabaWaaeWaaeaacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IabmiEayaaraWaa0baaSqaaiaaikdaae aaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGKbGa amyqaaWcbaGaamyqaaqab0Gaey4kIipakiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7aeaacaWGjbWaaSbaaSqaaiaaikdacaaIYaaabeaaki abg2da9maapefabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IabmiEayaaraWaa0baaSqaaiaaigdaaeaaaaaakiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamyqaaWcbaGa amyqaaqab0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 aeaacaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9maape fabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia bmiEayaaraWaa0baaSqaaiaaigdaaeaaaaaakiaawIcacaGLPaaada qadaqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWG4bGb aebadaqhaaWcbaGaaGOmaaqaaaaaaOGaayjkaiaawMcaaiaadsgaca WGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVdaaaa@A189@

where

r ¯ = x ¯ 1 e 1 + x ¯ 2 e 2 = 1 A A x 1 e 1 + x 2 e 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JabmiEayaara WaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaa kiabgUcaRiqadIhagaqeamaaBaaaleaacaaIYaaabeaakiaahwgada WgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWG bbaaamaapefabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadIhadaWgaaWc baGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdaaaa@4D04@

is the position of the centroid of the cross-section. Its ends may be constrained in various ways, as described in more detail below, but in this section we assume that no axial force or twisting moment is applied to the ends of the bar.   We suppose that the beam experiences a small transverse displacement u= u 1 e 1 + u 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amyDamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B52@ , and wish to calculate u 1 , u 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaaaa@355D@  as functions of time, given appropriate initial conditions.  Since deflections are small, we can assume that the basis vectors normal and transverse to the deflected beam remain parallel to the initial coordinate directions m i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaki abgIKi7kaahwgadaWgaaWcbaGaamyAaaqabaaaaa@36B3@ .

 

The general equations of motion for a rod can then be used to deduce that:

 

1. The stretch of the bar and the curvature vector may be approximated by

ds d x 3 1κ d 2 u 2 d x 3 2 e 1 + d 2 u 1 d x 3 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4Caaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgIKi7kaaigdacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWH6oGaeyisISRaeyOeI0YaaSaaaeaa caWGKbWaaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYa aabeaaaOqaaiaadsgacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaa aaaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaigda aeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaikdaaa aaaOGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@61F0@

 

2. The internal forces can be characterized by the internal force T T 1 e 1 + T 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabgIKi7kaadsfadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amivamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B9A@  and internal moment M M 1 e 1 + M 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabgIKi7kaad2eadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amytamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B85@ .   These can be interpreted as the force and moment acting on an internal cross-section of the beam which has normal in the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction.

 

3. Moment-curvature relations reduce to

M=EIκ M 1 M 2 =E I 11 I 12 I 12 I 22 κ 1 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaadweacaWHjbGaaC OUdiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVpaadmaabaqbaeqabiqaaaqaaiaad2eadaWgaaWc baGaaGymaaqabaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaaaaaO Gaay5waiaaw2faaiabg2da9iaadweadaWadaqaauaabeqaciaaaeaa caWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkHiTiaadM eadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOeI0Iaamysamaa BaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGjbWaaSbaaSqaaiaaik dacaaIYaaabeaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqaceaa aeaacqaH6oWAdaWgaaWcbaGaaGymaaqabaaakeaacqaH6oWAdaWgaa WcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@6DC7@

 

4. Equations of motion can be reduced to

d T 1 d x 3 + p 1 ρA a 1 d T 2 d x 3 + p 2 ρA a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamivamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqa aaaakiabgUcaRiaadchadaWgaaWcbaGaaGymaaqabaGccqGHijYUcq aHbpGCcaWGbbGaamyyamaaBaaaleaacaaIXaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaaca WGKbGaamivamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG4bWa aSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiaadchadaWgaaWcbaGaaG OmaaqabaGccqGHijYUcqaHbpGCcaWGbbGaamyyamaaBaaaleaacaaI YaaabeaakiaaykW7aaa@5BAA@

d M 1 d x 3 T 2 0 d M 2 d x 3 + T 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamytamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqa aaaakiabgkHiTiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHijYUca aIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaS aaaeaacaWGKbGaamytamaaBaaaleaacaaIYaaabeaaaOqaaiaadsga caWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiaadsfadaWgaa WcbaGaaGymaaqabaGccqGHijYUcaaIWaaaaa@5D6A@

 

5. Alternatively, the equations in (3) and (4) can be combined to express the equations of motion in terms of displacement

E I 22 d 4 u 1 d x 3 4 + I 12 d 4 u 2 d x 3 4 +ρA d 2 u 1 d t 2 = p 1 E I 12 d 4 u 1 d x 3 4 + I 11 d 4 u 2 d x 3 4 +ρA d 2 u 2 d t 2 = p 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbWaaeWaaeaacaWGjbWaaS baaSqaaiaaikdacaaIYaaabeaakmaalaaabaGaamizamaaCaaaleqa baGaaGinaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKb GaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaaaaGccqGHRaWkcaWG jbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaalaaabaGaamizamaaCa aaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaGOmaaqabaaakeaa caWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaaaaaakiaawI cacaGLPaaacqGHRaWkcqaHbpGCcaWGbbWaaSaaaeaacaWGKbWaaWba aSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaai aadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaadcha daWgaaWcbaGaaGymaaqabaaakeaacaaMc8UaamyramaabmaabaGaam ysamaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaah aaWcbeqaaiaaisdaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcba GaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaOGaey4k aSIaamysamaaBaaaleaacaaIXaGaaGymaaqabaGcdaWcaaqaaiaads gadaahaaWcbeqaaiaaisdaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaa GccaGLOaGaayzkaaGaey4kaSIaeqyWdiNaamyqamaalaaabaGaamiz amaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGOmaaqaba aakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqp caWGWbWaaSbaaSqaaiaaikdaaeqaaaaaaa@7A86@

 

6. The stresses and strains in the beam are related to its curvature by

ε 33 = κ 2 ( x 1 x ¯ 1 )+ κ 1 ( x 2 x ¯ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iabgkHiTiabeQ7aRnaaBaaaleaacaaIYaaabeaa kiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IabmiEay aaraWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiabeQ7aRnaa BaaaleaacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaikdaae qaaOGaeyOeI0IabmiEayaaraWaaSbaaSqaaiaaikdaaeqaaOGaaiyk aaaa@48C9@

σ 33 =E κ 2 ( x 1 x ¯ 1 )+E κ 1 ( x 2 x ¯ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iabgkHiTiaadweacqaH6oWAdaWgaaWcbaGaaGOm aaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTi qadIhagaqeamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcaWG fbGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGHsislceWG4bGbaebadaWgaaWcbaGaaGOm aaqabaGccaGGPaaaaa@4A79@

where ( x ¯ 1 , x ¯ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiqadIhagaqeamaaBaaaleaaca aIXaaabeaakiaacYcaceWG4bGbaebadaWgaaWcbaGaaGOmaaqabaGc caGGPaaaaa@36F6@  are the coordinates of the centroid of the cross-section.

 

 

Boundary conditions: Elementary beam theory offers the following boundary conditions:

 

1. The ends of beam may be subjected to prescribed displacements u(0)= u * u(L)= u * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaaIWaGaaiykaiabg2 da9iaahwhadaahaaWcbeqaaiaacQcaaaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWH1bGaaiikaiaadYeacaGGPaGaeyypa0 JaaCyDamaaCaaaleqabaGaaiOkaaaaaaa@4623@  or prescribed forces T=P x 3 =0T=P x 3 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iabgkHiTiaahcfaca aMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIZaaabeaa kiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaCivaiabg2da9iaahcfacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maa qabaGccqGH9aqpcaWGmbaaaa@5C0D@  (we assume here that P 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3468@  on both ends of the bar).  The two transverse forces are related to the displacements by

E I 22 d 3 u 1 d x 3 3 + I 12 d 3 u 2 d x 3 3 = T 1 E I 12 d 3 u 1 d x 3 4 + I 11 d 3 u 2 d x 3 4 = T 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHsislcaWGfbWaaeWaaeaaca WGjbWaaSbaaSqaaiaaikdacaaIYaaabeaakmaalaaabaGaamizamaa CaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGaaGymaaqabaaake aacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG4maaaaaaGccqGH RaWkcaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaalaaabaGaam izamaaCaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGaaGOmaaqa baaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG4maaaaaa aakiaawIcacaGLPaaacqGH9aqpcaWGubWaaSbaaSqaaiaaigdaaeqa aaGcbaGaaGPaVlabgkHiTiaadweadaqadaqaaiaadMeadaWgaaWcba GaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI ZaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4b Waa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgUcaRiaadMeadaWg aaWcbaGaaGymaiaaigdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabe aacaaIZaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaadsga caWG4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaaaOGaayjkaiaawM caaiabg2da9iaadsfadaWgaaWcbaGaaGOmaaqabaaaaaa@67F9@

 

2. The ends of the beam may be subjected to prescribed rotations d u 1 /d x 3 = θ 2 * d u 2 /d x 3 = θ 1 * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGH 9aqpcqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaacQcaaaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabgkHiTiaadsgacaWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaai4laiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Ja eqiUde3aa0baaSqaaiaaigdaaeaacaGGQaaaaaaa@5836@  or prescribed moments M=Q( x 3 =0)M=Q( x 3 =L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iabgkHiTiaahgfaca aMc8UaaGPaVlaaykW7caaMc8UaaiikaiaadIhadaWgaaWcbaGaaG4m aaqabaGccqGH9aqpcaaIWaGaaiykaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyt aiabg2da9iaahgfacaaMc8UaaGPaVlaaykW7caaMc8UaaiikaiaadI hadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGmbGaaiykaaaa@5EB3@ .   We assume here that Q 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3469@  on both ends of the bar.  The moment is related to the displacement by

M 1 =E I 11 d 2 u 2 d x 3 2 + I 12 d 2 u 1 d x 3 2 M 2 =E I 12 d 2 u 2 d x 3 2 + I 22 d 2 u 1 d x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTiaadweadaqadaqaaiaadMeadaWgaaWcbaGaaGym aiaaigdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG4bWaa0ba aSqaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRiaadMeadaWgaaWcba GaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4b Waa0baaSqaaiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGnbWaaSbaaSqaaiaaikda aeqaaOGaeyypa0JaamyramaabmaabaGaamysamaaBaaaleaacaaIXa GaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGc caWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIhadaqhaa WcbaGaaG4maaqaaiaaikdaaaaaaOGaey4kaSIaamysamaaBaaaleaa caaIYaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIha daqhaaWcbaGaaG4maaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@797B@

 

 

 

10.3.3 Straight elastic beam with small transverse deflections and significant axial force

 

This version of beam theory is used to model beams that are subjected to substantial axial loads (usually due to forces applied at their ends).  The equations can be used to estimate the effects of axial load on the transverse deflection or vibration of an initially straight beam. The theory can also be used to calculate buckling loads for beams, but does not accurately model their deflection if the buckling loads are exceeded.

 

The problem to be solved is illustrated in the figure.  An initially straight beam, with axis parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction and principal axes of inertia parallel to e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  is subjected to a force per unit length p= p 1 (e) e 1 + p 2 (e) e 2 + p 3 (e) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaqhaaWcba GaaGymaaqaaiaacIcacaWHLbGaaiykaaaakiaahwgadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGWbWaa0baaSqaaiaaikdaaeaacaGGOa GaaCyzaiaacMcaaaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaamiCamaaDaaaleaacaaIZaaabaGaaiikaiaahwgacaGGPaaaaO GaaCyzamaaBaaaleaacaaIZaaabeaaaaa@46C6@ .  The superscript on the components of force has been introduced to clarify that the forces do not change their direction with the rotation of the beam.  The beam has Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , and its cross-section has area A and moments of inertia ( I 11 , I 12 , I 22 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadMeadaWgaaWcbaGaaGymai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGymaiaaikdaaeqa aOGaaiilaiaadMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiykaa aa@3B0A@  defined in Section 10.3.2.  Its ends may be constrained in various ways, as described below. We assume that a large axial internal force T 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaki aah2gadaWgaaWcbaGaaG4maaqabaaaaa@348B@  is developed in the beam, either by a horizontal force per unit length p 3 (e) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaDaaaleaacaaIZaaabaGaai ikaiaahwgacaGGPaaaaaaa@3506@  or horizontal forces P 3 (e) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaDaaaleaacaaIZaaabaGaai ikaiaahwgacaGGPaaaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@36C7@  acting at the ends of the beam.  Twisting of the beam is neglected. We suppose that the beam experiences a small displacement u= u 1 m 1 + u 2 m 2 + u 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaGymaaqabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amyDamaaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaaCyBamaa BaaaleaacaaIZaaabeaaaaa@401A@ , which we wish to calculate as a function of time, given appropriate initial conditions.  In the analysis to follow we assume that the axial internal and external forces p 3 (e) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaDaaaleaacaaIZaaabaGaai ikaiaahwgacaGGPaaaaaaa@3506@  and T 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaaa a@32A2@  are large, so that their products with the displacement components and their derivatives must be included in the equations of motion.   The transverse forces, displacements and accelerations are small, so their products are neglected.

 

The general equations of motion for a deformable rod can then be approximated as follows:

 

1. The stretch of the bar and the curvature vector are

ds d x 3 1+ d u 3 d x 3 κ d 2 u 2 d x 3 2 m 1 + d 2 u 1 d x 3 2 m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4Caaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgIKi7kaaigdacqGH RaWkdaWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWH6oGaeyisISRaeyOeI0YaaSaaaeaacaWGKbWaaWbaaSqa beaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaads gacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiaah2gadaWg aaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadsgadaahaaWcbe qaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiz aiaadIhadaqhaaWcbaGaaG4maaqaaiaaikdaaaaaaOGaaCyBamaaBa aaleaacaaIYaaabeaaaaa@6716@

 

2. The internal forces can be characterized by the internal force T= T 1 m 1 + T 2 m 2 + T 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaadsfadaWgaaWcba GaaGymaaqabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amivamaaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWGubWaaSbaaSqaaiaaiodaaeqaaOGaaCyBamaa BaaaleaacaaIZaaabeaaaaa@3F96@  and internal moment M= M 1 m 1 + M 2 m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaad2eadaWgaaWcba GaaGymaaqabaGccaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amytamaaBaaaleaacaaIYaaabeaakiaah2gadaWgaaWcbaGaaGOmaa qabaaaaa@3AEA@ .   These can be interpreted as the force and moment acting on an internal cross-section of the beam which has normal in the m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  direction. 

 

3. Moment-curvature relations reduce to

M=EIκ M 1 M 2 =E I 11 I 12 I 12 I 22 κ 1 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaadweacaWHjbGaaC OUdiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVpaadmaabaqbaeqabiqaaaqaaiaad2eadaWgaaWc baGaaGymaaqabaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaaaaaO Gaay5waiaaw2faaiabg2da9iaadweadaWadaqaauaabeqaciaaaeaa caWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkHiTiaadM eadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOeI0Iaamysamaa BaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGjbWaaSbaaSqaaiaaik dacaaIYaaabeaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqaceaa aeaacqaH6oWAdaWgaaWcbaGaaGymaaqabaaakeaacqaH6oWAdaWgaa WcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@6DC7@

 

4. Equations of motion may be approximated by

d T 1 d x 3 + T 3 d 2 u 1 d x 3 2 + p 1 (e) p 3 (e) d u 1 d x 3 +ρA a 1 d T 2 d x 3 + T 3 d 2 u 2 d x 3 2 + p 1 (e) p 3 (e) d u 2 d x 3 +ρA a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWGubWaaS baaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG4m aaqabaaaaOGaey4kaSIaamivamaaBaaaleaacaaIZaaabeaakmaala aabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGa aGymaaqabaaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG OmaaaaaaGccqGHRaWkcaWGWbWaa0baaSqaaiaaigdaaeaacaGGOaGa aCyzaiaacMcaaaGccqGHijYUcaWGWbWaa0baaSqaaiaaiodaaeaaca GGOaGaaCyzaiaacMcaaaGcdaWcaaqaaiaadsgacaWG1bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG4maaqaba aaaOGaey4kaSIaeqyWdiNaamyqaiaadggadaWgaaWcbaGaaGymaaqa baGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVdqaamaalaaabaGaamizaiaadsfadaWgaaWcbaGaaGOmaa qabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGccqGH RaWkcaWGubWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKbWaaW baaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqa aiaadsgacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiabgU caRiaadchadaqhaaWcbaGaaGymaaqaaiaacIcacaWHLbGaaiykaaaa kiabgIKi7kaadchadaqhaaWcbaGaaG4maaqaaiaacIcacaWHLbGaai ykaaaakmaalaaabaGaamizaiaadwhadaWgaaWcbaGaaGOmaaqabaaa keaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkcq aHbpGCcaWGbbGaamyyamaaBaaaleaacaaIYaaabeaakiaaykW7caaM c8UaaGPaVdaaaa@9B0F@

d T 3 d x 3 + p 3 (e) =ρA a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaalaaabaGaamizaiaadsfada WgaaWcbaGaaG4maaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaI ZaaabeaaaaGccqGHRaWkcaWGWbWaa0baaSqaaiaaiodaaeaacaGGOa GaaCyzaiaacMcaaaGccqGH9aqpcqaHbpGCcaWGbbGaamyyamaaBaaa leaacaaIZaaabeaaaaa@4276@

d M 1 d x 3 T 2 0 d M 2 d x 3 + T 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamytamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqa aaaakiabgkHiTiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHijYUca aIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaS aaaeaacaWGKbGaamytamaaBaaaleaacaaIYaaabeaaaOqaaiaadsga caWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiaadsfadaWgaa WcbaGaaGymaaqabaGccqGHijYUcaaIWaaaaa@5D6A@

 

5. The results of 1-4 can be combined to obtain a equations for the transverse deflection of the beam

E I 22 d 4 u 1 d x 3 4 + I 12 d 4 u 2 d x 3 4 + p 3 (e) d u 1 d x 3 +ρA d 2 u 1 d t 2 = T 3 d 2 u 1 d x 3 2 + p 1 (e) E I 12 d 4 u 1 d x 3 4 + I 11 d 4 u 2 d x 3 4 + p 3 (e) d u 2 d x 3 +ρA d 2 u 2 d t 2 = T 3 d 2 u 2 d x 3 2 + p 2 (e) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbWaaeWaaeaacaWGjbWaaS baaSqaaiaaikdacaaIYaaabeaakmaalaaabaGaamizamaaCaaaleqa baGaaGinaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKb GaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaaaaGccqGHRaWkcaWG jbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaalaaabaGaamizamaaCa aaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaGOmaaqabaaakeaa caWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaaaaaakiaawI cacaGLPaaacqGHRaWkcaWGWbWaa0baaSqaaiaaiodaaeaacaGGOaGa aCyzaiaacMcaaaGcdaWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaaig daaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGa ey4kaSIaeqyWdiNaamyqamaalaaabaGaamizamaaCaaaleqabaGaaG OmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiD amaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWGubWaaSbaaSqaai aaiodaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGa amyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4bWaa0baaS qaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRiaadchadaqhaaWcbaGa aGymaaqaaiaacIcacaWHLbGaaiykaaaaaOqaaiaaykW7caWGfbWaae WaaeaacaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaalaaabaGa amizamaaCaaaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaGymaa qabaaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaa aaGccqGHRaWkcaWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaakmaala aabaGaamizamaaCaaaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGa aGOmaaqabaaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG inaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGWbWaa0baaSqaaiaa iodaaeaacaGGOaGaaCyzaiaacMcaaaGcdaWcaaqaaiaadsgacaWG1b WaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGa aG4maaqabaaaaOGaey4kaSIaeqyWdiNaamyqamaalaaabaGaamizam aaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGOmaaqabaaa keaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpca WGubWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqa beaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaads gacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRiaa dchadaqhaaWcbaGaaGOmaaqaaiaacIcacaWHLbGaaiykaaaaaaaa@A8EC@

 

 

Boundary conditions: The boundary conditions for this case reduce to:

 

1. Prescribed displacements u(0)= u * u(L)= u * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaaIWaGaaiykaiabg2 da9iaahwhadaahaaWcbeqaaiaacQcaaaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aahwhacaGGOaGaamitaiaacMcacqGH9aqpcaWH1bWaaWbaaSqabeaa caGGQaaaaaaa@4DDA@  or

Prescribed forces

T 1 = P 1 (e) + P 3 (e) (d u 1 /d x 1 ) T 2 = P 1 (e) + P 3 (e) (d u 2 /d x 1 ) T 3 = P 3 (e) ( x 3 =0) T 1 = P 1 (e) P 3 (e) (d u 1 /d x 1 ) T 2 = P 1 (e) P 3 (e) (d u 2 /d x 1 ) T 3 = P 3 (e) ( x 3 =L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGubWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeyOeI0IaamiuamaaDaaaleaacaaIXaaabaGaaiik aiaahwgacaGGPaaaaOGaey4kaSIaamiuamaaDaaaleaacaaIZaaaba GaaiikaiaahwgacaGGPaaaaOGaaiikaiaadsgacaWG1bWaaSbaaSqa aiaaigdaaeqaaOGaai4laiaadsgacaWG4bWaaSbaaSqaaiaaigdaae qaaOGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dsfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqGHsislcaWGqbWaa0 baaSqaaiaaigdaaeaacaGGOaGaaCyzaiaacMcaaaGccqGHRaWkcaWG qbWaa0baaSqaaiaaiodaaeaacaGGOaGaaCyzaiaacMcaaaGccaGGOa GaamizaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaamizaiaa dIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamivamaaBaaaleaacaaIZaaabeaakiab g2da9iabgkHiTiaadcfadaqhaaWcbaGaaG4maaqaaiaacIcacaWHLb GaaiykaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa cIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaiaacM caaeaacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGPaVlaa ykW7caaMc8UaaGPaVlaadcfadaqhaaWcbaGaaGymaaqaaiaacIcaca WHLbGaaiykaaaakiabgkHiTiaadcfadaqhaaWcbaGaaG4maaqaaiaa cIcacaWHLbGaaiykaaaakiaacIcacaWGKbGaamyDamaaBaaaleaaca aIXaaabeaakiaac+cacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaa kiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGub WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGqbWaa0baaSqaaiaaigdaaeaacaGGOaGaaCyzai aacMcaaaGccqGHsislcaWGqbWaa0baaSqaaiaaiodaaeaacaGGOaGa aCyzaiaacMcaaaGccaGGOaGaamizaiaadwhadaWgaaWcbaGaaGOmaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG PaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaads fadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGqbWaa0baaSqaaiaa iodaaeaacaGGOaGaaCyzaiaacMcaaaGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaaiikaiaa dIhadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGmbGaaiykaaaaaa@E6F7@  

  where the two transverse forces are related to the displacements by

E I 22 d 3 u 1 d x 3 3 + I 12 d 3 u 2 d x 3 3 = T 1 E I 12 d 3 u 1 d x 3 4 + I 11 d 3 u 2 d x 3 4 = T 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHsislcaWGfbWaaeWaaeaaca WGjbWaaSbaaSqaaiaaikdacaaIYaaabeaakmaalaaabaGaamizamaa CaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGaaGymaaqabaaake aacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG4maaaaaaGccqGH RaWkcaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaalaaabaGaam izamaaCaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGaaGOmaaqa baaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG4maaaaaa aakiaawIcacaGLPaaacqGH9aqpcaWGubWaaSbaaSqaaiaaigdaaeqa aaGcbaGaaGPaVlabgkHiTiaadweadaqadaqaaiaadMeadaWgaaWcba GaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI ZaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4b Waa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgUcaRiaadMeadaWg aaWcbaGaaGymaiaaigdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabe aacaaIZaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaadsga caWG4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaaaOGaayjkaiaawM caaiabg2da9iaadsfadaWgaaWcbaGaaGOmaaqabaaaaaa@67F9@

 

2. Prescribed rotations d u 1 /d x 3 = θ 2 * d u 2 /d x 3 = θ 1 * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGH 9aqpcqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaacQcaaaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabgkHiTiaadsgacaWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaai4laiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Ja eqiUde3aa0baaSqaaiaaigdaaeaacaGGQaaaaaaa@5836@  or

Prescribed moments M=Q( x 3 =0)M=Q( x 3 =L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iabgkHiTiaahgfaca aMc8UaaGPaVlaaykW7caaMc8UaaiikaiaadIhadaWgaaWcbaGaaG4m aaqabaGccqGH9aqpcaaIWaGaaiykaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyt aiabg2da9iaahgfacaaMc8UaaGPaVlaaykW7caaMc8UaaiikaiaadI hadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGmbGaaiykaaaa@5EB3@  where the moment is related to the displacement by

M 1 =E I 11 d 2 u 2 d x 3 2 + I 12 d 2 u 1 d x 3 2 M 2 =E I 12 d 2 u 2 d x 3 2 + I 22 d 2 u 1 d x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTiaadweadaqadaqaaiaadMeadaWgaaWcbaGaaGym aiaaigdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG4bWaa0ba aSqaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRiaadMeadaWgaaWcba GaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4b Waa0baaSqaaiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGnbWaaSbaaSqaaiaaikda aeqaaOGaeyypa0JaamyramaabmaabaGaamysamaaBaaaleaacaaIXa GaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGc caWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIhadaqhaa WcbaGaaG4maaqaaiaaikdaaaaaaOGaey4kaSIaamysamaaBaaaleaa caaIYaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIha daqhaaWcbaGaaG4maaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@797B@