10.4 Exact solutions to simple problems involving elastic rods

 

This section lists solutions to various boundary and initial value problems involving deformable rods, to illustrate representative applications of the equations derived in Sections 10.2.2 and 10.2.3.   Specifically, we derive solutions for:

 

1. The natural frequencies and mode shapes for an initially straight vibrating beam;

 

2. The buckling load for a vertical rod subjected to gravitational loading;

 

3. The full post-buckled shape for a straight rod compressed by axial loads on its ends;

 

4. Internal forces and moments in an initially straight rod that is bent and twisted into a helix;

 

5. Internal forces, moments, and the deflected shape of a helical spring.

 

 

 

10.4.1 Free vibration of a straight beam without axial force

 

The figure illustrates the problem to be solved: an initially straight beam, with axis parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction and principal axes of inertia parallel to e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  is free of external force.  The beam has Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , and its cross-section has area A and principal moments of area I 1 , I 2 , I 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki aacYcacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadMeadaWg aaWcbaGaaG4maaqabaaaaa@3776@ .  Its ends may be constrained in various ways, as described in more detail below.  We wish to calculate the natural frequencies and mode shapes of vibration for the beam, and to use these results to write down the displacement u 1 ( x 3 ,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadshacaGG Paaaaa@37BD@  for a beam that is caused to vibrate with initial conditions u 1 = u 0 ( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaadwhadaahaaWcbeqaaiaaicdaaaGccaGGOaGaamiEamaa BaaaleaacaaIZaaabeaakiaacMcaaaa@3905@ , d u 1 /dt= v 0 ( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGVaGaamizaiaadshacqGH9aqpcaWG2bWaaWbaaSqabeaa caaIWaaaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPa aaaa@3C84@  at time t=0.

 

Mode shapes and natural frequencies: The physical significance of the mode shapes and natural frequencies of a vibrating beam can be visualized as follows:

 

1. Suppose that the beam is made to vibrate by bending it into some (fixed) deformed shape u 1 = u 0 ( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaadwhadaahaaWcbeqaaiaaicdaaaGccaGGOaGaamiEamaa BaaaleaacaaIZaaabeaakiaacMcaaaa@3905@ ; and then suddenly releasing it.   In general, the resulting motion of the beam will be very complicated, and may not even appear to be periodic.

 

2. However, there exists a set of special initial deflections u 0 = U n ( k n x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaCaaaleqabaGaaGimaaaaki abg2da9iaadwfadaWgaaWcbaGaamOBaaqabaGccaGGOaGaam4Aamaa BaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGcca GGPaaaaa@3B36@ , which cause every point on the beam to experience simple harmonic motion at some (angular) frequency ω n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaa aa@33CC@ , so that the deflected shape has the form u 1 (x,t)= U n ( k n x 3 )cos( ω n t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bGaaiilaiaadshacaGGPaGaeyypa0JaamyvamaaBaaa leaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaO GaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaciGGJbGaai4Baiaa cohacaGGOaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaamiDaiaacM caaaa@4750@ .

 

3. The special frequencies ω n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaa aa@33CC@  are called the natural frequencies of the beam, and the special initial deflections U n ( k n x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGUbaabeaaki aacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaa caaIZaaabeaakiaacMcaaaa@3845@  are called the mode shapes.   Each mode shape has a wave number k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@ , which characterizes the wavelength of the harmonic vibrations, and is related to the natural frequency by

ω n = k n 2 E I 2 ρA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0Jaam4AamaaDaaaleaacaWGUbaabaGaaGOmaaaakmaakaaa baWaaSaaaeaacaWGfbGaamysamaaBaaaleaacaaIYaaabeaaaOqaai abeg8aYjaadgeaaaaaleqaaaaa@3CED@

 

4. The mode shapes U n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGUbaabeaaaa a@32D9@  have a very useful property (which is proved in Section 5.9.1):

0 L U i ( k i x 3 ) U j ( k j x 3 )=0ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaacaWGvbWaaSbaaSqaaiaadM gaaeqaaOGaaiikaiaadUgadaWgaaWcbaGaamyAaaqabaGccaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaaiykaaWcbaGaaGimaaqaaiaadYeaa0 Gaey4kIipakiaadwfadaWgaaWcbaGaamOAaaqabaGccaGGOaGaam4A amaaBaaaleaacaWGQbaabeaakiaadIhadaWgaaWcbaGaaG4maaqaba GccaGGPaGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamyAaiabgcMi5kaadQgaaaa@5E94@

 

 

The mode shapes, wave numbers and corresponding natural frequencies depend on the way the beam is supported at its ends.  A few representative results are listed below

 

 

Beam with  free ends:

 

The wave numbers for each mode are given by the roots of the equation

  cos( k n L)cosh k n L 1=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadU gadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaiGacogacaGGVbGa ai4CaiaacIgadaqadaqaaiaadUgadaWgaaWcbaGaamOBaaqabaGcca WGmbaacaGLOaGaayzkaaGaeyOeI0IaaGymaiabg2da9iaaicdaaaa@4390@

The mode shapes are

U n = A n sinh( k n x 3 )+sin( k n x 3 )+ cosh( k n L)cos( k n L) sinh( k n L)+sin( k n L) cosh( k n x 3 )+cos( k n x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGUbaabeaaki abg2da9iaadgeadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiGacoha caGGPbGaaiOBaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUbaabe aakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaci4C aiaacMgacaGGUbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGcca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgUcaRmaalaaabaGa ci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWGRbWaaSbaaSqaaiaad6 gaaeqaaOGaamitaiaacMcacqGHsislciGGJbGaai4BaiaacohacaGG OaGaam4AamaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaabaGaci 4CaiaacMgacaGGUbGaaiiAaiaacIcacaWGRbWaaSbaaSqaaiaad6ga aeqaaOGaamitaiaacMcacqGHRaWkciGGZbGaaiyAaiaac6gacaGGOa Gaam4AamaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaaamaadmaa baGaci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWGRbWaaSbaaSqaai aad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH RaWkciGGJbGaai4BaiaacohacaGGOaGaam4AamaaBaaaleaacaWGUb aabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaacaGLBbGa ayzxaaaacaGLOaGaayzkaaaaaa@7EC7@

where A n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGUbaabeaaaa a@32C5@  are arbitrary constants.

 

 

Beam with pinned ends:

 

The wave numbers for each mode are k n =nπ/L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaki abg2da9iaad6gacqaHapaCcaGGVaGaamitaaaa@3833@

The mode shapes are U n = A n sin( k n x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGUbaabeaaki abg2da9iaadgeadaWgaaWcbaGaamOBaaqabaGcciGGZbGaaiyAaiaa c6gacaGGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWgaa WcbaGaaG4maaqabaGccaGGPaaaaa@3E11@ , where A n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGUbaabeaaaa a@32C5@  are arbitrary constants.

 

 

Cantilever beam (clamped at x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3490@ , free at  x 3 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaadYeaaaa@34A7@  ):

 

The wave numbers for each mode are given by the roots of the equation

cos( k n L)cosh k n L +1=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadU gadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaiGacogacaGGVbGa ai4CaiaacIgadaqadaqaaiaadUgadaWgaaWcbaGaamOBaaqabaGcca WGmbaacaGLOaGaayzkaaGaey4kaSIaaGymaiabg2da9iaaicdaaaa@4385@

The mode shapes are

U n = A n sinh( k n x 3 )sin( k n x 3 )+ cosh( k n L)+cos( k n L) sin( k n L)sinh( k n L) cosh( k n x 3 )cos( k n x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGUbaabeaaki abg2da9iaadgeadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiGacoha caGGPbGaaiOBaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUbaabe aakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyOeI0Iaci4C aiaacMgacaGGUbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGcca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabgUcaRmaalaaabaGa ci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWGRbWaaSbaaSqaaiaad6 gaaeqaaOGaamitaiaacMcacqGHRaWkciGGJbGaai4BaiaacohacaGG OaGaam4AamaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaabaGaci 4CaiaacMgacaGGUbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGc caWGmbGaaiykaiabgkHiTiGacohacaGGPbGaaiOBaiaacIgacaGGOa Gaam4AamaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaaamaadmaa baGaci4yaiaac+gacaGGZbGaaiiAaiaacIcacaWGRbWaaSbaaSqaai aad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH sislciGGJbGaai4BaiaacohacaGGOaGaam4AamaaBaaaleaacaWGUb aabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaacaGLBbGa ayzxaaaacaGLOaGaayzkaaaaaa@7EDD@

where A n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGUbaabeaaaa a@32C5@  are arbitrary constants.

 

 

Vibration of a beam with given initial displacement and velocity

 

The solution for free vibration of a beam with given initial displacement and velocity can be found by superposing contributions from each mode as follows

u 1 ( x 3 ,t)= n=1 C n U n ( k n x 3 )cos( ω n t)+ n=1 D n U n ( k n x 3 )sin( ω n t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0ZaaabCaeaacaWGdbWaaSbaaSqaaiaad6gaaeqaaOGaam yvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaSqaaiaa d6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaciGGJb Gaai4BaiaacohacaGGOaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGa amiDaiaacMcacqGHRaWkaSqaaiaad6gacqGH9aqpcaaIXaaabaGaey OhIukaniabggHiLdGcdaaeWbqaaiaadseadaWgaaWcbaGaamOBaaqa baGccaWGvbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadUgadaWgaa WcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiyk aiGacohacaGGPbGaaiOBaiaacIcacqaHjpWDdaWgaaWcbaGaamOBaa qabaGccaWG0bGaaiykaaWcbaGaamOBaiabg2da9iaaigdaaeaacqGH EisPa0GaeyyeIuoaaaa@6965@

where

C n = 0 L u 0 ( x 3 ) U n ( k n x 3 )d x 3 0 L U n ( k n x 3 ) 2 d x 3 D n = 0 L v 0 ( x 3 ) U n ( k n x 3 )d x 3 ω n 0 L U n ( k n x 3 ) 2 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGUbaabeaaki abg2da9maalaaabaWaa8qCaeaacaWG1bWaaWbaaSqabeaacaaIWaaa aOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaamyvam aaBaaaleaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaSqaaiaad6ga aeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacaWGKbGaam iEamaaBaaaleaacaaIZaaabeaaaeaacaaIWaaabaGaamitaaqdcqGH RiI8aaGcbaWaa8qCaeaadaGadaqaaiaadwfadaWgaaWcbaGaamOBaa qabaGccaGGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWg aaWcbaGaaG4maaqabaGccaGGPaaacaGL7bGaayzFaaWaaWbaaSqabe aacaaIYaaaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGa aGimaaqaaiaadYeaa0Gaey4kIipaaaGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGebWaaS baaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaWdXbqaaiaadAha daahaaWcbeqaaiaaicdaaaGccaGGOaGaamiEamaaBaaaleaacaaIZa aabeaakiaacMcacaWGvbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaa dUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaiodaae qaaOGaaiykaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiaa icdaaeaacaWGmbaaniabgUIiYdaakeaacqaHjpWDdaWgaaWcbaGaam OBaaqabaGcdaWdXbqaamaacmaabaGaamyvamaaBaaaleaacaWGUbaa beaakiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBa aaleaacaaIZaaabeaakiaacMcaaiaawUhacaGL9baadaahaaWcbeqa aiaaikdaaaGccaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaaca aIWaaabaGaamitaaqdcqGHRiI8aaaaaaa@9EEE@

 

 

 

Derivation:  We will derive the equations for the natural frequencies and mode shapes of a beam with free ends as a representative example.  This is a small deflection problem and can be modeled using Euler-Bernoulli beam theory summarized in Section 10.3.2.

 

1. The deflection of the beam must satisfy the equation of motion given in Sect 10.3.2

E I 2 d 4 u 1 d x 3 4 +ρA d 2 u 1 d t 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaWgaaWcbaGaaGOmaa qabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaisdaaaGccaWG1bWa aSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG 4maaqaaiaaisdaaaaaaOGaey4kaSIaeqyWdiNaamyqamaalaaabaGa amizamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaa qabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH 9aqpcaaIWaaaaa@46AF@

2. The general solution to this equation (found, e.g. by separation of variables, or just by direct substitution) is

u 1 = A 1 sinh( k n x 3 )+ A 2 cosh( k n x 3 )+ A 3 sin( k n x 3 )+ A 4 cos( k n x 3 ) cos( ω n t+ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9maacmaabaGaamyqamaaBaaaleaacaaIXaaabeaakiGacoha caGGPbGaaiOBaiaacIgacaGGOaGaam4AamaaBaaaleaacaWGUbaabe aakiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaamyq amaaBaaaleaacaaIYaaabeaakiGacogacaGGVbGaai4CaiaacIgaca GGOaGaam4AamaaBaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGa aG4maaqabaGccaGGPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabe aakiGacohacaGGPbGaaiOBaiaacIcacaWGRbWaaSbaaSqaaiaad6ga aeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGHRaWkca WGbbWaaSbaaSqaaiaaisdaaeqaaOGaci4yaiaac+gacaGGZbGaaiik aiaadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaio daaeqaaOGaaiykaaGaay5Eaiaaw2haaiGacogacaGGVbGaai4Caiaa cIcacqaHjpWDdaWgaaWcbaGaamOBaaqabaGccaWG0bGaey4kaSIaeq y1dyMaaiykaaaa@6D05@

where the frequency and wave number must be related by k n 4 =ρA ω n 2 /E I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaDaaaleaacaWGUbaabaGaaG inaaaakiabg2da9iabeg8aYjaadgeacqaHjpWDdaqhaaWcbaGaamOB aaqaaiaaikdaaaGccaGGVaGaamyraiaadMeadaWgaaWcbaGaaGOmaa qabaaaaa@3E2A@  to satisfy the equation of motion.

 

3. The coefficients A 1 ... A 4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaaIXaaabeaaki aac6cacaGGUaGaaiOlaiaadgeadaWgaaWcbaGaaGinaaqabaaaaa@365D@  and the wave number k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@  must be chosen to satisfy the boundary conditions at the ends of the bar.   For a beam with free ends, the boundary conditions reduce to d 2 u 1 /d x 3 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaCaaaleqabaGaaGOmaaaaki aadwhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaamizaiaadIhadaqh aaWcbaGaaG4maaqaaiaaikdaaaGccqGH9aqpcaaIWaaaaa@3AB0@ , d 3 u 1 /d x 3 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaCaaaleqabaGaaG4maaaaki aadwhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaamizaiaadIhadaqh aaWcbaGaaG4maaqaaiaaiodaaaGccqGH9aqpcaaIWaaaaa@3AB2@  at x 3 =0, x 3 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdacaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiab g2da9iaadYeaaaa@3907@ .  Substituting the formula from (2) into the four boundary conditions, and writing the resulting equations in matrix form yields

1 0 1 0 0 1 0 1 cosh( k n L) sinh( k n L) cos( k n L) sin( k n L) sinh( k n L) cosh( k n L) sin( k n L) cos( k n L) A 1 A 2 A 3 A 4 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeabeaaaaaqaaiaaig daaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaacaaIWaaa baGaaGymaaqaaiaaicdaaeaacqGHsislcaaIXaaabaGaci4yaiaac+ gacaGGZbGaaiiAaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGa amitaiaacMcaaeaaciGGZbGaaiyAaiaac6gacaGGObGaaiikaiaadU gadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaqaaiabgkHiTiGa cogacaGGVbGaai4CaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaO GaamitaiaacMcaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaam4Aamaa BaaaleaacaWGUbaabeaakiaadYeacaGGPaaabaGaci4CaiaacMgaca GGUbGaaiiAaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamit aiaacMcaaeaaciGGJbGaai4BaiaacohacaGGObGaaiikaiaadUgada WgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaqaaiabgkHiTiGacoha caGGPbGaaiOBaiaacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaam itaiaacMcaaeaacqGHsislciGGJbGaai4BaiaacohacaGGOaGaam4A amaaBaaaleaacaWGUbaabeaakiaadYeacaGGPaaaaaGaay5waiaaw2 faamaadmaabaqbaeqabqqaaaaabaGaamyqamaaBaaaleaacaaIXaaa beaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGbbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamyqamaaBaaaleaacaaI0aaabeaa aaaakiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@8480@

 

4. For a nonzero solution, the matrix in this equation must be singular.  This implies that the determinant of the matrix  is  zero, which gives the governing equation for the wave-number

cos( k n L)cosh k n L 1=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaaiikaiaadU gadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaiGacogacaGGVbGa ai4CaiaacIgadaqadaqaaiaadUgadaWgaaWcbaGaamOBaaqabaGcca WGmbaacaGLOaGaayzkaaGaeyOeI0IaaGymaiabg2da9iaaicdaaaa@4390@

 

5. Since the equation system in (3) is now singular, we may discard any one of the four equations and use the other three to determine an equation relating A 2 , A 3 , A 4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaaIYaaabeaaki aacYcacaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadgeadaWg aaWcbaGaaGinaaqabaaaaa@3761@  to A 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaaIXaaabeaaaa a@328D@ .  Choosing to discard the last row of the matrix, and taking the first column to the right hand side shows that

0 1 0 1 0 1 sinh( k n L) cos( k n L) sin( k n L) A 2 A 3 A 4 = A 1 1 0 cosh( k n L) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaaGimaa qaaiabgkHiTiaaigdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaa cqGHsislcaaIXaaabaGaci4CaiaacMgacaGGUbGaaiiAaiaacIcaca WGRbWaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaaeaacqGHsisl ciGGJbGaai4BaiaacohacaGGOaGaam4AamaaBaaaleaacaWGUbaabe aakiaadYeacaGGPaaabaGaci4CaiaacMgacaGGUbGaaiikaiaadUga daWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaaaaiaawUfacaGLDb aadaWadaqaauaabeqadeaaaeaacaWGbbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamyqamaaBaaaleaacaaIZaaabeaaaOqaaiaadgeadaWgaa WcbaGaaGinaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0JaeyOeI0Ia amyqamaaBaaaleaacaaIXaaabeaakmaadmaabaqbaeqabmqaaaqaai aaigdaaeaacaaIWaaabaGaci4yaiaac+gacaGGZbGaaiiAaiaacIca caWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamitaiaacMcaaaaacaGLBb Gaayzxaaaaaa@6694@

Solving this equation system shows that

A 2 = A 4 = cosh( k n L)cos( k n L) sinh( k n L)+sin( k n L) A 1 A 3 = A 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaaIYaaabeaaki abg2da9iaadgeadaWgaaWcbaGaaGinaaqabaGccqGH9aqpdaWcaaqa aiGacogacaGGVbGaai4CaiaacIgacaGGOaGaam4AamaaBaaaleaaca WGUbaabeaakiaadYeacaGGPaGaeyOeI0Iaci4yaiaac+gacaGGZbGa aiikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaqaai GacohacaGGPbGaaiOBaiaacIgacaGGOaGaam4AamaaBaaaleaacaWG UbaabeaakiaadYeacaGGPaGaey4kaSIaci4CaiaacMgacaGGUbGaai ikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWGmbGaaiykaaaacaWG bbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyqamaaBaaaleaacaaI Zaaabeaakiabg2da9iaadgeadaWgaaWcbaGaaGymaaqabaGccaaMc8 UaaGPaVdaa@6D9D@ .

Substituting these values back into the solution in step (2) gives the mode shape.

 

6. To understand the formula for the vibration of a beam with given initial conditions, note that the most general solution consists of a linear combination of all possible mode shapes, i.e.

u 1 ( x 3 ,t)= n=1 C n U n ( k n x 3 )cos( ω n t)+ n=1 D n U n ( k n x 3 )sin( ω n t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0ZaaabCaeaacaWGdbWaaSbaaSqaaiaad6gaaeqaaOGaam yvamaaBaaaleaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaSqaaiaa d6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcaciGGJb Gaai4BaiaacohacaGGOaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGa amiDaiaacMcacqGHRaWkaSqaaiaad6gacqGH9aqpcaaIXaaabaGaey OhIukaniabggHiLdGcdaaeWbqaaiaadseadaWgaaWcbaGaamOBaaqa baGccaWGvbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadUgadaWgaa WcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiyk aiGacohacaGGPbGaaiOBaiaacIcacqaHjpWDdaWgaaWcbaGaamOBaa qabaGccaWG0bGaaiykaaWcbaGaamOBaiabg2da9iaaigdaaeaacqGH EisPa0GaeyyeIuoaaaa@6965@

Formulas for C n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGUbaabeaaaa a@32C7@  found by substituting t=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaicdaaaa@3399@ , multiplying both sides of the equation by U j ( k n x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGQbaabeaaki aacIcacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaa caaIZaaabeaakiaacMcaaaa@3841@  and integrating over the length of the beam.   We know that

0 L U n ( k n x 3 ) U j ( k j x 3 )=0nj MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaacaWGvbWaaSbaaSqaaiaad6 gaaeqaaOGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaaiykaaWcbaGaaGimaaqaaiaadYeaa0 Gaey4kIipakiaadwfadaWgaaWcbaGaamOAaaqabaGccaGGOaGaam4A amaaBaaaleaacaWGQbaabeaakiaadIhadaWgaaWcbaGaaG4maaqaba GccaGGPaGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamOBaiabgcMi5kaadQgaaaa@5EA3@

so the result reduces to

0 L u 0 ( x 3 ) U j ( k n x 3 )d x 3 = C j 0 L U j ( k n x 3 ) 2 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaacaWG1bWaaWbaaSqabeaaca aIWaaaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGa amyvamaaBaaaleaacaWGQbaabeaakiaacIcacaWGRbWaaSbaaSqaai aad6gaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacaWG KbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacaaIWaaabaGaamitaa qdcqGHRiI8aOGaeyypa0Jaam4qamaaBaaaleaacaWGQbaabeaakmaa pehabaWaaiWaaeaacaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiikai aadUgadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaaioda aeqaaOGaaiykaaGaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaaki aadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiaaicdaaeaacaWG mbaaniabgUIiYdGccaaMc8UaaGPaVlaaykW7aaa@5D12@

The formula for D n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGUbaabeaaaa a@32C8@  is found by differentiating the general solution with respect to time to find the velocity, substituting t=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaicdaaaa@3399@ , and then proceeding as before to extract each coefficient D n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGUbaabeaaaa a@32C8@ .

 

 

                                                                                          

10.4.2 Buckling of a column subjected to gravitational loading

 

The problem to be solved is illustrated in in the figure. A straight, vertical elastic cantilever beam with mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  and elastic modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  is clamped at its base and subjected to gravitational loading. The beam has length L, cross-sectional area A and principal moments of area I 1 , I 2 , I 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki aacYcacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadMeadaWg aaWcbaGaaG4maaqabaaaaa@3776@ .  The straight, vertical rod is always an equilibrium configuration, but this configuration is stable only if L< L crit MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitaiabgYda8iaadYeadaWgaaWcba Gaam4yaiaadkhacaWGPbGaamiDaaqabaaaaa@3778@ .

 

Our objective is to show that the critical buckling length is

L crit 2 E I 2 ρAg 1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGJbGaamOCai aadMgacaWG0baabeaakiabgIKi7kaaikdadaqadaqaamaalaaabaGa amyraiaadMeadaWgaaWcbaGaaGOmaaqabaaakeaacqaHbpGCcaWGbb Gaam4zaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGa aG4maaaaaaa@4207@

 

A number of different techniques can be used to find buckling loads.  One of the simplest procedures (which will be adopted here) is to identify the critical conditions where both the straight configuration (with u 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348B@  ), and also the deflected configuration (with a small transverse deflection u 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abgcMi5kaaicdaaaa@354C@  ) are possible equilibrium shapes for the rod.

 

This problem can be solved using the governing equations for a beam subjected to large axial forces, listed in Section 10.3.3.    For the present case, we note that

 

1. The external forces acting on the rod are p 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@3486@ , p 3 (e) =ρgA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaDaaaleaacaaIZaaabaGaai ikaiaahwgacaGGPaaaaOGaeyypa0JaeqyWdiNaam4zaiaadgeaaaa@3988@ , where g is the gravitational acceleration;

 

2. The acceleration is zero (because the rod is in static equilibrium)

 

3. The equilibrium equations therefore reduce to

E I 2 d 4 u 1 d x 3 4 +ρAg d u 1 d x 3 = T 3 d 2 u 1 d x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaWgaaWcbaGaaGOmaa qabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaisdaaaGccaWG1bWa aSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG 4maaqaaiaaisdaaaaaaOGaey4kaSIaeqyWdiNaamyqaiaadEgadaWc aaqaaiaadsgacaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizai aadIhadaWgaaWcbaGaaG4maaqabaaaaOGaeyypa0JaamivamaaBaaa leaacaaIZaaabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGOmaa aakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiEamaa DaaaleaacaaIZaaabaGaaGOmaaaaaaaaaa@4F21@           dN d x 3 +ρAg=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamOtaaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiabeg8aYjaa dgeacaWGNbGaeyypa0JaaGimaaaa@3B98@

 

4. These equations must be solved subject to the boundary conditions

T 3 =0, d 2 u 1 d x 3 2 =0, d 3 u 1 d x 3 3 =0 x 3 =0; u 1 =0, d u 1 d x 3 =0 x 3 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVpaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaki aadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiEamaaDaaa leaacaaIZaaabaGaaGOmaaaaaaGccqGH9aqpcaaIWaGaaiilaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizamaa CaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGaaGymaaqabaaake aacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG4maaaaaaGccqGH 9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaioda aeqaaOGaeyypa0JaaGimaiaacUdacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWG1bWaaSbaaSqaaiaaigdaaeqaaOGaey ypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7daWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcba GaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaeyypa0JaaGim aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaaca aIZaaabeaakiabg2da9iaadYeacaaMc8UaaGPaVlaaykW7aaa@ADFD@

 

5. Integrating the second equation of (3) and using the boundary condition T 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@346C@  at x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3490@  reduces the first equation of (3) to

E I 2 d 4 u 1 d x 3 4 +ρAg d u 1 d x 3 +ρAg x 3 d 2 u 1 d x 3 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaWgaaWcbaGaaGOmaa qabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaisdaaaGccaWG1bWa aSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG 4maaqaaiaaisdaaaaaaOGaey4kaSIaeqyWdiNaamyqaiaadEgadaWc aaqaaiaadsgacaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizai aadIhadaWgaaWcbaGaaG4maaqabaaaaOGaey4kaSIaeqyWdiNaamyq aiaadEgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKb WaaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIXaaabeaa aOqaaiaadsgacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaaki abg2da9iaaicdaaaa@545D@

 

6. Integrating this equation with respect to x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  and imposing the boundary condition d 3 u 1 /d x 3 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaCaaaleqabaGaaG4maaaaki aadwhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaamizaiaadIhadaqh aaWcbaGaaG4maaqaaiaaiodaaaGccqGH9aqpcaaIWaaaaa@3AB2@  at x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3490@  shows that

E I 2 d 3 u 1 d x 3 3 +ρAg x 3 d u 1 d x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaWgaaWcbaGaaGOmaa qabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWG1bWa aSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG 4maaqaaiaaiodaaaaaaOGaey4kaSIaeqyWdiNaamyqaiaadEgacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKbGaamyDamaaBa aaleaacaaIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaioda aeqaaaaakiabg2da9iaaicdaaaa@489A@

 

7. This equation can be solved for d u 1 /d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@3736@  using a symbolic manipulation program, which yields

d u 1 d x 3 = C 1 Ai 0 x 3 ρAg E I 2 1/3 + C 2 Bi 0 x 3 ρAg E I 2 1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamyDamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqa aaaakiabg2da9iaadoeadaWgaaWcbaGaaGymaaqabaGcciGGbbGaai yAamaaBaaaleaacaaIWaaabeaakmaadmaabaGaeyOeI0IaamiEamaa BaaaleaacaaIZaaabeaakmaabmaabaWaaSaaaeaacqaHbpGCcaWGbb Gaam4zaaqaaiaadweacaWGjbWaaSbaaSqaaiaaikdaaeqaaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIZaaaaaGcca GLBbGaayzxaaGaey4kaSIaam4qamaaBaaaleaacaaIYaaabeaakiGa ckeacaGGPbWaaSbaaSqaaiaaicdaaeqaaOWaamWaaeaacqGHsislca WG4bWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaadaWcaaqaaiabeg8a YjaadgeacaWGNbaabaGaamyraiaadMeadaWgaaWcbaGaaGOmaaqaba aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaioda aaaakiaawUfacaGLDbaaaaa@5ECD@

where Ai 0 (x), Bi 0 (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciyqaiaacMgadaWgaaWcbaGaaGimaa qabaGcciGGOaGaamiEaiaacMcacaGGSaGaciOqaiaacMgadaWgaaWc baGaaGimaaqabaGcciGGOaGaamiEaiaacMcaaaa@3B89@  are special functions called `Airy Wave functions of order zero’

 

8. The remaining boundary conditions are d u 1 2 /d x 3 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaqhaaWcbaGaaGymaa qaaiaaikdaaaGccaGGVaGaamizaiaadIhadaqhaaWcbaGaaG4maaqa aiaaikdaaaGccqGH9aqpcaaIWaaaaa@3A7A@  at x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3490@ , and d u 1 /d x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGH 9aqpcaaIWaaaaa@3900@  at x 3 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaadYeaaaa@34A7@ .  Substituting (7) into the boundary conditions and writing the results in matrix form gives

Ai 1 (0) Bi 1 (0) Ai 0 (λ) Bi 0 (λ) C 1 C 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGacaaabaGaciyqai aacMgadaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGimaiaacMcaaeaa ciGGcbGaaiyAamaaBaaaleaacaaIXaaabeaakiaacIcacaaIWaGaai ykaaqaaiGacgeacaGGPbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiab gkHiTiabeU7aSjaacMcaaeaaciGGcbGaaiyAamaaBaaaleaacaaIWa aabeaakiaacIcacqGHsislcqaH7oaBcaGGPaaaaaGaay5waiaaw2fa amaadmaabaqbaeqabiqaaaqaaiaadoeadaWgaaWcbaGaaGymaaqaba aakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2fa aiabg2da9iaaicdaaaa@50C2@

where λ=L (ρAg/E I 2 ) 1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaamitaiaacIcacq aHbpGCcaWGbbGaam4zaiaac+cacaWGfbGaamysamaaBaaaleaacaaI YaaabeaakiaacMcadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaa a@3ECB@  and Ai 1 (x), Bi 1 (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciyqaiaacMgadaWgaaWcbaGaaGymaa qabaGcciGGOaGaamiEaiaacMcacaGGSaGaciOqaiaacMgadaWgaaWc baGaaGymaaqabaGcciGGOaGaamiEaiaacMcaaaa@3B8B@  are Airy wave functions of order 1.

 

9. For this system of equations to have a nonzero solution, the determinant of the matrix must vanish, which shows that λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  must satisfy Ai 1 (0) Bi 0 (λ) Bi 1 (0) Ai 0 (λ)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciyqaiaacMgadaWgaaWcbaGaaGymaa qabaGccaGGOaGaaGimaiaacMcaciGGcbGaaiyAamaaBaaaleaacaaI WaaabeaakiaacIcacqGHsislcqaH7oaBcaGGPaGaeyOeI0IaciOqai aacMgadaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGimaiaacMcaciGG bbGaaiyAamaaBaaaleaacaaIWaaabeaakiaacIcacqGHsislcqaH7o aBcaGGPaGaeyypa0JaaGimaaaa@4A3B@ .  This equation can easily be solved (numerically) for λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@ .  The smallest value of λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  that satisfies the equation is λ2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyisISRaaGOmaaaa@3501@ .

 

10. The buckling length follows as

L crit 2 E I 2 ρAg 1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGJbGaamOCai aadMgacaWG0baabeaakiabgIKi7kaaikdadaqadaqaamaalaaabaGa amyraiaadMeadaWgaaWcbaGaaGOmaaqabaaakeaacqaHbpGCcaWGbb Gaam4zaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGa aG4maaaaaaa@4207@

 

 

 

10.4.3  Post-buckled shape of an initially straight rod subjected to end thrust

 

The figure illustrates the problem to be solved.  An initially straight, inextensible elastic rod, with Young’s modulus E, length L and principal in-plane moments of area I 1 , I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki aacYcacaWGjbWaaSbaaSqaaiaaikdaaeqaaaaa@3505@   (with I 2 < I 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIYaaabeaaki abgYda8iaadMeadaWgaaWcbaGaaGymaaqabaaaaa@3559@  ) is subjected to end thrust.  The ends of the rod are constrained to travel along a line that is parallel to the undeformed rod, but the ends are free to rotate.   We wish to calculate the deformed shape of the rod.   You are probably familiar with the simple Euler buckling analysis that predicts the critical buckling loads.  Here, we derive the full post-buckling solution.

 

The rod is assumed to bow away from its straight configuration as shown: the deflected rod lies in the plane perpendicular to e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@ .  The basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  and the Euler angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  that characterize the rotation of the rod’s cross sections are shown in the picture; the remaining Euler angles are ψ=ϕ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKNaeyypa0Jaeqy1dyMaeyypa0 JaaGimaaaa@373C@ .

 

Solution: Several possible equilibrium solutions may exist, depending on the applied load P.

 

1. The straight rod, with θ= y 2 =0, x 3 =s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaamyEamaaBaaale aacaaIYaaabeaakiabg2da9iaaicdacaGGSaGaamiEamaaBaaaleaa caaIZaaabeaakiabg2da9iaadohaaaa@3BEA@  is always an equilibrium solution.  It is stable for applied loads P< π 2 E I 2 / L 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabgYda8iabec8aWnaaCaaale qabaGaaGOmaaaakiaadweacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGa ai4laiaadYeadaahaaWcbeqaaiaaikdaaaaaaa@3A60@ .

 

2. For applied loads P> n 2 π 2 E I 2 / L 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg6da+iaad6gadaahaaWcbe qaaiaaikdaaaGccqaHapaCdaahaaWcbeqaaiaaikdaaaGccaWGfbGa amysamaaBaaaleaacaaIYaaabeaakiaac+cacaWGmbWaaWbaaSqabe aacaaIYaaaaaaa@3C4A@ , with n an integer, there are n+1 possible equilibrium solutions.  One of these is the straight rod; the rest are possible buckling modes.  The shape of each buckling mode depends on a parameter k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@  which satisfies

L P/E I 2 =2nK( k n ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaakaaabaGaamiuaiaac+caca WGfbGaamysamaaBaaaleaacaaIYaaabeaaaeqaaOGaeyypa0JaaGOm aiaad6gacaWGlbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGcca GGPaaaaa@3CCA@

where K denotes a complete elliptic integral of the first kind

K(k)= 0 π/2 (1 k 2 sin 2 x) 1/2 dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiaacIcacaWGRbGaaiykaiabg2 da9maapehabaGaaiikaiaaigdacqGHsislcaWGRbWaaWbaaSqabeaa caaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaO GaamiEaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaaGOm aaaakiaadsgacaWG4baaleaacaaIWaaabaGaeqiWdaNaai4laiaaik daa0Gaey4kIipaaaa@4A2E@ .

 Note that K has a minimum value K=π/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiabg2da9iabec8aWjaac+caca aIYaaaaa@35E2@  at k=0, and increases monotonically to infinity as k1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AaiabgkziUkaaigdaaaa@3478@ .  The equation for k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@  has no solutions for P< π 2 E I 2 / L 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabgYda8iabec8aWnaaCaaale qabaGaaGOmaaaakiaadweacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGa ai4laiaadYeadaahaaWcbeqaaiaaikdaaaaaaa@3A60@ , and n solutions for P> n 2 π 2 E I 2 / L 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg6da+iaad6gadaahaaWcbe qaaiaaikdaaaGccqaHapaCdaahaaWcbeqaaiaaikdaaaGccaWGfbGa amysamaaBaaaleaacaaIYaaabeaakiaac+cacaWGmbWaaWbaaSqabe aacaaIYaaaaaaa@3C4A@ , as expected.  If multiple solutions exist, only the solution with n=1 is stable.

 

3. The shape of the deformed rod can be characterized by the Euler angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ , which satisfies

θ=2 sin 1 k n sn s (P/E I 2 ) +K( k n ); k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaaGOmaiGacohaca GGPbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaacmaabaWa aOaaaeaacaWGRbWaaSbaaSqaaiaad6gaaeqaaaqabaGccaGGZbGaai OBamaabmaabaGaam4CamaakaaabaGaaiikaiaadcfacaGGVaGaamyr aiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaleqaaOGaaGPaVl aaykW7cqGHRaWkcaWGlbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqa baGccaGGPaGaai4oaiaadUgadaWgaaWcbaGaamOBaaqabaaakiaawI cacaGLPaaaaiaawUhacaGL9baacaaMc8oaaa@5400@

where sn(x,k) denotes a Jacobi-elliptic function called the `sine-amplitude:’ its second argument k is called the `modulus’ of the function.

 

4. The coordinates of the buckled rod can also be calculated.  They are given by

y 3 =s+2 E I 2 /P Ε am(s P/E I 2 +K( k n ); k n ); k n Ε am(K( k n ); k n ); k n y 2 =2 k n E I 2 /P cn(s P/E I 2 +K( k n ); k n ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG5bWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaeyOeI0Iaam4CaiabgUcaRiaaikdadaGcaaqaaiaa dweacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadcfaaSqaba GcdaWadaqaaiabfw5afnaabmaabaGaaeyyaiaab2gacaqGOaGaam4C amaakaaabaGaamiuaiaac+cacaWGfbGaamysamaaBaaaleaacaaIYa aabeaaaeqaaOGaey4kaSIaam4saiaacIcacaWGRbWaaSbaaSqaaiaa d6gaaeqaaOGaaiykaiaacUdacaWGRbWaaSbaaSqaaiaad6gaaeqaaO GaaiykaiaacUdacaWGRbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0IaeuyLdu0aaeWaaeaacaqGHbGaaeyBaiaabIcaca WGlbGaaiikaiaadUgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaai4o aiaadUgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaai4oaiaadUgada WgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaa aeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaG OmamaakaaabaGaam4AamaaBaaaleaacaWGUbaabeaakiaadweacaWG jbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadcfaaSqabaGccaqGJb GaaeOBaiaabIcacaWGZbWaaOaaaeaacaWGqbGaai4laiaadweacaWG jbWaaSbaaSqaaiaaikdaaeqaaaqabaGccqGHRaWkcaWGlbGaaiikai aadUgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaai4oaiaadUgadaWg aaWcbaGaamOBaaqabaGccaGGPaaaaaa@7FC5@

Here am(x,k) and cn(x,k) denote Jacobi elliptic functions called the `amplitude’ and `cosine amplitude’, and E(x,k) denotes an incomplete elliptic integral of the second kind

Ε(x,k)= 0 x (1 k 2 sin 2 t) 1/2 dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyLduKaaiikaiaadIhacaGGSaGaam 4AaiaacMcacqGH9aqpdaWdXbqaaiaacIcacaaIXaGaeyOeI0Iaam4A amaaCaaaleqabaGaaGOmaaaakiGacohacaGGPbGaaiOBamaaCaaale qabaGaaGOmaaaakiaadshacaGGPaWaaWbaaSqabeaacaaIXaGaai4l aiaaikdaaaGccaWGKbGaamiDaaWcbaGaaGimaaqaaiaadIhaa0Gaey 4kIipaaaa@494F@ .

The shape of the deflected rod for the stable buckling mode (n=1) is shown in the figure.


 

Derivation:  This is a large deflection problem and must be treated using the general equations listed in Sections 10.7-10.9.

 

1. The equilibrium equation dT/ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahsfacaGGVaGaamizaiaado hacqGH9aqpcaaIWaaaaa@36FA@  immediately shows that T=constant along the rod’s length.  The boundary conditions at the end of the rod give T=P e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iabgkHiTiaadcfaca WHLbWaaSbaaSqaaiaaiodaaeqaaaaa@365C@ , so that the components of T in { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  follow as T 1 =0, T 2 =Psinθ, T 3 =Pcosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdacaGGSaGaamivamaaBaaaleaacaaIYaaabeaakiab g2da9iaadcfaciGGZbGaaiyAaiaac6gacqaH4oqCcaGGSaGaamivam aaBaaaleaacaaIZaaabeaakiabg2da9iabgkHiTiaadcfaciGGJbGa ai4BaiaacohacqaH4oqCaaa@471B@ . 

 

2. Substituting the expressions for T i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaaa a@32D3@  into the moment balance equations shows that M 1 = M 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaki abg2da9iaad2eadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWaaa aa@372E@  and d M 2 /ds+Psinθ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaad2eadaWgaaWcbaGaaGOmaa qabaGccaGGVaGaamizaiaadohacqGHRaWkcaWGqbGaci4CaiaacMga caGGUbGaeqiUdeNaeyypa0JaaGimaaaa@3E26@

 

 

3. Finally, note that the curvatures are κ 2 =dθ/ds, κ 1 = κ 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaamizaiabeI7aXjaac+cacaWGKbGaam4CaiaacYcacaaM c8UaaGPaVlaaykW7cqaH6oWAdaWgaaWcbaGaaGymaaqabaGccqGH9a qpcqaH6oWAdaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWaaaaa@471C@ , and recall that M 2 =E I 2 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIYaaabeaaki abg2da9iaadweacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaeqOUdS2a aSbaaSqaaiaaikdaaeqaaaaa@38CE@ , so that the angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  satisfies

E I 2 d 2 θ d s 2 +Psinθ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaWgaaWcbaGaaGOmaa qabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqaH4oqC aeaacaWGKbGaam4CamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkca WGqbGaci4CaiaacMgacaGGUbGaeqiUdeNaeyypa0JaaGimaaaa@41E5@

 

4. This is the equation that governs oscillations of a pendulum, and its solution is well known. The equation is satisfied trivially by θ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaaGimaaaa@3456@  (this is the straight configuration), and also by two one-parameter families of functions of the form

θ=2 sin 1 k sn (s s 0 ) (P/E I 2 ) ;k θ=2 sin 1 sn (s s 0 ) (P/ k 2 E I 2 ) ;k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaaGOmaiGacohaca GGPbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaacmaabaWa aOaaaeaacaWGRbaaleqaaOGaai4Caiaac6gadaqadaqaaiaacIcaca WGZbGaeyOeI0Iaam4CamaaBaaaleaacaaIWaaabeaakiaacMcadaGc aaqaaiaacIcacaWGqbGaai4laiaadweacaWGjbWaaSbaaSqaaiaaik daaeqaaOGaaiykaaWcbeaakiaacUdacaWGRbaacaGLOaGaayzkaaaa caGL7bGaayzFaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqiUdeNaeyyp a0JaaGOmaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaacmaabaGaai4Caiaac6gadaqadaqaaiaacIcacaWGZbGa eyOeI0Iaam4CamaaBaaaleaacaaIWaaabeaakiaacMcadaGcaaqaai aacIcacaWGqbGaai4laiaadUgadaahaaWcbeqaaiaaikdaaaGccaWG fbGaamysamaaBaaaleaacaaIYaaabeaakiaacMcaaSqabaGccaGG7a Gaam4AaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@7ACA@

Here, s 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaBaaaleaacaaIWaaabeaaaa a@32BE@  and 0<k<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgYda8iaadUgacqGH8aapca aIXaaaaa@354D@  are parameters whose values must be determined from the boundary conditions.  The first of these two functions is called an `inflexional’ solution, because the curve has points where dθ/ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeI7aXjaac+cacaWGKbGaam 4Caiabg2da9iaaicdaaaa@37D3@ .  The second is called `non-inflexional’ because it has no such points.  For the pendulum, inflexional solutions correspond to periodic swinging motion; the non-inflexional solution corresponds to the pendulum whirling around the pivot. 

 

5. The bending moment must satisfy M 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@3464@  at both ends of the rod, which requires that dθ/ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeI7aXjaac+cacaWGKbGaam 4Caiabg2da9iaaicdaaaa@37D3@  at s=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caiabg2da9iaaicdaaaa@3398@  and s=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caiabg2da9iaadYeaaaa@33AF@ .  Only the inflexional solution can satisfy these boundary conditions.   For this case, we have

dθ ds =2k I 2 P cn (s s 0 ) (P/E I 2 ) ;k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqiUdehabaGaam izaiaadohaaaGaeyypa0JaaGOmaiaadUgadaGcaaqaamaalaaabaGa amysamaaBaaaleaacaaIYaaabeaaaOqaaiaadcfaaaaaleqaaOGaai 4yaiaac6gadaqadaqaaiaacIcacaWGZbGaeyOeI0Iaam4CamaaBaaa leaacaaIWaaabeaakiaacMcadaGcaaqaaiaacIcacaWGqbGaai4lai aadweacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaWcbeaakiaa cUdacaWGRbaacaGLOaGaayzkaaaaaa@4AB3@

The cosine amplitude cn is a periodic function (it is a generalized cosine) and satisfies cn(x,k)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiaad6gacaGGOaGaamiEaiaacY cacaWGRbGaaiykaiabg2da9iaaicdaaaa@3871@  at x=(2n+1)K(k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEaiabg2da9iaacIcacaaIYaGaam OBaiabgUcaRiaaigdacaGGPaGaam4saiaacIcacaWGRbGaaiykaaaa @3AA1@ .  We may therefore satisfy the boundary conditions by choosing

s 0 P/E I 2 =K(k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Iaam4CamaaBaaaleaacaaIWa aabeaakmaakaaabaGaamiuaiaac+cacaWGfbGaamysamaaBaaaleaa caaIYaaabeaaaeqaaOGaeyypa0Jaam4saiaacIcacaWGRbGaaiykaa aa@3BF6@     and       L P/E I 2 =2nK(k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaakaaabaGaamiuaiaac+caca WGfbGaamysamaaBaaaleaacaaIYaaabeaaaeqaaOGaeyypa0JaaGOm aiaad6gacaWGlbGaaiikaiaadUgacaGGPaaaaa@3BA1@ .

This leads to the defining equations for k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@ .

 

6. Finally, the formula for the coordinates follows by integrating d y 3 /ds=cosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaaG4maa qabaGccaGGVaGaamizaiaadohacqGH9aqpciGGJbGaai4Baiaacoha cqaH4oqCaaa@3BDD@  and d y 2 /ds=sinθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaaGOmaa qabaGccaGGVaGaamizaiaadohacqGH9aqpciGGZbGaaiyAaiaac6ga cqaH4oqCaaa@3BE1@  subject to boundary conditions y 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348F@  at s=0,L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caiabg2da9iaaicdacaGGSaGaam itaaaa@3519@  and y 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@3491@  at s=0.

 

7. Finally, the (global) stability of the various solutions can be checked by comparing their potential energy.

 

 

 

 

10.4.4 Rod bent and twisted into a helix

 

We consider an initially straight rod with length L, Young’s modulus E and shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@ .  The cross-section of the rod has area A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaaaa@31A6@ , principal in-plane moments of inertia I 1 = I 2 =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGjbaa aa@3739@  and an effective torsional inertia J 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaaIZaaabeaaaa a@3298@ .  The  rod is initially straight and unstressed, and is then subjected to forces and moments on its ends to bend and twist it into a helical shape, as shown in the figure. The geometry of the deformed rod can be characterized by:

 

1. The radius r of the cylinder that generates the helix

 

2. The total number of turns N in the helix

 

3. The helix angle α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@ , which is related to n and the height h of the helix by tanα=h/(2πrN) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiDaiaacggacaGGUbGaeqySdeMaey ypa0JaamiAaiaac+cacaGGOaGaaGOmaiabec8aWjaadkhacaWGobGa aiykaaaa@3D92@ , and to the deformed length l of the rod by cosα=2πrN/l MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaeqySdeMaey ypa0JaaGOmaiabec8aWjaadkhacaWGobGaai4laiaadYgaaaa@3C3F@

 

4. The twist curvature κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@ , which quantify the distorsion induced by twisting the rod about its deformed axis.  For the rod to be in equilibrium, κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa aa@337B@  must be constant.

 

5. The stretch ratio λ=ds/d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0Jaamizaiaadohaca GGVaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@38FD@ .  For the rod to be in equilibrium, λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  must be constant, and follows as λ=l/L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaamiBaiaac+caca WGmbaaaa@360F@ .

 

 

The geometry and forces in the deformed rod are most conveniently described using a cylindrical-polar coordinate system (r, θ ^ ,z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGafqiUdeNbaK aacaGGSaGaamOEaiaacMcaaaa@3755@  and basis e r , e θ , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk haaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3B47@  shown in Figure 10.15.  In terms of these basis vectors, we may define

 

1. The tangent vector to the rod t= m 3 =cosα e θ +sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9iaah2gadaWgaaWcba GaaG4maaqabaGccqGH9aqpciGGJbGaai4BaiaacohacqaHXoqycaWH LbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkciGGZbGaaiyAaiaac6 gacqaHXoqycaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@444E@

 

2. The binormal vector is b=sinα e θ +cosα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iabgkHiTiGacohaca GGPbGaaiOBaiabeg7aHjaahwgadaWgaaWcbaGaeqiUdehabeaakiab gUcaRiGacogacaGGVbGaai4Caiabeg7aHjaahwgadaWgaaWcbaGaaG 4maaqabaaaaa@423A@

 

 

In terms of these variables:

 

1. The internal moment in the rod is

M=EI cos 2 α r b+μ J 3 κ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaadweacaWGjbWaaS aaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH XoqyaeaacaWGYbaaaiaahkgacqGHRaWkcqaH8oqBcaWGkbWaaSbaaS qaaiaaiodaaeqaaOGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaaCyB amaaBaaaleaacaaIZaaabeaaaaa@4489@

2. The internal force in the rod is

T= cos 2 α r μ J 3 κ 3 EI r cosαsinα b+EA(λ1) m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9maalaaabaGaci4yai aac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaGaamOC aaaadaqadaqaaiabeY7aTjaadQeadaWgaaWcbaGaaG4maaqabaGccq aH6oWAdaWgaaWcbaGaaG4maaqabaGccqGHsisldaWcaaqaaiaadwea caWGjbaabaGaamOCaaaaciGGJbGaai4BaiaacohacqaHXoqyciGGZb GaaiyAaiaac6gacqaHXoqyaiaawIcacaGLPaaacaWHIbGaey4kaSIa amyraiaadgeacaGGOaGaeq4UdWMaeyOeI0IaaGymaiaacMcacaWHTb WaaSbaaSqaaiaaiodaaeqaaaaa@573B@

For the limiting case of an inextensible rod, the quantity EA(λ1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadgeacaGGOaGaeq4UdWMaey OeI0IaaGymaiaacMcaaaa@3725@  should be replaced by an indeterminate axial force T 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaaa a@32A2@ .

 

 

The forces acting on the ends of the rod must satisfy P=T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaahsfaaaa@339C@  and Q=M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iaah2eaaaa@3396@  at s=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caiabg2da9iaadYeaaaa@33AF@  and P=T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iabgkHiTiaahsfaaa a@3489@   Q=M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iabgkHiTiaah2eaaa a@3483@  at s=0.

 

A variety of force and moment systems may deform the rod into a helical shape, depending on the twist and stretch.  An example of particular practical significance consists of a force P= F z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadAeadaWgaaWcba GaamOEaaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@3696@  and moment Q=r F z e θ + Q z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iaadkhacaWGgbWaaS baaSqaaiaadQhaaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGa ey4kaSIaamyuamaaBaaaleaacaWG6baabeaakiaahwgadaWgaaWcba GaamOEaaqabaaaaa@3D97@  acting at s=L (with equal and opposite forces at s=0), where

F z = cosα r (μ J 3 κ 3 EI r cosαsinα) Q z =μ J 3 κ 3 sinα+ EI r cos 3 α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWG6baabeaaki abg2da9maalaaabaGaci4yaiaac+gacaGGZbGaeqySdegabaGaamOC aaaacaGGOaGaeqiVd0MaamOsamaaBaaaleaacaaIZaaabeaakiabeQ 7aRnaaBaaaleaacaaIZaaabeaakiabgkHiTmaalaaabaGaamyraiaa dMeaaeaacaWGYbaaaiGacogacaGGVbGaai4Caiabeg7aHjGacohaca GGPbGaaiOBaiabeg7aHjaacMcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadgfadaWgaaWcbaGaamOEaaqaba GccqGH9aqpcqaH8oqBcaWGkbWaaSbaaSqaaiaaiodaaeqaaOGaeqOU dS2aaSbaaSqaaiaaiodaaeqaaOGaci4CaiaacMgacaGGUbGaeqySde Maey4kaSYaaSaaaeaacaWGfbGaamysaaqaaiaadkhaaaGaci4yaiaa c+gacaGGZbWaaWbaaSqabeaacaaIZaaaaOGaeqySdegaaa@702E@

This force system is statically equivalent to a wrench with force F z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWG6baabeaaki aahwgadaWgaaWcbaGaamOEaaqabaaaaa@34F9@  and moment Q z e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWG6baabeaaki aahwgadaWgaaWcbaGaamOEaaqabaaaaa@3504@  acting at r=0.

 

Finally note that this analysis merely gives conditions for a helical rod to be in static equilibrium.  The configuration may not be stable.

 

 

Derivation

 

1. We take θ ^ =z=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiUdeNbaKaacqGH9aqpcaWG6bGaey ypa0JaaGimaaaa@366B@  at s=0, so that the cylindrical polar coordinates are related to arc-length by θ ^ = s r cosαz=ssinα MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiUdeNbaKaacqGH9aqpdaWcaaqaai aadohaaeaacaWGYbaaaiGacogacaGGVbGaai4Caiabeg7aHjaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOEai abg2da9iaadohaciGGZbGaaiyAaiaac6gacqaHXoqyaaa@4DE9@ . Note also that the basis vectors satisfy d e r /d θ ^ = e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGVaGaamizaiqbeI7aXzaajaGaeyypa0JaaCyzamaaBaaa leaacqaH4oqCaeqaaaaa@3B1C@ , d e θ /d θ ^ = e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwgadaWgaaWcbaGaeqiUde habeaakiaac+cacaWGKbGafqiUdeNbaKaacqGH9aqpcqGHsislcaWH LbWaaSbaaSqaaiaadkhaaeqaaaaa@3C09@ , so that

d e r ds = cosα r e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyzamaaBaaale aacaWGYbaabeaaaOqaaiaadsgacaWGZbaaaiabg2da9maalaaabaGa ci4yaiaac+gacaGGZbGaeqySdegabaGaamOCaaaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3F24@        d e θ ds = cosα r e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyzamaaBaaale aacqaH4oqCaeqaaaGcbaGaamizaiaadohaaaGaeyypa0JaeyOeI0Ya aSaaaeaaciGGJbGaai4BaiaacohacqaHXoqyaeaacaWGYbaaaiaahw gadaWgaaWcbaGaamOCaaqabaaaaa@4011@

 

2. The position vector of a point on the axis of the rod can be expressed as r=r e r +z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadkhacaWHLbWaaS baaSqaaiaadkhaaeqaaOGaey4kaSIaamOEaiaahwgadaWgaaWcbaGa aG4maaqabaaaaa@39AB@ ;

 

3. The tangent vector follows as m 3 = dr ds =cosα e θ +sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaki abg2da9maalaaabaGaamizaiaahkhaaeaacaWGKbGaam4CaaaacqGH 9aqpciGGJbGaai4BaiaacohacqaHXoqycaWHLbWaaSbaaSqaaiabeI 7aXbqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaHXoqycaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@4726@ ;

 

4. By definition, the curvature vector is

 

κ= m 3 × d m 3 ds + κ 3 m 3 = cos 2 αsinα r e θ + cos 3 α r e 3 + κ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9iaah2gadaWgaaWcba GaaG4maaqabaGccqGHxdaTdaWcaaqaaiaadsgacaWHTbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaamizaiaadohaaaGaey4kaSIaeqOUdS2aaS baaSqaaiaaiodaaeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiab g2da9iabgkHiTmaalaaabaGaci4yaiaac+gacaGGZbWaaWbaaSqabe aacaaIYaaaaOGaeqySdeMaci4CaiaacMgacaGGUbGaeqySdegabaGa amOCaaaacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkdaWcaa qaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaG4maaaakiabeg7a HbqaaiaadkhaaaGaaCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRi abeQ7aRnaaBaaaleaacaaIZaaabeaakiaah2gadaWgaaWcbaGaaG4m aaqabaaaaa@5FA5@

 which can be expressed in terms of the binormal vector as κ=( cos 2 α/r)b+ κ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9iaacIcaciGGJbGaai 4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqycaGGVaGaamOC aiaacMcacaWHIbGaey4kaSIaeqOUdS2aaSbaaSqaaiaaiodaaeqaaO GaaCyBamaaBaaaleaacaaIZaaabeaaaaa@41E5@ ;

 

5. The moment-curvature relations then give the internal moment M=EI( cos 2 α/r)b+μ J 3 κ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaadweacaWGjbGaai ikaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeg7a Hjaac+cacaWGYbGaaiykaiaahkgacqGHRaWkcqaH8oqBcaWGkbWaaS baaSqaaiaaiodaaeqaaOGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGa aCyBamaaBaaaleaacaaIZaaabeaaaaa@4685@ ;

 

6. The equilibrium equation dT/ds+p=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahsfacaGGVaGaamizaiaado hacqGHRaWkcaWHWbGaeyypa0JaaCimaaaa@38D4@  shows that T=constant.  We may express this constant internal force vector in terms of its components as T r e r + T θ e θ + T z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGYbaabeaaki aahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGubWaaSbaaSqa aiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRa WkcaWGubWaaSbaaSqaaiaadQhaaeqaaOGaaCyzamaaBaaaleaacaaI Zaaabeaaaaa@4049@

 

7. The internal forces and moments must satisfy the moment equilibrium equation, which shows that

dM ds + m 3 ×T= cos 2 α r EI r cosαsinα J 3 κ 3 e r +μ J 3 d κ 3 ds (cosα e θ +sinα e 3 ) + T z cosα T θ sinα e r + T r sinα e θ T r cosα e 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWHnbaaba GaamizaiaadohaaaGaey4kaSIaaCyBamaaBaaaleaacaaIZaaabeaa kiabgEna0kaahsfacqGH9aqpdaWcaaqaaiGacogacaGGVbGaai4Cam aaCaaaleqabaGaaGOmaaaakiabeg7aHbqaaiaadkhaaaWaaeWaaeaa daWcaaqaaiaadweacaWGjbaabaGaamOCaaaaciGGJbGaai4Baiaaco hacqaHXoqyciGGZbGaaiyAaiaac6gacqaHXoqycqGHsislcaWGkbWa aSbaaSqaaiaaiodaaeqaaOGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaa GccaGLOaGaayzkaaGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUca RiabeY7aTjaadQeadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiaads gacqaH6oWAdaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaam4Caaaa caGGOaGaci4yaiaac+gacaGGZbGaeqySdeMaaCyzamaaBaaaleaacq aH4oqCaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeqySdeMaaCyz amaaBaaaleaacaaIZaaabeaakiaacMcaaeaacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRmaabmaa baGaamivamaaBaaaleaacaWG6baabeaakiGacogacaGGVbGaai4Cai abeg7aHjabgkHiTiaadsfadaWgaaWcbaGaeqiUdehabeaakiGacoha caGGPbGaaiOBaiabeg7aHbGaayjkaiaawMcaaiaahwgadaWgaaWcba GaamOCaaqabaGccqGHRaWkcaWGubWaaSbaaSqaaiaadkhaaeqaaOGa ci4CaiaacMgacaGGUbGaeqySdeMaaCyzamaaBaaaleaacqaH4oqCae qaaOGaeyOeI0IaamivamaaBaaaleaacaWGYbaabeaakiGacogacaGG VbGaai4Caiabeg7aHjaahwgadaWgaaWcbaGaaG4maaqabaGccqGH9a qpcaWHWaaaaaa@D7B0@

Taking the dot product of both sides of this equation with m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  shows that d κ 3 /ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeQ7aRnaaBaaaleaacaaIZa aabeaakiaac+cacaWGKbGaam4Caiabg2da9iaaicdaaaa@38C2@ . It then follows that T r =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGYbaabeaaki abg2da9iaaicdaaaa@34A6@  and

cos 2 α r μ J 3 κ 3 EI r cosαsinα = T z cosα T θ sinα MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaaciGGJbGaai4Baiaacohada ahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaacaWGYbaaamaabmaabaGa eqiVd0MaamOsamaaBaaaleaacaaIZaaabeaakiabeQ7aRnaaBaaale aacaaIZaaabeaakiabgkHiTmaalaaabaGaamyraiaadMeaaeaacaWG YbaaaiGacogacaGGVbGaai4Caiabeg7aHjGacohacaGGPbGaaiOBai abeg7aHbGaayjkaiaawMcaaiabg2da9maabmaabaGaamivamaaBaaa leaacaWG6baabeaakiGacogacaGGVbGaai4Caiabeg7aHjabgkHiTi aadsfadaWgaaWcbaGaeqiUdehabeaakiGacohacaGGPbGaaiOBaiab eg7aHbGaayjkaiaawMcaaaaa@5C9F@

 

8. Finally, the force-stretch relation requires that T m 3 = T θ cosα+ T z sinα=EA(λ1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabgwSixlaah2gadaWgaaWcba GaaG4maaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiabeI7aXbqabaGc ciGGJbGaai4BaiaacohacqaHXoqycqGHRaWkcaWGubWaaSbaaSqaai aadQhaaeqaaOGaci4CaiaacMgacaGGUbGaeqySdeMaeyypa0Jaamyr aiaadgeacaGGOaGaeq4UdWMaeyOeI0IaaGymaiaacMcaaaa@4CDF@ .  This equation can be solved together with the final result of (7) for the components of internal force in the rod.

 

 

 

 

10.4.5 Helical spring

 

The behavior of the helical spring shown in the figure can be deduced by means of a simple extension of the results in the preceding section. We assume that the spring is made from a material with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3295@  and Young’s modulus E=2μ(1+ν) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiabg2da9iaaikdacqaH8oqBca GGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaa@39D0@ .  The cross-section of the rod has principal in-plane moments of inertia I 1 = I 2 =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGjbaa aa@3739@  and an effective torsional inertia J MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaaaa@31AF@ .  The rod is assumed to be inextensible, for simplicity.  The geometry of the undeformed spring can be characterized as follows:

 

1. The length of the rod L;

 

2. The radius r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaaraaaaa@31EF@  of the cylinder that generates the helix;

 

3. The height h ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiAayaaraaaaa@31E5@  of the spring;

 

4. The number of turns in the coil N MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtaaaa@31B3@ ;

 

5. The helix angle α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqySdeMbaebaaaa@3297@ .

 

The variables characterizing the undeformed spring are related as follows

tan α ¯ = h ¯ 2π r ¯ N h ¯ =Lsin α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiDaiaacggacaGGUbGafqySdeMbae bacqGH9aqpdaWcaaqaaiqadIgagaqeaaqaaiaaikdacqaHapaCceWG YbGbaebacaWGobaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7ceWGObGbaebacqGH9aqpcaWGmbGaci4CaiaacMgacaGG UbGafqySdeMbaebaaaa@4E16@

 

The spring is subjected to equal and opposite axial forces F z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWG6baabeaaaa a@32D6@  and axial twisting moments Q z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWG6baabeaaaa a@32E1@  at its ends, which act at the center of the cylinder generating the helix.   The precise manner in which the forces are transmitted to the ends of the helical rod is left unspecified, but we assume that the load points remain at the heights of the ends of the coil and remain at the center of the cylinder generating the helix.  In practice, this is always the case if the spring experiences only a small change in its shape, but (depending on how the spring is designed) large deflections may cause the applied forces to change their position or direction.   This would change the behavior of the spring.

 

Guided by the analysis in the preceding section, we anticipate that when the spring is deformed, it remains helical, and consequently can be characterized by the deformed radius r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaaaa@31D7@ , the new height h and the new helix angle α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@ .   The load point at the top end of the spring may also rotate about the axis of the cylinder through an angle Δω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyYdChaaa@3413@ .  It is of particular interest to relate the deflection Δh MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiAaaaa@3333@  and rotation Δω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyYdChaaa@3413@  to the force F z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWG6baabeaaaa a@32D6@  and axial moment Q z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWG6baabeaaaa a@32E1@ .  

 

 

Solutions for small deflections and rotations of the spring

 

If a helical spring is subjected to small changes in its length Δh<< h ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiAaiabgYda8iabgYda8i qadIgagaqeaaaa@3640@  (or small twisting rotations Δω<<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyYdCNaeyipaWJaeyipaW JaaGymaaaa@36D6@  ) the forces and twisting moment are proportional to Δh MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiAaaaa@3333@  and Δω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyYdChaaa@3413@ . To give explicit formulas for spring stiffnesses, we assume in this section that the rod has a circular cross-section with diameter d, so that J=2I=π d 4 /32 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iaaikdacaWGjbGaey ypa0JaeqiWdaNaamizamaaCaaaleqabaGaaGinaaaakiaac+cacaaI ZaGaaGOmaaaa@3B0C@ .  The twist and extension are then related to the forces and moments by

F z Q z = k Fh k Fω k Qh k Qω Δh Δω Δh Δω = c hF c hQ c ωF c ωQ F z Q z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGabaaabaGaamOram aaBaaaleaacaWG6baabeaaaOqaaiaadgfadaWgaaWcbaGaamOEaaqa baaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGacaaaba Gaam4AamaaBaaaleaacaWGgbGaamiAaaqabaaakeaacaWGRbWaaSba aSqaaiaadAeacqaHjpWDaeqaaaGcbaGaam4AamaaBaaaleaacaWGrb GaamiAaaqabaaakeaacaWGRbWaaSbaaSqaaiaadgfacqaHjpWDaeqa aaaaaOGaay5waiaaw2faamaadmaabaqbaeqabiqaaaqaaiabfs5aej aadIgaaeaacqqHuoarcqaHjpWDaaaacaGLBbGaayzxaaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7daWadaqaauaabeqaceaaaeaa cqqHuoarcaWGObaabaGaeuiLdqKaeqyYdChaaaGaay5waiaaw2faai aaykW7cqGH9aqpdaWadaqaauaabeqaciaaaeaacaWGJbWaaSbaaSqa aiaadIgacaWGgbaabeaaaOqaaiaadogadaWgaaWcbaGaamiAaiaadg faaeqaaaGcbaGaam4yamaaBaaaleaacqaHjpWDcaWGgbaabeaaaOqa aiaadogadaWgaaWcbaGaeqyYdCNaamyuaaqabaaaaaGccaGLBbGaay zxaaWaamWaaeaafaqabeGabaaabaGaamOramaaBaaaleaacaWG6baa beaaaOqaaiaadgfadaWgaaWcbaGaamOEaaqabaaaaaGccaGLBbGaay zxaaaaaa@83AE@

where the stiffnesses and compliances are listed the table.

 

 

Shear modulus

μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@

Poisson’s ratio

ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@

No. turns in coil

N MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtaaaa@31B3@

Coil (helix) radius

r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaaraaaaa@31EF@

Helix pitch angle

α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqySdeMbaebaaaa@3297@

Wire diameter

d MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaaaa@31C9@

Wire length L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitaaaa@31B1@

2π r ¯ N/cos α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiabec8aWjqadkhagaqeaiaad6 eacaGGVaGaci4yaiaac+gacaGGZbGafqySdeMbaebaaaa@3A78@

Coil (helix) unstretched length h ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiAayaaraaaaa@31E5@

2π r ¯ Ntan α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiabec8aWjqadkhagaqeaiaad6 eaciGG0bGaaiyyaiaac6gacuaHXoqygaqeaaaa@39C3@

Extensional stiffness

k Fh MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGgbGaamiAaa qabaaaaa@33B4@

μ d 4 cos α ¯ 64 r ¯ 3 N cos 2 α ¯ +(1+ν) sin 2 α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaH8oqBcaWGKbWaaWbaaS qabeaacaaI0aaaaOGaci4yaiaac+gacaGGZbGafqySdeMbaebaaeaa caaI2aGaaGinaiqadkhagaqeamaaCaaaleqabaGaaG4maaaakiaad6 eaaaWaaeWaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikda aaGccuaHXoqygaqeaiabgUcaRiaacIcacaaIXaGaey4kaSIaeqyVd4 MaaiykaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiqb eg7aHzaaraaacaGLOaGaayzkaaaaaa@4F7A@

Rotational stiffness

k Qω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGrbGaeqyYdC habeaaaaa@349F@

μ d 4 cos α ¯ 64 r ¯ N sin 2 α ¯ +(1+ν) cos 2 α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaH8oqBcaWGKbWaaWbaaS qabeaacaaI0aaaaOGaci4yaiaac+gacaGGZbGafqySdeMbaebaaeaa caaI2aGaaGinaiqadkhagaqeaiaad6eaaaWaaeWaaeaaciGGZbGaai yAaiaac6gadaahaaWcbeqaaiaaikdaaaGccuaHXoqygaqeaiabgUca RiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiGacogacaGGVbGaai 4CamaaCaaaleqabaGaaGOmaaaakiqbeg7aHzaaraaacaGLOaGaayzk aaaaaa@4E85@

Extension-torsion stiffness

k Fω = k Qh MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGgbGaeqyYdC habeaakiabg2da9iaadUgadaWgaaWcbaGaamyuaiaadIgaaeqaaaaa @3883@

μv d 4 cos α ¯ 64 r ¯ 2 N sin α ¯ cos α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0YaaSaaaeaacqaH8oqBcaWG2b GaamizamaaCaaaleqabaGaaGinaaaakiGacogacaGGVbGaai4Caiqb eg7aHzaaraaabaGaaGOnaiaaisdaceWGYbGbaebadaahaaWcbeqaai aaikdaaaGccaWGobaaaiGacohacaGGPbGaaiOBaiqbeg7aHzaaraGa ci4yaiaac+gacaGGZbGafqySdeMbaebaaaa@4861@

Force compliance

c hF MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGObGaamOraa qabaaaaa@33AC@

64 r ¯ 3 N μ d 4 cos α ¯ (1+ν) sin 2 α ¯ +(1+ν) cos 2 α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaI2aGaaGinaiqadkhaga qeamaaCaaaleqabaGaaG4maaaakiaad6eaaeaacqaH8oqBcaWGKbWa aWbaaSqabeaacaaI0aaaaOGaci4yaiaac+gacaGGZbGafqySdeMbae bacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaWaaeWaaeaaciGG ZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccuaHXoqygaqeai abgUcaRiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiGacogacaGG VbGaai4CamaaCaaaleqabaGaaGOmaaaakiqbeg7aHzaaraaacaGLOa Gaayzkaaaaaa@5428@

Torque compliance

c ωQ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacqaHjpWDcaWGrb aabeaaaaa@3497@

64 r ¯ N μ d 4 cos α ¯ (1+ν) cos 2 α ¯ +(1+ν) sin 2 α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaI2aGaaGinaiqadkhaga qeaiaad6eaaeaacqaH8oqBcaWGKbWaaWbaaSqabeaacaaI0aaaaOGa ci4yaiaac+gacaGGZbGafqySdeMbaebacaGGOaGaaGymaiabgUcaRi abe27aUjaacMcaaaWaaeWaaeaaciGGJbGaai4BaiaacohadaahaaWc beqaaiaaikdaaaGccuaHXoqygaqeaiabgUcaRiaacIcacaaIXaGaey 4kaSIaeqyVd4MaaiykaiGacohacaGGPbGaaiOBamaaCaaaleqabaGa aGOmaaaakiqbeg7aHzaaraaacaGLOaGaayzkaaaaaa@5334@

Torque-extension compliance

c ωF = c hQ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacqaHjpWDcaWGgb aabeaakiabg2da9iaadogadaWgaaWcbaGaamiAaiaadgfaaeqaaaaa @3873@

64ν r ¯ 2 Nsin α ¯ μ d 4 (1+ν) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaI2aGaaGinaiabe27aUj qadkhagaqeamaaCaaaleqabaGaaGOmaaaakiaad6eaciGGZbGaaiyA aiaac6gacuaHXoqygaqeaaqaaiabeY7aTjaadsgadaahaaWcbeqaai aaisdaaaGccaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaaaaa@43CC@

 

 

 

 

   We notice that:

 

· For practical values of pitch angle α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqySdeMbaebaaaa@3297@  (which is typically less than 8 degrees) the stiffnesses can be approximated by

k Fh μ d 4 64 r ¯ 3 N k Qω μ(1+ν) d 4 64 r ¯ N k Qh = k Fω 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGgbGaamiAaa qabaGccqGHijYUdaWcaaqaaiabeY7aTjaadsgadaahaaWcbeqaaiaa isdaaaaakeaacaaI2aGaaGinaiqadkhagaqeamaaCaaaleqabaGaaG 4maaaakiaad6eaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadUgadaWgaaWcbaGaamyuai abeM8a3bqabaGccqGHijYUcaaMc8+aaSaaaeaacqaH8oqBcaGGOaGa aGymaiabgUcaRiabe27aUjaacMcacaWGKbWaaWbaaSqabeaacaaI0a aaaaGcbaGaaGOnaiaaisdaceWGYbGbaebacaWGobaaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadUgadaWgaaWcbaGaamyuai aadIgaaeqaaOGaeyypa0Jaam4AamaaBaaaleaacaWGgbGaeqyYdCha beaakiabgIKi7kaaicdaaaa@72E5@

These are the formulas that typically appear in design handbooks.  

 

· The extensional and rotational stiffnesses vary weakly with pitch angle α ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqySdeMbaebaaaa@3297@ .   The stiffnesses and compliances are most significantly affected by the wire diameter and the radius of the coil.   Increasing the number of turns in the coil while keeping all other variables fixed will make the spring softer.

 

· For pitch angles exceeding about 20 degrees the coupling between rotation and axial force (or extension and torque) becomes significant.   As long as the spring deflection remains small, a spring with freely rotating ends will tend to uncoil as it is stretched.   A spring that is free of axial force will tend to extend when its ends are rotated.   In applications where this is undesirable two springs wound in opposite directions (one with a positive and a second with a negative pitch angle) are placed end-to end to cancel the rotation.

 

 

Solutions for large deflections and rotations of the spring

 

It is worth noting that the deformation in the helical part of a spring cannot be determined fully without knowing how the ends of the helical rod are connected to the force and moment acting on the coil.  The derivations shown in more detail below show that twisting the rod without changing the shape of the helix generates internal forces and moments in the rod that are statically equivalent to a vertical force and moment acting at the center of the coil.   Consequently, prescribing only the force and axial moment acting on the coil (or equivalently, prescribing the extension and rotation angle) is not sufficient to fully determine the deformation of the spring.  Furthermore, the forces acting on the spring may also depend on the history of deformation, since the ends of the rod may experience a sequence of rotations that generate a nonzero twist when the rod is returned to its original helical shape.  In the formulas given in this section, we have assumed that this does not occur. The force and moment acting on the spring are then given by

EI( cos 2 α r cos 2 α ¯ r ¯ ) sinα r +μJ( sinαcosα r sin α ¯ cos α ¯ r ¯ ) cosα r = F z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamyraiaadMeacaGGOaWaaS aaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH XoqyaeaacaWGYbaaaiabgkHiTmaalaaabaGaci4yaiaac+gacaGGZb WaaWbaaSqabeaacaaIYaaaaOGafqySdeMbaebaaeaaceWGYbGbaeba aaGaaiykamaalaaabaGaci4CaiaacMgacaGGUbGaeqySdegabaGaam OCaaaacqGHRaWkcqaH8oqBcaWGkbGaaiikamaalaaabaGaci4Caiaa cMgacaGGUbGaeqySdeMaci4yaiaac+gacaGGZbGaeqySdegabaGaam OCaaaacqGHsisldaWcaaqaaiGacohacaGGPbGaaiOBaiqbeg7aHzaa raGaci4yaiaac+gacaGGZbGafqySdeMbaebaaeaaceWGYbGbaebaaa GaaiykamaalaaabaGaci4yaiaac+gacaGGZbGaeqySdegabaGaamOC aaaacqGH9aqpcaWGgbWaaSbaaSqaaiaadQhaaeqaaaaa@6A7A@

EI( cos 2 α r cos 2 α ¯ r ¯ )cosα+μJ sinαcosα r sin α ¯ cos α ¯ r ¯ sinα=Q z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeacaGGOaWaaSaaaeaaci GGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaa caWGYbaaaiabgkHiTmaalaaabaGaci4yaiaac+gacaGGZbWaaWbaaS qabeaacaaIYaaaaOGafqySdeMbaebaaeaaceWGYbGbaebaaaGaaiyk aiGacogacaGGVbGaai4Caiabeg7aHjabgUcaRiabeY7aTjaadQeada qadaqaamaalaaabaGaci4CaiaacMgacaGGUbGaeqySdeMaci4yaiaa c+gacaGGZbGaeqySdegabaGaamOCaaaacqGHsisldaWcaaqaaiGaco hacaGGPbGaaiOBaiqbeg7aHzaaraGaci4yaiaac+gacaGGZbGafqyS deMbaebaaeaaceWGYbGbaebaaaaacaGLOaGaayzkaaGaci4CaiaacM gacaGGUbGaeqySdeMaeyypa0JaamyuaiaaxcW7daWgaaWcbaGaamOE aaqabaaaaa@6942@

where α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  and r are related to the height h of the deformed spring and the twist angle Δω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyYdChaaa@3413@  by

h=LsinαL cosα r cos α ¯ r ¯ =Δω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiabg2da9iaadYeaciGGZbGaai yAaiaac6gacqaHXoqycaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGmbWaaeWaaeaadaWcaaqa aiGacogacaGGVbGaai4Caiabeg7aHbqaaiaadkhaaaGaeyOeI0YaaS aaaeaaciGGJbGaai4BaiaacohacuaHXoqygaqeaaqaaiqadkhagaqe aaaaaiaawIcacaGLPaaacqGH9aqpcqqHuoarcqaHjpWDaaa@6683@

 

 

 


 

As an example, the force-extension relation and extension-rotation relation are plotted in the figure .   Results are shown for a spring with 10 turns and a Poisson ratio of ν=0.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aIZaaaaa@35C7@ .  Fig (a) shows the normalized force and torque acting on a spring that is extended without twist; while Fig (b) shows the force and rotation of a spring that is extended while freely rotating.  The graphs show that:

 

· A spring with pitch angle less than 8 degrees remains linear for extensions exceeding 25% of the wire length.

 

· Springs with larger pitch angles tend to stiffen when extended, and soften when compressed.

 

· The torque acting on a spring that is prevented from rotating, and the twist of a freely rotating spring vary linearly with extension over only a narrow range of extension ( Δh/L<0.05 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiAaiaac+cacaWGmbGaey ipaWJaaGimaiaac6cacaaIWaGaaGynaaaa@38A0@ ).   Significant rotations (exceeding 20 degrees) can be expected if a freely rotating spring is stretched or compressed beyond 25% of the wire length.

 

 

Derivation: The geometry and forces in the spring are most conveniently described using a cylindrical-polar coordinate system (r, θ ^ ,z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGafqiUdeNbaK aacaGGSaGaamOEaiaacMcaaaa@3755@  and basis e r , e θ , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk haaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3B47@  shown in Figure 10.16. 

 

1. We take θ ^ =z=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiUdeNbaKaacqGH9aqpcaWG6bGaey ypa0JaaGimaaaa@366B@  at s=0, so that the cylindrical polar coordinates are related to arc-length by θ ^ =(s/r)cosαz=ssinα MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiUdeNbaKaacqGH9aqpcaGGOaGaam 4Caiaac+cacaWGYbGaaiykaiGacogacaGGVbGaai4Caiabeg7aHjaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam OEaiabg2da9iaadohaciGGZbGaaiyAaiaac6gacqaHXoqyaaa@4FE5@ .

 

2. Note also that the basis vectors satisfy d e r /d θ ^ = e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGVaGaamizaiqbeI7aXzaajaGaeyypa0JaaCyzamaaBaaa leaacqaH4oqCaeqaaaaa@3B1C@ , d e θ /d θ ^ = e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwgadaWgaaWcbaGaeqiUde habeaakiaac+cacaWGKbGafqiUdeNbaKaacqGH9aqpcqGHsislcaWH LbWaaSbaaSqaaiaadkhaaeqaaaaa@3C09@ , so that

d e r ds = cosα r e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyzamaaBaaale aacaWGYbaabeaaaOqaaiaadsgacaWGZbaaaiabg2da9maalaaabaGa ci4yaiaac+gacaGGZbGaeqySdegabaGaamOCaaaacaWHLbWaaSbaaS qaaiabeI7aXbqabaaaaa@3F24@        d e θ ds = cosα r e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyzamaaBaaale aacqaH4oqCaeqaaaGcbaGaamizaiaadohaaaGaeyypa0JaeyOeI0Ya aSaaaeaaciGGJbGaai4BaiaacohacqaHXoqyaeaacaWGYbaaaiaahw gadaWgaaWcbaGaamOCaaqabaaaaa@4011@

 

3. The position vector of a point on the axis of the rod can be expressed as r=r e r +z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadkhacaWHLbWaaS baaSqaaiaadkhaaeqaaOGaey4kaSIaamOEaiaahwgadaWgaaWcbaGa aG4maaqabaaaaa@39AB@ ;

 

4. The tangent vector follows as

t= m 3 = dr ds =cosα e θ +sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9iaah2gadaWgaaWcba GaaG4maaqabaGccqGH9aqpdaWcaaqaaiaadsgacaWHYbaabaGaamiz aiaadohaaaGaeyypa0Jaci4yaiaac+gacaGGZbGaeqySdeMaaCyzam aaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGa eqySdeMaaCyzamaaBaaaleaacaaIZaaabeaaaaa@4929@ ;

 

5. The normal vector is

n= 1 dt ds dt ds = cos 2 α/r e r cos 2 α/r = e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9maalaaabaGaaGymaa qaamaaemaabaWaaSaaaeaacaWGKbGaaCiDaaqaaiaadsgacaWGZbaa aaGaay5bSlaawIa7aaaadaWcaaqaaiaadsgacaWH0baabaGaamizai aadohaaaGaeyypa0JaeyOeI0YaaSaaaeaadaqadaqaaiGacogacaGG VbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeg7aHjaac+cacaWGYb aacaGLOaGaayzkaaGaaCyzamaaBaaaleaacaWGYbaabeaaaOqaaiGa cogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeg7aHjaac+ cacaWGYbaaaiabg2da9iabgkHiTiaahwgadaWgaaWcbaGaamOCaaqa baaaaa@5641@

6. The binormal vector is b=t×n= cosα e θ +sinα e 3 ×( e r )=sinα e θ +cosα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaahshacqGHxdaTca WHUbGaeyypa0ZaaeWaaeaaciGGJbGaai4BaiaacohacqaHXoqycaWH LbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkciGGZbGaaiyAaiaac6 gacqaHXoqycaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzk aaGaey41aqRaaiikaiabgkHiTiaahwgadaWgaaWcbaGaamOCaaqaba GccaGGPaGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqySdeMa aCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaci4yaiaac+gaca GGZbGaeqySdeMaaCyzamaaBaaaleaacaaIZaaabeaaaaa@5ED8@

 

7. It is helpful to select a basis m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaaceWHTbGbaebadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiqah2gagaqeamaaBaaaleaacaaIZaaabeaaaOGaay5Eai aaw2haaaaa@3A71@  to characterize the orientation of the initial spring. As usual m ¯ 3 = t ¯ =cos α ¯ e θ +sin α ¯ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JabCiDayaaraGaeyypa0Jaci4yaiaac+gacaGGZbGa fqySdeMbaebacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkci GGZbGaaiyAaiaac6gacuaHXoqygaqeaiaahwgadaWgaaWcbaGaaG4m aaqabaaaaa@44AE@  is tangent to the rod.   Since I 1 = I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iaadMeadaWgaaWcbaGaaGOmaaqabaaaaa@355B@  we may select m ¯ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaigdaae qaaaaa@32D5@  and m ¯ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaikdaae qaaaaa@32D6@  arbitrarily, as long as they are transverse to the rod’s axis. It is convenient to choose m ¯ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaigdaae qaaaaa@32D5@  and m ¯ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaikdaae qaaaaa@32D6@  to be parallel to the normal vector n and binormal vector b of the undeformed spring, respectively, which gives

m ¯ 1 = e r m ¯ 2 =sin α ¯ e θ +cos α ¯ e 3 m ¯ 3 =cos α ¯ e θ +sin α ¯ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeyOeI0IaaCyzamaaBaaaleaacaWGYbaabeaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabC yBayaaraWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0Iaci4C aiaacMgacaGGUbGafqySdeMbaebacaWHLbWaaSbaaSqaaiabeI7aXb qabaGccqGHRaWkciGGJbGaai4BaiaacohacuaHXoqygaqeaiaahwga daWgaaWcbaGaaG4maaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ceWH TbGbaebadaWgaaWcbaGaaG4maaqabaGccqGH9aqpciGGJbGaai4Bai aacohacuaHXoqygaqeaiaahwgadaWgaaWcbaGaeqiUdehabeaakiab gUcaRiGacohacaGGPbGaaiOBaiqbeg7aHzaaraGaaCyzamaaBaaale aacaaIZaaabeaaaaa@7A24@

 

8. The initial curvature of the rod can be calculated from the usual relation

d m ¯ i ds = κ ¯ × m ¯ i d m ¯ 1 ds = κ ¯ 2 m ¯ 3 + κ ¯ 3 m ¯ 2 d m ¯ 2 ds = κ ¯ 1 m ¯ 3 κ ¯ 3 m ¯ 1 d m ¯ 3 ds = κ ¯ 1 m ¯ 2 + κ ¯ 2 m ¯ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgaceWHTbGbae badaWgaaWcbaGaamyAaaqabaaakeaacaWGKbGaam4CaaaacqGH9aqp ceWH6oGbaebacqGHxdaTceWHTbGbaebadaWgaaWcbaGaamyAaaqaba aakeaacqGHshI3daWcaaqaaiaadsgaceWHTbGbaebadaWgaaWcbaGa aGymaaqabaaakeaacaWGKbGaam4CaaaacqGH9aqpcqGHsislcuaH6o WAgaqeamaaBaaaleaacaaIYaaabeaakiqah2gagaqeamaaBaaaleaa caaIZaaabeaakiabgUcaRiqbeQ7aRzaaraWaaSbaaSqaaiaaiodaae qaaOGabCyBayaaraWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGKbGabCyBayaara WaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadohaaaGaeyypa0Ja fqOUdSMbaebadaWgaaWcbaGaaGymaaqabaGcceWHTbGbaebadaWgaa WcbaGaaG4maaqabaGccqGHsislcuaH6oWAgaqeamaaBaaaleaacaaI Zaaabeaakiqah2gagaqeamaaBaaaleaacaaIXaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaa caWGKbGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizai aadohaaaGaeyypa0JaeyOeI0IafqOUdSMbaebadaWgaaWcbaGaaGym aaqabaGcceWHTbGbaebadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcu aH6oWAgaqeamaaBaaaleaacaaIYaaabeaakiqah2gagaqeamaaBaaa leaacaaIXaaabeaaaaaa@8720@

This yields κ ¯ 1 =0, κ ¯ 2 = cos 2 α ¯ / r ¯ , κ ¯ 3 =sin α ¯ cos α ¯ / r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaebadaWgaaWcbaGaaGymaa qabaGccqGH9aqpcaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlqbeQ7a RzaaraWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaci4yaiaac+gaca GGZbWaaWbaaSqabeaacaaIYaaaaOGafqySdeMbaebacaGGVaGabmOC ayaaraGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7cuaH6oWAgaqeam aaBaaaleaacaaIZaaabeaakiabg2da9iGacohacaGGPbGaaiOBaiqb eg7aHzaaraGaci4yaiaac+gacaGGZbGafqySdeMbaebacaGGVaGabm OCayaaraaaaa@5B27@ , so that

κ ¯ = cos 2 α ¯ r ¯ m ¯ 2 + sin α ¯ cos α ¯ r ¯ m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOUdyaaraGaeyypa0ZaaSaaaeaaci GGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccuaHXoqygaqe aaqaaiqadkhagaqeaaaaceWHTbGbaebadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkdaWcaaqaaiGacohacaGGPbGaaiOBaiqbeg7aHzaaraGa ci4yaiaac+gacaGGZbGafqySdeMbaebaaeaaceWGYbGbaebaaaGabC yBayaaraWaaSbaaSqaaiaaiodaaeqaaaaa@48F1@

 

9. After deformation, the basis m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaaceWHTbGbaebadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiqah2gagaqeamaaBaaaleaacaaIZaaabeaaaOGaay5Eai aaw2haaaaa@3A71@  rotates to a new basis m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@  aligned with the deformed rod.   Because the rod’s cross section is axially symmetric, and the rod is elastic, it is not necessary to assume that the basis vectors m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  and m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaaaa a@32BE@  (which are transverse to the bar) rotate with the rod’s twist.   Instead, we assume m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  and m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaaaa a@32BE@  remain parallel to the normal vector n and binormal vector b of the deformed spring, respectively, which gives m 1 = e r , m 2 =sinα e θ +cosα e 3 , m 3 =cosα e θ +sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTiaahwgadaWgaaWcbaGaamOCaaqabaGccaGGSaGa aGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGOmaaqaba GccqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacqaHXoqycaWHLbWa aSbaaSqaaiabeI7aXbqabaGccqGHRaWkciGGJbGaai4Baiaacohacq aHXoqycaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaacYcacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaG4maa qabaGccqGH9aqpciGGJbGaai4BaiaacohacqaHXoqycaWHLbWaaSba aSqaaiabeI7aXbqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaHXo qycaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@6B6F@

 

10. The curvature vector of the deformed spring can therefore be expressed as

κ= cos 2 α r m 2 + sinαcosα r +Δ κ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9maalaaabaGaci4yai aac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaGaamOC aaaacaWHTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaeWaaeaada WcaaqaaiGacohacaGGPbGaaiOBaiabeg7aHjGacogacaGGVbGaai4C aiabeg7aHbqaaiaadkhaaaGaey4kaSIaeuiLdqKaeqOUdS2aaSbaaS qaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaaCyBamaaBaaaleaacaaI Zaaabeaaaaa@4EA7@

where Δ κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiaaio daaeqaaaaa@34E1@  accounts for the rotation of the rod’s cross section about the tangent vector.  It cannot be determined from the orientation of m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  and m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaaaa a@32BE@  in the usual way, because they do not rotate with the bar’s cross-section.   If the axial force and moment acting on the spring are prescribed without any additional information specifying how the forces are connected to the ends of the helix (or equivalently, if only the extension and rotation or the spring are given) Δ κ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiaaio daaeqaaaaa@34E1@  is not uniquely determined: the detailed design of the portion of the spring that connects the helical coil to the external loading system would determine whether the rod’s cross section at the ends of the rod can twist about the rod’s center.   In all the following calculations, we shall assume that Δ κ 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiaaio daaeqaaOGaeyypa0JaaGimaaaa@36AB@ .   This means that at s=L the rod’s cross section has an angular velocity vector

ω= dα dt e r + dΔω dt sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9maalaaabaGaamizai abeg7aHbqaaiaadsgacaWG0baaaiaahwgadaWgaaWcbaGaamOCaaqa baGccqGHRaWkdaWcaaqaaiaadsgacqqHuoarcqaHjpWDaeaacaWGKb GaamiDaaaaciGGZbGaaiyAaiaac6gacqaHXoqycaWHLbWaaSbaaSqa aiaaiodaaeqaaaaa@470E@

as the spring is extended.  

 

11. The co-rotational rate of change of curvature (which quantifies the rate of change of twist and bending curvature relative to the basis vectors aligned with the deformed rod) is

κ = d dt cos 2 α r m 2 + d dt sinαcosα r m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWH6oaaleqabaGaey4bIe naaOGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaaeWa aeaadaWcaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaa aakiabeg7aHbqaaiaadkhaaaaacaGLOaGaayzkaaGaaCyBamaaBaaa leaacaaIYaaabeaakiabgUcaRmaalaaabaGaamizaaqaaiaadsgaca WG0baaamaabmaabaWaaSaaaeaaciGGZbGaaiyAaiaac6gacqaHXoqy ciGGJbGaai4BaiaacohacqaHXoqyaeaacaWGYbaaaaGaayjkaiaawM caaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@52D1@

 

12. The moment-curvature relations then give the internal moment

M=EI( cos 2 α r cos 2 α ¯ r ¯ )b+μJ sinαcosα r sin α ¯ cos α ¯ r ¯ m 3 =EI( cos 2 α r cos 2 α ¯ r ¯ ) sinα e θ +cosα e 3 +μJ sinαcosα r sin α ¯ cos α ¯ r ¯ cosα e θ +sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHnbGaeyypa0JaamyraiaadM eacaGGOaWaaSaaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaa ikdaaaGccqaHXoqyaeaacaWGYbaaaiabgkHiTmaalaaabaGaci4yai aac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGafqySdeMbaebaaeaa ceWGYbGbaebaaaGaaiykaiaahkgacqGHRaWkcqaH8oqBcaWGkbWaae WaaeaadaWcaaqaaiGacohacaGGPbGaaiOBaiabeg7aHjGacogacaGG VbGaai4Caiabeg7aHbqaaiaadkhaaaGaeyOeI0YaaSaaaeaaciGGZb GaaiyAaiaac6gacuaHXoqygaqeaiGacogacaGGVbGaai4Caiqbeg7a HzaaraaabaGabmOCayaaraaaaaGaayjkaiaawMcaaiaah2gadaWgaa WcbaGaaG4maaqabaaakeaacqGH9aqpcaWGfbGaamysaiaacIcadaWc aaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeg 7aHbqaaiaadkhaaaGaeyOeI0YaaSaaaeaaciGGJbGaai4Baiaacoha daahaaWcbeqaaiaaikdaaaGccuaHXoqygaqeaaqaaiqadkhagaqeaa aacaGGPaWaaeWaaeaacqGHsislciGGZbGaaiyAaiaac6gacqaHXoqy caWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkciGGJbGaai4Bai aacohacqaHXoqycaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGa ayzkaaaabaGaaGPaVlabgUcaRiabeY7aTjaadQeadaqadaqaamaala aabaGaci4CaiaacMgacaGGUbGaeqySdeMaci4yaiaac+gacaGGZbGa eqySdegabaGaamOCaaaacqGHsisldaWcaaqaaiGacohacaGGPbGaai OBaiqbeg7aHzaaraGaci4yaiaac+gacaGGZbGafqySdeMbaebaaeaa ceWGYbGbaebaaaaacaGLOaGaayzkaaWaaeWaaeaaciGGJbGaai4Bai aacohacqaHXoqycaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWk ciGGZbGaaiyAaiaac6gacqaHXoqycaWHLbWaaSbaaSqaaiaaiodaae qaaaGccaGLOaGaayzkaaaaaaa@AF09@

 

13. The boundary conditions at the upper end of the spring relate the internal moment and force to the applied force

M=r e r × F z e 3 +Q z e 3 =r F z e θ +Q z e 3 T= F z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iabgkHiTiaadkhaca WHLbWaaSbaaSqaaiaadkhaaeqaaOGaey41aqRaamOramaaBaaaleaa caWG6baabeaakiaahwgadaWgaaWcbaGaaG4maaqabaGccqGHRaWkca WGrbGaaCjaVpaaBaaaleaacaWG6baabeaakiaahwgadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaWGYbGaamOramaaBaaaleaacaWG6baabe aakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadgfacaWL a8+aaSbaaSqaaiaadQhaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaCivaiabg2da9iaadAeadaWgaaWcba GaamOEaaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@66E9@

It is straightforward to show that this system of internal forces satisfies the equilibrium equation

dM ds + m 3 ×T=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCytaaqaaiaads gacaWGZbaaaiabgUcaRiaah2gadaWgaaWcbaGaaG4maaqabaGccqGH xdaTcaWHubGaeyypa0JaaCimaaaa@3C0E@

which confirms our assumption that the spring remains helical after deformation.

 

 

14. Combining (9) and (10) shows that

r F z e θ + Q z e 3 =EI( cos 2 α r cos 2 α ¯ r ¯ ) sinα e θ +cosα e 3 +μJ sinαcosα r sin α ¯ cos α ¯ r ¯ cosα e θ +sinα e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGYbGaamOramaaBaaaleaaca WG6baabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaa dgfadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaamyraiaadMeacaGGOaWaaSaaaeaaciGGJbGaai4B aiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaacaWGYbaaai abgkHiTmaalaaabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaI YaaaaOGafqySdeMbaebaaeaaceWGYbGbaebaaaGaaiykamaabmaaba GaeyOeI0Iaci4CaiaacMgacaGGUbGaeqySdeMaaCyzamaaBaaaleaa cqaH4oqCaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqySdeMaaC yzamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaqaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIa eqiVd0MaamOsamaabmaabaWaaSaaaeaaciGGZbGaaiyAaiaac6gacq aHXoqyciGGJbGaai4BaiaacohacqaHXoqyaeaacaWGYbaaaiabgkHi TmaalaaabaGaci4CaiaacMgacaGGUbGafqySdeMbaebaciGGJbGaai 4BaiaacohacuaHXoqygaqeaaqaaiqadkhagaqeaaaaaiaawIcacaGL PaaadaqadaqaaiGacogacaGGVbGaai4Caiabeg7aHjaahwgadaWgaa WcbaGaeqiUdehabeaakiabgUcaRiGacohacaGGPbGaaiOBaiabeg7a HjaahwgadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaaaa@B9E1@

 

This yields two equations relating the spring’s geometry to the external force and moment

EI( cos 2 α r cos 2 α ¯ r ¯ ) sinα r +μJ sinαcosα r sin α ¯ cos α ¯ r ¯ cosα r = F z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamyraiaadMeacaGGOaWaaS aaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH XoqyaeaacaWGYbaaaiabgkHiTmaalaaabaGaci4yaiaac+gacaGGZb WaaWbaaSqabeaacaaIYaaaaOGafqySdeMbaebaaeaaceWGYbGbaeba aaGaaiykamaalaaabaGaci4CaiaacMgacaGGUbGaeqySdegabaGaam OCaaaacqGHRaWkcqaH8oqBcaWGkbWaaeWaaeaadaWcaaqaaiGacoha caGGPbGaaiOBaiabeg7aHjGacogacaGGVbGaai4Caiabeg7aHbqaai aadkhaaaGaeyOeI0YaaSaaaeaaciGGZbGaaiyAaiaac6gacuaHXoqy gaqeaiGacogacaGGVbGaai4Caiqbeg7aHzaaraaabaGabmOCayaara aaaaGaayjkaiaawMcaamaalaaabaGaci4yaiaac+gacaGGZbGaeqyS degabaGaamOCaaaacqGH9aqpcaWGgbWaaSbaaSqaaiaadQhaaeqaaa aa@6AAA@

EI( cos 2 α r cos 2 α ¯ r ¯ )cosα+μJ sinαcosα r sin α ¯ cos α ¯ r ¯ sinα=Q z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeacaGGOaWaaSaaaeaaci GGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaa caWGYbaaaiabgkHiTmaalaaabaGaci4yaiaac+gacaGGZbWaaWbaaS qabeaacaaIYaaaaOGafqySdeMbaebaaeaaceWGYbGbaebaaaGaaiyk aiGacogacaGGVbGaai4Caiabeg7aHjabgUcaRiabeY7aTjaadQeada qadaqaamaalaaabaGaci4CaiaacMgacaGGUbGaeqySdeMaci4yaiaa c+gacaGGZbGaeqySdegabaGaamOCaaaacqGHsisldaWcaaqaaiGaco hacaGGPbGaaiOBaiqbeg7aHzaaraGaci4yaiaac+gacaGGZbGafqyS deMbaebaaeaaceWGYbGbaebaaaaacaGLOaGaayzkaaGaci4CaiaacM gacaGGUbGaeqySdeMaeyypa0JaamyuaiaaxcW7daWgaaWcbaGaamOE aaqabaaaaa@6942@

 

15. A final kinematic constraint relating the geometry of the spring to the motion of the load point can be found using the principle of virtual work.   Matching the internal and external rate of work gives

 

M κ =L r F z e θ + Q z e 3 d dt ( cos 2 α r ) sinα e θ +cosα e 3 + d dt sinαcosα r cosα e θ +sinα e 3 = Q z dΔω dt + F z dh dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHnbGaeyyXIC9aaCbiaeaaca WH6oaaleqabaGaey4bIenaaOGaeyypa0JaamitamaabmaabaGaamOC aiaadAeadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiabeI 7aXbqabaGccqGHRaWkcaWGrbWaaSbaaSqaaiaadQhaaeqaaOGaaCyz amaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabgwSixdqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaa bmaabaWaaSaaaeaacaWGKbaabaGaamizaiaadshaaaGaaiikamaala aabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqyS degabaGaamOCaaaacaGGPaWaaeWaaeaacqGHsislciGGZbGaaiyAai aac6gacqaHXoqycaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWk ciGGJbGaai4BaiaacohacqaHXoqycaWHLbWaaSbaaSqaaiaaiodaae qaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGKbaabaGaamiz aiaadshaaaWaaeWaaeaadaWcaaqaaiGacohacaGGPbGaaiOBaiabeg 7aHjGacogacaGGVbGaai4Caiabeg7aHbqaaiaadkhaaaaacaGLOaGa ayzkaaWaaeWaaeaaciGGJbGaai4BaiaacohacqaHXoqycaWHLbWaaS baaSqaaiabeI7aXbqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaH XoqycaWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaaca GLOaGaayzkaaGaaGPaVdqaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeyypa0JaamyuamaaBaaaleaacaWG6baabeaakmaalaaa baGaamizaiabfs5aejabeM8a3bqaaiaadsgacaWG0baaaiabgUcaRi aadAeadaWgaaWcbaGaamOEaaqabaGcdaWcaaqaaiaadsgacaWGObaa baGaamizaiaadshaaaaaaaa@CFCF@

Comparing coefficients of F and Q shows that

r d dt cos 2 α r sinα+r d dt sinαcosα r cosα= 1 L dΔh dt d dt cos 2 α r cosα+ d dt sinαcosα r sinα= 1 L dΔω dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHsislcaWGYbWaaSaaaeaaca WGKbaabaGaamizaiaadshaaaWaaeWaaeaadaWcaaqaaiGacogacaGG VbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeg7aHbqaaiaadkhaaa aacaGLOaGaayzkaaGaci4CaiaacMgacaGGUbGaeqySdeMaey4kaSIa amOCamaalaaabaGaamizaaqaaiaadsgacaWG0baaamaabmaabaWaaS aaaeaaciGGZbGaaiyAaiaac6gacqaHXoqyciGGJbGaai4Baiaacoha cqaHXoqyaeaacaWGYbaaaaGaayjkaiaawMcaaiGacogacaGGVbGaai 4Caiabeg7aHjabg2da9maalaaabaGaaGymaaqaaiaadYeaaaWaaSaa aeaacaWGKbGaeuiLdqKaamiAaaqaaiaadsgacaWG0baaaaqaamaala aabaGaamizaaqaaiaadsgacaWG0baaamaabmaabaWaaSaaaeaaciGG JbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaaca WGYbaaaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Caiabeg7aHjab gUcaRmaalaaabaGaamizaaqaaiaadsgacaWG0baaamaabmaabaWaaS aaaeaaciGGZbGaaiyAaiaac6gacqaHXoqyciGGJbGaai4Baiaacoha cqaHXoqyaeaacaWGYbaaaaGaayjkaiaawMcaaiGacohacaGGPbGaai OBaiabeg7aHjabg2da9maalaaabaGaaGymaaqaaiaadYeaaaWaaSaa aeaacaWGKbGaeuiLdqKaeqyYdChabaGaamizaiaadshaaaaaaaa@8A1F@

 

Hence

d dt sinαcosα r = 1 rL dΔh dt cosα+ 1 L dΔω dt sinα d dt cos 2 α r = 2sinαcosα r dα dt cos 2 α r 2 dr dt = 1 Lr dΔh dt sinα+ 1 L dΔω dt cosα MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgaaeaacaWGKb GaamiDaaaadaqadaqaamaalaaabaGaci4CaiaacMgacaGGUbGaeqyS deMaci4yaiaac+gacaGGZbGaeqySdegabaGaamOCaaaaaiaawIcaca GLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGYbGaamitaaaadaWc aaqaaiaadsgacqqHuoarcaWGObaabaGaamizaiaadshaaaGaci4yai aac+gacaGGZbGaeqySdeMaey4kaSYaaSaaaeaacaaIXaaabaGaamit aaaadaWcaaqaaiaadsgacqqHuoarcqaHjpWDaeaacaWGKbGaamiDaa aaciGGZbGaaiyAaiaac6gacqaHXoqyaeaadaWcaaqaaiaadsgaaeaa caWGKbGaamiDaaaadaqadaqaamaalaaabaGaci4yaiaac+gacaGGZb WaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaGaamOCaaaaaiaawIca caGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaaikdaciGGZbGaaiyAai aac6gacqaHXoqyciGGJbGaai4BaiaacohacqaHXoqyaeaacaWGYbaa amaalaaabaGaamizaiabeg7aHbqaaiaadsgacaWG0baaaiabgkHiTm aalaaabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGa eqySdegabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaai aadsgacaWGYbaabaGaamizaiaadshaaaGaeyypa0JaeyOeI0YaaSaa aeaacaaIXaaabaGaamitaiaadkhaaaWaaSaaaeaacaWGKbGaeuiLdq KaamiAaaqaaiaadsgacaWG0baaaiGacohacaGGPbGaaiOBaiabeg7a HjabgUcaRmaalaaabaGaaGymaaqaaiaadYeaaaWaaSaaaeaacaWGKb GaeuiLdqKaeqyYdChabaGaamizaiaadshaaaGaci4yaiaac+gacaGG ZbGaeqySdegaaaa@9CA6@

 

The results of steps 14 and 15 can be combined to calculate F z , Q z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWG6baabeaaki aacYcacaWGrbWaaSbaaSqaaiaadQhaaeqaaaaa@3591@  for any given extension and rotation.   For example, the small deflection solution follows by setting

sinαcosα r sin α ¯ cos α ¯ r ¯ = Δh rL cosα+ Δω L sinα cos 2 α r cos 2 α ¯ r ¯ = Δh Lr sinα+ Δω L cosα MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaqadaqaamaalaaabaGaci4Cai aacMgacaGGUbGaeqySdeMaci4yaiaac+gacaGGZbGaeqySdegabaGa amOCaaaacqGHsisldaWcaaqaaiGacohacaGGPbGaaiOBaiqbeg7aHz aaraGaci4yaiaac+gacaGGZbGafqySdeMbaebaaeaaceWGYbGbaeba aaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqqHuoarcaWGObaaba GaamOCaiaadYeaaaGaci4yaiaac+gacaGGZbGaeqySdeMaey4kaSYa aSaaaeaacqqHuoarcqaHjpWDaeaacaWGmbaaaiGacohacaGGPbGaai OBaiabeg7aHbqaamaabmaabaWaaSaaaeaaciGGJbGaai4Baiaacoha daahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaacaWGYbaaaiabgkHiTm aalaaabaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGa fqySdeMbaebaaeaaceWGYbGbaebaaaaacaGLOaGaayzkaaGaeyypa0 JaeyOeI0YaaSaaaeaacqqHuoarcaWGObaabaGaamitaiaadkhaaaGa ci4CaiaacMgacaGGUbGaeqySdeMaey4kaSYaaSaaaeaacqqHuoarcq aHjpWDaeaacaWGmbaaaiGacogacaGGVbGaai4Caiabeg7aHbaaaa@7E0F@

in (14), which shows that

EI Δh Lr sinα+ Δω L cosα sinα+μJ Δh rL cosα+ Δω L sinα cosα=r F z e θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamyraiaadMeadaqadaqaai abgkHiTmaalaaabaGaeuiLdqKaamiAaaqaaiaadYeacaWGYbaaaiGa cohacaGGPbGaaiOBaiabeg7aHjabgUcaRmaalaaabaGaeuiLdqKaeq yYdChabaGaamitaaaaciGGJbGaai4BaiaacohacqaHXoqyaiaawIca caGLPaaaciGGZbGaaiyAaiaac6gacqaHXoqycqGHRaWkcqaH8oqBca WGkbWaaeWaaeaadaWcaaqaaiabfs5aejaadIgaaeaacaWGYbGaamit aaaaciGGJbGaai4BaiaacohacqaHXoqycqGHRaWkdaWcaaqaaiabfs 5aejabeM8a3bqaaiaadYeaaaGaci4CaiaacMgacaGGUbGaeqySdega caGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaeqySdeMaeyypa0Jaam OCaiaadAeadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiab eI7aXbqabaaaaa@6E94@

EI Δh Lr sinα+ Δω L cosα cosα+μJ Δh rL cosα+ Δω L sinα sinα=Q z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaqadaqaaiabgkHiTm aalaaabaGaeuiLdqKaamiAaaqaaiaadYeacaWGYbaaaiGacohacaGG PbGaaiOBaiabeg7aHjabgUcaRmaalaaabaGaeuiLdqKaeqyYdChaba GaamitaaaaciGGJbGaai4BaiaacohacqaHXoqyaiaawIcacaGLPaaa ciGGJbGaai4BaiaacohacqaHXoqycqGHRaWkcqaH8oqBcaWGkbWaae WaaeaadaWcaaqaaiabfs5aejaadIgaaeaacaWGYbGaamitaaaaciGG JbGaai4BaiaacohacqaHXoqycqGHRaWkdaWcaaqaaiabfs5aejabeM 8a3bqaaiaadYeaaaGaci4CaiaacMgacaGGUbGaeqySdegacaGLOaGa ayzkaaGaci4CaiaacMgacaGGUbGaeqySdeMaeyypa0Jaamyuaiaaxc W7daWgaaWcbaGaamOEaaqabaaaaa@6B69@

Collecting terms and approximating α α ¯ ,r r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyisISRafqySdeMbaebaca GGSaGaaGPaVlaaykW7caaMc8UaamOCaiabgIKi7kqadkhagaqeaaaa @3EEF@  gives

1 L r ¯ 2 μJ cos 2 α ¯ +EI sin 2 α ¯ Δh+ 1 L r ¯ μJEI sin α ¯ cos α ¯ Δω= F z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaamitaiqadk hagaqeamaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiabeY7aTjaa dQeaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccuaHXo qygaqeaiabgUcaRiaadweacaWGjbGaci4CaiaacMgacaGGUbWaaWba aSqabeaacaaIYaaaaOGafqySdeMbaebaaiaawIcacaGLPaaacqqHuo arcaWGObGaey4kaSYaaSaaaeaacaaIXaaabaGaamitaiqadkhagaqe aaaadaqadaqaaiabeY7aTjaadQeacqGHsislcaWGfbGaamysaaGaay jkaiaawMcaaiGacohacaGGPbGaaiOBaiqbeg7aHzaaraGaci4yaiaa c+gacaGGZbGafqySdeMbaebacqqHuoarcqaHjpWDcqGH9aqpcaWGgb WaaSbaaSqaaiaadQhaaeqaaaaa@61BF@

1 L r ¯ μJEI sin α ¯ cos α ¯ Δh+ 1 L μJ sin 2 α ¯ +EI cos 2 α ¯ Δω= Q z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaamitaiqadk hagaqeaaaadaqadaqaaiabeY7aTjaadQeacqGHsislcaWGfbGaamys aaGaayjkaiaawMcaaiGacohacaGGPbGaaiOBaiqbeg7aHzaaraGaci 4yaiaac+gacaGGZbGafqySdeMbaebacqqHuoarcaWGObGaey4kaSYa aSaaaeaacaaIXaaabaGaamitaaaadaqadaqaaiabeY7aTjaadQeaci GGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccuaHXoqygaqe aiabgUcaRiaadweacaWGjbGaci4yaiaac+gacaGGZbWaaWbaaSqabe aacaaIYaaaaOGafqySdeMbaebaaiaawIcacaGLPaaacqqHuoarcqaH jpWDcqGH9aqpcaWGrbWaaSbaaSqaaiaadQhaaeqaaaaa@5FC8@

 

This yields the results listed in the table.