Chapter 10

 

Approximate theories for solids with special shapes:

 rods, beams, membranes, plates and shells

 

 

 

10.5 Motion and Deformation of thin shells MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqzahaeaa aaaaaaa8qacaWFtacaaa@3847@  General theory

 

The figure illustrates the problem to be solved.   The solid of interest is a shell with uniform thickness h.  The shell’s thickness is assumed to be much smaller than any relevant in-plane dimension.   The exterior surface of the shell is subjected to a prescribed distribution of traction, while the edge of the shell may either be supported so as to constrain its motion, or may be subjected to prescribed forces.  Our objective is to calculate the internal forces in the shell, and to compute its deformed shape.

 

 

 

10.5.1 Coordinate systems and variables characterizing deformation of shells

 

 To specify the position of a point on the mid-plane of the undeformed shell, we introduce a convenient curvilinear coordinate system ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqaH+oaEdaWgaaWcbaGaaGymaa qabaGccaGGSaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa @37FA@  (examples include cylindrical or spherical polar coordinates).  Note that ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe67a4naaBaaaleaacqaHXoqyaeqaaa aa@3416@  need not necessarily be distances along the surface: for example, for a cylindrical shell, we would use the axial distance z and the angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXbaa@323E@  as the coordinate system.

 The position vector of a material particle on the mid-section of the initial shell is denoted by r ¯ ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahkhagaqeaiaacIcacqaH+oaEdaWgaa WcbaGaaGymaaqabaGccaGGSaGaeqOVdG3aaSbaaSqaaiaaikdaaeqa aOGaaiykaaaa@390D@

 To characterize the orientation of an arbitrary point in the undeformed shell, we introduce three basis vectors ( m ¯ 1 , m ¯ 2 , m ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiqah2gagaqeamaaBaaale aacaaIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqa baGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3BAF@ , with

m ¯ α = r ¯ ξ α m ¯ 3 = m ¯ 1 × m ¯ 2 | m ¯ 1 × m ¯ 2 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacqaHXoqyae qaaOGaeyypa0ZaaSaaaeaacqGHciITceWHYbGbaebaaeaacqGHciIT cqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyB ayaaraWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaSaaaeaaceWHTb GbaebadaWgaaWcbaGaaGymaaqabaGccqGHxdaTceWHTbGbaebadaWg aaWcbaGaaGOmaaqabaaakeaadaabdaqaaiqah2gagaqeamaaBaaale aacaaIXaaabeaakiabgEna0kqah2gagaqeamaaBaaaleaacaaIYaaa beaaaOGaay5bSlaawIa7aaaaaaa@5DCB@ .

Thus, m ¯ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacqaHXoqyae qaaaaa@3361@  are tangent to the coordinate lines ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe67a4naaBaaaleaacqaHXoqyaeqaaa aa@3416@  in the undeformed shell, and m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaaIZaaabe aaaaa@327F@  is a unit vector perpendicular to the mid-section of the shell.  This basis is called the covariant basis or natural basis for the coordinate system.  Note that the basis vectors m ¯ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacqaHXoqyae qaaaaa@3361@  are not unit vectors, and are not, in general, orthogonal.

 Because ( m ¯ 1 , m ¯ 2 , m ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiqah2gagaqeamaaBaaale aacaaIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqa baGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3BAF@  are not orthogonal, it is convenient to introduce a second set of basis vectors ( m ¯ 1 , m ¯ 2 , m ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiqah2gagaqeamaaCaaale qabaGaaGymaaaakiaacYcaceWHTbGbaebadaahaaWcbeqaaiaaikda aaGccaGGSaGabCyBayaaraWaaWbaaSqabeaacaaIZaaaaaGccaGLOa Gaayzkaaaaaa@3BB2@  defined so that

m ¯ i m ¯ j = δ j i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaCaaaleqabaGaamyAaa aakiabgwSixlqah2gagaqeamaaBaaaleaacaWGQbaabeaakiabg2da 9iabes7aKnaaDaaaleaacaWGQbaabaGaamyAaaaaaaa@3BED@

where δ j i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKnaaDaaaleaacaWGQbaabaGaam yAaaaaaaa@3437@  is the Kronecker delta symbol (the index i has been raised to match the indices on the basis vectors), i.e. δ j i =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKnaaDaaaleaacaWGQbaabaGaam yAaaaakiabg2da9iaaigdaaaa@3602@  for i=j and zero otherwise.  This second triad of vectors is called the contravariant basis or reciprocal basis for the coordinate system.  The contravariant basis vectors can be constructed by taking cross products of the covariant basis vectors, as follows

m ¯ 1 =β m ¯ 2 × m ¯ 3 m ¯ 2 =β m ¯ 3 × m ¯ 1 m ¯ 3 = m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaCaaaleqabaGaaGymaa aakiabg2da9iabek7aIjqah2gagaqeamaaBaaaleaacaaIYaaabeaa kiabgEna0kqah2gagaqeamaaBaaaleaacaaIZaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7ceWHTbGbaebadaahaaWcbeqaaiaaik daaaGccqGH9aqpcqaHYoGyceWHTbGbaebadaWgaaWcbaGaaG4maaqa baGccqGHxdaTceWHTbGbaebadaWgaaWcbaGaaGymaaqabaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UabCyBayaaraWaaWbaaSqabeaaca aIZaaaaOGaeyypa0JabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaaa @7322@

where β=1/ m ¯ 1 ( m ¯ 2 × m ¯ 3 )=1/| m ¯ 1 × m ¯ 2 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIjabg2da9iaaigdacaGGVaGabC yBayaaraWaaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaaiikaiqah2ga gaqeamaaBaaaleaacaaIYaaabeaakiabgEna0kqah2gagaqeamaaBa aaleaacaaIZaaabeaakiaacMcacqGH9aqpcaaIXaGaai4laiaacYha ceWHTbGbaebadaWgaaWcbaGaaGymaaqabaGccqGHxdaTceWHTbGbae badaWgaaWcbaGaaGOmaaqabaGccaGG8baaaa@4AE1@ .

 

 The position vector of an arbitrary point in the undeformed shell can be expressed as x= r ¯ ( ξ 1 , ξ 2 )+ x 3 m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahIhacqGH9aqpceWHYbGbaebacaGGOa GaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaa leaacaaIYaaabeaakiaacMcacqGHRaWkcaWG4bWaaSbaaSqaaiaaio daaeqaaOGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaaa@3FDD@ , where x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@326E@  is the perpendicular distance of the material particle from the mid-section of the shell.

 After deformation, the mid-section of the shell is deformed to another smooth surface.  The point that lies at x= r ¯ ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH4bGaeyypa0JabCOCayaaraGaai ikaiabe67a4naaBaaaleaacaaIXaaabeaakiaacYcacqaH+oaEdaWg aaWcbaGaaGOmaaqabaGccaGGPaaaaa@3D52@  on the mid-section of the undeformed shell moves to a new position y=r( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH5bGaeyypa0JaaCOCaiaacIcacq aH+oaEdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeqOVdG3aaSbaaSqa aiaaikdaaeqaaOGaaiykaaaa@3D3B@  after deformation.

 To characterize the orientation of the deformed shell, we introduce three basis vectors ( m 1 , m 2 , m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaaaa@3B67@ , with m α = r ξ α m 3 = m 1 × m 2 /(| m 1 × m 2 |) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaeqySdegabeaaki abg2da9maalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqa aiaaiodaaeqaaOGaeyypa0JaaCyBamaaBaaaleaacaaIXaaabeaaki abgEna0kaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaaiikaiaa cYhacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey41aqRaaCyBamaaBa aaleaacaaIYaaabeaakiaacYhacaGGPaaaaa@5DFD@ .  Now, m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaeqySdegabeaaaa a@3349@  are tangent to the coordinate lines ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe67a4naaBaaaleaacqaHXoqyaeqaaa aa@3416@  in the deformed shell, and m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@  is a unit vector perpendicular to the mid-section of the deformed shell.  We can introduce a reciprocal basis ( m 1 , m 2 , m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiaah2gadaahaaWcbeqaai aaigdaaaGccaGGSaGaaCyBamaaCaaaleqabaGaaGOmaaaakiaacYca caWHTbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaaaaa@3B6A@  in exactly the same way as for the undeformed shell.

 A few special vectors and tensors, such as the angular velocity of the shell, and the internal stress couple in the shell are most conveniently expressed in terms of vectors m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GHxdaTcaWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3749@  or m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GHxdaTcaWHTbWaaWbaaSqabeaacqaHXoqyaaaaaa@374A@ .  Special symbols will not be introduced for these vectors; they will always be written out as a cross product.

 

 

 

10.5.2 Vectors and tensor components in non-orthogonal bases: Covariant and Contravariant components

 

In this section we introduce some additional notation that helps deal with the complicated sets of basis vectors that characterize the deformation of a shell.

 

 Vectors can be expressed as linear combinations of some subset of the twelve possible basis vectors ( m ¯ 1 , m ¯ 2 , m ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiqah2gagaqeamaaBaaale aacaaIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqa baGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3BAF@ , ( m ¯ 1 , m ¯ 2 , m ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiqah2gagaqeamaaCaaale qabaGaaGymaaaakiaacYcaceWHTbGbaebadaahaaWcbeqaaiaaikda aaGccaGGSaGabCyBayaaraWaaWbaaSqabeaacaaIZaaaaaGccaGLOa Gaayzkaaaaaa@3BB2@ , ( m 1 , m 2 , m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiaah2gadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaaaa@3B67@  or ( m 1 , m 2 , m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiaah2gadaahaaWcbeqaai aaigdaaaGccaGGSaGaaCyBamaaCaaaleqabaGaaGOmaaaakiaacYca caWHTbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaaaaa@3B6A@ .  For example, we can write an arbitrary vector a as

a= a ¯ i m ¯ i = a ¯ i m ¯ i = a i m i = a i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahggacqGH9aqpceWGHbGbaebadaahaa WcbeqaaiaadMgaaaGcceWHTbGbaebadaWgaaWcbaGaamyAaaqabaGc cqGH9aqpceWGHbGbaebadaWgaaWcbaGaamyAaaqabaGcceWHTbGbae badaahaaWcbeqaaiaadMgaaaGccqGH9aqpcaWGHbWaaWbaaSqabeaa caWGPbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaakiabg2da9iaadg gadaWgaaWcbaGaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWGPbaa aaaa@4674@

Here, the coefficients a ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadggagaqeamaaCaaaleqabaGaamyAaa aaaaa@32A1@  are called the contravariant components of a in ( m ¯ 1 , m ¯ 2 , m ¯ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaqadaqaaiqah2gagaqeamaaBaaale aacaaIXaaabeaakiaacYcaceWHTbGbaebadaWgaaWcbaGaaGOmaaqa baGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaGccaGLOa Gaayzkaaaaaa@3BAF@ , and a ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadggagaqeamaaBaaaleaacaWGPbaabe aaaaa@32A0@  are called the covariant components of a.  Note that the contravariant components are coefficients of the covariant basis vectors, and vice-versa..  The reason for this confusing terminology is given below.  Note also that the components do not in general have the same units as the vector, because the basis vectors may have length dimensions.

 The various components of a can be expressed as

a ¯ i = m ¯ i a a ¯ i = m ¯ i a a i = m i a a i = m i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadggagaqeamaaCaaaleqabaGaamyAaa aakiabg2da9iqah2gagaqeamaaCaaaleqabaGaamyAaaaakiabgwSi xlaahggacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UabmyyayaaraWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JabCyBayaa raWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaCyyaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyyamaaCaaa leqabaGaamyAaaaakiabg2da9iaah2gadaahaaWcbeqaaiaadMgaaa GccqGHflY1caWHHbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0 JaaCyBamaaBaaaleaacaWGPbaabeaakiabgwSixlaahggaaaa@75E1@

To see the first result, take dot products of a= a ¯ i m ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahggacqGH9aqpceWGHbGbaebadaahaa WcbeqaaiaadMgaaaGcceWHTbGbaebadaWgaaWcbaGaamyAaaqabaaa aa@36C3@  with m j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaahaaWcbeqaaiaadQgaaaaaaa@329A@  and recall that m ¯ i m ¯ j = δ j i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaCaaaleqabaGaamyAaa aakiabgwSixlqah2gagaqeamaaBaaaleaacaWGQbaabeaakiabg2da 9iabes7aKnaaDaaaleaacaWGQbaabaGaamyAaaaaaaa@3BED@ . The `contravariant’ and `covariant’ terms assigned to a ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadggagaqeamaaCaaaleqabaGaamyAaa aaaaa@32A1@  and a ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadggagaqeamaaBaaaleaacaWGPbaabe aaaaa@32A0@  refer to the fact that they represent projections of the vector a onto the contravariant and covariant basis vectors, respectively.  The raised and lowered indices for vector components follow the same convention: raised indices indicate contravariant components, while lowered indices represent covariant components.

 Tensors can also be expressed as sums of nine dyadic products of various combinations of basis vectors.  For example, if S is a tensor we could write

S= S ij m i m j = S j i m i m j = S j i m j m i = S ij m i m j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahofacqGH9aqpcaWGtbWaaWbaaSqabe aacaWGPbGaamOAaaaakiaah2gadaWgaaWcbaGaamyAaaqabaGccqGH xkcXcaWHTbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0Jaam4uamaaDa aaleaacqGHflY1caWGQbaabaGaamyAaaaakiaah2gadaWgaaWcbaGa amyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacaWGQbaaaOGaey ypa0Jaam4uamaaDaaaleaacaWGQbaabaGaeyyXICTaamyAaaaakiaa h2gadaahaaWcbeqaaiaadQgaaaGccqGHxkcXcaWHTbWaaSbaaSqaai aadMgaaeqaaOGaeyypa0Jaam4uamaaBaaaleaacaWGPbGaamOAaaqa baGccaWHTbWaaWbaaSqabeaacaWGPbaaaOGaey4LIqSaaCyBamaaCa aaleqabaGaamOAaaaaaaa@5EB0@

or equivalent expressions in terms of m ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaWGPbaabe aaaaa@32B0@  and/or m ¯ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaCaaaleqabaGaamOAaa aaaaa@32B2@ .  Here S ij , S ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiaadMgacaWGQb aaaOGaaiilaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3705@  are called contravariant and covariant components of S, respectively, while S .j i , S j .i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaqhaaWcbaGaaiOlaiaadQgaae aacaWGPbaaaOGaaiilaiaadofadaqhaaWcbaGaamOAaaqaaiaac6ca caWGPbaaaaaa@386A@  are called mixed tensor components.  The dot that appears before the indices in the mixed tensors is introduced to identify whether the index should be associated with the first or second basis vector in the dyadic product (the dot appears before the index associated with the second basis vector).  For symmetric tensors, the dot can be dropped.

 The various components of S can be regarded as projections of the tensor onto the contravariant or covariant basis vectors, as S ij = m i S m j S ij = m i S m j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyypa0JaaCyBamaaBaaaleaacaWGPbaabeaakiabgwSixlaa hofacqGHflY1caWHTbWaaSbaaSqaaiaadQgaaeqaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaaWba aSqabeaacaWGPbGaamOAaaaakiabg2da9iaah2gadaahaaWcbeqaai aadMgaaaGccqGHflY1caWHtbGaeyyXICTaaCyBamaaCaaaleqabaGa amOAaaaaaaa@5805@ , with similar results for the mixed components.

 Once again, it is important to note that the components S ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamyAaiaadQgaae qaaaaa@3369@  do not have a convenient physical interpretation.  In general the components do not even have the same units as the tensor itself, because the basis vectors themselves have units.

 The various sets of components can be related by defining the components of the fundamental tensor or metric tensor g as follows

g ij = m i m j g ij = m i m j g j i = m i m j = δ j i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEgadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyypa0JaaCyBamaaBaaaleaacaWGPbaabeaakiabgwSixlaa h2gadaWgaaWcbaGaamOAaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadEga daahaaWcbeqaaiaadMgacaWGQbaaaOGaeyypa0JaaCyBamaaCaaale qabaGaamyAaaaakiabgwSixlaah2gadaahaaWcbeqaaiaadQgaaaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWGNbWaa0baaSqaaiaadQgaaeaacaWGPbaaaOGaeyypa0Ja aCyBamaaCaaaleqabaGaamyAaaaakiabgwSixlaah2gadaWgaaWcba GaamOAaaqabaGccqGH9aqpcqaH0oazdaqhaaWcbaGaamOAaaqaaiaa dMgaaaaaaa@73AA@

We can define g ¯ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadEgagaqeamaaBaaaleaacaWGPbGaam OAaaqabaaaaa@3395@  in terms of m ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaWGPbaabe aaaaa@32B0@  and/or m ¯ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaCaaaleqabaGaamOAaa aaaaa@32B2@  in the same way.  With these definitions, we see that the covariant and contravariant basis vectors are related by

m i = g ij m j m i = g ij m j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaahaaWcbeqaaiaadMgaaaGccq GH9aqpcaWGNbWaaWbaaSqabeaacaWGPbGaamOAaaaakiaah2gadaWg aaWcbaGaamOAaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTbWa aSbaaSqaaiaadMgaaeqaaOGaeyypa0Jaam4zamaaBaaaleaacaWGPb GaamOAaaqabaGccaWHTbWaaWbaaSqabeaacaWGQbaaaaaa@5379@

 The metric tensor can be expressed as the sum of three dyadic products g= m i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahEgacqGH9aqpcaWHTbWaaSbaaSqaai aadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamyAaaaaaaa@38B2@ , with a similar expression for g ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahEgagaqeaaaa@3190@ .  From this expression we see that

gg=( m i m i )( m j m j )= m i δ i j m j = m i m i =g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahEgacaWHNbGaeyypa0ZaaeWaaeaaca WHTbWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqa baGaamyAaaaaaOGaayjkaiaawMcaamaabmaabaGaaCyBamaaBaaale aacaWGQbaabeaakiabgEPielaah2gadaahaaWcbeqaaiaadQgaaaaa kiaawIcacaGLPaaacqGH9aqpcaWHTbWaaSbaaSqaaiaadMgaaeqaaO Gaey4LIqSaeqiTdq2aa0baaSqaaiaadMgaaeaacaWGQbaaaOGaaCyB amaaCaaaleqabaGaamOAaaaakiabg2da9iaah2gadaWgaaWcbaGaam yAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacaWGPbaaaOGaeyyp a0JaaC4zaaaa@5736@

g is therefore its own inverse MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  it is a representation of the identity tensor.

 

 

10.5.3 Additional Deformation Measures and Kinematic Relations

 

 An infinitesimal line element d r ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWHYbGbaebaaaa@3284@  that lies in the mid-section of the undeformed plate can be expressed in terms of infinitesimal changes in the coordinates d ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH+oaEdaWgaaWcbaGaeqySde gabeaaaaa@34FF@  as

d r ¯ = m ¯ α d ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWHYbGbaebacqGH9aqpceWHTb GbaebadaWgaaWcbaGaeqySdegabeaakiaadsgacqaH+oaEdaWgaaWc baGaeqySdegabeaaaaa@3AE4@

The length ds of d r ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWHYbGbaebaaaa@3284@  can be computed as

d s ¯ 2 =d r ¯ d r ¯ = m ¯ α m ¯ β d ξ α d ξ β = g ¯ αβ d ξ α d ξ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWGZbGbaebadaahaaWcbeqaai aaikdaaaGccqGH9aqpcaWGKbGabCOCayaaraGaeyyXICTaamizaiqa hkhagaqeaiabg2da9iqah2gagaqeamaaBaaaleaacqaHXoqyaeqaaO GaeyyXICTabCyBayaaraWaaSbaaSqaaiabek7aIbqabaGccaWGKbGa eqOVdG3aaSbaaSqaaiabeg7aHbqabaGccaWGKbGaeqOVdG3aaSbaaS qaaiabek7aIbqabaGccqGH9aqpceWGNbGbaebadaWgaaWcbaGaeqyS deMaeqOSdigabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeqySdegabe aakiaadsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaaa@5B52@

This expression is known as the first fundamental form for the surface.  A similar expression can be constructed for the deformed surface.

 The variation of the normal vectors m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaaIZaaabe aaaaa@327F@  and m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@  with position in the mid-plane of the shell play a particularly important role in describing the shape and deformation of the shell, because they characterize its curvature and bending.  To quantify this variation, let m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaaIZaaabe aaaaa@327F@  and m ¯ 3 +d m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaaIZaaabe aakiabgUcaRiaadsgaceWHTbGbaebadaWgaaWcbaGaaG4maaqabaaa aa@364B@  be the vectors normal to the surface at positions r ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahkhagaqeaaaa@319B@  and r ¯ +d r ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahkhagaqeaiabgUcaRiaadsgaceWHYb Gbaebaaaa@3479@  in the undeformed shell, with a similar notation for the deformed shell. We introduce symmetric curvature tensors κ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahQ7agaqeaaaa@31E6@  and κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7aaaa@31CE@  that satisfy

d m ¯ 3 = κ ¯ d r ¯ d m 3 =κdr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWHTbGbaebadaWgaaWcbaGaaG 4maaqabaGccqGH9aqpceWH6oGbaebacaWGKbGabCOCayaaraGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGKbGaaCyBamaaBaaa leaacaaIZaaabeaakiabg2da9iaahQ7acaWGKbGaaCOCaaaa@546E@

The curvatures κ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahQ7agaqeaaaa@31E6@  and κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7aaaa@31CE@  are called surface tensors, because they transform like tensors under changes of surface coordinates.

 The curvature components can be expressed in terms of their covariant, contravariant or mixed components.   This can be used to deduce expressions such as

d m ¯ 3 =( κ ¯ αγ m ¯ α m ¯ γ )( m ¯ β d ξ β )= κ ¯ αβ d ξ β m ¯ α d m ¯ 3 =( κ ¯ γ α m ¯ α m ¯ γ )( m ¯ β d ξ β )= κ ¯ β α d ξ β m ¯ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamizaiqah2gagaqeamaaBaaale aacaaIZaaabeaakiabg2da9maabmaabaGafqOUdSMbaebadaWgaaWc baGaeqySdeMaeq4SdCgabeaakiqah2gagaqeamaaCaaaleqabaGaeq ySdegaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHZoWzaaaa kiaawIcacaGLPaaacqGHflY1daqadaqaaiqah2gagaqeamaaBaaale aacqaHYoGyaeqaaOGaamizaiabe67a4naaBaaaleaacqaHYoGyaeqa aaGccaGLOaGaayzkaaGaeyypa0JafqOUdSMbaebadaWgaaWcbaGaeq ySdeMaeqOSdigabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeqOSdiga beaakiqah2gagaqeamaaCaaaleqabaGaeqySdegaaaGcbaGaamizai qah2gagaqeamaaBaaaleaacaaIZaaabeaakiabg2da9maabmaabaGa fqOUdSMbaebadaqhaaWcbaGaeq4SdCgabaGaeqySdegaaOGabCyBay aaraWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXceWHTbGbaebadaah aaWcbeqaaiabeo7aNbaaaOGaayjkaiaawMcaaiabgwSixpaabmaaba GabCyBayaaraWaaSbaaSqaaiabek7aIbqabaGccaWGKbGaeqOVdG3a aSbaaSqaaiabek7aIbqabaaakiaawIcacaGLPaaacqGH9aqpcuaH6o WAgaqeamaaDaaaleaacqaHYoGyaeaacqaHXoqyaaGccaWGKbGaeqOV dG3aaSbaaSqaaiabek7aIbqabaGcceWHTbGbaebadaWgaaWcbaGaeq ySdegabeaaaaaa@8785@

 The curvature components can be calculated from the position vector of the mid-plane of the shell, using any of the following expressions

κ ¯ αβ = m ¯ α m ¯ 3 ξ β = r ¯ ξ α ξ β ( 1 λ r ¯ ξ 1 × r ¯ ξ 2 )=( 1 λ r ¯ ξ 1 × r ¯ ξ 2 )( 2 r ¯ ξ α ξ β ) = m ¯ 3 m ¯ α ξ β = m ¯ 3 m ¯ β ξ α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGafqOUdSMbaebadaWgaaWcbaGaeq ySdeMaeqOSdigabeaakiabg2da9iqah2gagaqeamaaBaaaleaacqaH XoqyaeqaaOGaeyyXIC9aaSaaaeaacqGHciITceWHTbGbaebadaWgaa WcbaGaaG4maaqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqOS digabeaaaaGccqGH9aqpdaWcaaqaaiabgkGi2kqahkhagaqeaaqaai abgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgwSixpaa laaabaGaeyOaIylabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek7aIb qabaaaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacqaH7oaBaaWaaSaa aeaacqGHciITceWHYbGbaebaaeaacqGHciITcqaH+oaEdaWgaaWcba GaaGymaaqabaaaaOGaey41aqRaaGPaVpaalaaabaGaeyOaIyRabCOC ayaaraaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaaaaO GaayjkaiaawMcaaiabg2da9iabgkHiTmaabmaabaWaaSaaaeaacaaI XaaabaGaeq4UdWgaamaalaaabaGaeyOaIyRabCOCayaaraaabaGaey OaIyRaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaaakiabgEna0kaaykW7 daWcaaqaaiabgkGi2kqahkhagaqeaaqaaiabgkGi2kabe67a4naaBa aaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacqGHflY1daqadaqa amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGabCOCayaara aabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGccqGHciIT cqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaaaakiaawIcacaGLPaaaae aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGH9aqpcqGHsislceWHTbGbaebadaWgaaWcbaGaaG4maa qabaGccqGHflY1daWcaaqaaiabgkGi2kqah2gagaqeamaaBaaaleaa cqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek7aIb qabaaaaOGaeyypa0JaeyOeI0IabCyBayaaraWaaSbaaSqaaiaaioda aeqaaOGaeyyXIC9aaSaaaeaacqGHciITceWHTbGbaebadaWgaaWcba GaeqOSdigabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqy aeqaaaaaaaaa@BFEE@

where λ=|( r ¯ / ξ 1 )×( r ¯ / ξ 2 )| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSjabg2da9iaacYhacaGGOaGaey OaIyRabCOCayaaraGaai4laiabgkGi2kabe67a4naaBaaaleaacaaI XaaabeaakiaacMcacqGHxdaTcaGGOaGaeyOaIyRabCOCayaaraGaai 4laiabgkGi2kabe67a4naaBaaaleaacaaIYaaabeaakiaacMcacaGG 8baaaa@4878@ . The mixed components follow as κ β α = g αγ κ γβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaDaaaleaacqaHYoGyaeaacq aHXoqyaaGccqGH9aqpcaWGNbWaaWbaaSqabeaacqaHXoqycqaHZoWz aaGccqaH6oWAdaWgaaWcbaGaeq4SdCMaeqOSdigabeaaaaa@4046@ , where g αγ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEgadaahaaWcbeqaaiabeg7aHjabeo 7aNbaaaaa@34E7@  are the components of the metric tensor defined in Sect 10.5.2.

 The magnitude of the curvature of a shell is quantified by principal curvatures κ ¯ 1 , κ ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeQ7aRzaaraWaaSbaaSqaaiaaigdaae qaaOGaaiilaiqbeQ7aRzaaraWaaSbaaSqaaiaaikdaaeqaaaaa@3685@  - these are simply the principal values of κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7aaaa@31AE@ . The mean curvature ( κ 1 + κ 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqaH6oWAdaWgaaWcbaGaaGymaa qabaGccqGHRaWkcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccaGGPaGa ai4laiaaikdaaaa@3959@ , and Gaussian curvature κ 1 κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaaabeaaki abeQ7aRnaaBaaaleaacaaIYaaabeaaaaa@35A5@  are also used.

 We will also need to calculate the variation of the remaining basis vectors with position in the surface.  These are quantified by Christoffel symbols of the second kind   Γ αβ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfo5ahnaaDaaaleaacqaHXoqycqaHYo GyaeaacaWGPbaaaaaa@364B@  which satisfy

d m i = Γ iα k m k d ξ α d m i = Γ kα i m k d ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHTbWaaSbaaSqaaiaadMgaae qaaOGaeyypa0Jaeu4KdC0aa0baaSqaaiaadMgacqaHXoqyaeaacaWG RbaaaOGaaCyBamaaBaaaleaacaWGRbaabeaakiaadsgacqaH+oaEda WgaaWcbaGaeqySdegabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamizaiaah2 gadaahaaWcbeqaaiaadMgaaaGccqGH9aqpcqGHsislcqqHtoWrdaqh aaWcbaGaam4Aaiabeg7aHbqaaiaadMgaaaGccaWHTbWaaWbaaSqabe aacaWGRbaaaOGaamizaiabe67a4naaBaaaleaacqaHXoqyaeqaaaaa @61EA@

The Christoffel symbols are functions of position on the surface, and can be related to the position vector of the mid-plane of the shell and its curvature components as

Γ βγ α = m α 2 r ξ β ξ γ Γ αβ 3 = κ αβ Γ 3β α = κ β α Γ 3α 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfo5ahnaaDaaaleaacqaHYoGycqaHZo WzaeaacqaHXoqyaaGccqGH9aqpcaWHTbWaaWbaaSqabeaacqaHXoqy aaGccqGHflY1daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aahkhaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiab gkGi2kabe67a4naaBaaaleaacqaHZoWzaeqaaaaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabfo5a hnaaDaaaleaacqaHXoqycqaHYoGyaeaacaaIZaaaaOGaeyypa0Jaey OeI0IaeqOUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabfo5ahn aaDaaaleaacaaIZaGaeqOSdigabaGaeqySdegaaOGaeyypa0JaeqOU dS2aa0baaSqaaiabek7aIbqaaiabeg7aHbaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqqHtoWrdaqhaaWcba GaaG4maiabeg7aHbqaaiaaiodaaaGccqGH9aqpcaaIWaaaaa@9C79@

 Some relationships between the time derivatives of these various kinematic quantities are also needed in subsequent calculations.  The rate of change in shape of the shell can be characterized by the velocity of its middle surface v( ξ 1 , ξ 2 )=dr/dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAhadaqadaqaaiabe67a4naaBaaale aacaaIXaaabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaacqGH9aqpcaWGKbGaaCOCaiaac+cacaWGKbGaam iDaaaa@3EA8@ .  The velocity vector can be described as components in any of the various bases: the representation v= v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaai aadMgaaeqaaOGaaCyBamaaCaaaleqabaGaamyAaaaaaaa@36BD@  is particularly useful.

 The time derivatives of the basis vectors m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaeqySdegabeaaaa a@3349@  are a convenient way to characterize the rate of change of bending of the shell.   These are related to the velocity of the shell’s mid-plane by

d m α dt = d dt ( dr d ξ α )= dv d ξ α = v i ξ α m i + v i d m i d ξ α = v i ξ α m i + v i Γ iα k m k = v β ξ α m β + v β Γ βα λ m λ + v 3 κ α β m β +( v 3 ξ α v β κ βα ) m 3 d m α dt = v i ξ α m i + v i d m i d ξ α = v i ξ α m i v i Γ kα i m k = v β ξ α m β v β Γ λα β m λ + v 3 κ βα m β +( v 3 ξ α v β κ α β ) m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacaWGKbGaaCyBamaaBa aaleaacqaHXoqyaeqaaaGcbaGaamizaiaadshaaaGaeyypa0ZaaSaa aeaacaWGKbaabaGaamizaiaadshaaaWaaeWaaeaadaWcaaqaaiaads gacaWHYbaabaGaamizaiabe67a4naaBaaaleaacqaHXoqyaeqaaaaa aOGaayjkaiaawMcaaiabg2da9maalaaabaGaamizaiaahAhaaeaaca WGKbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyypa0ZaaSaa aeaacqGHciITcaWG2bWaaWbaaSqabeaacaWGPbaaaaGcbaGaeyOaIy RaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaaCyBamaaBaaaleaa caWGPbaabeaakiabgUcaRiaadAhadaahaaWcbeqaaiaadMgaaaGcda WcaaqaaiaadsgacaWHTbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamiz aiabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabg2da9maalaaaba GaeyOaIyRaamODamaaCaaaleqabaGaamyAaaaaaOqaaiabgkGi2kab e67a4naaBaaaleaacqaHXoqyaeqaaaaakiaah2gadaWgaaWcbaGaam yAaaqabaGccqGHRaWkcaWG2bWaaWbaaSqabeaacaWGPbaaaOGaeu4K dC0aa0baaSqaaiaadMgacqaHXoqyaeaacaWGRbaaaOGaaCyBamaaBa aaleaacaWGRbaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeyypa0ZaaSaaaeaacqGHciITcaWG2bWaaWbaaSqabeaa cqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabe aaaaGccaWHTbWaaSbaaSqaaiabek7aIbqabaGccqGHRaWkcaWG2bWa aWbaaSqabeaacqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqOSdiMaeq ySdegabaGaeq4UdWgaaOGaaCyBamaaBaaaleaacqaH7oaBaeqaaOGa ey4kaSIaamODamaaCaaaleqabaGaaG4maaaakiabeQ7aRnaaDaaale aacqaHXoqyaeaacqaHYoGyaaGccaWHTbWaaSbaaSqaaiabek7aIbqa baGccqGHRaWkdaqadaqaamaalaaabaGaeyOaIyRaamODamaaCaaale qabaGaaG4maaaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqy aeqaaaaakiabgkHiTiaadAhadaahaaWcbeqaaiabek7aIbaakiabeQ 7aRnaaBaaaleaacqaHYoGycqaHXoqyaeqaaaGccaGLOaGaayzkaaGa aCyBamaaBaaaleaacaaIZaaabeaaaOqaaiaaykW7daWcaaqaaiaads gacaWHTbWaaSbaaSqaaiabeg7aHbqabaaakeaacaWGKbGaamiDaaaa caaMc8UaaGPaVlabg2da9maalaaabaGaeyOaIyRaamODamaaBaaale aacaWGPbaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqy aeqaaaaakiaah2gadaahaaWcbeqaaiaadMgaaaGccqGHRaWkcaWG2b WaaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaWGKbGaaCyBamaaCaaa leqabaGaamyAaaaaaOqaaiaadsgacqaH+oaEdaWgaaWcbaGaeqySde gabeaaaaGccqGH9aqpdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGa amyAaaqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabe aaaaGccaWHTbWaaWbaaSqabeaacaWGPbaaaOGaeyOeI0IaamODamaa BaaaleaacaWGPbaabeaakiabfo5ahnaaDaaaleaacaWGRbGaeqySde gabaGaamyAaaaakiaah2gadaahaaWcbeqaaiaadUgaaaaakeaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaacqGHciIT caWG2bWaaSbaaSqaaiabek7aIbqabaaakeaacqGHciITcqaH+oaEda WgaaWcbaGaeqySdegabeaaaaGccaWHTbWaaWbaaSqabeaacqaHYoGy aaGccqGHsislcaWG2bWaaSbaaSqaaiabek7aIbqabaGccqqHtoWrda qhaaWcbaGaeq4UdWMaeqySdegabaGaeqOSdigaaOGaaCyBamaaCaaa leqabaGaeq4UdWgaaOGaey4kaSIaamODamaaBaaaleaacaaIZaaabe aakiabeQ7aRnaaBaaaleaacqaHYoGycqaHXoqyaeqaaOGaaCyBamaa CaaaleqabaGaeqOSdigaaOGaey4kaSYaaeWaaeaadaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcqaH+oaE daWgaaWcbaGaeqySdegabeaaaaGccqGHsislcaWG2bWaaSbaaSqaai abek7aIbqabaGccqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqOSdiga aaGccaGLOaGaayzkaaGaaCyBamaaCaaaleqabaGaaG4maaaaaaaa@4B4F@

 We will also need to calculate the time derivative of the vector normal to the mid-plane of the shell m ˙ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaGaamaaBaaaleaacaaIZaaabe aaaaa@3270@ .  Since m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@  is a unit vector, its time derivative can be quantified by an angular velocity vector ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8aaaa@31DD@ , defined so that

d m 3 dt =ω× m 3 ω m 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaah2gadaWgaaWcba GaaG4maaqabaaakeaacaWGKbGaamiDaaaacqGH9aqpcaWHjpGaey41 aqRaaCyBamaaBaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WHjpGaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaakiabg2da9iaa icdaaaa@6040@

The components of ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8aaaa@31DD@  can be related to d m α /dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHTbWaaSbaaSqaaiabeg7aHb qabaGccaGGVaGaamizaiaadshaaaa@36D1@  as

m 3 ×( ω× m 3 )=ω= m 3 × d m 3 dt = m 3 × ( m ˙ 1 × m 2 + m 1 × m ˙ 2 ) | m 1 × m 2 | = ( m 3 m ˙ 1 ) m 2 +( m 3 m ˙ 2 ) m 1 | m 1 × m 2 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GHxdaTdaqadaqaaiaahM8acqGHxdaTcaWHTbWaaSbaaSqaaiaaioda aeqaaaGccaGLOaGaayzkaaGaeyypa0JaaCyYdiabg2da9iaah2gada WgaaWcbaGaaG4maaqabaGccqGHxdaTdaWcaaqaaiaadsgacaWHTbWa aSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadshaaaGaeyypa0JaaC yBamaaBaaaleaacaaIZaaabeaakiabgEna0oaalaaabaGaaiikaiqa h2gagaGaamaaBaaaleaacaaIXaaabeaakiabgEna0kaah2gadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcaWHTbWaaSbaaSqaaiaaigdaaeqa aOGaey41aqRabCyBayaacaWaaSbaaSqaaiaaikdaaeqaaOGaaiykaa qaamaaemaabaGaaCyBamaaBaaaleaacaaIXaaabeaakiabgEna0kaa h2gadaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoaaaGaeyypa0 ZaaSaaaeaacqGHsislcaGGOaGaaCyBamaaBaaaleaacaaIZaaabeaa kiabgwSixlqah2gagaGaamaaBaaaleaacaaIXaaabeaakiaacMcaca WHTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaiikaiaah2gadaWg aaWcbaGaaG4maaqabaGccqGHflY1ceWHTbGbaiaadaWgaaWcbaGaaG OmaaqabaGccaGGPaGaaCyBamaaBaaaleaacaaIXaaabeaaaOqaamaa emaabaGaaCyBamaaBaaaleaacaaIXaaabeaakiabgEna0kaah2gada WgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoaaaaaaa@8277@

Recalling that m 2 × m 3 /( | m 1 × m 2 | )= m 1 m 3 × m 1 /( | m 1 × m 2 | )= m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaGOmaaqabaGccq GHxdaTcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaai4lamaabmaabaWa aqWaaeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey41aqRaaCyBam aaBaaaleaacaaIYaaabeaaaOGaay5bSlaawIa7aiaaykW7aiaawIca caGLPaaacqGH9aqpcaWHTbWaaWbaaSqabeaacaaIXaaaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIZaaabeaakiabgE na0kaah2gadaWgaaWcbaGaaGymaaqabaGccaGGVaWaaeWaaeaadaab daqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHTbWaaS baaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSdaacaGLOaGaayzkaaGa eyypa0JaaGPaVlaah2gadaahaaWcbeqaaiaaikdaaaaaaa@6E4B@ , we see also that

d m 3 dt =ω× m 3 =( m 3 m ˙ 1 ) m 1 ( m 3 m ˙ 2 ) m 2 =( m 3 m ˙ α ) m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaah2gadaWgaaWcba GaaG4maaqabaaakeaacaWGKbGaamiDaaaacqGH9aqpcaWHjpGaey41 aqRaaCyBamaaBaaaleaacaaIZaaabeaakiabg2da9iabgkHiTiaacI cacaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXICTabCyBayaacaWa aSbaaSqaaiaaigdaaeqaaOGaaiykaiaah2gadaahaaWcbeqaaiaaig daaaGccqGHsislcaGGOaGaaCyBamaaBaaaleaacaaIZaaabeaakiab gwSixlqah2gagaGaamaaBaaaleaacaaIYaaabeaakiaacMcacaWHTb WaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaeyOeI0Iaaiikaiaah2ga daWgaaWcbaGaaG4maaqabaGccqGHflY1ceWHTbGbaiaadaWgaaWcba GaeqySdegabeaakiaacMcacaWHTbWaaWbaaSqabeaacqaHXoqyaaaa aa@5E66@

Finally we may write this as

d m 3 dt = μ ˙ α m α μ ˙ α = m 3 m ˙ α =( v 3 ξ α v β κ α β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaah2gadaWgaaWcba GaaG4maaqabaaakeaacaWGKbGaamiDaaaacqGH9aqpcuaH8oqBgaGa amaaBaaaleaacqaHXoqyaeqaaOGaaCyBamaaCaaaleqabaGaeqySde gaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cuaH 8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaeyOeI0IaaC yBamaaBaaaleaacaaIZaaabeaakiabgwSixlqah2gagaGaamaaBaaa leaacqaHXoqyaeqaaOGaeyypa0JaeyOeI0YaaeWaaeaadaWcaaqaai abgkGi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcqaH +oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcaWG2bWaaSbaaS qaaiabek7aIbqabaGccqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqOS digaaaGccaGLOaGaayzkaaaaaa@8183@

The components μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeY7aTzaacaWaaSbaaSqaaiabeg7aHb qabaaaaa@3412@  can also be regarded as the components of the angular velocity vector ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8aaaa@31DD@  in a basis { m 3 × m 1 , m 3 × m 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaacmaabaGaaCyBamaaBaaaleaacaaIZa aabeaakiabgEna0kaah2gadaahaaWcbeqaaiaaigdaaaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaakiabgEna0kaah2gadaahaaWcbe qaaiaaikdaaaaakiaawUhacaGL9baaaaa@3F3A@  in the sense that

ω= μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8acqGH9aqpcuaH8oqBgaGaamaaBa aaleaacqaHXoqyaeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0kaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D39@

 

 The time derivative of the curvature tensor κ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahQ7agaGaaaaa@31D7@ , is related to m ˙ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaGaamaaBaaaleaacaaIZaaabe aaaaa@3270@  by

d m ˙ 3 = κ ˙ α β d ξ β m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWHTbGbaiaadaWgaaWcbaGaaG 4maaqabaGccqGH9aqpcuaH6oWAgaGaamaaCaaaleqabaGaeqySdega aOWaaSbaaSqaaiabek7aIbqabaGccaWGKbGaeqOVdG3aaSbaaSqaai abek7aIbqabaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@4115@

Note that

d m ˙ 3 =( μ ˙ α ξ β m α + μ ˙ α m α ξ β )d ξ β =( μ ˙ α ξ β m α μ ˙ α Γ λβ α m λ )d ξ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWHTbGbaiaadaWgaaWcbaGaaG 4maaqabaGccqGH9aqpdaqadaqaamaalaaabaGaeyOaIyRafqiVd0Mb aiaadaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2kabe67a4naaBa aaleaacqaHYoGyaeqaaaaakiaah2gadaahaaWcbeqaaiabeg7aHbaa kiabgUcaRiqbeY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaGcdaWcaa qaaiabgkGi2kaah2gadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi 2kabe67a4naaBaaaleaacqaHYoGyaeqaaaaaaOGaayjkaiaawMcaai aadsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiabg2da9maabmaa baWaaSaaaeaacqGHciITcuaH8oqBgaGaamaaBaaaleaacqaHXoqyae qaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek7aIbqabaaaaOGa aCyBamaaCaaaleqabaGaeqySdegaaOGaeyOeI0IafqiVd0Mbaiaada WgaaWcbaGaeqySdegabeaakiabfo5ahnaaDaaaleaacqaH7oaBcqaH YoGyaeaacqaHXoqyaaGccaWHTbWaaWbaaSqabeaacqaH7oaBaaaaki aawIcacaGLPaaacaWGKbGaeqOVdG3aaSbaaSqaaiabek7aIbqabaaa aa@76D6@

The components of the time derivative of curvature can therefore be expressed in terms of μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeY7aTzaacaWaaSbaaSqaaiabeg7aHb qabaaaaa@3412@  as

κ ˙ β α m α = κ ˙ αβ m α =( μ ˙ α ξ β m α μ ˙ λ Γ αβ λ m α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeQ7aRzaacaWaa0baaSqaaiabek7aIb qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaeqySdegabeaakiabg2da 9iqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaWHTb WaaWbaaSqabeaacqaHXoqyaaGccqGH9aqpdaqadaqaamaalaaabaGa eyOaIyRafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaaaOqaaiabgk Gi2kabe67a4naaBaaaleaacqaHYoGyaeqaaaaakiaah2gadaahaaWc beqaaiabeg7aHbaakiabgkHiTiqbeY7aTzaacaWaaSbaaSqaaiabeU 7aSbqabaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeqOSdigabaGaeq4U dWgaaOGaaCyBamaaCaaaleqabaGaeqySdegaaaGccaGLOaGaayzkaa aaaa@5EE2@

It is important to note that κ ˙ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHj abek7aIbqabaaaaa@35AF@  are not equal to the time derivatives of the curvature components.

 

* We will also need to characterize the linear and angular acceleration of the shell.  The linear acceleration can be quantified by the acceleration of the mid-plane a= d 2 r/d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGKbWaaWbaaSqabe aacaaIYaaaaOGaaCOCaiaac+cacaWGKbGaamiDamaaCaaaleqabaGa aGOmaaaaaaa@38CD@

 

 The angular acceleration of the shell can be characterized by the angular acceleration of the normal to its mid-plane, α=dω/dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7acqGH9aqpcaWGKbGaaCyYdiaac+ cacaWGKbGaamiDaaaa@379E@ .  The angular acceleration can be related to the acceleration of the mid-plane of the shell as follows

α= dω dt = m 3 × d 2 m 3 d t 2 =[ 2( m 3 m ˙ α )( m α m ˙ β ) m 3 da d ξ β ] m 3 × m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7acqGH9aqpdaWcaaqaaiaadsgaca WHjpaabaGaamizaiaadshaaaGaeyypa0JaaCyBamaaBaaaleaacaaI ZaaabeaakiabgEna0oaalaaabaGaamizamaaCaaaleqabaGaaGOmaa aakiaah2gadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaamiDamaa CaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlabg2da9maadmaaba GaaGOmamaabmaabaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSi xlqah2gagaGaamaaBaaaleaacqaHXoqyaeqaaaGccaGLOaGaayzkaa WaaeWaaeaacaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHflY1ceWH TbGbaiaadaWgaaWcbaGaeqOSdigabeaaaOGaayjkaiaawMcaaiabgk HiTiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHflY1daWcaaqaaiaa dsgacaWHHbaabaGaamizaiabe67a4naaBaaaleaacqaHYoGyaeqaaa aaaOGaay5waiaaw2faaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGH xdaTcaWHTbWaaWbaaSqabeaacqaHYoGyaaaaaa@6DC4@

where we have used m ˙ 3 =( m 3 m ˙ α ) m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaGaamaaBaaaleaacaaIZaaabe aakiabg2da9iabgkHiTiaacIcacaWHTbWaaSbaaSqaaiaaiodaaeqa aOGaeyyXICTabCyBayaacaWaaSbaaSqaaiabeg7aHbqabaGccaGGPa GaaCyBamaaCaaaleqabaGaeqySdegaaaaa@3F8F@  and noted that  m α m β = δ β α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaahaaWcbeqaaiabeg7aHbaaki abgwSixlaah2gadaWgaaWcbaGaeqOSdigabeaakiabg2da9iabes7a KnaaDaaaleaacqaHYoGyaeaacqaHXoqyaaaaaa@3E83@   m ˙ α m β + m α m ˙ β =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkDiElqah2gagaGaamaaCaaaleqaba GaeqySdegaaOGaeyyXICTaaCyBamaaBaaaleaacqaHYoGyaeqaaOGa ey4kaSIaaCyBamaaCaaaleqabaGaeqySdegaaOGaeyyXICTabCyBay aacaWaaSbaaSqaaiabek7aIbqabaGccqGH9aqpcaaIWaaaaa@455F@  to obtain the final result.

 

 It is convenient to express α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7aaaa@31C5@  in the form α= μ ¨ β m 3 × m β = μ ¨ β m 3 × m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7acqGH9aqpcuaH8oqBgaWaamaaBa aaleaacqaHYoGyaeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0kaah2gadaahaaWcbeqaaiabek7aIbaakiabg2da9iqbeY7aTz aadaWaaWbaaSqabeaacqaHYoGyaaGccaWHTbWaaSbaaSqaaiaaioda aeqaaOGaey41aqRaaCyBamaaBaaaleaacqaHYoGyaeqaaaaa@4891@ , where μ ¨ β = g βα μ ¨ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeY7aTzaadaWaaWbaaSqabeaacqaHYo GyaaGccqGH9aqpcaWGNbWaaWbaaSqabeaacqaHYoGycqaHXoqyaaGc cuaH8oqBgaWaamaaBaaaleaacqaHXoqyaeqaaaaa@3D14@  and the μ ¨ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeY7aTzaadaWaaSbaaSqaaiabek7aIb qabaaaaa@3415@  can be related to the velocity and acceleration of the mid-plane of the shell as follows

μ ¨ β =2( m 3 m ˙ α )( m α m ˙ β ) m 3 da d ξ β =2( v 3 ξ α v λ κ αλ )( v α ξ β + v ρ Γ βρ α + v 3 κ β α )( a 3 ξ β a α κ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGafqiVd0MbamaadaWgaaWcbaGaeq OSdigabeaakiabg2da9iaaikdadaqadaqaaiaah2gadaWgaaWcbaGa aG4maaqabaGccqGHflY1ceWHTbGbaiaadaWgaaWcbaGaeqySdegabe aaaOGaayjkaiaawMcaamaabmaabaGaaCyBamaaCaaaleqabaGaeqyS degaaOGaeyyXICTabCyBayaacaWaaSbaaSqaaiabek7aIbqabaaaki aawIcacaGLPaaacqGHsislcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa eyyXIC9aaSaaaeaacaWGKbGaaCyyaaqaaiaadsgacqaH+oaEdaWgaa WcbaGaeqOSdigabeaaaaaakeaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaaIYaWaaeWaae aadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaa cqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislca WG2bWaaWbaaSqabeaacqaH7oaBaaGccqaH6oWAdaWgaaWcbaGaeqyS deMaeq4UdWgabeaaaOGaayjkaiaawMcaamaabmaabaWaaSaaaeaacq GHciITcaWG2bWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcqaH +oaEdaWgaaWcbaGaeqOSdigabeaaaaGccqGHRaWkcaWG2bWaaWbaaS qabeaacqaHbpGCaaGccqqHtoWrdaqhaaWcbaGaeqOSdiMaeqyWdiha baGaeqySdegaaOGaey4kaSIaamODamaaBaaaleaacaaIZaaabeaaki abeQ7aRnaaDaaaleaacqaHYoGyaeaacqaHXoqyaaaakiaawIcacaGL PaaacqGHsisldaqadaqaamaalaaabaGaeyOaIyRaamyyamaaBaaale aacaaIZaaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHYoGy aeqaaaaakiabgkHiTiaadggadaahaaWcbeqaaiabeg7aHbaakiabeQ 7aRnaaBaaaleaacqaHXoqycqaHYoGyaeqaaaGccaGLOaGaayzkaaaa aaa@A6E3@

 

 These results show that

d 2 m 3 d t 2 = d dt ( ω× m 3 )=α× m 3 +ω×( ω× m 3 ) = μ ¨ β m β μ ˙ α μ ˙ α m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacaWGKbWaaWbaaSqabe aacaaIYaaaaOGaaCyBamaaBaaaleaacaaIZaaabeaaaOqaaiaadsga caWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaam izaaqaaiaadsgacaWG0baaamaabmaabaGaaCyYdiabgEna0kaah2ga daWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacqGH9aqpcaWHXo Gaey41aqRaaCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaahM8a cqGHxdaTdaqadaqaaiaahM8acqGHxdaTcaWHTbWaaSbaaSqaaiaaio daaeqaaaGccaGLOaGaayzkaaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iqbeY7aTzaadaWa aWbaaSqabeaacqaHYoGyaaGccaWHTbWaaSbaaSqaaiabek7aIbqaba GccqGHsislcuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaOGafqiV d0MbaiaadaahaaWcbeqaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG 4maaqabaaaaaa@B062@

where we have used ω×(ω× m 3 )=(ω m 3 )ω(ωω) m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8acqGHxdaTcaGGOaGaaCyYdiabgE na0kaah2gadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0Jaaiik aiaahM8acqGHflY1caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaaiykai aahM8acqGHsislcaGGOaGaaCyYdiabgwSixlaahM8acaGGPaGaaCyB amaaBaaaleaacaaIZaaabeaaaaa@4CF7@  and noted  (ω m 3 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWHjpGaeyyXICTaaCyBamaaBa aaleaacaaIZaaabeaakiaacMcacqGH9aqpcaaIWaaaaa@3929@  to obtain the second line.

 

 

 

HEALTH WARNING: The sign convention used to characterize the curvature of a shell can be confusing.  In the convention used here, a convex surface has positive curvature. For example, a spherical shell with coordinate system chosen so that m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@  points radially out of the sphere would have two equal positive principal curvatures. The mathematical analysis of curved surfaces usually uses the opposite sign convention for curvature, and a few texts on shell theory use curvature measures with the opposite sign to the one used here.  

 

 

 

10.5.4 Approximating the displacement and velocity field

 

The position vector of a material point in the shell before deformation can be expressed as x= r ¯ ( ξ 1 , ξ 2 )+ x 3 m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahIhacqGH9aqpceWHYbGbaebacaGGOa GaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaa leaacaaIYaaabeaakiaacMcacqGHRaWkcaWG4bWaaSbaaSqaaiaaio daaeqaaOGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaaa@3FDD@ , where x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@326E@  is the distance of the material particle from the mid-section of the shell.

 

After deformation of the material point that has coordinates ( ξ 1 , ξ 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaeqOVdG3aaSbaaSqaaiaaig daaeqaaOGaaiilaiabe67a4naaBaaaleaacaaIYaaabeaakiaacYca caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3CD8@  in the undeformed shell moves to a new position, which can be expressed as

y( ξ α , x 3 )=r( ξ α )+ η i ( ξ α , x k ) m i ( ξ α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH5bGaaiikaiabe67a4naaBaaale aacqaHXoqyaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaaCOCaiaacIcacqaH+oaEdaWgaaWcbaGaeqySde gabeaakiaacMcacqGHRaWkcqaH3oaAdaahaaWcbeqaaiaadMgaaaGc caGGOaGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGccaGGSaGaamiEam aaBaaaleaacaWGRbaabeaakiaacMcacaWHTbWaaSbaaSqaaiaadMga aeqaaOGaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiykaa aa@54CD@

where η i ( ξ α ,0)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeE7aOnaaCaaaleqabaGaamyAaaaaki aacIcacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaacYcacaaIWaGa aiykaiabg2da9iaaicdaaaa@3B74@ . This is a completely general expression.   We now introduce a series of approximations that are based on the assumptions that

  1. The shell is thin compared with its in-plane dimensions;
  2. The principal radii of curvature of the shell (both before and after deformation) are much larger than the characteristic dimension of its cross section;

 

With this in mind, we assume that η i ( ξ α , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeE7aOnaaCaaaleqabaGaamyAaaaaki aacIcacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaacYcacaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3AEA@   can be approximated by a function of the form

η i ( ξ α , x 3 )=( δ 3 i + f 3 i ( ξ α ) ) x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH3oaAdaahaaWcbeqaaiaadMgaaa GccaGGOaGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGccaGGSaGaamiE amaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpdaqadaqaaiabes 7aKnaaDaaaleaacaaIZaaabaGaamyAaaaakiabgUcaRiaadAgadaqh aaWcbaGaaG4maaqaaiaadMgaaaGccaGGOaGaeqOVdG3aaSbaaSqaai abeg7aHbqabaGccaGGPaaacaGLOaGaayzkaaGaamiEamaaBaaaleaa caaIZaaabeaaaaa@4DC3@

where f 3 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbWaa0baaSqaaiaaiodaaeaaca WGPbaaaaaa@3589@  can be regarded as the first term in a Taylor expansion of η i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH3oaAdaahaaWcbeqaaiaadMgaaa aaaa@358D@  with respect to x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@326E@ .  Note that  f 3 α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqhaaWcbaGaaG4maaqaaiabeg 7aHbaaaaa@33FC@  represents transverse shear deformation of the shell, while f 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqhaaWcbaGaaG4maaqaaiaaio daaaaaaa@331A@  quantifies the through-thickness stretching.

 

Several versions of plate theory exist, which use different approximations for the shear deformation.  Here, we will present only simplest version, known as Kirchhoff shell theory,  which is to assume that f 3 i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqhaaWcbaGaaG4maaqaaiaadM gaaaGccqGH9aqpcaaIWaaaaa@3515@ .  This implies that material fibers that are perpendicular to the mid-plane of the shell remain perpendicular to the mid-plane of the deformed shell, and the shell does not change its thickness. This reduces the displacement field to

y( ξ α , x 3 )=r( ξ α )+ x 3 m 3 ( ξ α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH5bGaaiikaiabe67a4naaBaaale aacqaHXoqyaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaGaeyypa0JaaCOCaiaacIcacqaH+oaEdaWgaaWcbaGaeqySde gabeaakiaacMcacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aCyBamaaBaaaleaacaaIZaaabeaakiaacIcacqaH+oaEdaWgaaWcba GaeqySdegabeaakiaacMcaaaa@4BF7@

The velocity field can be approximated as

d dt y( ξ α , x 3 )=v+ x 3 m ˙ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgaaeaacaWGKbGaam iDaaaacaWH5bGaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0JaaC ODaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcceWHTbGbaiaa daWgaaWcbaGaaG4maaqabaaaaa@44F3@

while the acceleration is

d 2 d t 2 y( ξ α , x 3 )=a+ x 3 d 2 m 3 d t 2 =a+ x 3 [ α× m 3 +ω×( ω× m 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgadaahaaWcbeqaai aaikdaaaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGc caWH5bGaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiilai aadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0JaaCyyaiab gUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiaadsgada ahaaWcbeqaaiaaikdaaaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaGc baGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaaC yyaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcdaWadaqaaiaa hg7acqGHxdaTcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaC yYdiabgEna0oaabmaabaGaaCyYdiabgEna0kaah2gadaWgaaWcbaGa aG4maaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@62A2@

where α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7aaaa@31C5@  and ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8aaaa@31DD@  denote the angular acceleration and angular velocity of the unit vector normal to the mid-plane of the plate.

 

 

HEALTH WARNING: In addition to using this approximation to the displacement and velocity field, Kirchhoff shell theory assumes that the transverse stress σ 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaCaaaleqabaGaaG4maiaaio daaaaaaa@33F2@  vanishes in the shell.  Strictly speaking, this is inconsistent with the deformation.  A more rigorous approach would be to introduce a uniform transverse strain f 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaqhaaWcbaGaaG4maaqaaiaaio daaaaaaa@331A@ ,  which could be calculated as part of the solution.  However, this approach yields results that are essentially indistinguishable from the plane-stress approximation.

 

 

 

10.5.5 Approximating the deformation gradient

 

The deformation gradient can be approximated as

F=(g+ x 3 κ)( m α m ¯ α ) ( g ¯ + x 3 κ ¯ ) 1 m α m ¯ α + x 3 ( κ β α κ ¯ β α ) m α m ¯ β + m 3 m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCOraiabg2da9iaacIcacaWHNb Gaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaahQ7acaGGPaWa aeWaaeaacaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXceWHTb GbaebadaahaaWcbeqaaiabeg7aHbaaaOGaayjkaiaawMcaaiaacIca ceWHNbGbaebacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGabC OUdyaaraGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgIKi7kaah2gada WgaaWcbaGaeqySdegabeaakiabgEPielqah2gagaqeamaaCaaaleqa baGaeqySdegaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaaki aacIcacqaH6oWAdaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGaeyOe I0IafqOUdSMbaebadaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGaai ykaiaah2gadaWgaaWcbaGaeqySdegabeaakiabgEPielqah2gagaqe amaaCaaaleqabaGaeqOSdigaaOGaey4kaSIaaCyBamaaBaaaleaaca aIZaaabeaakiabgEPielqah2gagaqeamaaCaaaleqabaGaaG4maaaa aaaa@7B29@

where g ¯ = m ¯ i m ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahEgagaqeaiabg2da9iqah2gagaqeam aaBaaaleaacaWGPbaabeaakiabgEPielqah2gagaqeamaaCaaaleqa baGaamyAaaaaaaa@38FA@  and g= m i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahEgacqGH9aqpcaWHTbWaaSbaaSqaai aadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamyAaaaaaaa@38B2@  are the metric tensors for shell before and after deformation, and κ ¯ = κ ¯ β α m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahQ7agaqeaiabg2da9iqbeQ7aRzaara Waa0baaSqaaiabek7aIbqaaiabeg7aHbaakiqah2gagaqeamaaBaaa leaacqaHXoqyaeqaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacq aHYoGyaaaaaa@3FF5@  and κ= κ β α m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7acqGH9aqpcqaH6oWAdaqhaaWcba GaeqOSdigabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaHXoqyaeqa aOGaey4LIqSaaCyBamaaCaaaleqabaGaeqOSdigaaaaa@3F95@  are the curvature tensors for the mid-surface of the shell before and after deformation, respectively.  The three terms in the second formula for F can be interpreted as (i) the effects of in-plane stretching of the shell; (ii) the effects of bending; and (iii) the effects of a change in the shell’s thickness.

 

Derivation  By definition, the deformation gradient relates infinitesimal line elements in the shell before (dx) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGKbGaaCiEaiaacMcaaaa@33CB@  and after (dy) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGKbGaaCyEaiaacMcaaaa@33CC@  deformation by dy=Fdx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWH5bGaeyypa0JaaCOraiaads gacaWH4baaaa@3632@ .  We wish to construct a tensor with these properties.  

  1. An infinitesimal line element in the deformed shell can be expressed in terms of a small change in coordinates

dy= dr d ξ α d ξ α + x 3 d m 3 d ξ α d ξ α +d x 3 m 3 = dr d ξ α d ξ α + x 3 κ ¯ β α d ξ β m α +d x 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWH5bGaeyypa0ZaaSaaaeaaca WGKbGaaCOCaaqaaiaadsgacqaH+oaEdaWgaaWcbaGaeqySdegabeaa aaGccaWGKbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGccqGHRaWkca WG4bWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKbGaaCyBamaa BaaaleaacaaIZaaabeaaaOqaaiaadsgacqaH+oaEdaWgaaWcbaGaeq ySdegabeaaaaGccaWGKbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGc cqGHRaWkcaWGKbGaamiEamaaBaaaleaacaaIZaaabeaakiaah2gada WgaaWcbaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaadsgacaWHYbaa baGaamizaiabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiaadsgacq aH+oaEdaWgaaWcbaGaeqySdegabeaakiabgUcaRiaadIhadaWgaaWc baGaaG4maaqabaGccuaH6oWAgaqeamaaDaaaleaacqaHYoGyaeaacq aHXoqyaaGccaWGKbGaeqOVdG3aaSbaaSqaaiabek7aIbqabaGccaWH TbWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkcaWGKbGaamiEamaaBa aaleaacaaIZaaabeaakiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@73BF@

where we have used m 3 ξ β d ξ β = κ β α d ξ β m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaaCyBamaaBaaale aacaaIZaaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHYoGy aeqaaaaakiaadsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiabg2 da9iabeQ7aRnaaDaaaleaacqaHYoGyaeaacqaHXoqyaaGccaWGKbGa eqOVdG3aaSbaaSqaaiabek7aIbqabaGccaWHTbWaaSbaaSqaaiabeg 7aHbqabaaaaa@4ADD@

  1. This expression can be rearranged into the form

dy=( δ β α m α m β + m 3 m 3 + x 3 κ β α m α m β )( m γ d ξ γ + m 3 d x 3 ) =(g+ x 3 κ)( m γ d ξ γ + m 3 d x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamizaiaahMhacqGH9aqpcaGGOa GaeqiTdq2aa0baaSqaaiabek7aIbqaaiabeg7aHbaakiaah2gadaWg aaWcbaGaeqySdegabeaakiabgEPielaah2gadaahaaWcbeqaaiabek 7aIbaakiabgUcaRiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxkcX caWHTbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamiEamaaBaaale aacaaIZaaabeaakiabeQ7aRnaaDaaaleaacqaHYoGyaeaacqaHXoqy aaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXcaWHTbWaaW baaSqabeaacqaHYoGyaaGccaGGPaGaeyyXICTaaiikaiaah2gadaWg aaWcbaGaeq4SdCgabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeq4SdC gabeaakiabgUcaRiaah2gadaWgaaWcbaGaaG4maaqabaGccaWGKbGa amiEamaaBaaaleaacaaIZaaabeaakiaacMcaaeaacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaiikaiaahEga cqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCOUdiaacMcacq GHflY1caGGOaGaaCyBamaaBaaaleaacqaHZoWzaeqaaOGaamizaiab e67a4naaBaaaleaacqaHZoWzaeqaaOGaey4kaSIaaCyBamaaBaaale aacaaIZaaabeaakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aiykaaaaaa@8B6C@

  1. An infinitesimal line element dx in the undeformed shell can also be related to d ξ α ,d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH+oaEdaWgaaWcbaGaeqySde gabeaakiaacYcacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaa@3888@  as

dx= d r ¯ d ξ α d ξ α + x 3 m ¯ 3 ξ α d ξ α +d x 3 m ¯ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWH4bGaeyypa0ZaaSaaaeaaca WGKbGabCOCayaaraaabaGaamizaiabe67a4naaBaaaleaacqaHXoqy aeqaaaaakiaadsgacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiabgU caRiaadIhadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiabgkGi2kqa h2gagaqeamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kabe67a4n aaBaaaleaacqaHXoqyaeqaaaaakiaadsgacqaH+oaEdaWgaaWcbaGa eqySdegabeaakiabgUcaRiaadsgacaWG4bWaaSbaaSqaaiaaiodaae qaaOGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaaa@5400@

This can be re-written as

dx=( δ β α m ¯ α m ¯ β + m ¯ 3 m ¯ 3 + x 3 κ ¯ β α m ¯ α m ¯ β )( m ¯ γ d ξ γ + m ¯ 3 d x 3 ) =( g ¯ + x 3 κ ¯ )( m ¯ γ d ξ γ + m ¯ 3 d x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamizaiaahIhacqGH9aqpcaGGOa GaeqiTdq2aa0baaSqaaiabek7aIbqaaiabeg7aHbaakiqah2gagaqe amaaBaaaleaacqaHXoqyaeqaaOGaey4LIqSabCyBayaaraWaaWbaaS qabeaacqaHYoGyaaGccqGHRaWkceWHTbGbaebadaWgaaWcbaGaaG4m aaqabaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGafqOUdSMbaebadaqh aaWcbaGaeqOSdigabaGaeqySdegaaOGabCyBayaaraWaaSbaaSqaai abeg7aHbqabaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabek7a IbaakiaacMcacqGHflY1caGGOaGabCyBayaaraWaaSbaaSqaaiabeo 7aNbqabaGccaWGKbGaeqOVdG3aaSbaaSqaaiabeo7aNbqabaGccqGH RaWkceWHTbGbaebadaWgaaWcbaGaaG4maaqabaGccaWGKbGaamiEam aaBaaaleaacaaIZaaabeaakiaacMcaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaiikaiqahEgagaqeai abgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcceWH6oGbaebacaGG PaGaaiikaiqah2gagaqeamaaBaaaleaacqaHZoWzaeqaaOGaamizai abe67a4naaBaaaleaacqaHZoWzaeqaaOGaey4kaSIabCyBayaaraWa aSbaaSqaaiaaiodaaeqaaOGaamizaiaadIhadaWgaaWcbaGaaG4maa qabaGccaGGPaaaaaa@8A59@

so that ( m ¯ γ d ξ γ + m ¯ 3 d x 3 )= ( g ¯ + x 3 κ ¯ ) 1 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcaceWHTbGbaebadaWgaaWcbaGaeq 4SdCgabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeq4SdCgabeaakiab gUcaRiqah2gagaqeamaaBaaaleaacaaIZaaabeaakiaadsgacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaacIcaceWHNbGb aebacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGabCOUdyaara GaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadsgacaWH4baa aa@4A71@

  1. Finally, note that

( m β d ξ β + m 3 d x 3 )=( m i m ¯ i )( m ¯ γ d ξ γ + m ¯ 3 d x 3 )=( m i m ¯ i ) ( g ¯ + x 3 κ ¯ ) 1 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWHTbWaaSbaaSqaaiabek7aIb qabaGccaWGKbGaeqOVdG3aaSbaaSqaaiabek7aIbqabaGccqGHRaWk caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaamizaiaadIhadaWgaaWcba GaaG4maaqabaGccaGGPaGaeyypa0ZaaeWaaeaacaWHTbWaaSbaaSqa aiaadMgaaeqaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacaWGPb aaaaGccaGLOaGaayzkaaGaeyyXICTaaiikaiqah2gagaqeamaaBaaa leaacqaHZoWzaeqaaOGaamizaiabe67a4naaBaaaleaacqaHZoWzae qaaOGaey4kaSIabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaamiz aiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0ZaaeWaae aacaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSabCyBayaaraWa aWbaaSqabeaacaWGPbaaaaGccaGLOaGaayzkaaGaaiikaiqahEgaga qeaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcceWH6oGbaeba caGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamizaiaahIhaaa a@6BCC@

We can substitute this result into (2) above to see that

dy=(g+ x 3 κ)( m i m ¯ i ) ( g ¯ + x 3 κ ¯ ) 1 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamizaiaahMhacqGH9aqpcaGGOaGaaC4zaiabgUcaRiaadIhadaWg aaWcbaGaaG4maaqabaGccaWH6oGaaiykamaabmaabaGaaCyBamaaBa aaleaacaWGPbaabeaakiabgEPielqah2gagaqeamaaCaaaleqabaGa amyAaaaaaOGaayjkaiaawMcaaiaacIcaceWHNbGbaebacqGHRaWkca WG4bWaaSbaaSqaaiaaiodaaeqaaOGabCOUdyaaraGaaiykamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaadsgacaWH4baaaa@53CA@

and the deformation gradient can be read off as the coefficient of dx.

  1. The approximate expression for F is obtained by assuming that for a thin shell

( g ¯ + x 3 κ ¯ ) 1 ( g ¯ x 3 κ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaiikaiqahEgagaqeaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqa baGcceWH6oGbaebacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaeyisISRaaiikaiqahEgagaqeaiabgkHiTiaadIhadaWgaaWcbaGa aG4maaqabaGcceWH6oGbaebacaGGPaaaaa@48FC@

To see this, multiply out ( g ¯ + x 3 κ ¯ )( g ¯ x 3 κ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaykW7caGGOaGabC4zayaaraGaey4kaS IaamiEamaaBaaaleaacaaIZaaabeaakiqahQ7agaqeaiaacMcacaGG OaGabC4zayaaraGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaaki qahQ7agaqeaiaacMcaaaa@3F40@ , recall that g ¯ g ¯ = g ¯ , g ¯ κ ¯ = κ ¯ g ¯ = κ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahEgagaqeaiqahEgagaqeaiabg2da9i qahEgagaqeaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqa hEgagaqeaiqahQ7agaqeaiabg2da9iqahQ7agaqeaiqahEgagaqeai abg2da9iqahQ7agaqeaaaa@4543@  and neglect the term of order x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaqhaaWcbaGaaG4maaqaaiaaik daaaaaaa@332B@ . Finally, substitute this approximation into the formula for F, multiply out the terms and neglect x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaqhaaWcbaGaaG4maaqaaiaaik daaaaaaa@332B@  terms to obtain the approximation for F.

 

 

10.5.6 Other deformation measures.

 

It is straightforward to calculate any other deformation of interest from the deformation gradient.  A few examples that will be used in calculations to follow are listed below.

 

The inverse of the deformation gradient can be approximated by

F 1 =( g ¯ + x 3 κ ¯ ) ( m α m ¯ α ) 1 (g+ x 3 κ) 1 m ¯ α m α x 3 ( κ α β κ ¯ α β ) m ¯ α m β + m ¯ 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCOramaaCaaaleqabaGaeyOeI0 IaaGymaaaakiabg2da9iaacIcaceWHNbGbaebacqGHRaWkcaWG4bWa aSbaaSqaaiaaiodaaeqaaOGabCOUdyaaraGaaiykamaabmaabaGaaC yBamaaBaaaleaacqaHXoqyaeqaaOGaey4LIqSabCyBayaaraWaaWba aSqabeaacqaHXoqyaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgk HiTiaaigdaaaGccaGGOaGaaC4zaiabgUcaRiaadIhadaWgaaWcbaGa aG4maaqabaGccaWH6oGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaa aaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgIKi 7kqah2gagaqeamaaBaaaleaacqaHXoqyaeqaaOGaey4LIqSaaCyBam aaCaaaleqabaGaeqySdegaaOGaeyOeI0IaamiEamaaBaaaleaacaaI ZaaabeaakiaacIcacqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqOSdi gaaOGaeyOeI0IafqOUdSMbaebadaqhaaWcbaGaeqySdegabaGaeqOS digaaOGaaiykaiqah2gagaqeamaaBaaaleaacqaHXoqyaeqaaOGaey 4LIqSaaCyBamaaCaaaleqabaGaeqOSdigaaOGaey4kaSIabCyBayaa raWaaSbaaSqaaiaaiodaaeqaaOGaey4LIqSaaCyBamaaCaaaleqaba GaaG4maaaaaaaa@7EF2@

 

The velocity gradient tensor L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahYeaaaa@315D@ , which relates the relative velocity d y ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWH5bGbaiaaaaa@327C@  of two material particles at positions y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhaaaa@318A@  and y+dy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhacqGHRaWkcaWGKbGaaCyEaaaa@3457@  in the deformed shell as d y ˙ =Ldy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWH5bGbaiaacqGH9aqpcaWHmb GaamizaiaahMhaaaa@3642@  can be approximated by

L=( m ˙ i m i + x 3 κ ˙ αβ m α m β ) ( m i m i + x 3 κ β α m α m β ) 1 ( m ˙ i m i + x 3 κ ˙ αβ m α m β )( m i m i x 3 κ β α m α m β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCitaiabg2da9maabmaabaGabC yBayaacaWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaa leqabaGaamyAaaaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqaba GccuaH6oWAgaGaamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaCyB amaaCaaaleqabaGaeqySdegaaOGaey4LIqSaaCyBamaaCaaaleqaba GaeqOSdigaaaGccaGLOaGaayzkaaWaaeWaaeaacaWHTbWaaSbaaSqa aiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamyAaaaaki abgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAdaqhaaWc baGaeqOSdigabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaHXoqyae qaaOGaey4LIqSaaCyBamaaCaaaleqabaGaeqOSdigaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqGHijYUdaqadaqaaiqah2gagaGaamaa BaaaleaacaWGPbaabeaakiabgEPielaah2gadaahaaWcbeqaaiaadM gaaaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGafqOUdSMb aiaadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaah2gadaahaaWcbe qaaiabeg7aHbaakiabgEPielaah2gadaahaaWcbeqaaiabek7aIbaa aOGaayjkaiaawMcaamaabmaabaGaaCyBamaaBaaaleaacaWGPbaabe aakiabgEPielaah2gadaahaaWcbeqaaiaadMgaaaGccqGHsislcaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdS2aa0baaSqaaiabek7aIb qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaeqySdegabeaakiabgEPi elaah2gadaahaaWcbeqaaiabek7aIbaaaOGaayjkaiaawMcaaaaaaa@9B70@

where κ ˙ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHj abek7aIbqabaaaaa@35AF@  are the covariant components of the time derivative of the surface curvature tensor.

 

The Lagrange strain tensor can be approximated by

E=( F T FI)/2 1 2 ( g αβ g ¯ αβ ) m ¯ α m ¯ β + x 3 ( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahweacqGH9aqpcaGGOaGaaCOramaaCa aaleqabaGaamivaaaakiaahAeacqGHsislcaWHjbGaaiykaiaac+ca caaIYaGaeyisIS7aaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaai aadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabgkHiTiqadEga gaqeamaaBaaaleaacqaHXoqycqaHYoGyaeqaaaGccaGLOaGaayzkaa GabCyBayaaraWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXceWHTbGb aebadaahaaWcbeqaaiabek7aIbaakiabgUcaRiaadIhadaWgaaWcba GaaG4maaqabaGccaGGOaGaeqOUdS2aa0baaSqaaiabek7aIbqaaiab eg7aHbaakiabgkHiTiqbeQ7aRzaaraWaa0baaSqaaiabek7aIbqaai abeg7aHbaakiaacMcacaWGNbWaaSbaaSqaaiabeU7aSjabeg7aHbqa baGcceWHTbGbaebadaahaaWcbeqaaiabeU7aSbaakiabgEPielqah2 gagaqeamaaCaaaleqabaGaeqOSdigaaaaa@6BC3@

where terms of order x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaqhaaWcbaGaaG4maaqaaiaaik daaaaaaa@332B@  have been neglected, we have used g αβ = m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9iaah2gadaWgaaWcbaGaeqySdegabeaakiabgwSi xlaah2gadaWgaaWcbaGaeqOSdigabeaaaaa@3DC8@  and I g ¯ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMeacqGHHjIUceWGNbGbaebadaWgaa WcbaGaeqySdeMaeqOSdigabeaakiqah2gagaqeamaaCaaaleqabaGa eqySdegaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaa aaaa@3F66@ .

 

When we write constitutive equations relating forces to deformations, it is convenient to introduce two new strain measures defined as follows:

  1. The `mid-plane Lagrange strain tensor’ γ= γ αβ m ¯ α m ¯ β = 1 2 ( g αβ g ¯ αβ ) m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho7acqGH9aqpcqaHZoWzdaWgaaWcba GaeqySdeMaeqOSdigabeaakiqah2gagaqeamaaCaaaleqabaGaeqyS degaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaaGccq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaam4zamaa BaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0Iabm4zayaaraWaaS baaSqaaiabeg7aHjabek7aIbqabaaakiaawIcacaGLPaaaceWHTbGb aebadaahaaWcbeqaaiabeg7aHbaakiabgEPielqah2gagaqeamaaCa aaleqabaGaeqOSdigaaaaa@5565@ ,

where g αβ = m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9iaah2gadaWgaaWcbaGaeqySdegabeaakiabgwSi xlaah2gadaWgaaWcbaGaeqOSdigabeaaaaa@3DC8@  and g ¯ αβ = m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadEgagaqeamaaBaaaleaacqaHXoqycq aHYoGyaeqaaOGaeyypa0JabCyBayaaraWaaSbaaSqaaiabeg7aHbqa baGccqGHflY1ceWHTbGbaebadaWgaaWcbaGaeqOSdigabeaaaaa@3E10@ .  The tensor quantifies length changes of infinitesimal material elements in the mid-plane of the shell, in the sense that the lengths d s ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgaceWGZbGbaebaaaa@3281@  and ds MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGZbaaaa@3269@  of a line element before and after deformation are related by

d ξ α m ¯ α γ m ¯ β d ξ β =( g αβ d ξ α d ξ β g ¯ αβ d ξ α d ξ β )/2=(d s 2 d s ¯ 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH+oaEdaWgaaWcbaGaeqySde gabeaakiqah2gagaqeamaaBaaaleaacqaHXoqyaeqaaOGaeyyXICTa aC4SdiabgwSixlqah2gagaqeamaaBaaaleaacqaHYoGyaeqaaOGaam izaiabe67a4naaBaaaleaacqaHYoGyaeqaaOGaeyypa0ZaaeWaaeaa caWGNbWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaWGKbGaeqOVdG 3aaSbaaSqaaiabeg7aHbqabaGccaWGKbGaeqOVdG3aaSbaaSqaaiab ek7aIbqabaGccqGHsislceWGNbGbaebadaWgaaWcbaGaeqySdeMaeq OSdigabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaa dsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaOGaayjkaiaawMcaai aac+cacaaIYaGaeyypa0JaaiikaiaadsgacaWGZbWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaamizaiqadohagaqeamaaCaaaleqabaGaaG OmaaaakiaacMcacaGGVaGaaGOmaaaa@6F71@

  1. The `Curvature change tensor’ Δκ=Δ κ λβ m ¯ λ m ¯ β =( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaahQ7acqGH9aqpcqqHuoarcq aH6oWAdaWgaaWcbaGaeq4UdWMaeqOSdigabeaakiqah2gagaqeamaa CaaaleqabaGaeq4UdWgaaOGaey4LIqSabCyBayaaraWaaWbaaSqabe aacqaHYoGyaaGccqGH9aqpcaGGOaGaeqOUdS2aa0baaSqaaiabek7a Ibqaaiabeg7aHbaakiabgkHiTiqbeQ7aRzaaraWaa0baaSqaaiabek 7aIbqaaiabeg7aHbaakiaacMcacaWGNbWaaSbaaSqaaiabeU7aSjab eg7aHbqabaGcceWHTbGbaebadaahaaWcbeqaaiabeU7aSbaakiabgE Pielqah2gagaqeamaaCaaaleqabaGaeqOSdigaaaaa@5CCD@ , which quantifies the additional stretch induced by bending and twisting the shell.

 

 

 

 

 10.5.7 Representation of forces and moments in shells

 

The figure shows a generic cross-section of the shell, in the deformed configuration. To define measures of internal and external forces acting on the shell, we define the following variables

 A basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=fYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGG7bGaaCyBam aaBaaaleaacaaIXaaabeaakiaacYcacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaah2gadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3DD8@  with vectors chosen following the scheme described in 10.5.1.  Vector and tensor quantities will be quantified by their contravariant components in this basis

 The body force acting on the rod b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbaaaa@33B1@ , or in component form b= b i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahkgacqGH9aqpcaWGIbWaaWbaaSqabe aacaWGPbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaaaaa@3695@

 The tractions acting on the exterior surface of the shell t= t i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH0bGaeyypa0JaamiDamaaCaaale qabaGaamyAaaaakiaah2gadaWgaaWcbaGaamyAaaqabaaaaa@38F7@ .  It is convenient to define separate variables to characterize the tractions acting on the various parts of the shell, as indicated in the sketch: the upper surface of the shell (denoted by S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaey4kaScabeaaaa a@326E@  ) is subjected to traction t + i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaqhaaWcbaGaey4kaScabaGaam yAaaaaaaa@337E@ ; the lower surface S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaeyOeI0cabeaaaa a@3279@  is subjected to t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaqhaaWcbaGaeyOeI0cabaGaam yAaaaaaaa@3389@ , while the surface around the edge of the shell S e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamyzaaqabaaaaa@3276@  is subjected to t e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaqhaaWcbaGaamyzaaqaaiaadM gaaaaaaa@3386@

 The Cauchy stress within the shell σ= σ ij m i m j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHdpGaeyypa0Jaeq4Wdm3aaWbaaS qabeaacaWGPbGaamOAaaaakiaah2gadaWgaaWcbaGaamyAaaqabaGc cqGHxkcXcaWHTbWaaSbaaSqaaiaadQgaaeqaaaaa@3F26@ .

 

 

External forces and moments acting on the shell are characterized by

  1. The external force per unit area acting on the shell, p= p i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHWbGaeyypa0JaamiCamaaCaaale qabaGaamyAaaaakiaah2gadaWgaaWcbaGaamyAaaqabaaaaa@38EF@ .  The force components can be calculated from the tractions and body force acting on the shell as

p i ( ξ α )= t + i ( ξ α )+ t i ( ξ α )+h κ α α ( t + i ( ξ α ) t i ( ξ α ) )/2+ h/2 h/2 b i ( ξ α , x 3 )( 1+ x 3 κ α α )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaWbaaSqabeaacaWGPbaaaO Gaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiykaiabg2da 9iaadshadaqhaaWcbaGaey4kaScabaGaamyAaaaakiaacIcacqaH+o aEdaWgaaWcbaGaeqySdegabeaakiaacMcacqGHRaWkcaWG0bWaa0ba aSqaaiabgkHiTaqaaiaadMgaaaGccaGGOaGaeqOVdG3aaSbaaSqaai abeg7aHbqabaGccaGGPaGaey4kaSIaamiAaiabeQ7aRnaaDaaaleaa cqaHXoqyaeaacqaHXoqyaaGcdaqadaqaaiaadshadaqhaaWcbaGaey 4kaScabaGaamyAaaaakiaacIcacqaH+oaEdaWgaaWcbaGaeqySdega beaakiaacMcacqGHsislcaWG0bWaa0baaSqaaiabgkHiTaqaaiaadM gaaaGccaGGOaGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaGccaGGPaaa caGLOaGaayzkaaGaai4laiaaikdacqGHRaWkdaWdXbqaaiaadkgada ahaaWcbeqaaiaadMgaaaGccaGGOaGaeqOVdG3aaSbaaSqaaiabeg7a HbqabaGccaGGSaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcada qadaqaaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa eqOUdS2aa0baaSqaaiabeg7aHbqaaiabeg7aHbaaaOGaayjkaiaawM caaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiabgkHiTiaa dIgacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aa aa@85FC@

  1. The external moment per unit area q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahghaaaa@3182@  acting on the shell.  It is most convenient to express the external moment as  q= q α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHXbGaeyypa0JaamyCamaaCaaale qabaGaeqySdegaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiabgEna 0kaah2gadaWgaaWcbaGaeqySdegabeaaaaa@3E53@  where the components q α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadghadaahaaWcbeqaaiabeg7aHbaaaa a@334A@  can be calculated from the tractions and body force as

q α ( ξ β )=[ t + α ( ξ β ) t α ( ξ β ) ]h/2+ h/2 h/2 x 3 b α ( ξ β , x 3 )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGXbWaaWbaaSqabeaacqaHXoqyaa GccaGGOaGaeqOVdG3aaSbaaSqaaiabek7aIbqabaGccaGGPaGaeyyp a0ZaamWaaeaacaWG0bWaa0baaSqaaiabgUcaRaqaaiabeg7aHbaaki aacIcacqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiaacMcacqGHsisl caWG0bWaa0baaSqaaiabgkHiTaqaaiabeg7aHbaakiaacIcacqaH+o aEdaWgaaWcbaGaeqOSdigabeaakiaacMcaaiaawUfacaGLDbaacaWG ObGaai4laiaaikdacqGHRaWkdaWdXbqaaiaadIhadaWgaaWcbaGaaG 4maaqabaGccaWGIbWaaWbaaSqabeaacqaHXoqyaaGccaGGOaGaeqOV dG3aaSbaaSqaaiabek7aIbqabaGccaGGSaGaamiEamaaBaaaleaaca aIZaaabeaakiaacMcacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aeaacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaaik daa0Gaey4kIipaaaa@6A0D@

The vector q is work conjugate to the angular velocity ω= μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8acqGH9aqpcuaH8oqBgaGaamaaBa aaleaacqaHXoqyaeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0kaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D39@  of the normal to the mid-plane of the shell, in the sense that qω= q α ( m 3 × m α ) μ ˙ β ( m 3 × m β )= q α μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHXbGaeyyXICTaaCyYdiabg2da9i aadghadaahaaWcbeqaaiabeg7aHbaakmaabmaabaGaaCyBamaaBaaa leaacaaIZaaabeaakiabgEna0kaah2gadaWgaaWcbaGaeqySdegabe aaaOGaayjkaiaawMcaaiabgwSixlqbeY7aTzaacaWaaSbaaSqaaiab ek7aIbqabaGccaGGOaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgE na0kaah2gadaahaaWcbeqaaiabek7aIbaakiaacMcacqGH9aqpcaWG XbWaaWbaaSqabeaacqaHXoqyaaGccuaH8oqBgaGaamaaBaaaleaacq aHXoqyaeqaaaaa@58E8@  is the rate of work done by the external couple per unit area of the shell’s mid-plane.

  1. The resultant force per unit length acting on the external edge of the shell.  The force per unit length can be expressed as components as P= P i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaCiuaiabg2da9iaadcfadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@37EB@ .  The components are related to the tractions acting on the external surface at the edge of the shell by P i = h/2 h/2 t i (1+ x 3 τ α τ β κ αβ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaamiuamaaCaaaleqabaGaamyAaaaaki abg2da9maapehabaGaamiDamaaCaaaleqabaGaamyAaaaakiaacIca caaIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabes8a0n aaCaaaleqabaGaeqySdegaaOGaeqiXdq3aaWbaaSqabeaacqaHYoGy aaGccqaH6oWAdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaacMcaca WGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacqGHsislcaWGObGa ai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipaaaa@5338@  
  2. The resultant moment per unit length acting on the external edge of the shell.  The moment per unit length can be expressed as components as Q= Q α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaCyuaiabg2da9iaadgfadaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaT caWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3D4F@ .  The components are related to the tractions acting on external surface at the edge of the shell

Q α = h/2 h/2 t α x 3 (1+ x 3 τ α τ β κ αβ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaamyuamaaCaaaleqabaGaeqySdegaaO Gaeyypa0Zaa8qCaeaacaWG0bWaaWbaaSqabeaacqaHXoqyaaGccaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaaigdacqGHRaWkcaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaeqiXdq3aaWbaaSqabeaacqaHXoqy aaGccqaHepaDdaahaaWcbeqaaiabek7aIbaakiabeQ7aRnaaBaaale aacqaHXoqycqaHYoGyaeqaaOGaaiykaiaadsgacaWG4bWaaSbaaSqa aiaaiodaaeqaaaqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadI gacaGGVaGaaGOmaaqdcqGHRiI8aaaa@568B@

 

Internal forces and moments within the shell are characterized by three surface tensors T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfaaaa@3165@ , V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAfaaaa@3167@  and M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eaaaa@315E@ ,  To visualize their physical significance, suppose that the shell is cut through so as to expose an internal surface, which lies perpendicular to the mid-plane of the shell.   Let n= n α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gacqGH9aqpcaWGUbWaaWbaaSqabe aacqaHXoqyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@380F@  denote a unit vector normal to the internal surface, and let ds denote an infinitesimal line element that lies in the both the exposed surface and the mid-plane of the shell.   The exposed surface is subjected to a distribution of traction, so that an small element of area with dimensions ds×h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGZbGaey41aqRaamiAaaaa@356D@  is subjected to a resultant force df=d f i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWHMbGaeyypa0JaamizaiaadA gadaahaaWcbeqaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqa aaaa@386F@  and resultant moment dη=d η α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWH3oGaeyypa0JaamizaiabeE 7aOnaaCaaaleqabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaHXoqy aeqaaaaa@3AE6@ .  These forces and moments are related to T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfaaaa@3165@ , V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAfaaaa@3167@  and M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eaaaa@315E@  as outlined below:

1.      The in-plane stress resultant tensor T= T αβ m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcaWGubWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXcaWHTbWaaSbaaSqaaiabek7aIbqabaaaaa@3E52@  quantifies internal forces that tend to stretch and shear the shell in its own plane.  It is related to the internal tractions by d f α m α =dsnT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGMbWaaWbaaSqabeaacqaHXo qyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpcaWGKbGa am4Caiaah6gacqGHflY1caWHubaaaa@3E02@ , and its components can be calculated from the stress distribution in the shell as

T αβ = h/2 h/2 ( σ αβ x 3 σ γα κ γ β ) (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9maapehabaWaaeWaaeaacqaHdpWCdaahaaWcbeqa aiabeg7aHjabek7aIbaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maa qabaGccqaHdpWCdaahaaWcbeqaaiabeo7aNjabeg7aHbaakiabeQ7a RnaaDaaaleaacqaHZoWzaeaacqaHYoGyaaaakiaawIcacaGLPaaaaS qaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOm aaqdcqGHRiI8aOGaaiikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaai aaiodaaeqaaOGaeqOUdS2aa0baaSqaaiabeU7aSbqaaiabeU7aSbaa kiaacMcacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaa@5F0D@

2.      The transverse shearing stress tensor V= V β m β m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAfacqGH9aqpcaWGwbWaaWbaaSqabe aacqaHYoGyaaGccaWHTbWaaSbaaSqaaiabek7aIbqabaGccqGHxkcX caWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@3BD4@  quantifies internal forces that act to impose the constraint that material fibers that are perpendicular to the mid-plane of the shell before deformation remain perpendicular to the mid-plane after deformation.  Strictly speaking, in Kirchoff shell theory it is a Lagrange multiplier, but can be regarded as quantifying the transverse shear force d f 3 m 3 =dsnV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGMbWaaWbaaSqabeaacaaIZa aaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiabg2da9iaadsgacaWG ZbGaaCOBaiabgwSixlaahAfaaaa@3C40@ .  Its value cannot be computed from the deformation of the shell, because the transverse shearing has been neglected: instead, it must be determined by solving the equilibrium equations given in the next section.

3.      The internal moment tensor M= M αβ m α ( m 3 × m β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcaWGnbWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXdaqadaqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxd aTcaWHTbWaaSbaaSqaaiabek7aIbqabaaakiaawIcacaGLPaaaaaa@43D7@  characterizes internal bending and twisting moments in the shell.   It is related to the moment acting on internal through-thickness sections of the shell by dη= η α m α =dsnM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWH3oGaeyypa0Jaeq4TdG2aaW baaSqabeaacqaHXoqyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGH9aqpcaWGKbGaam4Caiaah6gacqGHflY1caWHnbaaaa@4105@ .  The components M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34C7@  can be calculated from the internal stresses in the shell as

M αβ = h/2 h/2 x 3 ( σ αβ x 3 σ γα κ γ β ) (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9maapehabaGaamiEamaaBaaaleaacaaIZaaabeaa kmaabmaabaGaeq4Wdm3aaWbaaSqabeaacqaHXoqycqaHYoGyaaGccq GHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeq4Wdm3aaWbaaSqa beaacqaHZoWzcqaHXoqyaaGccqaH6oWAdaqhaaWcbaGaeq4SdCgaba GaeqOSdigaaaGccaGLOaGaayzkaaaaleaacqGHsislcaWGObGaai4l aiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipakiaacIcaca aIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabeQ7aRnaa DaaaleaacqaH7oaBaeaacqaH7oaBaaGccaGGPaGaamizaiaadIhada WgaaWcbaGaaG4maaqabaaaaa@60F6@

The tensor M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eaaaa@315E@  is work conjugate to the gradient of the angular velocity of the normal to the mid-plane of the shell ω= μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahM8acqGH9aqpcuaH8oqBgaGaamaaBa aaleaacqaHXoqyaeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0kaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D39@ , or alternatively, to the rate of change of curvature in the sense that

M:( m α ω ξ α )={ M αβ m α ( m 3 × m β ) }:{ m γ ξ γ { μ ˙ λ ( m 3 × m λ ) } } = M αβ ( μ ˙ β ξ α μ ˙ λ Γ αβ λ )= M αβ κ ˙ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaah2eacaGG6aWaaeWaaeaaca WHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXdaWcaaqaaiabgkGi 2kaahM8aaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaa aakiaawIcacaGLPaaacqGH9aqpdaGadaqaaiaad2eadaahaaWcbeqa aiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaaki abgEPiepaabmaabaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgEna 0kaah2gadaWgaaWcbaGaeqOSdigabeaaaOGaayjkaiaawMcaaaGaay 5Eaiaaw2haaiaacQdadaGadaqaaiaah2gadaahaaWcbeqaaiabeo7a NbaakiabgEPiepaalaaabaGaeyOaIylabaGaeyOaIyRaeqOVdG3aaS baaSqaaiabeo7aNbqabaaaaOWaaiWaaeaacuaH8oqBgaGaamaaBaaa leaacqaH7oaBaeqaaOGaaiikaiaah2gadaWgaaWcbaGaaG4maaqaba GccqGHxdaTcaWHTbWaaWbaaSqabeaacqaH7oaBaaGccaGGPaaacaGL 7bGaayzFaaaacaGL7bGaayzFaaaabaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaWGnbWaaWba aSqabeaacqaHXoqycqaHYoGyaaGcdaqadaqaamaalaaabaGaeyOaIy RafqiVd0MbaiaadaWgaaWcbaGaeqOSdigabeaaaOqaaiabgkGi2kab e67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgkHiTiqbeY7aTzaaca WaaSbaaSqaaiabeU7aSbqabaGccqqHtoWrdaqhaaWcbaGaeqySdeMa eqOSdigabaGaeq4UdWgaaaGccaGLOaGaayzkaaGaeyypa0Jaamytam aaCaaaleqabaGaeqySdeMaeqOSdigaaOGafqOUdSMbaiaadaWgaaWc baGaeqySdeMaeqOSdigabeaaaaaa@D952@

 is the rate of work done by M per unit area of the mid-plane of the shell.

 

 

 

10.5.8 Equations of motion and boundary conditions

 

We consider a shell with thickness h and mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3248@ . The internal forces and moments must satisfy

        m α ξ α ( V+T )+p=ρha m α M ξ α + m α ×[ m α (VT) ]+q= ρ h 3 12 α× m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHTbWaaWbaaSqabeaacqaHXoqyaa GccqGHflY1daWcaaqaaiabgkGi2cqaaiabgkGi2kabe67a4naaBaaa leaacqaHXoqyaeqaaaaakmaabmaabaGaaCOvaiabgUcaRiaahsfaai aawIcacaGLPaaacqGHRaWkcaWHWbGaeyypa0JaeqyWdiNaamiAaiaa hggacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH TbWaaWbaaSqabeaacqaHXoqyaaGccqGHflY1daWcaaqaaiabgkGi2k aah2eaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGc cqGHRaWkcaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxdaTdaWada qaaiaah2gadaahaaWcbeqaaiabeg7aHbaakiabgwSixlaacIcacaWH wbGaeyOeI0IaaCivaiaacMcaaiaawUfacaGLDbaacqGHRaWkcaWHXb Gaeyypa0ZaaSaaaeaacqaHbpGCcaWGObWaaWbaaSqabeaacaaIZaaa aaGcbaGaaGymaiaaikdaaaGaaCySdiabgEna0kaah2gadaWgaaWcba GaaG4maaqabaGccaaMc8oaaa@8C14@

The operator m α (/ ξ α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaahaaWcbeqaaiabeg7aHbaaki abgwSixlaacIcacqGHciITcaGGVaGaeyOaIyRaeqOVdG3aaSbaaSqa aiabeg7aHbqabaGccaGGPaaaaa@3E0E@  represents the surface divergence, T, V and M are the internal forces defined in Sect 10.5.7; p and q are the external force and couple per unit area acting on the shell, a is the acceleration of the mid-plane and α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7aaaa@31C5@  is the angular acceleration of the unit vector normal to the mid-plane of the shell.  The two equations can be interpreted as linear and angular momentum balance for an infinitesimal element of the shell.  Note that:

1.      If the system is in static equilibrium, the right hand sides of all the equations of motion are zero.

2.      In addition, in many dynamic problems, the right hand sides of the angular momentum balance equations may be taken to be approximately zero.  For example, the rotational inertia may be ignored when modeling the vibration of a shell.  The rotational inertia terms can be important if the shell is rotating rapidly: for example, they would influence the out-of-plane vibration of a spinning disk.

 

The equations of motion can also be expressed in terms of components of the various force and moment tensors by substituting T= T αβ m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcaWGubWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXcaWHTbWaaSbaaSqaaiabek7aIbqabaaaaa@3E52@ , V= V β m β m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAfacqGH9aqpcaWGwbWaaWbaaSqabe aacqaHYoGyaaGccaWHTbWaaSbaaSqaaiabek7aIbqabaGccqGHxkcX caWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@3BD5@   M= M αβ m α ( m 3 × m β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcaWGnbWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXdaqadaqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxd aTcaWHTbWaaSbaaSqaaiabek7aIbqabaaakiaawIcacaGLPaaaaaa@43D7@ , p= p i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahchacqGH9aqpcaWGWbWaaWbaaSqabe aacaWGPbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaaaaa@36B1@ , q= q α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHXbGaeyypa0JaamyCamaaCaaale qabaGaeqySdegaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiabgEna 0kaah2gadaWgaaWcbaGaeqySdegabeaaaaa@3E53@ , a= a i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaWbaaSqabe aacaWGPbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaaaaa@3693@  and α= μ ¨ β m 3 × m β + μ ˙ β μ ˙ β m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahg7acqGH9aqpcuaH8oqBgaWaamaaCa aaleqabaGaeqOSdigaaOGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0kaah2gadaWgaaWcbaGaeqOSdigabeaakiabgUcaRiqbeY7aTz aacaWaaSbaaSqaaiabek7aIbqabaGccuaH8oqBgaGaamaaCaaaleqa baGaeqOSdigaaOGaaCyBamaaBaaaleaacaaIZaaabeaaaaa@471E@  and recalling that

m α ξ γ = Γ αγ λ m λ κ αγ m 3 m 3 ξ γ = κ γ λ m λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaaCyBamaaBaaale aacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeo7a NbqabaaaaOGaeyypa0Jaeu4KdC0aa0baaSqaaiabeg7aHjabeo7aNb qaaiabeU7aSbaakiaah2gadaWgaaWcbaGaeq4UdWgabeaakiabgkHi TiabeQ7aRnaaBaaaleaacqaHXoqycqaHZoWzaeqaaOGaaCyBamaaBa aaleaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaah2gadaWgaaWcbaGa aG4maaqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeq4SdCgabe aaaaGccqGH9aqpcqaH6oWAdaqhaaWcbaGaeq4SdCgabaGaeq4UdWga aOGaaCyBamaaBaaaleaacqaH7oaBaeqaaaaa@7687@

The result is

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =ρh a β + V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =ρh a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWGubWaaW baaSqabeaacqaHXoqycqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGubWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdCga baGaeq4SdCgaaOGaey4kaSIaamivamaaCaaaleqabaGaeqySdeMaeq 4SdCgaaOGaeu4KdC0aa0baaSqaaiabeo7aNjabeg7aHbqaaiabek7a IbaakiabgUcaRiaadAfadaahaaWcbeqaaiabeg7aHbaakiabeQ7aRn aaDaaaleaacqaHXoqyaeaacqaHYoGyaaGccqGHRaWkcaWGWbWaaWba aSqabeaacqaHYoGyaaGccqGH9aqpcqaHbpGCcaWGObGaamyyamaaCa aaleqabaGaeqOSdigaaaGcbaGaey4kaSYaaSaaaeaacqGHciITcaWG wbWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcqaH+oaEdaWgaa WcbaGaeqySdegabeaaaaGccqGHRaWkcaWGwbWaaWbaaSqabeaacqaH XoqyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeqOSdigabaGaeqOSdi gaaOGaeyOeI0IaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGa eqOUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaGccqGHRaWkcaWGWb WaaWbaaSqabeaacaaIZaaaaOGaeyypa0JaeqyWdiNaamiAaiaadgga daahaaWcbeqaaiaaiodaaaaaaaa@8C78@    M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β = ρ h 3 12 μ ¨ β T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWGnbWaaW baaSqabeaacqaHXoqycqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdCga baGaeq4SdCgaaOGaey4kaSIaamytamaaCaaaleqabaGaeqySdeMaeq 4SdCgaaOGaeu4KdC0aa0baaSqaaiabeo7aNjabeg7aHbqaaiabek7a IbaakiabgkHiTiaadAfadaahaaWcbeqaaiabek7aIbaakiabgUcaRi aadghadaahaaWcbeqaaiabek7aIbaakiabg2da9maalaaabaGaeqyW diNaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaaaai qbeY7aTzaadaWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGubWaaWba aSqabeaacaaIXaGaaGOmaaaakiabgkHiTiaadsfadaahaaWcbeqaai aaikdacaaIXaaaaOGaey4kaSIaamytamaaCaaaleqabaGaeqySdeMa aGymaaaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacaaIYaaaaOGaey OeI0IaamytamaaCaaaleqabaGaeqySdeMaaGOmaaaakiabeQ7aRnaa DaaaleaacqaHXoqyaeaacaaIXaaaaOGaeyypa0JaaGimaaaaaa@7CA8@

 

The last equation shows that the stress resultant and moment tensors are not symmetric.  The asymmetry is small, and is ignored in simplified versions of shell theory.  However, there are a few special shell geometries (a cylindrical shell subjected to torsional loading is one example) where neglecting the asymmetry can lead to substantial errors.

 

Edge boundary conditions for a shell are complicated and confusing.  To understand them, it is helpful to visualize the possible types of motion that can occur at the edge of a shell.  The edge of the shell is characterized by a curve C that lies in the mid-plane of the shell, encircling m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@  in a counterclockwise sense.   We let s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadohaaaa@3180@  denote arc-length measured around C from some convenient origin, and use τ= τ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8acqGH9aqpcqaHepaDdaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaeqySdegabeaaaaa@393A@  and n= m 3 ×τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gacqGH9aqpcaWHTbWaaSbaaSqaai aaiodaaeqaaOGaey41aqRaaCiXdaaa@37D5@  denote unit vectors tangent and normal to C.  Elements of the shell that lie on C have four independent degrees of freedom, as follows:

  1. The material element can have an arbitrary velocity, with three components δv=δ v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcqaH0oazca WG2bWaaSbaaSqaaiaadMgaaeqaaOGaaCyBamaaCaaaleqabaGaamyA aaaaaaa@3A07@
  2. The material element can rotate about the tangent vector τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8aaaa@31D8@ . To visualize this motion, imagine that the shell is supported around C by a hinge. 

The motion of the edge of the shell can be prescribed by constraining one or more of these degrees of freedom.   Alternatively, the edge of the shell can be subjected to one or more of four generalized forces, which are work-conjugate to these degrees of freedom.  The generalized forces can be expressed in terms of the forces P= P i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahcfacqGH9aqpcaWGqbWaaWbaaSqabe aacaWGPbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaaaaa@3671@  and couples Q= Q α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahgfacqGH9aqpcaWGrbWaaWbaaSqabe aacqaHXoqyaaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey41aqRa aCyBamaaBaaaleaacqaHXoqyaeqaaaaa@3BD5@  acting on the edge of the shell as

  1. P β + Q λ κ λ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadcfadaahaaWcbeqaaiabek7aIbaaki abgUcaRiaadgfadaahaaWcbeqaaiabeU7aSbaakiabeQ7aRnaaDaaa leaacqaH7oaBaeaacqaHYoGyaaaaaa@3C0B@  is work-conjugate to the in-plane displacement of the shell δ v β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaeqOSdi gabeaaaaa@34F5@
  2. P 3 s [ Q β τ β ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadcfadaahaaWcbeqaaiaaiodaaaGccq GHsisldaWcaaqaaiabgkGi2cqaaiabgkGi2kaadohaaaWaamWaaeaa caWGrbWaaWbaaSqabeaacqaHYoGyaaGccqaHepaDdaWgaaWcbaGaeq OSdigabeaaaOGaay5waiaaw2faaaaa@3F4D@  is work-conjugate to the out-of-plane displacement of the edge of the shell δ v 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maa qabaaaaa@3411@
  3. Q β n β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgfadaahaaWcbeqaaiabek7aIbaaki aad6gadaWgaaWcbaGaeqOSdigabeaaaaa@35F5@  is work-conjugate to the rotation of the shell about its edge.

The four boundary conditions can be expressed in terms of these forces as follows:

n α T αβ + n α M αλ κ λ β = P β + Q λ κ λ β n α V α + s [ n α M αβ τ β ]= P 3 + s [ Q β τ β ] n α M αβ n β = Q β n β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamOBamaaBaaaleaacqaHXoqyae qaaOGaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaey4kaSIa amOBamaaBaaaleaacqaHXoqyaeqaaOGaamytamaaCaaaleqabaGaeq ySdeMaeq4UdWgaaOGaeqOUdS2aa0baaSqaaiabeU7aSbqaaiabek7a Ibaakiabg2da9iaadcfadaahaaWcbeqaaiabek7aIbaakiabgUcaRi aadgfadaahaaWcbeqaaiabeU7aSbaakiabeQ7aRnaaDaaaleaacqaH 7oaBaeaacqaHYoGyaaaakeaacaWGUbWaaSbaaSqaaiabeg7aHbqaba GccaWGwbWaaWbaaSqabeaacqaHXoqyaaGccqGHRaWkdaWcaaqaaiab gkGi2cqaaiabgkGi2kaadohaaaWaamWaaeaacaWGUbWaaSbaaSqaai abeg7aHbqabaGccaWGnbWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGc cqaHepaDdaWgaaWcbaGaeqOSdigabeaaaOGaay5waiaaw2faaiabg2 da9iaadcfadaahaaWcbeqaaiaaiodaaaGccqGHRaWkdaWcaaqaaiab gkGi2cqaaiabgkGi2kaadohaaaWaamWaaeaacaWGrbWaaWbaaSqabe aacqaHYoGyaaGccqaHepaDdaWgaaWcbaGaeqOSdigabeaaaOGaay5w aiaaw2faaiaaykW7caaMc8oabaGaamOBamaaBaaaleaacqaHXoqyae qaaOGaamytamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaamOBamaa BaaaleaacqaHYoGyaeqaaOGaeyypa0JaamyuamaaCaaaleqabaGaeq OSdigaaOGaamOBamaaBaaaleaacqaHYoGyaeqaaaaaaa@8B73@

 

Derivation: Measures of internal force, the equilibrium equations, and the boundary conditions emerge naturally from the principle of virtual work.  The principle of virtual work states that, for any deformable solid that is in static equilibrium, the Cauchy stress distribution must satisfy

V σ:δLdV + V ρaδ y ˙ dV V bδ y ˙ dV S tδ y ˙ dA =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaC4WdiaacQdacqaH0oazca WHmbGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHRaWk daWdrbqaaiabeg8aYjaahggacqGHflY1cqaH0oazceWH5bGbaiaaca WGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabgkHiTmaapefa baGaaCOyaiabgwSixlabes7aKjqahMhagaGaaiaadsgacaWGwbaale aacaWGwbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWH0bGaeyyX ICTaeqiTdqMabCyEayaacaGaamizaiaadgeaaSqaaiaadofaaeqani abgUIiYdGccqGH9aqpcaaIWaaaaa@60BF@

for all virtual velocity fields δ y ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazceWH5bGbaiaaaaa@3576@  and compatible velocity gradients δL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazcaWHmbaaaa@3540@ .  The virtual velocity field in the shell must have the same general form as the actual velocity, as outlined in Section 10.2.4.  The virtual velocity can therefore be characterized by the virtual velocity of the mid-plane of the shell δv=δ v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcqaH0oazca WG2bWaaSbaaSqaaiaadMgaaeqaaOGaaCyBamaaCaaaleqabaGaamyA aaaaaaa@3A07@ .  It is convenient to introduce the time derivative of the normal vector to the plate’s mid-plane δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqah2gagaGaamaaBaaaleaaca aIZaaabeaakiabg2da9iabes7aKjqbeY7aTzaacaWaaSbaaSqaaiab eg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaaaaa@3D20@  as an additional kinematic variable, which must of course be compatible with δv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhaaaa@332C@ .  We will show the following:

 The virtual work principle can be expressed in terms of the generalized deformation measures and forces defined in the preceding sections as

A T αβ { δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα }dA + A M αβ ( δ μ ˙ α ξ β δ μ ˙ λ Γ αβ λ )dA + A hρ a i δ v i dA + A ρ h 3 12 μ ¨ α δ μ ˙ α dA A p i δ v i dA A q α δ μ ˙ α dA C P i δ v i ds C Q α δ μ ˙ α ds =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaacaWGubWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGcdaGadaqaamaalaaabaGaeyOaIyRaeqiT dqMaamODamaaBaaaleaacqaHYoGyaeqaaaGcbaGaeyOaIyRaeqOVdG 3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyOeI0IaeqiTdqMaamODamaa BaaaleaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiabek7aIjabeg 7aHbqaaiabeU7aSbaakiabgUcaRiabes7aKjaadAhadaWgaaWcbaGa aG4maaqabaGccqaH6oWAdaWgaaWcbaGaeqOSdiMaeqySdegabeaaaO Gaay5Eaiaaw2haaiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8 aOGaey4kaSYaa8quaeaacaWGnbWaaWbaaSqabeaacqaHXoqycqaHYo GyaaGcdaqadaqaamaalaaabaGaeyOaIyRaeqiTdqMafqiVd0Mbaiaa daWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2kabe67a4naaBaaale aacqaHYoGyaeqaaaaakiabgkHiTiabes7aKjqbeY7aTzaacaWaaSba aSqaaiabeU7aSbqabaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeqOSdi gabaGaeq4UdWgaaaGccaGLOaGaayzkaaGaamizaiaadgeaaSqaaiaa dgeaaeqaniabgUIiYdaakeaacaaMc8Uaey4kaSIaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaapefabaGaamiAaiabeg8a YjaadggadaahaaWcbeqaaiaadMgaaaGccqaH0oazcaWG2bWaaSbaaS qaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIi YdGccqGHRaWkdaWdrbqaamaalaaabaGaeqyWdiNaamiAamaaCaaale qabaGaaG4maaaaaOqaaiaaigdacaaIYaaaaiqbeY7aTzaadaWaaWba aSqabeaacqaHXoqyaaGccqaH0oazcuaH8oqBgaGaamaaBaaaleaacq aHXoqyaeqaaOGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGc caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0Yaa8quaeaacaWGWbWaaW baaSqabeaacaWGPbaaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaa beaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaeyOeI0 Yaa8quaeaacaWGXbWaaWbaaSqabeaacqaHXoqyaaGccqaH0oazcuaH 8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaOGaamizaiaadgeaaSqaai aadgeaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiaadcfadaahaaWc beqaaiaadMgaaaGccqaH0oazcaWG2bWaaSbaaSqaaiaadMgaaeqaaO GaamizaiaadohaaSqaaiaadoeaaeqaniabgUIiYdGccqGHsisldaWd rbqaaiaadgfadaahaaWcbeqaaiabeg7aHbaakiabes7aKjqbeY7aTz aacaWaaSbaaSqaaiabeg7aHbqabaGccaWGKbGaam4CaaWcbaGaam4q aaqab0Gaey4kIipakiabg2da9iaaicdaaaaa@E937@

 If the virtual work equation is satisfied for all δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazcaWG2bWaaSbaaSqaaiaadM gaaeqaaaaa@3680@  and compatible δ μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaaaaa@35B7@ , then the internal forces and moments must satisfy the following equilibrium equations

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =ρh a β V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =ρh a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWGubWaaW baaSqabeaacqaHXoqycqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGubWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdCga baGaeq4SdCgaaOGaey4kaSIaamivamaaCaaaleqabaGaeqySdeMaeq 4SdCgaaOGaeu4KdC0aa0baaSqaaiabeo7aNjabeg7aHbqaaiabek7a IbaakiabgUcaRiaadAfadaahaaWcbeqaaiabeg7aHbaakiabeQ7aRn aaDaaaleaacqaHXoqyaeaacqaHYoGyaaGccqGHRaWkcaWGWbWaaWba aSqabeaacqaHYoGyaaGccqGH9aqpcqaHbpGCcaWGObGaamyyamaaCa aaleqabaGaeqOSdigaaaGcbaWaaSaaaeaacqGHciITcaWGwbWaaWba aSqabeaacqaHXoqyaaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeq ySdegabeaaaaGccqGHRaWkcaWGwbWaaWbaaSqabeaacqaHXoqyaaGc cqqHtoWrdaqhaaWcbaGaeqySdeMaeqOSdigabaGaeqOSdigaaOGaey OeI0IaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeqOUdS2a aSbaaSqaaiabeg7aHjabek7aIbqabaGccqGHRaWkcaWGWbWaaWbaaS qabeaacaaIZaaaaOGaeyypa0JaeqyWdiNaamiAaiaadggadaahaaWc beqaaiaaiodaaaaaaaa@8B96@   M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β = ρ h 3 12 μ ¨ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamytamaaCaaale qabaGaeqySdeMaeqOSdigaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqa aiabeg7aHbqabaaaaOGaey4kaSIaamytamaaCaaaleqabaGaeqySde MaeqOSdigaaOGaeu4KdC0aa0baaSqaaiabeg7aHjabeo7aNbqaaiab eo7aNbaakiabgUcaRiaad2eadaahaaWcbeqaaiabeg7aHjabeo7aNb aakiabfo5ahnaaDaaaleaacqaHZoWzcqaHXoqyaeaacqaHYoGyaaGc cqGHsislcaWGwbWaaWbaaSqabeaacqaHYoGyaaGccqGHRaWkcaWGXb WaaWbaaSqabeaacqaHYoGyaaGccqGH9aqpdaWcaaqaaiabeg8aYjaa dIgadaahaaWcbeqaaiaaiodaaaaakeaacaaIXaGaaGOmaaaacuaH8o qBgaWaamaaCaaaleqabaGaeqOSdigaaaaa@63BF@

as well as the boundary conditions listed above.

  The last equilibrium equation T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiaaigdacaaIYa aaaOGaeyOeI0IaamivamaaCaaaleqabaGaaGOmaiaaigdaaaGccqGH RaWkcaWGnbWaaWbaaSqabeaacqaHXoqycaaIXaaaaOGaeqOUdS2aa0 baaSqaaiabeg7aHbqaaiaaikdaaaGccqGHsislcaWGnbWaaWbaaSqa beaacqaHXoqycaaIYaaaaOGaeqOUdS2aa0baaSqaaiabeg7aHbqaai aaigdaaaGccqGH9aqpcaaIWaaaaa@4960@  does not emerge from the virtual work principle. Instead, this equation is a consequence of the symmety of the Cauchy stress tensor σ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@35B8@ , as shown below. It is automatically satisfied if the components  T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34CE@  and M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34C7@  are calculated by integrating the stresses through the thickness of the shell.  However,  for some statically determinate shell problems it is possible to avoid evaluating these integrals explicitly, in which case the equilibrium equation is useful.

 

Expressing the virtual work equation in terms of generalized force measures is a straightforward but lengthy algebraic exercise.

  1. When applying the virtual work principle, we will need to integrate over the volume of the shell.  It is convenient to write the volume integral as separate integrals over the mid-plane of the shell and through its thickness, as follows

V dV = A h/2 h/2 ( y ξ 1 × y ξ 2 ) y x 3 d x 3 d ξ 1 d ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamizaiaadAfaaSqaaiaadA faaeqaniabgUIiYdGccqGH9aqpdaWdsbqaamaapehabaWaaeWaaeaa daWcaaqaaiabgkGi2kaahMhaaeaacqGHciITcqaH+oaEdaWgaaWcba GaaGymaaqabaaaaOGaey41aq7aaSaaaeaacqGHciITcaWH5baabaGa eyOaIyRaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawM caaiabgwSixpaalaaabaGaeyOaIyRaaCyEaaqaaiabgkGi2kaadIha daWgaaWcbaGaaG4maaqabaaaaOGaamizaiaadIhadaWgaaWcbaGaaG 4maaqabaaabaGaeyOeI0IaamiAaiaac+cacaaIYaaabaGaamiAaiaa c+cacaaIYaaaniabgUIiYdaaleaacaWGbbaabeqdcqGHRiI8cqGHRi I8aOGaamizaiabe67a4naaBaaaleaacaaIXaaabeaakiaadsgacqaH +oaEdaWgaaWcbaGaaGOmaaqabaaaaa@6647@

Recall that y=r+ x 3 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhacqGH9aqpcaWHYbGaey4kaSIaam iEamaaBaaaleaacaaIZaaabeaakiaah2gadaWgaaWcbaGaaG4maaqa baaaaa@383C@ , so that

y ξ α = m α + x 3 κ α β m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaaCyEaaqaaiabgk Gi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabg2da9iaah2ga daWgaaWcbaGaeqySdegabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG 4maaqabaGccqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqOSdigaaOGa aCyBamaaBaaaleaacqaHYoGyaeqaaaaa@468D@

Therefore ( y ξ 1 × y ξ 2 ) y x 3 ( 1+ x 3 κ α α )( m 1 × m 2 ) m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaabmaabaWaaSaaaeaacqGHciITcaWH5b aabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaaakiabgEna 0oaalaaabaGaeyOaIyRaaCyEaaqaaiabgkGi2kabe67a4naaBaaale aacaaIYaaabeaaaaaakiaawIcacaGLPaaacqGHflY1daWcaaqaaiab gkGi2kaahMhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaa aakiabgIKi7oaabmaabaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGa aG4maaqabaGccqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqySdegaaa GccaGLOaGaayzkaaWaaeWaaeaacaWHTbWaaSbaaSqaaiaaigdaaeqa aOGaey41aqRaaCyBamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaiabgwSixlaah2gadaWgaaWcbaGaaG4maaqabaaaaa@60EB@ , where the term of order x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaqhaaWcbaGaaG4maaqaaiaaik daaaaaaa@332B@  has been neglected.  Substituting this result into the volume integral yields

V dV A h/2 h/2 ( 1+ x 3 κ α α )( m 1 × m 2 ) m 3 d ξ 1 d ξ 2 d x 3 A h/2 h/2 ( 1+ x 3 κ α α )d x 3 dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamizaiaadAfaaSqaaiaadA faaeqaniabgUIiYdGccqGHijYUdaWdsbqaamaapehabaWaaeWaaeaa caaIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabeQ7aRn aaDaaaleaacqaHXoqyaeaacqaHXoqyaaaakiaawIcacaGLPaaadaqa daqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHTbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaaCyBamaa BaaaleaacaaIZaaabeaaaeaacqGHsislcaWGObGaai4laiaaikdaae aacaWGObGaai4laiaaikdaa0Gaey4kIipaaSqaaiaadgeaaeqaniab gUIiYlabgUIiYdGccaWGKbGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaO Gaamizaiabe67a4naaBaaaleaacaaIYaaabeaakiaadsgacaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeyyyIO7aa8quaeaadaWdXbqaamaabm aabaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH 6oWAdaqhaaWcbaGaeqySdegabaGaeqySdegaaaGccaGLOaGaayzkaa GaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGccaWGKbGaamyqaaWc baGaeyOeI0IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaIYa aaniabgUIiYdaaleaacaWGbbaabeqdcqGHRiI8aaaa@7FAA@

where the area integral is understood to be taken over the mid-plane of the shell.

  1. Similarly, the integrals over the outer surface of the shell can be separated into integrals taken over the upper and lower surfaces of the shell ( S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaey4kaScabeaaaa a@326E@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaeyOeI0cabeaaaa a@3279@  ), together with an integral over the surface at the edge of the shell S e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamyzaaqabaaaaa@3276@ , as follows

S dA = S+ dA + S dA + S e dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamizaiaadgeaaSqaaiaado faaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiaadsgacaWGbbaaleaa caWGtbGaey4kaScabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacaWGKb GaamyqaaWcbaGaam4uaiabgkHiTaqab0Gaey4kIipakiabgUcaRmaa pefabaGaamizaiaadgeaaSqaaiaadofadaWgaaadbaGaamyzaaqaba aaleqaniabgUIiYdaaaa@49A5@

Following the procedure in step (1), the integrals over S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaey4kaScabeaaaa a@326E@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaeyOeI0cabeaaaa a@3279@  can be expressed in terms of integrals taken over the mid-plane of the shell as

S+ dA = A ( 1+h κ α α /2 )dA S dA = A ( 1h κ α α /2 )dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamizaiaadgeaaSqaaiaado facqGHRaWkaeqaniabgUIiYdGccqGH9aqpdaWdrbqaamaabmaabaGa aGymaiabgUcaRiaadIgacqaH6oWAdaqhaaWcbaGaeqySdegabaGaeq ySdegaaOGaai4laiaaikdaaiaawIcacaGLPaaacaWGKbGaamyqaaWc baGaamyqaaqab0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7daWdrbqaaiaadsgacaWGbbaaleaaca WGtbGaeyOeI0cabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaadaqadaqa aiaaigdacqGHsislcaWGObGaeqOUdS2aa0baaSqaaiabeg7aHbqaai abeg7aHbaakiaac+cacaaIYaaacaGLOaGaayzkaaGaamizaiaadgea aSqaaiaadgeaaeqaniabgUIiYdaaaa@75AE@

The integral over S e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaamyzaaqabaaaaa@3276@  can be reduced to a line integral taken around the curve(s) bounding the edge of the shell, as

S e dA = C h/2 h/2 (1+ x 3 τ α τ β κ αβ )d x 3 ds MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamizaiaadgeaaSqaaiaado fadaWgaaadbaGaamyzaaqabaaaleqaniabgUIiYdGccqGH9aqpdaWd rbqaamaapehabaGaaiikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaai aaiodaaeqaaOGaeqiXdq3aaWbaaSqabeaacqaHXoqyaaGccqaHepaD daahaaWcbeqaaiabek7aIbaakiabeQ7aRnaaBaaaleaacqaHXoqycq aHYoGyaeqaaOGaaiykaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqa aOGaamizaiaadohaaSqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaai aadIgacaGGVaGaaGOmaaqdcqGHRiI8aaWcbaGaam4qaaqab0Gaey4k Iipaaaa@58AB@

The procedure to derive this result is very similar to the steps required to simplify the volume integral and is left as an exercise.

  1. Next, consider the integrand

σ:δLσ:[ ( δ m ˙ i m i + x 3 δ κ ˙ αβ m α m β )( m i m i x 3 κ β α m α m β ) ] =[ σ ( m i m i x 3 κ β α m α m β ) T ]:( δ m ˙ i m i + x 3 δ κ ˙ αβ m α m β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaC4WdiaacQdacqaH0oazcaWHmb GaeyisISRaaC4WdiaacQdadaWadaqaamaabmaabaGaeqiTdqMabCyB ayaacaWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaale qabaGaamyAaaaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGc cqaH0oazcuaH6oWAgaGaamaaBaaaleaacqaHXoqycqaHYoGyaeqaaO GaaCyBamaaCaaaleqabaGaeqySdegaaOGaey4LIqSaaCyBamaaCaaa leqabaGaeqOSdigaaaGccaGLOaGaayzkaaWaaeWaaeaacaWHTbWaaS baaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamyA aaaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAda qhaaWcbaGaeqOSdigabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaH XoqyaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaeqOSdigaaaGcca GLOaGaayzkaaaacaGLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaamWaaeaacaWHdpWaaeWa aeaacaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCa aaleqabaGaamyAaaaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqa baGccqaH6oWAdaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGaaCyBam aaBaaaleaacqaHXoqyaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGa eqOSdigaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaaGcca GLBbGaayzxaaGaaiOoamaabmaabaGaeqiTdqMabCyBayaacaWaaSba aSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamyAaa aakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH0oazcuaH 6oWAgaGaamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaCyBamaaCa aaleqabaGaeqySdegaaOGaey4LIqSaaCyBamaaCaaaleqabaGaeqOS digaaaGccaGLOaGaayzkaaaaaaa@BC5E@

To reduce this to a scalar combination of the components of the various tensors and vectors, substitute σ= σ ij m i m j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acqGH9aqpcqaHdpWCdaahaaWcbe qaaiaadMgacaWGQbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaakiab gEPielaah2gadaWgaaWcbaGaamOAaaqabaaaaa@3CE8@ , together with the kinematic formulas:

δ m ˙ α = δ v β ξ α m β d v β Γ λα β m λ +δ v 3 κ βα m β +( δ v 3 ξ α δ v β κ α β ) m 3 δ m ˙ 3 =( v 3 ξ α v β κ α β ) m α δ κ ˙ αβ m α =( δ μ ˙ α ξ β m α δ μ ˙ λ Γ αβ λ m α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeqiTdqMabCyBayaacaWaaSbaaS qaaiabeg7aHbqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabes7aKjaa dAhadaWgaaWcbaGaeqOSdigabeaaaOqaaiabgkGi2kabe67a4naaBa aaleaacqaHXoqyaeqaaaaakiaah2gadaahaaWcbeqaaiabek7aIbaa kiabgkHiTiaadsgacaWG2bWaaSbaaSqaaiabek7aIbqabaGccqqHto WrdaqhaaWcbaGaeq4UdWMaeqySdegabaGaeqOSdigaaOGaaCyBamaa CaaaleqabaGaeq4UdWgaaOGaey4kaSIaeqiTdqMaamODamaaBaaale aacaaIZaaabeaakiabeQ7aRnaaBaaaleaacqaHYoGycqaHXoqyaeqa aOGaaCyBamaaCaaaleqabaGaeqOSdigaaOGaey4kaSYaaeWaaeaada WcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaaa keaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsi slcqaH0oazcaWG2bWaaSbaaSqaaiabek7aIbqabaGccqaH6oWAdaqh aaWcbaGaeqySdegabaGaeqOSdigaaaGccaGLOaGaayzkaaGaaCyBam aaCaaaleqabaGaaG4maaaaaOqaaiabes7aKjqah2gagaGaamaaBaaa leaacaaIZaaabeaakiabg2da9iabgkHiTmaabmaabaWaaSaaaeaacq GHciITcaWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaeqOV dG3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyOeI0IaamODamaaBaaale aacqaHYoGyaeqaaOGaeqOUdS2aa0baaSqaaiabeg7aHbqaaiabek7a IbaaaOGaayjkaiaawMcaaiaah2gadaahaaWcbeqaaiabeg7aHbaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabes7aKjqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHjab ek7aIbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGH9aqpda qadaqaamaalaaabaGaeyOaIyRaeqiTdqMafqiVd0MbaiaadaWgaaWc baGaeqySdegabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHYo Gyaeqaaaaakiaah2gadaahaaWcbeqaaiabeg7aHbaakiabgkHiTiab es7aKjqbeY7aTzaacaWaaSbaaSqaaiabeU7aSbqabaGccqqHtoWrda qhaaWcbaGaeqySdeMaeqOSdigabaGaeq4UdWgaaOGaaCyBamaaCaaa leqabaGaeqySdegaaaGccaGLOaGaayzkaaaaaaa@D86B@

with the result

σ:δL( σ αβ x 3 σ γα κ γ β ){ δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα } + x 3 ( σ αβ x 3 σ γα κ γ β )( μ ˙ α ξ β μ ˙ λ Γ αβ λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaC4WdiaacQdacqaH0oazcaWHmb GaeyisIS7aaeWaaeaacqaHdpWCdaahaaWcbeqaaiabeg7aHjabek7a IbaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccqaHdpWCda ahaaWcbeqaaiabeo7aNjabeg7aHbaakiabeQ7aRnaaDaaaleaacqaH ZoWzaeaacqaHYoGyaaaakiaawIcacaGLPaaadaGadaqaamaalaaaba GaeyOaIyRaeqiTdqMaamODamaaBaaaleaacqaHYoGyaeqaaaGcbaGa eyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyOeI0Iaeq iTdqMaamODamaaBaaaleaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqa aiabek7aIjabeg7aHbqaaiabeU7aSbaakiabgUcaRiabes7aKjaadA hadaWgaaWcbaGaaG4maaqabaGccqaH6oWAdaWgaaWcbaGaeqOSdiMa eqySdegabeaaaOGaay5Eaiaaw2haaaqaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaey4kaSIaamiEamaaBaaaleaacaaIZaaabe aakmaabmaabaGaeq4Wdm3aaWbaaSqabeaacqaHXoqycqaHYoGyaaGc cqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeq4Wdm3aaWbaaS qabeaacqaHZoWzcqaHXoqyaaGccqaH6oWAdaqhaaWcbaGaeq4SdCga baGaeqOSdigaaaGccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiabgk Gi2kqbeY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaaakeaacqGHciIT cqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaaGccqGHsislcuaH8oqBga GaamaaBaaaleaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiabeg7a Hjabek7aIbqaaiabeU7aSbaaaOGaayjkaiaawMcaaaaaaa@B0D3@

  1. Substituting this result into the first integral of the virtual work principle, reducing the volume integral to an integral over the mid-plane of the shell, and using the definitions of T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34CE@  and M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34C7@  gives

V σ:δLdV = A T αβ { δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα }dA + A M αβ ( μ ˙ α ξ β μ ˙ λ Γ αβ λ )dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaC4WdiaacQdacqaH0oazca WHmbGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqp daWdrbqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek7aIbaakmaacm aabaWaaSaaaeaacqGHciITcqaH0oazcaWG2bWaaSbaaSqaaiabek7a IbqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaa GccqGHsislcqaH0oazcaWG2bWaaSbaaSqaaiabeU7aSbqabaGccqqH toWrdaqhaaWcbaGaeqOSdiMaeqySdegabaGaeq4UdWgaaOGaey4kaS IaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiabeQ7aRnaaBaaa leaacqaHYoGycqaHXoqyaeqaaaGccaGL7bGaayzFaaGaamizaiaadg eaaSqaaiaadgeaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiaad2ea daahaaWcbeqaaiabeg7aHjabek7aIbaakmaabmaabaWaaSaaaeaacq GHciITcuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOa IyRaeqOVdG3aaSbaaSqaaiabek7aIbqabaaaaOGaeyOeI0IafqiVd0 MbaiaadaWgaaWcbaGaeq4UdWgabeaakiabfo5ahnaaDaaaleaacqaH XoqycqaHYoGyaeaacqaH7oaBaaaakiaawIcacaGLPaaacaWGKbGaam yqaaWcbaGaamyqaaqab0Gaey4kIipaaaa@8789@

  1. Similar manipulations can be used to reduce the remaining terms in the virtual work principle to

V ρaδ y ˙ dV = A hρ a i δ v i dA + A ρ h 3 12 μ ¨ α δ μ ˙ α dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaeqyWdiNaaCyyaiabgwSixl abes7aKjqahMhagaGaaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aOGaeyypa0Zaa8quaeaacaWGObGaeqyWdiNaamyyamaaCaaale qabaGaamyAaaaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaGc caWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipakiabgUcaRmaape fabaWaaSaaaeaacqaHbpGCcaWGObWaaWbaaSqabeaacaaIZaaaaaGc baGaaGymaiaaikdaaaGafqiVd0MbamaadaahaaWcbeqaaiabeg7aHb aakiabes7aKjqbeY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaGccaWG KbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipaaaa@5F02@

V bδ y ˙ dV + S tδ y ˙ dA = A p i δ v i dA + A q α δ μ ˙ α dA + C P i δ v i ds + C Q α δ μ ˙ α ds MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaCOyaiabgwSixlabes7aKj qahMhagaGaaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGa ey4kaSYaa8quaeaacaWH0bGaeyyXICTaeqiTdqMabCyEayaacaGaam izaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGH9aqpdaWdrbqa aiaadchadaahaaWcbeqaaiaadMgaaaGccqaH0oazcaWG2bWaaSbaaS qaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIi YdGccqGHRaWkdaWdrbqaaiaadghadaahaaWcbeqaaiabeg7aHbaaki abes7aKjqbeY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaGccaWGKbGa amyqaaWcbaGaamyqaaqab0Gaey4kIipakiabgUcaRmaapefabaGaam iuamaaCaaaleqabaGaamyAaaaakiabes7aKjaadAhadaWgaaWcbaGa amyAaaqabaGccaWGKbGaam4CaaWcbaGaam4qaaqab0Gaey4kIipaki abgUcaRmaapefabaGaamyuamaaCaaaleqabaGaeqySdegaaOGaeqiT dqMafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaakiaadsgacaWGZb aaleaacaWGdbaabeqdcqGHRiI8aaaa@79C8@

Substituting the equations in (4) and (5) into the virtual work equation gives the first result.

 

Next, we show that the equilibrium equations and boundary conditions follow from the virtual work principle. 

  1. The virtual work equation must first be augmented by a Lagrange multiplier to enforce compatibility between the velocity field δv=δ v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcqaH0oazca WG2bWaaSbaaSqaaiaadMgaaeqaaOGaaCyBamaaCaaaleqabaGaamyA aaaaaaa@3A07@  and the time derivative of the vector normal to the shell’s mid plane δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqah2gagaGaamaaBaaaleaaca aIZaaabeaakiabg2da9iabes7aKjqbeY7aTzaacaWaaSbaaSqaaiab eg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaaaaa@3D20@ .  To this end, we regard the unit vector m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@  as an independent degree of freedom, and introduce a vector valued Lagrange multiplier V α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaahaaWcbeqaaiabeg7aHbaaki aah2gadaWgaaWcbaGaeqySdegabeaaaaa@35FA@  which must satisfy

A ( m 3 m 1 × m 2 | m 1 || m 1 | ) δ V α m α dA+ A { δ μ ˙ α m α +( δ v 3 ξ α δ v β κ α β ) m α } V γ m γ dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaWaaeWaaeaacaWHTbWaaSbaaS qaaiaaiodaaeqaaOGaeyOeI0YaaSaaaeaacaWHTbWaaSbaaSqaaiaa igdaaeqaaOGaey41aqRaaCyBamaaBaaaleaacaaIYaaabeaaaOqaam aaemaabaGaaCyBamaaBaaaleaacaaIXaaabeaaaOGaay5bSlaawIa7 amaaemaabaGaaCyBamaaBaaaleaacaaIXaaabeaaaOGaay5bSlaawI a7aaaaaiaawIcacaGLPaaaaSqaaiaadgeaaeqaniabgUIiYdGccqGH flY1cqaH0oazcaWGwbWaaWbaaSqabeaacqaHXoqyaaGccaWHTbWaaS baaSqaaiabeg7aHbqabaGccaWGKbGaamyqaiabgUcaRmaapefabaWa aiWaaeaacqaH0oazcuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaO GaaCyBamaaCaaaleqabaGaeqySdegaaOGaey4kaSYaaeWaaeaadaWc aaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaaake aacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsisl cqaH0oazcaWG2bWaaSbaaSqaaiabek7aIbqabaGccqaH6oWAdaqhaa WcbaGaeqySdegabaGaeqOSdigaaaGccaGLOaGaayzkaaGaaCyBamaa CaaaleqabaGaeqySdegaaaGccaGL7bGaayzFaaaaleaacaWGbbaabe qdcqGHRiI8aOGaeyyXICTaamOvamaaCaaaleqabaGaeq4SdCgaaOGa aCyBamaaBaaaleaacqaHZoWzaeqaaOGaamizaiaadgeacqGH9aqpca aIWaaaaa@8665@

for all admissible variations δ V ˙ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqadAfagaGaamaaCaaaleqaba GaeqySdegaaOGaaCyBamaaBaaaleaacqaHXoqyaeqaaaaa@37A8@ , δv=δ v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcqaH0oazca WG2bWaaSbaaSqaaiaadMgaaeqaaOGaaCyBamaaCaaaleqabaGaamyA aaaaaaa@3A07@  and δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqah2gagaGaamaaBaaaleaaca aIZaaabeaakiabg2da9iabes7aKjqbeY7aTzaacaWaaSbaaSqaaiab eg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaaaaa@3D20@ .  The second integral can simply be added to the virtual work equation to ensure compatibility of δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqah2gagaGaamaaBaaaleaaca aIZaaabeaakiabg2da9iabes7aKjqbeY7aTzaacaWaaSbaaSqaaiab eg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaaaaa@3D20@  and δv=δ v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcqaH0oazca WG2bWaaSbaaSqaaiaadMgaaeqaaOGaaCyBamaaCaaaleqabaGaamyA aaaaaaa@3A07@  

  1. The augmented virtual work equation now reads

A T αβ { δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα }dA + A M αβ ( μ ˙ α ξ β μ ˙ λ Γ αβ λ )dA + A hρ a i δ v i dA + A ρ h 3 12 μ ¨ α δ μ ˙ α dA + A { δ μ ˙ α +( δ v 3 ξ α δ v β κ α β ) } V α dA A p i δ v i dA A q α δ μ ˙ α dA C P i δ v i ds C Q α δ μ ˙ α ds =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaacaWGubWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGcdaGadaqaamaalaaabaGaeyOaIyRaeqiT dqMaamODamaaBaaaleaacqaHYoGyaeqaaaGcbaGaeyOaIyRaeqOVdG 3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyOeI0IaeqiTdqMaamODamaa BaaaleaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiabek7aIjabeg 7aHbqaaiabeU7aSbaakiabgUcaRiabes7aKjaadAhadaWgaaWcbaGa aG4maaqabaGccqaH6oWAdaWgaaWcbaGaeqOSdiMaeqySdegabeaaaO Gaay5Eaiaaw2haaiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8 aOGaey4kaSYaa8quaeaacaWGnbWaaWbaaSqabeaacqaHXoqycqaHYo GyaaGcdaqadaqaamaalaaabaGaeyOaIyRafqiVd0MbaiaadaWgaaWc baGaeqySdegabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHYo GyaeqaaaaakiabgkHiTiqbeY7aTzaacaWaaSbaaSqaaiabeU7aSbqa baGccqqHtoWrdaqhaaWcbaGaeqySdeMaeqOSdigabaGaeq4UdWgaaa GccaGLOaGaayzkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIi YdGccqGHRaWkdaWdrbqaaiaadIgacqaHbpGCcaWGHbWaaWbaaSqabe aacaWGPbaaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaa dsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4kaSYaa8quae aadaWcaaqaaiabeg8aYjaadIgadaahaaWcbeqaaiaaiodaaaaakeaa caaIXaGaaGOmaaaacuaH8oqBgaWaamaaCaaaleqabaGaeqySdegaaO GaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaakiaadsga caWGbbaaleaacaWGbbaabeqdcqGHRiI8aaGcbaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaey4kaSYaa8quaeaadaGadaqaaiabes7aKjqb eY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkdaqadaqaam aalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaa aOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgk HiTiabes7aKjaadAhadaWgaaWcbaGaeqOSdigabeaakiabeQ7aRnaa DaaaleaacqaHXoqyaeaacqaHYoGyaaaakiaawIcacaGLPaaaaiaawU hacaGL9baacaWGwbWaaWbaaSqabeaacqaHXoqyaaGccaWGKbGaamyq aaWcbaGaamyqaaqab0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaayk W7cqGHsisldaWdrbqaaiaadchadaahaaWcbeqaaiaadMgaaaGccqaH 0oazcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaai aadgeaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiaadghadaahaaWc beqaaiabeg7aHbaakiabes7aKjqbeY7aTzaacaWaaSbaaSqaaiabeg 7aHbqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipakiab gkHiTmaapefabaGaamiuamaaCaaaleqabaGaamyAaaaakiabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaam4CaaWcbaGaam4q aaqab0Gaey4kIipakiabgkHiTmaapefabaGaamyuamaaCaaaleqaba GaeqySdegaaOGaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeqySdega beaakiaadsgacaWGZbaaleaacaWGdbaabeqdcqGHRiI8aOGaeyypa0 JaaGimaaaaaa@20C1@

  1. The remaining steps are routine, but fiddly.  The partial derivatives of δ v α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaeqySde gabeaaaaa@34F3@  and δ μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaaaaa@35B7@  must be removed by integrating by parts.  This is accomplished by applying the surface divergence theorem, which states that if w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahEhaaaa@3188@  is a differentiable vector field on an area A of the surface, and C is the curve bounding A, then

A m α w ξ α dA= C nw ds MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaCyBamaaCaaaleqabaGaeq ySdegaaOGaeyyXIC9aaSaaaeaacqGHciITcaWH3baabaGaeyOaIyRa eqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaamizaiaadgeacqGH9a qpdaWdrbqaaiaah6gacqGHflY1caWH3baaleaacaWGdbaabeqdcqGH RiI8aaWcbaGaamyqaaqab0Gaey4kIipakiaadsgacaWGZbaaaa@4C15@

where n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gaaaa@317F@  is the outward normal to C.  To see how to use this theorem, consider

A T αβ ( δ v β ξ α δ v λ Γ βα λ )dA A ( T αβ m α m β ):( m γ δ v λ m λ ξ γ )dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamivamaaCaaaleqabaGaeq ySdeMaeqOSdigaaOWaaeWaaeaadaWcaaqaaiabgkGi2kabes7aKjaa dAhadaWgaaWcbaGaeqOSdigabeaaaOqaaiabgkGi2kabe67a4naaBa aaleaacqaHXoqyaeqaaaaakiabgkHiTiabes7aKjaadAhadaWgaaWc baGaeq4UdWgabeaakiabfo5ahnaaDaaaleaacqaHYoGycqaHXoqyae aacqaH7oaBaaaakiaawIcacaGLPaaacaWGKbGaamyqaaWcbaGaamyq aaqab0Gaey4kIipakiabggMi6oaapefabaWaaeWaaeaacaWGubWaaW baaSqabeaacqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7a HbqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiabek7aIbqabaaakiaawI cacaGLPaaacaGG6aWaaeWaaeaacaWHTbWaaWbaaSqabeaacqaHZoWz aaGccqGHxkcXdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcba Gaeq4UdWgabeaakiaah2gadaahaaWcbeqaaiabeU7aSbaaaOqaaiab gkGi2kabe67a4naaBaaaleaacqaHZoWzaeqaaaaaaOGaayjkaiaawM caaiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@7B2B@

The integrand can be re-written as

T:( m γ δv ξ γ )= m γ ξ γ ( Tδv ) m γ T ξ γ δv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacaGG6aWaaeWaaeaacaWHTbWaaW baaSqabeaacqaHZoWzaaGccqGHxkcXdaWcaaqaaiabgkGi2kabes7a KjaahAhaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeq4SdCgabeaaaa aakiaawIcacaGLPaaacqGH9aqpcaWHTbWaaWbaaSqabeaacqaHZoWz aaGccqGHflY1daWcaaqaaiabgkGi2cqaaiabgkGi2kabe67a4naaBa aaleaacqaHZoWzaeqaaaaakmaabmaabaGaaCivaiabes7aKjaahAha aiaawIcacaGLPaaacqGHsislcaWHTbWaaWbaaSqabeaacqaHZoWzaa GccqGHflY1daWcaaqaaiabgkGi2kaahsfaaeaacqGHciITcqaH+oaE daWgaaWcbaGaeq4SdCgabeaaaaGccqaH0oazcaWH2baaaa@635A@

Applying the surface divergence theorem to the first term on the right hand side of this equation shows that

A T:( m γ δv ξ γ ) dA= C nTδv ds A m γ T ξ γ δv dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaCivaiaacQdadaqadaqaai aah2gadaahaaWcbeqaaiabeo7aNbaakiabgEPiepaalaaabaGaeyOa IyRaeqiTdqMaaCODaaqaaiabgkGi2kabe67a4naaBaaaleaacqaHZo WzaeqaaaaaaOGaayjkaiaawMcaaaWcbaGaamyqaaqab0Gaey4kIipa kiaadsgacaWGbbGaeyypa0Zaa8quaeaacaWHUbGaeyyXICTaaCivai abes7aKjaahAhaaSqaaiaadoeaaeqaniabgUIiYdGccaWGKbGaam4C aiabgkHiTmaapefabaGaaCyBamaaCaaaleqabaGaeq4SdCgaaOGaey yXIC9aaSaaaeaacqGHciITcaWHubaabaGaeyOaIyRaeqOVdG3aaSba aSqaaiabeo7aNbqabaaaaOGaeqiTdqMaaCODaaWcbaGaamyqaaqab0 Gaey4kIipakiaadsgacaWGbbaaaa@6807@

Finally, substituting T= T αβ m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcaWGubWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXcaWHTbWaaSbaaSqaaiabek7aIbqabaaaaa@3E52@  and δv=δ v α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcqaH0oazca WG2bWaaSbaaSqaaiabeg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaH Xoqyaaaaaa@3B69@  and remembering to differentiate the basis vectors gives the component form

A T αβ ( δ v α ξ β δ v λ Γ αβ λ )dA = C n α T αβ δ v β ds A ( T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β )δ v β dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamivamaaCaaaleqabaGaeq ySdeMaeqOSdigaaOWaaeWaaeaadaWcaaqaaiabgkGi2kabes7aKjaa dAhadaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2kabe67a4naaBa aaleaacqaHYoGyaeqaaaaakiabgkHiTiabes7aKjaadAhadaWgaaWc baGaeq4UdWgabeaakiabfo5ahnaaDaaaleaacqaHXoqycqaHYoGyae aacqaH7oaBaaaakiaawIcacaGLPaaacaWGKbGaamyqaaWcbaGaamyq aaqab0Gaey4kIipakiabg2da9maapefabaGaamOBamaaBaaaleaacq aHXoqyaeqaaOGaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaaqa aiaadoeaaeqaniabgUIiYdGccqaH0oazcaWG2bWaaSbaaSqaaiabek 7aIbqabaGccaWGKbGaam4CaiabgkHiTmaapefabaWaaeWaaeaadaWc aaqaaiabgkGi2kaadsfadaahaaWcbeqaaiabeg7aHjabek7aIbaaaO qaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgUca RiaadsfadaahaaWcbeqaaiabeg7aHjabek7aIbaakiabfo5ahnaaDa aaleaacqaHXoqycqaHZoWzaeaacqaHZoWzaaGccqGHRaWkcaWGubWa aWbaaSqabeaacqaHXoqycqaHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq 4SdCMaeqySdegabaGaeqOSdigaaaGccaGLOaGaayzkaaGaeqiTdqMa amODamaaBaaaleaacqaHYoGyaeqaaOGaamizaiaadgeaaSqaaiaadg eaaeqaniabgUIiYdaaaa@9187@

  1. Applying the procedure outlined in step (3) to similar terms, the virtual work equation can be re-written as

A { T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β ρh a β } δ v β A { V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 ρh a 3 }δ v 3 A { M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β ρ h 3 12 μ ¨ β }δ μ ˙ β + C n α T αβ δ v β ds+ C n α M αβ δ μ ˙ β ds+ C n α V α δ v 3 ds C P i δ v i ds C Q α δ μ ˙ α ds =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeyOeI0Yaa8quaeaadaGadaqaam aalaaabaGaeyOaIyRaamivamaaCaaaleqabaGaeqySdeMaeqOSdiga aaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaey 4kaSIaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeu4KdC0a a0baaSqaaiabeg7aHjabeo7aNbqaaiabeo7aNbaakiabgUcaRiaads fadaahaaWcbeqaaiabeg7aHjabeo7aNbaakiabfo5ahnaaDaaaleaa cqaHZoWzcqaHXoqyaeaacqaHYoGyaaGccqGHRaWkcaWGwbWaaWbaaS qabeaacqaHXoqyaaGccqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqOS digaaOGaey4kaSIaamiCamaaCaaaleqabaGaeqOSdigaaOGaeyOeI0 IaeqyWdiNaamiAaiaadggadaahaaWcbeqaaiabek7aIbaaaOGaay5E aiaaw2haaaWcbaGaamyqaaqab0Gaey4kIipakiabes7aKjaadAhada WgaaWcbaGaeqOSdigabeaaaOqaaiabgkHiTmaapefabaWaaiWaaeaa daWcaaqaaiabgkGi2kaadAfadaahaaWcbeqaaiabeg7aHbaaaOqaai abgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaa dAfadaahaaWcbeqaaiabeg7aHbaakiabfo5ahnaaDaaaleaacqaHXo qycqaHYoGyaeaacqaHYoGyaaGccqGHsislcaWGubWaaWbaaSqabeaa cqaHXoqycqaHYoGyaaGccqaH6oWAdaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccqGHsisl cqaHbpGCcaWGObGaamyyamaaCaaaleqabaGaaG4maaaaaOGaay5Eai aaw2haaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaaabaGaamyq aaqab0Gaey4kIipaaOqaaiabgkHiTmaapefabaWaaiWaaeaadaWcaa qaaiabgkGi2kaad2eadaahaaWcbeqaaiabeg7aHjabek7aIbaaaOqa aiabgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRi aad2eadaahaaWcbeqaaiabeg7aHjabek7aIbaakiabfo5ahnaaDaaa leaacqaHXoqycqaHZoWzaeaacqaHZoWzaaGccqGHRaWkcaWGnbWaaW baaSqabeaacqaHXoqycqaHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4S dCMaeqySdegabaGaeqOSdigaaOGaeyOeI0IaamOvamaaCaaaleqaba GaeqOSdigaaOGaey4kaSIaamyCamaaCaaaleqabaGaeqOSdigaaOGa eyOeI0YaaSaaaeaacqaHbpGCcaWGObWaaWbaaSqabeaacaaIZaaaaa GcbaGaaGymaiaaikdaaaGafqiVd0MbamaadaahaaWcbeqaaiabek7a IbaaaOGaay5Eaiaaw2haaiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abek7aIbqabaaabaGaamyqaaqab0Gaey4kIipaaOqaaiabgUcaRmaa pefabaGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamivamaaCaaale qabaGaeqySdeMaeqOSdigaaaqaaiaadoeaaeqaniabgUIiYdGccqaH 0oazcaWG2bWaaSbaaSqaaiabek7aIbqabaGccaWGKbGaam4CaiabgU caRmaapefabaGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamytamaa CaaaleqabaGaeqySdeMaeqOSdigaaaqaaiaadoeaaeqaniabgUIiYd GccqaH0oazcuaH8oqBgaGaamaaBaaaleaacqaHYoGyaeqaaOGaamiz aiaadohacqGHRaWkdaWdrbqaaiaad6gadaWgaaWcbaGaeqySdegabe aakiaadAfadaahaaWcbeqaaiabeg7aHbaaaeaacaWGdbaabeqdcqGH RiI8aOGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaadsgaca WGZbGaeyOeI0Yaa8quaeaacaWGqbWaaWbaaSqabeaacaWGPbaaaOGa eqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGZbaale aacaWGdbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWGrbWaaWba aSqabeaacqaHXoqyaaGccqaH0oazcuaH8oqBgaGaamaaBaaaleaacq aHXoqyaeqaaOGaamizaiaadohaaSqaaiaadoeaaeqaniabgUIiYdGc cqGH9aqpcaaIWaaaaaa@2BD7@

This equation must be satisfied for all δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaamyAaa qabaaaaa@3442@  and δ μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaaaaa@35B7@ , which immediately gives the equilibrium equations.

  1. Some further algebra is required to derive the boundary conditions. It is tempting to conclude that coefficients of δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaamyAaa qabaaaaa@3442@  and δ μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaaaaa@35B7@  in the boundary terms must all vanish, but this is not the case, because δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaamyAaa qabaaaaa@3442@  and δ μ ˙ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaaaaa@35B7@  are related by compatibility equations. The boundary terms must be expressed in terms of four independent degrees of freedom.  To this end, recall that μ ˙ α =( v 3 / ξ α v β κ α β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeY7aTzaacaWaaSbaaSqaaiabeg7aHb qabaGccqGH9aqpcqGHsisldaqadaqaaiabgkGi2kaadAhadaWgaaWc baGaaG4maaqabaGccaGGVaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg 7aHbqabaGccqGHsislcaWG2bWaaSbaaSqaaiabek7aIbqabaGccqaH 6oWAdaqhaaWcbaGaeqySdegabaGaeqOSdigaaaGccaGLOaGaayzkaa aaaa@4985@ , so the integral around the boundary can be re-written as

C { n α T αβ n α M αλ κ λ β P β Q λ κ λ β } δ v β ds+ C ( n α V α P 3 ) δ v 3 ds C ( n α M αβ Q β ) δ v 3 ξ β ds=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaadaGadaqaaiaad6gada WgaaWcbaGaeqySdegabeaakiaadsfadaahaaWcbeqaaiabeg7aHjab ek7aIbaakiabgkHiTiaad6gadaWgaaWcbaGaeqySdegabeaakiaad2 eadaahaaWcbeqaaiabeg7aHjabeU7aSbaakiabeQ7aRnaaDaaaleaa cqaH7oaBaeaacqaHYoGyaaGccqGHsislcaWGqbWaaWbaaSqabeaacq aHYoGyaaGccqGHsislcaWGrbWaaWbaaSqabeaacqaH7oaBaaGccqaH 6oWAdaqhaaWcbaGaeq4UdWgabaGaeqOSdigaaaGccaGL7bGaayzFaa aaleaacaWGdbaabeqdcqGHRiI8aOGaeqiTdqMaamODamaaBaaaleaa cqaHYoGyaeqaaOGaamizaiaadohacqGHRaWkdaWdrbqaamaabmaaba GaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamOvamaaCaaaleqabaGa eqySdegaaOGaeyOeI0IaamiuamaaCaaaleqabaGaaG4maaaaaOGaay jkaiaawMcaaaWcbaGaam4qaaqab0Gaey4kIipakiabes7aKjaadAha daWgaaWcbaGaaG4maaqabaGccaWGKbGaam4CaaqaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHsisldaWdrbqaamaabmaabaGaamOBam aaBaaaleaacqaHXoqyaeqaaOGaamytamaaCaaaleqabaGaeqySdeMa eqOSdigaaOGaeyOeI0IaamyuamaaCaaaleqabaGaeqOSdigaaaGcca GLOaGaayzkaaaaleaacaWGdbaabeqdcqGHRiI8aOWaaSaaaeaacqGH ciITcqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaeqOVdG3aaSbaaSqaaiabek7aIbqabaaaaOGaamizaiaadohacqGH 9aqpcaaIWaaaaaa@1F3C@

  1. The vector δ v 3 / ξ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kabes7aKjaadAhadaWgaaWcba GaaG4maaqabaGccaGGVaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7a Hbqabaaaaa@3B28@  can be expressed in terms of components parallel and perpendicular to the boundary of the plate C, as

δ v 3 ξ α = δ v 3 s τ α +δ θ ˙ n α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeqiTdqMaamODam aaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaa cqaHXoqyaeqaaaaakiabg2da9maalaaabaGaeyOaIyRaeqiTdqMaam ODamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadohaaaGaeqiX dq3aaSbaaSqaaiabeg7aHbqabaGccqGHRaWkcqaH0oazcuaH4oqCga Gaaiaad6gadaWgaaWcbaGaeqySdegabeaaaaa@4D9A@

Here, τ= τ α m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8acqGH9aqpcqaHepaDdaWgaaWcba GaeqySdegabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@393A@  and n= n α m α = m 3 ×τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gacqGH9aqpcaWGUbWaaSbaaSqaai abeg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGH9aqp caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey41aqRaaCiXdaaa@3E6F@  represent unit vectors tangent and normal to C, and δ θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqbeI7aXzaacaaaaa@33EC@  is an independent degree of freedom that represents the rotation of the shell about τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8aaaa@31D8@ .  Finally, we integrate by parts to see that

C ( n α M αβ Q β ) δ v 3 ξ β ds= C ( n α M αβ Q β ) τ β δ v 3 s ds+ C ( n α M αβ Q β ) n β δ θ ˙ ds = C s { ( n α M αβ Q β ) τ β } δ v 3 ds+ C ( n α M αβ Q β ) n β δ θ ˙ ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaadaqadaqaaiaad6gada WgaaWcbaGaeqySdegabeaakiaad2eadaahaaWcbeqaaiabeg7aHjab ek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaaiabek7aIbaaaOGaay jkaiaawMcaaaWcbaGaam4qaaqab0Gaey4kIipakmaalaaabaGaeyOa IyRaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2k abe67a4naaBaaaleaacqaHYoGyaeqaaaaakiaadsgacaWGZbGaeyyp a0Zaa8quaeaadaqadaqaaiaad6gadaWgaaWcbaGaeqySdegabeaaki aad2eadaahaaWcbeqaaiabeg7aHjabek7aIbaakiabgkHiTiaadgfa daahaaWcbeqaaiabek7aIbaaaOGaayjkaiaawMcaaiabes8a0naaBa aaleaacqaHYoGyaeqaaaqaaiaadoeaaeqaniabgUIiYdGcdaWcaaqa aiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaaakeaacq GHciITcaWGZbaaaiaadsgacaWGZbGaey4kaSYaa8quaeaadaqadaqa aiaad6gadaWgaaWcbaGaeqySdegabeaakiaad2eadaahaaWcbeqaai abeg7aHjabek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaaiabek7a IbaaaOGaayjkaiaawMcaaiaad6gadaWgaaWcbaGaeqOSdigabeaaae aacaWGdbaabeqdcqGHRiI8aOGaeqiTdqMafqiUdeNbaiaacaWGKbGa am4CaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iabgkHiTmaapefa baWaaSaaaeaacqGHciITaeaacqGHciITcaWGZbaaamaacmaabaWaae WaaeaacaWGUbWaaSbaaSqaaiabeg7aHbqabaGccaWGnbWaaWbaaSqa beaacqaHXoqycqaHYoGyaaGccqGHsislcaWGrbWaaWbaaSqabeaacq aHYoGyaaaakiaawIcacaGLPaaacqaHepaDdaWgaaWcbaGaeqOSdiga beaaaOGaay5Eaiaaw2haaaWcbaGaam4qaaqab0Gaey4kIipakiabes 7aKjaadAhadaWgaaWcbaGaaG4maaqabaGccaWGKbGaam4CaiabgUca RmaapefabaWaaeWaaeaacaWGUbWaaSbaaSqaaiabeg7aHbqabaGcca WGnbWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccqGHsislcaWGrbWa aWbaaSqabeaacqaHYoGyaaaakiaawIcacaGLPaaacaWGUbWaaSbaaS qaaiabek7aIbqabaaabaGaam4qaaqab0Gaey4kIipakiabes7aKjqb eI7aXzaacaGaamizaiaadohaaaaa@1636@

(The terms associated with the ends of C vanish because C is a closed curve). 

 

  1. Substituting the result of (6) back into (5) gives

C { n α T αβ n α M αλ κ λ β P β Q λ κ λ β } δ v β ds + C ( n α V α + s [ n α M αβ τ β ] P 3 s [ Q β τ β ] ) δ v 3 ds C ( n α M αβ Q β ) n β δ θ ˙ ds=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaadaGadaqaaiaad6gada WgaaWcbaGaeqySdegabeaakiaadsfadaahaaWcbeqaaiabeg7aHjab ek7aIbaakiabgkHiTiaad6gadaWgaaWcbaGaeqySdegabeaakiaad2 eadaahaaWcbeqaaiabeg7aHjabeU7aSbaakiabeQ7aRnaaDaaaleaa cqaH7oaBaeaacqaHYoGyaaGccqGHsislcaWGqbWaaWbaaSqabeaacq aHYoGyaaGccqGHsislcaWGrbWaaWbaaSqabeaacqaH7oaBaaGccqaH 6oWAdaqhaaWcbaGaeq4UdWgabaGaeqOSdigaaaGccaGL7bGaayzFaa aaleaacaWGdbaabeqdcqGHRiI8aOGaeqiTdqMaamODamaaBaaaleaa cqaHYoGyaeqaaOGaamizaiaadohaaeaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaey4kaSYaa8quaeaadaqadaqaaiaa d6gadaWgaaWcbaGaeqySdegabeaakiaadAfadaahaaWcbeqaaiabeg 7aHbaakiabgUcaRmaalaaabaGaeyOaIylabaGaeyOaIyRaam4Caaaa daWadaqaaiaad6gadaWgaaWcbaGaeqySdegabeaakiaad2eadaahaa Wcbeqaaiabeg7aHjabek7aIbaakiabes8a0naaBaaaleaacqaHYoGy aeqaaaGccaGLBbGaayzxaaGaeyOeI0IaamiuamaaCaaaleqabaGaaG 4maaaakiabgkHiTmaalaaabaGaeyOaIylabaGaeyOaIyRaam4Caaaa daWadaqaaiaadgfadaahaaWcbeqaaiabek7aIbaakiabes8a0naaBa aaleaacqaHYoGyaeqaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaa leaacaWGdbaabeqdcqGHRiI8aOGaeqiTdqMaamODamaaBaaaleaaca aIZaaabeaakiaadsgacaWGZbGaeyOeI0Yaa8quaeaadaqadaqaaiaa d6gadaWgaaWcbaGaeqySdegabeaakiaad2eadaahaaWcbeqaaiabeg 7aHjabek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaaiabek7aIbaa aOGaayjkaiaawMcaaaWcbaGaam4qaaqab0Gaey4kIipakiaad6gada WgaaWcbaGaeqOSdigabeaakiabes7aKjqbeI7aXzaacaGaamizaiaa dohacqGH9aqpcaaIWaaaaaa@B376@

This condition must be satisfied for all δ v i ,δ θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaeqiTdqMafqiUdeNbaiaaaaa@3860@ , which gives the boundary conditions.

 

Finally, we must derive the last equilibrium equation T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiaaigdacaaIYa aaaOGaeyOeI0IaamivamaaCaaaleqabaGaaGOmaiaaigdaaaGccqGH RaWkcaWGnbWaaWbaaSqabeaacqaHXoqycaaIXaaaaOGaeqOUdS2aa0 baaSqaaiabeg7aHbqaaiaaikdaaaGccqGHsislcaWGnbWaaWbaaSqa beaacqaHXoqycaaIYaaaaOGaeqOUdS2aa0baaSqaaiabeg7aHbqaai aaigdaaaGccqGH9aqpcaaIWaaaaa@4960@ .  Using the definitions of T αβ , M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiaacYcacaWGnbWaaWbaaSqabeaacqaHXoqycqaHYoGyaaaa aa@39C7@ , and noting that σ 12 = σ 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaCaaaleqabaGaaGymaiaaik daaaGccqGH9aqpcqaHdpWCdaahaaWcbeqaaiaaikdacaaIXaaaaaaa @3866@ , it is straightforward to show that

T 12 T 21 = h/2 h/2 x 3 ( σ γ2 κ γ 1 σ γ1 κ γ 2 ) (1+ x 3 κ λ λ )d x 3 M α1 κ α 2 M α2 κ α 1 = h/2 h/2 x 3 ( σ γ1 κ γ 2 σ γ2 κ γ 1 ) (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamivamaaCaaaleqabaGaaGymai aaikdaaaGccqGHsislcaWGubWaaWbaaSqabeaacaaIYaGaaGymaaaa kiabg2da9maapehabaGaamiEamaaBaaaleaacaaIZaaabeaakmaabm aabaGaeq4Wdm3aaWbaaSqabeaacqaHZoWzcaaIYaaaaOGaeqOUdS2a a0baaSqaaiabeo7aNbqaaiaaigdaaaGccqGHsislcqaHdpWCdaahaa Wcbeqaaiabeo7aNjaaigdaaaGccqaH6oWAdaqhaaWcbaGaeq4SdCga baGaaGOmaaaaaOGaayjkaiaawMcaaaWcbaGaeyOeI0IaamiAaiaac+ cacaaIYaaabaGaamiAaiaac+cacaaIYaaaniabgUIiYdGccaGGOaGa aGymaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAda qhaaWcbaGaeq4UdWgabaGaeq4UdWgaaOGaaiykaiaadsgacaWG4bWa aSbaaSqaaiaaiodaaeqaaaGcbaGaamytamaaCaaaleqabaGaeqySde MaaGymaaaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacaaIYaaaaOGa eyOeI0IaamytamaaCaaaleqabaGaeqySdeMaaGOmaaaakiabeQ7aRn aaDaaaleaacqaHXoqyaeaacaaIXaaaaOGaeyypa0Zaa8qCaeaacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacqaHdpWCdaahaaWcbe qaaiabeo7aNjaaigdaaaGccqaH6oWAdaqhaaWcbaGaeq4SdCgabaGa aGOmaaaakiabgkHiTiabeo8aZnaaCaaaleqabaGaeq4SdCMaaGOmaa aakiabeQ7aRnaaDaaaleaacqaHZoWzaeaacaaIXaaaaaGccaGLOaGa ayzkaaaaleaacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGaai 4laiaaikdaa0Gaey4kIipakiaacIcacaaIXaGaey4kaSIaamiEamaa BaaaleaacaaIZaaabeaakiabeQ7aRnaaDaaaleaacqaH7oaBaeaacq aH7oaBaaGccaGGPaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaa aaa@9E83@

Adding these two equations gives the last equilibrium equation.

 

 

 

10.5.9 Constitutive equations relating forces to deformation measures in elastic shells

 

The internal forces in a shell are related to its deformation by the stress-strain law for the material.  Here, we give force-deformation equations for an isotropic elastic shell which experiences small shape changes (but possibly large rotations).

 

Shape changes are characterized using the following deformation measures, defined in Sections 10.5.6

  1. The in-plane components of the metric tensors for the mid-plane of the shell before and after deformation are denoted g ¯ αβ = m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadEgagaqeamaaBaaaleaacqaHXoqycq aHYoGyaeqaaOGaeyypa0JabCyBayaaraWaaSbaaSqaaiabeg7aHbqa baGccqGHflY1ceWHTbGbaebadaWgaaWcbaGaeqOSdigabeaakiaaxc W7aaa@3FA2@   g αβ = m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9iaah2gadaWgaaWcbaGaeqySdegabeaakiabgwSi xlaah2gadaWgaaWcbaGaeqOSdigabeaakiaaxcW7aaa@3F5A@
  2. The `mid-plane Lagrange strain tensor’ γ= γ αβ m ¯ α m ¯ β = 1 2 ( g αβ g ¯ αβ ) m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho7acqGH9aqpcqaHZoWzdaWgaaWcba GaeqySdeMaeqOSdigabeaakiqah2gagaqeamaaCaaaleqabaGaeqyS degaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaaGccq GH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaam4zamaa BaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0Iabm4zayaaraWaaS baaSqaaiabeg7aHjabek7aIbqabaaakiaawIcacaGLPaaaceWHTbGb aebadaahaaWcbeqaaiabeg7aHbaakiabgEPielqah2gagaqeamaaCa aaleqabaGaeqOSdigaaaaa@5565@ ,
  3. The `Curvature change tensor’ Δκ=Δ κ λβ m ¯ λ m ¯ β =( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaahQ7acqGH9aqpcqqHuoarcq aH6oWAdaWgaaWcbaGaeq4UdWMaeqOSdigabeaakiqah2gagaqeamaa CaaaleqabaGaeq4UdWgaaOGaey4LIqSabCyBayaaraWaaWbaaSqabe aacqaHYoGyaaGccqGH9aqpcaGGOaGaeqOUdS2aa0baaSqaaiabek7a Ibqaaiabeg7aHbaakiabgkHiTiqbeQ7aRzaaraWaa0baaSqaaiabek 7aIbqaaiabeg7aHbaakiaacMcacaWGNbWaaSbaaSqaaiabeU7aSjab eg7aHbqabaGcceWHTbGbaebadaahaaWcbeqaaiabeU7aSbaakiabgE Pielqah2gagaqeamaaCaaaleqabaGaeqOSdigaaaaa@5CCD@ , which quantifies the bending and twisting the shell.

 

Internal forces are characterized using the stress resultant tensor components T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34CE@  and internal moment components M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34C7@  defined in Section 10.5.7.

 

The shell is assumed to have a uniform thickness h, and is assumed to be made from an isotropic, linear elastic solid, with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3240@ .  We assume for simplicity that the shell is homogeneous, and neglect thermal expansion (the effects of thermal expansion are included an example problem solved in Section 10.7.4)

 

It is convenient to introduce a plane stress elasticity tensor with components

D αβρμ = E 2(1 ν 2 ) ( ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseadaahaaWcbeqaaiabeg7aHjabek 7aIjabeg8aYjabeY7aTbaakiabg2da9maalaaabaGaamyraaqaaiaa ikdacaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaa aakiaacMcaaaWaaeWaaeaacaGGOaGabm4zayaaraWaaWbaaSqabeaa cqaHXoqycqaHbpGCaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIj abeY7aTbaakiabgUcaRiqadEgagaqeamaaCaaaleqabaGaeqySdeMa eqiVd0gaaOGabm4zayaaraWaaWbaaSqabeaacqaHYoGycqaHbpGCaa GccaGGPaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaey4kaSIa aGOmaiabe27aUjqadEgagaqeamaaCaaaleqabaGaeqySdeMaeqOSdi gaaOGabm4zayaaraWaaWbaaSqabeaacqaHbpGCcqaH8oqBaaaakiaa wIcacaGLPaaaaaa@67DD@

 

 

The force-deformation relations can then be expressed as

T αβ =h D αβρλ γ ρλ + h 3 12 ( κ μ μ δ θ β κ θ β ) D θαρλ Δ κ ρλ h 3 12 κ μ μ D θαρλ κ θ β γ ρλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9iaadIgacaWGebWaaWbaaSqabeaacqaHXoqycqaH YoGycqaHbpGCcqaH7oaBaaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeq 4UdWgabeaakiabgUcaRmaalaaabaGaamiAamaaCaaaleqabaGaaG4m aaaaaOqaaiaaigdacaaIYaaaamaabmaabaGaeqOUdS2aa0baaSqaai abeY7aTbqaaiabeY7aTbaakiabes7aKnaaDaaaleaacqaH4oqCaeaa cqaHYoGyaaGccqGHsislcqaH6oWAdaqhaaWcbaGaeqiUdehabaGaeq OSdigaaaGccaGLOaGaayzkaaGaamiramaaCaaaleqabaGaeqiUdeNa eqySdeMaeqyWdiNaeq4UdWgaaOGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg8aYjabeU7aSbqabaGccqGHsisldaWcaaqaaiaadIgadaahaaWc beqaaiaaiodaaaaakeaacaaIXaGaaGOmaaaacqaH6oWAdaqhaaWcba GaeqiVd0gabaGaeqiVd0gaaOGaamiramaaCaaaleqabaGaeqiUdeNa eqySdeMaeqyWdiNaeq4UdWgaaOGaeqOUdS2aa0baaSqaaiabeI7aXb qaaiabek7aIbaakiabeo7aNnaaBaaaleaacqaHbpGCcqaH7oaBaeqa aaaa@84DD@

M αβ = h 3 12 D αβρλ Δ κ ρλ + h 3 12 ( κ μ μ δ θ β κ θ β ) D θαρλ γ ρλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9maalaaabaGaamiAamaaCaaaleqabaGaaG4maaaa aOqaaiaaigdacaaIYaaaaiaadseadaahaaWcbeqaaiabeg7aHjabek 7aIjabeg8aYjabeU7aSbaakiabfs5aejabeQ7aRnaaBaaaleaacqaH bpGCcqaH7oaBaeqaaOGaey4kaSYaaSaaaeaacaWGObWaaWbaaSqabe aacaaIZaaaaaGcbaGaaGymaiaaikdaaaWaaeWaaeaacqaH6oWAdaqh aaWcbaGaeqiVd0gabaGaeqiVd0gaaOGaeqiTdq2aa0baaSqaaiabeI 7aXbqaaiabek7aIbaakiabgkHiTiabeQ7aRnaaDaaaleaacqaH4oqC aeaacqaHYoGyaaaakiaawIcacaGLPaaacaWGebWaaWbaaSqabeaacq aH4oqCcqaHXoqycqaHbpGCcqaH7oaBaaGccqaHZoWzdaWgaaWcbaGa eqyWdiNaeq4UdWgabeaaaaa@6B4D@

 

For all but a few very rare shell geometries these expressions may be approximated by

T αβ h D αβρλ γ ρλ M αβ h 3 12 D αβρλ Δ κ ρλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabgIKi7kaadIgacaWGebWaaWbaaSqabeaacqaHXoqycqaH YoGycqaHbpGCcqaH7oaBaaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeq 4UdWgabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamytamaaCaaaleqabaGaeq ySdeMaeqOSdigaaOGaeyisISRaaGPaVpaalaaabaGaamiAamaaCaaa leqabaGaaG4maaaaaOqaaiaaigdacaaIYaaaaiaadseadaahaaWcbe qaaiabeg7aHjabek7aIjabeg8aYjabeU7aSbaakiabfs5aejabeQ7a RnaaBaaaleaacqaHbpGCcqaH7oaBaeqaaaaa@6ECD@

 

Derivation

 

  1. We have assumed that the material in the shell experiences small distortions, but arbitrary rotations.  Material behavior can therefore be modeled using the generalized Hooke’s law described in Section 3.3, which relates the Material stress to the Lagrange strain using the isotropic linear elastic constitutive equations.
  2. We assume that the shell is in a state of plane stress, so that the material stress tensor has the form  Σ= Σ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho6acqGH9aqpcqqHJoWudaahaaWcbe qaaiabeg7aHjabek7aIbaakiqah2gagaqeamaaBaaaleaacqaHXoqy aeqaaOGaey4LIqSabCyBayaaraWaaSbaaSqaaiabek7aIbqabaaaaa@3F7F@
  3. The Lagrange strain  tensor is given in Section 10.5.6 as

E γ αβ m ¯ α m ¯ β + x 3 ( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahweacqGHijYUcqaHZoWzdaWgaaWcba GaeqySdeMaeqOSdigabeaakiqah2gagaqeamaaCaaaleqabaGaeqyS degaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaaGccq GHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiabeQ7aRnaa DaaaleaacqaHYoGyaeaacqaHXoqyaaGccqGHsislcuaH6oWAgaqeam aaDaaaleaacqaHYoGyaeaacqaHXoqyaaGccaGGPaGaam4zamaaBaaa leaacqaH7oaBcqaHXoqyaeqaaOGabCyBayaaraWaaWbaaSqabeaacq aH7oaBaaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabek7aIbaa aaa@5BCC@

  1. The material stress is related to the Lagrange strain by the plane stress version of the linear elastic constitutive equations, which can be expressed as

Σ= E ( 1+ν ) { E+ ν 1ν ( g ¯ :E) g ¯ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho6acqGH9aqpdaWcaaqaaiaadweaae aadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaaWa aiWaaeaacaWHfbGaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaey OeI0IaeqyVd4gaaiaacIcaceWHNbGbaebacaGG6aGaaCyraiaacMca ceWHNbGbaebaaiaawUhacaGL9baaaaa@4652@

where g ¯ = g ¯ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahEgagaqeaiabg2da9iqadEgagaqeam aaCaaaleqabaGaeqySdeMaeqOSdigaaOGabCyBayaaraWaaSbaaSqa aiabeg7aHbqabaGccqGHxkcXceWHTbGbaebadaWgaaWcbaGaeqOSdi gabeaaaaa@3ED8@   is the in-plane component of the metric tensor associated with the undeformed shell (this replaces the identity tensor in the Cartesian version of the constitutive equations)

  1. The Cauchy stress is related to the material stress by σ=FΣ F T /JFΣ F T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acqGH9aqpcaWHgbGaaC4OdiaahA eadaahaaWcbeqaaiaadsfaaaGccaGGVaGaamOsaiabgIKi7kaahAea caWHJoGaaCOramaaCaaaleqabaGaamivaaaaaaa@3DC0@ .  Substituting the formulas for Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho6aaaa@31B7@  from (4) and approximating F as F m i m ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAeacqGHijYUcaWHTbWaaSbaaSqaai aadMgaaeqaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacaWGPbaa aaaa@3954@ , we find after some algebra that

σ= σ αβ m α m β D αβλρ ( γ λρ + x 3 ( κ ρ μ κ ¯ ρ μ ) g λμ ) m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acqGH9aqpcqaHdpWCdaahaaWcbe qaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabgEPielaah2gadaWgaaWcbaGaeqOSdigabeaakiabgIKi7kaads eadaahaaWcbeqaaiabeg7aHjabek7aIjabeU7aSjabeg8aYbaakmaa bmaabaGaeq4SdC2aaSbaaSqaaiabeU7aSjabeg8aYbqabaGccqGHRa WkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiabeQ7aRnaaDaaa leaacqaHbpGCaeaacqaH8oqBaaGccqGHsislcuaH6oWAgaqeamaaDa aaleaacqaHbpGCaeaacqaH8oqBaaGccaGGPaGaam4zamaaBaaaleaa cqaH7oaBcqaH8oqBaeqaaaGccaGLOaGaayzkaaGaaCyBamaaBaaale aacqaHXoqyaeqaaOGaey4LIqSaaCyBamaaBaaaleaacqaHYoGyaeqa aaaa@6C08@

where

D αβρμ = E 2(1 ν 2 ) ( ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseadaahaaWcbeqaaiabeg7aHjabek 7aIjabeg8aYjabeY7aTbaakiabg2da9maalaaabaGaamyraaqaaiaa ikdacaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaa aakiaacMcaaaWaaeWaaeaacaGGOaGabm4zayaaraWaaWbaaSqabeaa cqaHXoqycqaHbpGCaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIj abeY7aTbaakiabgUcaRiqadEgagaqeamaaCaaaleqabaGaeqySdeMa eqiVd0gaaOGabm4zayaaraWaaWbaaSqabeaacqaHYoGycqaHbpGCaa GccaGGPaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaey4kaSIa aGOmaiabe27aUjqadEgagaqeamaaCaaaleqabaGaeqySdeMaeqOSdi gaaOGabm4zayaaraWaaWbaaSqabeaacqaHbpGCcqaH8oqBaaaakiaa wIcacaGLPaaaaaa@67DD@

  1. The components of the stress-resultant tensor are given by

T αβ = h/2 h/2 ( σ αβ x 3 σ γα κ γ β ) (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9maapehabaWaaeWaaeaacqaHdpWCdaahaaWcbeqa aiabeg7aHjabek7aIbaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maa qabaGccqaHdpWCdaahaaWcbeqaaiabeo7aNjabeg7aHbaakiabeQ7a RnaaDaaaleaacqaHZoWzaeaacqaHYoGyaaaakiaawIcacaGLPaaaaS qaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOm aaqdcqGHRiI8aOGaaiikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaai aaiodaaeqaaOGaeqOUdS2aa0baaSqaaiabeU7aSbqaaiabeU7aSbaa kiaacMcacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaa@5F0D@

Substituting the formula for stress components into this expression and integrating through the thickness of the shell gives

T αβ =h D αβρλ γ ρλ + h 3 12 ( κ μ μ δ θ β κ θ β ) D θαρλ Δ κ ρλ h 3 12 κ μ μ D θαρλ κ θ β γ ρλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9iaadIgacaWGebWaaWbaaSqabeaacqaHXoqycqaH YoGycqaHbpGCcqaH7oaBaaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeq 4UdWgabeaakiabgUcaRmaalaaabaGaamiAamaaCaaaleqabaGaaG4m aaaaaOqaaiaaigdacaaIYaaaamaabmaabaGaeqOUdS2aa0baaSqaai abeY7aTbqaaiabeY7aTbaakiabes7aKnaaDaaaleaacqaH4oqCaeaa cqaHYoGyaaGccqGHsislcqaH6oWAdaqhaaWcbaGaeqiUdehabaGaeq OSdigaaaGccaGLOaGaayzkaaGaamiramaaCaaaleqabaGaeqiUdeNa eqySdeMaeqyWdiNaeq4UdWgaaOGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg8aYjabeU7aSbqabaGccqGHsisldaWcaaqaaiaadIgadaahaaWc beqaaiaaiodaaaaakeaacaaIXaGaaGOmaaaacqaH6oWAdaqhaaWcba GaeqiVd0gabaGaeqiVd0gaaOGaamiramaaCaaaleqabaGaeqiUdeNa eqySdeMaeqyWdiNaeq4UdWgaaOGaeqOUdS2aa0baaSqaaiabeI7aXb qaaiabek7aIbaakiabeo7aNnaaBaaaleaacqaHbpGCcqaH7oaBaeqa aaaa@84DD@

Here, terms of order h 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIgadaahaaWcbeqaaiaaisdaaaaaaa@3260@  have been neglected.

 

  1. The components of the internal moment tensor are

M αβ = h/2 h/2 x 3 ( σ αβ x 3 σ γα κ γ β ) (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9maapehabaGaamiEamaaBaaaleaacaaIZaaabeaa kmaabmaabaGaeq4Wdm3aaWbaaSqabeaacqaHXoqycqaHYoGyaaGccq GHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeq4Wdm3aaWbaaSqa beaacqaHZoWzcqaHXoqyaaGccqaH6oWAdaqhaaWcbaGaeq4SdCgaba GaeqOSdigaaaGccaGLOaGaayzkaaaaleaacqGHsislcaWGObGaai4l aiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipakiaacIcaca aIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabeQ7aRnaa DaaaleaacqaH7oaBaeaacqaH7oaBaaGccaGGPaGaamizaiaadIhada WgaaWcbaGaaG4maaqabaaaaa@60F6@

Substituting the formula for stress components into this expression and integrating through the thickness of the shell gives

M αβ = h 3 12 D αβρλ Δ κ ρλ + h 3 12 ( κ μ μ δ θ β κ θ β ) D θαρλ γ ρλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaakiabg2da9maalaaabaGaamiAamaaCaaaleqabaGaaG4maaaa aOqaaiaaigdacaaIYaaaaiaadseadaahaaWcbeqaaiabeg7aHjabek 7aIjabeg8aYjabeU7aSbaakiabfs5aejabeQ7aRnaaBaaaleaacqaH bpGCcqaH7oaBaeqaaOGaey4kaSYaaSaaaeaacaWGObWaaWbaaSqabe aacaaIZaaaaaGcbaGaaGymaiaaikdaaaWaaeWaaeaacqaH6oWAdaqh aaWcbaGaeqiVd0gabaGaeqiVd0gaaOGaeqiTdq2aa0baaSqaaiabeI 7aXbqaaiabek7aIbaakiabgkHiTiabeQ7aRnaaDaaaleaacqaH4oqC aeaacqaHYoGyaaaakiaawIcacaGLPaaacaWGebWaaWbaaSqabeaacq aH4oqCcqaHXoqycqaHbpGCcqaH7oaBaaGccqaHZoWzdaWgaaWcbaGa eqyWdiNaeq4UdWgabeaaaaa@6B4D@

where terms of order h 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIgadaahaaWcbeqaaiaaiwdaaaaaaa@3261@  and higher have been neglected.

 

 

 

10.5.10 Strain energy and kinetic energy of an elastic shell

 

It is useful to express the strain energy and kinetic energy of a deformed shell in terms of the motion and deformation of its mid-plane.  To this end:

  1. Consider an isotropic, linear elastic shell, with Young’s modulus E,  Poission’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaeqyVd4gaaa@33BA@ , mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaeqyWdihaaa@33C2@  and thickness h.  Denote the contravariant components of the tensor of elastic constants by

D αβρμ = E 2(1 ν 2 ) ( ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseadaahaaWcbeqaaiabeg7aHjabek 7aIjabeg8aYjabeY7aTbaakiabg2da9maalaaabaGaamyraaqaaiaa ikdacaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaa aakiaacMcaaaWaaeWaaeaacaGGOaGabm4zayaaraWaaWbaaSqabeaa cqaHXoqycqaHbpGCaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIj abeY7aTbaakiabgUcaRiqadEgagaqeamaaCaaaleqabaGaeqySdeMa eqiVd0gaaOGabm4zayaaraWaaWbaaSqabeaacqaHYoGycqaHbpGCaa GccaGGPaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaey4kaSIa aGOmaiabe27aUjqadEgagaqeamaaCaaaleqabaGaeqySdeMaeqOSdi gaaOGabm4zayaaraWaaWbaaSqabeaacqaHbpGCcqaH8oqBaaaakiaa wIcacaGLPaaaaaa@67DD@

  1. Let γ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo7aNnaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@359B@  and Δ κ λβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejabeQ7aRnaaBaaaleaacqaH7o aBcqaHYoGyaeqaaaaa@3720@  denote the covariant components of the mid-plane Lagrange strain tensor, defined in the preceding section,
  2. Let v= v i m i = v i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaCODaiabg2da9iaadAhadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Ja amODamaaBaaaleaacaWGPbaabeaakiaah2gadaahaaWcbeqaaiaadM gaaaaaaa@3D77@  and ω= μ ˙ α m 3 × m α = μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaCyYdiabg2da9iqbeY7aTzaacaWaaS baaSqaaiabeg7aHbqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaCaaaleqabaGaeqySdegaaOGaeyypa0JafqiVd0 MbaiaadaahaaWcbeqaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4m aaqabaGccqGHxdaTcaWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@4A19@  denote the linear and angular velocity of the mid-plane of the shell.

 

 The total strain energy of the shell can be calculated as

Φ= h 2 D αβρμ A ( γ αβ γ ρμ + h 2 12 ( Δ κ αβ Δ κ ρμ +2 κ λ λ Δ κ αβ γ ρμ ) ) dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaeuOPdyKaeyypa0ZaaSaaaeaacaWGOb aabaGaaGOmaaaacaWGebWaaWbaaSqabeaacqaHXoqycqaHYoGycqaH bpGCcqaH8oqBaaGcdaWdrbqaamaabmaabaGaeq4SdC2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeqiV d0gabeaakiabgUcaRmaalaaabaGaamiAamaaCaaaleqabaGaaGOmaa aaaOqaaiaaigdacaaIYaaaamaabmaabaGaeuiLdqKaeqOUdS2aaSba aSqaaiabeg7aHjabek7aIbqabaGccqqHuoarcqaH6oWAdaWgaaWcba GaeqyWdiNaeqiVd0gabeaakiabgUcaRiaaikdacqaH6oWAdaqhaaWc baGaeq4UdWgabaGaeq4UdWgaaOGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeqiV d0gabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaamyqaa qab0Gaey4kIipakiaadsgacaWGbbaaaa@74A6@

For all but a very few special shell geometries this result may be approximated by

Φ h 2 D αβρμ A ( γ αβ γ ρμ + h 2 12 Δ κ αβ Δ κ ρμ ) dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaeuOPdyKaaGPaVlabgIKi7oaalaaaba GaamiAaaqaaiaaikdaaaGaamiramaaCaaaleqabaGaeqySdeMaeqOS diMaeqyWdiNaeqiVd0gaaOWaa8quaeaadaqadaqaaiabeo7aNnaaBa aaleaacqaHXoqycqaHYoGyaeqaaOGaeq4SdC2aaSbaaSqaaiabeg8a YjabeY7aTbqabaGccqGHRaWkdaWcaaqaaiaadIgadaahaaWcbeqaai aaikdaaaaakeaacaaIXaGaaGOmaaaacqqHuoarcqaH6oWAdaWgaaWc baGaeqySdeMaeqOSdigabeaakiabfs5aejabeQ7aRnaaBaaaleaacq aHbpGCcqaH8oqBaeqaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqd cqGHRiI8aOGaamizaiaadgeaaaa@6283@

The kinetic energy K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaam4saaaa@32D2@  can be calculated using the formula

K= A ( h 2 ρ v i v i + h 3 24 ρ μ ˙ α μ ˙ α ) dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaGPaVlaadUeacqGH9aqpcaaMc8UaaG PaVlaaykW7daWdrbqaamaabmaabaWaaSaaaeaacaWGObaabaGaaGOm aaaacqaHbpGCcaWG2bWaaWbaaSqabeaacaWGPbaaaOGaamODamaaBa aaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaamiAamaaCaaaleqa baGaaG4maaaaaOqaaiaaikdacaaI0aaaaiabeg8aYjqbeY7aTzaaca WaaWbaaSqabeaacqaHXoqyaaGccuaH8oqBgaGaamaaBaaaleaacqaH XoqyaeqaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8aO Gaamizaiaadgeaaaa@5543@

The second term in the expression for the kinetic energy represents the rotational energy. In many practical problems, such as vibration of a shell, the rotational energy can be neglected.

 

Derivation: The strain energy density in the shell is given by Σ:E/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaC4OdiaacQdacaWHfbGaai4laiaaik daaaa@362C@ , where Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaaC4Odaaa@3331@  is the material stress tensor and E is the Lagrange strain tensor, defined in the preceding section.  The stress can be expressed in terms of the strain using the constitutive equation, while the strain can be expressed in terms of γ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo7aNnaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@359B@  and Δ κ λβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejabeQ7aRnaaBaaaleaacqaH7o aBcqaHYoGyaeqaaaaa@3720@  using step (3) in Section 10.5.8.   Integrating over the volume of material in the shell, and evaluating the integral through the shell’s thickness explicitly gives the result stated.  The kinetic energy is calculated using the formula for the velocity field in 10.2.8.