10.5 Motion and Deformation of thin shells MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzahaeaaaaaaaaa8qacaWFtacaaa@3218@  General theory

 

The figure illustrates the problem to be solved.   The solid of interest is a shell with uniform thickness h.  The shell’s thickness is assumed to be much smaller than any relevant in-plane dimension.   The exterior surface of the shell is subjected to a prescribed distribution of traction, while the edge of the shell may either be supported so as to constrain its motion, or may be subjected to prescribed forces.  Our objective is to calculate the internal forces in the shell, and to compute its deformed shape.

 

 

 

10.5.1 Coordinate systems and variables characterizing deformation of shells

 

· To specify the position of a point on the mid-plane of the undeformed shell, we introduce a convenient curvilinear coordinate system ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabe67a4naaBaaaleaacaaIXa aabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaGGPaaa aa@3852@  (examples include cylindrical or spherical polar coordinates).  Note that ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiabeg7aHbqaba aaaa@346E@  need not necessarily be distances along the surface: for example, for a cylindrical shell, we would use the axial distance z and the angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  as the coordinate system.

 

· The position vector of a material particle on the mid-section of the initial shell is denoted by r ¯ ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaaiikaiabe67a4naaBa aaleaacaaIXaaabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqa baGccaGGPaaaaa@3965@

 

· To characterize the orientation of an arbitrary point in the undeformed shell, we introduce three basis vectors m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaaceWHTbGbaebadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiqah2gagaqeamaaBaaaleaacaaIZaaabeaaaOGaayjkai aawMcaaaaa@39C9@ , with

m ¯ α = r ¯ ξ α m ¯ 3 = m ¯ 1 × m ¯ 2 m ¯ 1 × m ¯ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiabeg7aHb qabaGccqGH9aqpdaWcaaqaaiabgkGi2kqahkhagaqeaaqaaiabgkGi 2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ceWH TbGbaebadaWgaaWcbaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiqah2 gagaqeamaaBaaaleaacaaIXaaabeaakiabgEna0kqah2gagaqeamaa BaaaleaacaaIYaaabeaaaOqaamaaemaabaGabCyBayaaraWaaSbaaS qaaiaaigdaaeqaaOGaey41aqRabCyBayaaraWaaSbaaSqaaiaaikda aeqaaaGccaGLhWUaayjcSdaaaaaa@5E23@ .

Thus, m ¯ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiabeg7aHb qabaaaaa@33B9@  are tangent to the coordinate lines ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiabeg7aHbqaba aaaa@346E@  in the undeformed shell, and m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaae qaaaaa@32D7@  is a unit vector perpendicular to the mid-section of the shell.  This basis is called the covariant basis or natural basis for the coordinate system.  Note that the basis vectors m ¯ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiabeg7aHb qabaaaaa@33B9@  are not unit vectors, and are not, in general, orthogonal.

 

· Because m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaaceWHTbGbaebadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiqah2gagaqeamaaBaaaleaacaaIZaaabeaaaOGaayjkai aawMcaaaaa@39C9@  are not orthogonal, it is convenient to introduce a second set of basis vectors m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaaceWHTbGbaebadaahaaWcbe qaaiaaigdaaaGccaGGSaGabCyBayaaraWaaWbaaSqabeaacaaIYaaa aOGaaiilaiqah2gagaqeamaaCaaaleqabaGaaG4maaaaaOGaayjkai aawMcaaaaa@39CC@  defined so that

m ¯ i m ¯ j = δ j i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaWGPb aaaOGaeyyXICTabCyBayaaraWaaSbaaSqaaiaadQgaaeqaaOGaeyyp a0JaeqiTdq2aa0baaSqaaiaadQgaaeaacaWGPbaaaaaa@3C45@

where δ j i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aa0baaSqaaiaadQgaaeaaca WGPbaaaaaa@348F@  is the Kronecker delta symbol (the index i has been raised to match the indices on the basis vectors), i.e. δ j i =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aa0baaSqaaiaadQgaaeaaca WGPbaaaOGaeyypa0JaaGymaaaa@365A@  for i=j and zero otherwise.  This second triad of vectors is called the contravariant basis or reciprocal basis for the coordinate system.  The contravariant basis vectors can be constructed by taking cross products of the covariant basis vectors, as follows

m ¯ 1 =β m ¯ 2 × m ¯ 3 m ¯ 2 =β m ¯ 3 × m ¯ 1 m ¯ 3 = m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaeqOSdiMabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaey41aqRabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlqah2gagaqeamaaCaaaleqabaGaaG Omaaaakiabg2da9iabek7aIjqah2gagaqeamaaBaaaleaacaaIZaaa beaakiabgEna0kqah2gagaqeamaaBaaaleaacaaIXaaabeaakiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7ceWHTbGbaebadaahaaWcbeqaai aaiodaaaGccqGH9aqpceWHTbGbaebadaWgaaWcbaGaaG4maaqabaaa aa@737A@

where β=1/ m ¯ 1 ( m ¯ 2 × m ¯ 3 )=1/| m ¯ 1 × m ¯ 2 | MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0JaaGymaiaac+cace WHTbGbaebadaWgaaWcbaGaaGymaaqabaGccqGHflY1caGGOaGabCyB ayaaraWaaSbaaSqaaiaaikdaaeqaaOGaey41aqRabCyBayaaraWaaS baaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaaigdacaGGVaGaaiiF aiqah2gagaqeamaaBaaaleaacaaIXaaabeaakiabgEna0kqah2gaga qeamaaBaaaleaacaaIYaaabeaakiaacYhaaaa@4B39@ .  The reciprocal basis is shown in the figure.

 

· The position vector of an arbitrary point in the undeformed shell can be expressed as x= r ¯ ( ξ 1 , ξ 2 )+ x 3 m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iqahkhagaqeaiaacI cacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeqOVdG3aaSba aSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaadIhadaWgaaWcbaGaaG 4maaqabaGcceWHTbGbaebadaWgaaWcbaGaaG4maaqabaaaaa@4035@ , where x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  is the perpendicular distance of the material particle from the mid-section of the shell.

 

· After deformation, the mid-section of the shell is deformed to another smooth surface.  The point that lies at x= r ¯ ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iqahkhagaqeaiaacI cacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeqOVdG3aaSba aSqaaiaaikdaaeqaaOGaaiykaaaa@3B6C@  on the mid-section of the undeformed shell moves to a new position y=r( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiabg2da9iaahkhacaGGOaGaeq OVdG3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaaleaa caaIYaaabeaakiaacMcaaaa@3B55@  after deformation.

 

· To characterize the orientation of the deformed shell, we introduce three basis vectors m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@3981@ , with

m α = r ξ α m 3 = m 1 × m 2 /(| m 1 × m 2 |) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacqaHXoqyaeqaaO Gaeyypa0ZaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqOVdG3a aSbaaSqaaiabeg7aHbqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWc baGaaG4maaqabaGccqGH9aqpcaWHTbWaaSbaaSqaaiaaigdaaeqaaO Gaey41aqRaaCyBamaaBaaaleaacaaIYaaabeaakiaac+cacaGGOaGa aiiFaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHTbWaaS baaSqaaiaaikdaaeqaaOGaaiiFaiaacMcaaaa@5E55@ .

Now, m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacqaHXoqyaeqaaa aa@33A1@  are tangent to the coordinate lines ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiabeg7aHbqaba aaaa@346E@  in the deformed shell, and m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  is a unit vector perpendicular to the mid-section of the deformed shell.  We can introduce a reciprocal basis m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHTbWaaWbaaSqabeaaca aIXaaaaOGaaiilaiaah2gadaahaaWcbeqaaiaaikdaaaGccaGGSaGa aCyBamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaaaa@3984@  in exactly the same way as for the undeformed shell.

 

· A few special vectors and tensors, such as the angular velocity of the shell, and the internal stress couple in the shell are most conveniently expressed in terms of vectors m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaki abgEna0kaah2gadaWgaaWcbaGaeqySdegabeaaaaa@37A1@  or m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaki abgEna0kaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@37A2@ .  Special symbols will not be introduced for these vectors; they will always be written out as a cross product.

 

 

 

10.5.2 Vectors and tensor components in non-orthogonal bases: Covariant and Contravariant components

 

In this section we introduce some additional notation that helps deal with the complicated sets of basis vectors that characterize the deformation of a shell.

 

· Vectors can be expressed as linear combinations of some subset of the twelve possible basis vectors m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaaceWHTbGbaebadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiqah2gagaqeamaaBaaaleaacaaIZaaabeaaaOGaayjkai aawMcaaaaa@39C9@ , m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaaceWHTbGbaebadaahaaWcbe qaaiaaigdaaaGccaGGSaGabCyBayaaraWaaWbaaSqabeaacaaIYaaa aOGaaiilaiqah2gagaqeamaaCaaaleqabaGaaG4maaaaaOGaayjkai aawMcaaaaa@39CC@ , m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@3981@  or m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWHTbWaaWbaaSqabeaaca aIXaaaaOGaaiilaiaah2gadaahaaWcbeqaaiaaikdaaaGccaGGSaGa aCyBamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaaaa@3984@ .  For example, we can write an arbitrary vector a as

a= a ¯ i m ¯ i = a ¯ i m ¯ i = a i m i = a i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iqadggagaqeamaaCa aaleqabaGaamyAaaaakiqah2gagaqeamaaBaaaleaacaWGPbaabeaa kiabg2da9iqadggagaqeamaaBaaaleaacaWGPbaabeaakiqah2gaga qeamaaCaaaleqabaGaamyAaaaakiabg2da9iaadggadaahaaWcbeqa aiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Jaam yyamaaBaaaleaacaWGPbaabeaakiaah2gadaahaaWcbeqaaiaadMga aaaaaa@46CC@

Here, the coefficients a ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyyayaaraWaaWbaaSqabeaacaWGPb aaaaaa@32F9@  are called the contravariant components of a in m ¯ 1 , m ¯ 2 , m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaaceWHTbGbaebadaWgaaWcba GaaGymaaqabaGccaGGSaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiqah2gagaqeamaaBaaaleaacaaIZaaabeaaaOGaayjkai aawMcaaaaa@39C9@ , and a ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyyayaaraWaaSbaaSqaaiaadMgaae qaaaaa@32F8@  are called the covariant components of a.  Note that the contravariant components are coefficients of the covariant basis vectors, and vice-versa..  The reason for this confusing terminology is given below.  Note also that the components do not in general have the same units as the vector, because the basis vectors may have length dimensions.

 

· The various components of a can be expressed as

a ¯ i = m ¯ i a a ¯ i = m ¯ i a a i = m i a a i = m i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyyayaaraWaaWbaaSqabeaacaWGPb aaaOGaeyypa0JabCyBayaaraWaaWbaaSqabeaacaWGPbaaaOGaeyyX ICTaaCyyaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7ceWGHbGbaebadaWgaaWcbaGaamyAaaqabaGccqGH9aqpceWHTbGb aebadaWgaaWcbaGaamyAaaqabaGccqGHflY1caWHHbGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGHbWaaWba aSqabeaacaWGPbaaaOGaeyypa0JaaCyBamaaCaaaleqabaGaamyAaa aakiabgwSixlaahggacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaamyAaaqabaGccqGH9a qpcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaCyyaaaa@7639@

To see the first result, take dot products of a= a ¯ i m ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iqadggagaqeamaaCa aaleqabaGaamyAaaaakiqah2gagaqeamaaBaaaleaacaWGPbaabeaa aaa@371B@  with m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaCaaaleqabaGaamOAaaaaaa a@32F2@  and recall that m ¯ i m ¯ j = δ j i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaWGPb aaaOGaeyyXICTabCyBayaaraWaaSbaaSqaaiaadQgaaeqaaOGaeyyp a0JaeqiTdq2aa0baaSqaaiaadQgaaeaacaWGPbaaaaaa@3C45@ . The `contravariant’ and `covariant’ terms assigned to a ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyyayaaraWaaWbaaSqabeaacaWGPb aaaaaa@32F9@  and a ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyyayaaraWaaSbaaSqaaiaadMgaae qaaaaa@32F8@  refer to the fact that they represent projections of the vector a onto the contravariant and covariant basis vectors, respectively.  The raised and lowered indices for vector components follow the same convention: raised indices indicate contravariant components, while lowered indices represent covariant components.

 

· Tensors can also be expressed as sums of nine dyadic products of various combinations of basis vectors.  For example, if S is a tensor we could write

S= S ij m i m j = S j i m i m j = S j i m j m i = S ij m i m j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadofadaahaaWcbe qaaiaadMgacaWGQbaaaOGaaCyBamaaBaaaleaacaWGPbaabeaakiab gEPielaah2gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWGtbWaa0 baaSqaaiabgwSixlaadQgaaeaacaWGPbaaaOGaaCyBamaaBaaaleaa caWGPbaabeaakiabgEPielaah2gadaahaaWcbeqaaiaadQgaaaGccq GH9aqpcaWGtbWaa0baaSqaaiaadQgaaeaacqGHflY1caWGPbaaaOGa aCyBamaaCaaaleqabaGaamOAaaaakiabgEPielaah2gadaWgaaWcba GaamyAaaqabaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaah2gadaahaaWcbeqaaiaadMgaaaGccqGHxkcXcaWHTbWaaW baaSqabeaacaWGQbaaaaaa@5F08@

or equivalent expressions in terms of m ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaadMgaae qaaaaa@3308@  and/or m ¯ j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaWGQb aaaaaa@330A@ .  Here S ij , S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaamyAaiaadQ gaaaGccaGGSaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@375D@  are called contravariant and covariant components of S, respectively, while S .j i , S j .i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaGGUaGaamOAaa qaaiaadMgaaaGccaGGSaGaam4uamaaDaaaleaacaWGQbaabaGaaiOl aiaadMgaaaaaaa@38C2@  are called mixed tensor components.  The dot that appears before the indices in the mixed tensors is introduced to identify whether the index should be associated with the first or second basis vector in the dyadic product (the dot appears before the index associated with the second basis vector).  For symmetric tensors, the dot can be dropped.

 

· The various components of S can be regarded as projections of the tensor onto the contravariant or covariant basis vectors, as S ij = m i S m j S ij = m i S m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTa aC4uaiabgwSixlaah2gadaWgaaWcbaGaamOAaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaah aaWcbeqaaiaadMgacaWGQbaaaOGaeyypa0JaaCyBamaaCaaaleqaba GaamyAaaaakiabgwSixlaahofacqGHflY1caWHTbWaaWbaaSqabeaa caWGQbaaaaaa@585D@ , with similar results for the mixed components.

 

· Once again, it is important to note that the components S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C1@  do not have a convenient physical interpretation.  In general the components do not even have the same units as the tensor itself, because the basis vectors themselves have units.

 

· The various sets of components can be related by defining the components of the fundamental tensor or metric tensor g as follows

g ij = m i m j g ij = m i m j g j i = m i m j = δ j i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTa aCyBamaaBaaaleaacaWGQbaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4z amaaCaaaleqabaGaamyAaiaadQgaaaGccqGH9aqpcaWHTbWaaWbaaS qabeaacaWGPbaaaOGaeyyXICTaaCyBamaaCaaaleqabaGaamOAaaaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaadEgadaqhaaWcbaGaamOAaaqaaiaadMgaaaGccqGH9aqp caWHTbWaaWbaaSqabeaacaWGPbaaaOGaeyyXICTaaCyBamaaBaaale aacaWGQbaabeaakiabg2da9iabes7aKnaaDaaaleaacaWGQbaabaGa amyAaaaaaaa@7402@

We can define g ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaSbaaSqaaiaadMgaca WGQbaabeaaaaa@33ED@  in terms of m ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaadMgaae qaaaaa@3308@  and/or m ¯ j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaWGQb aaaaaa@330A@  in the same way.  With these definitions, we see that the covariant and contravariant basis vectors are related by

m i = g ij m j m i = g ij m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaCaaaleqabaGaamyAaaaaki abg2da9iaadEgadaahaaWcbeqaaiaadMgacaWGQbaaaOGaaCyBamaa BaaaleaacaWGQbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2ga daWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGNbWaaSbaaSqaaiaadM gacaWGQbaabeaakiaah2gadaahaaWcbeqaaiaadQgaaaaaaa@53D1@

 

· The metric tensor can be expressed as the sum of three dyadic products g= m i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4zaiabg2da9iaah2gadaWgaaWcba GaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacaWGPbaaaaaa @390A@ , with a similar expression for g ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4zayaaraaaaa@31E8@ .  From this expression we see that

gg= m i m i m j m j = m i δ i j m j = m i m i =g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4zaiaahEgacqGH9aqpdaqadaqaai aah2gadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqa beaacaWGPbaaaaGccaGLOaGaayzkaaWaaeWaaeaacaWHTbWaaSbaaS qaaiaadQgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamOAaaaa aOGaayjkaiaawMcaaiabg2da9iaah2gadaWgaaWcbaGaamyAaaqaba GccqGHxkcXcqaH0oazdaqhaaWcbaGaamyAaaqaaiaadQgaaaGccaWH TbWaaWbaaSqabeaacaWGQbaaaOGaeyypa0JaaCyBamaaBaaaleaaca WGPbaabeaakiabgEPielaah2gadaahaaWcbeqaaiaadMgaaaGccqGH 9aqpcaWHNbaaaa@578E@

g is therefore its own inverse MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it is a representation of the identity tensor.

 

 

 

10.5.3 Additional Deformation Measures and Kinematic Relations

 

· An infinitesimal line element d r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqahkhagaqeaaaa@32DC@  that lies in the mid-section of the undeformed plate can be expressed in terms of infinitesimal changes in the coordinates d ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabe67a4naaBaaaleaacqaHXo qyaeqaaaaa@3557@  as

d r ¯ = m ¯ α d ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqahkhagaqeaiabg2da9iqah2 gagaqeamaaBaaaleaacqaHXoqyaeqaaOGaamizaiabe67a4naaBaaa leaacqaHXoqyaeqaaaaa@3B3C@

The length ds of d r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqahkhagaqeaaaa@32DC@  can be computed as

d s ¯ 2 =d r ¯ d r ¯ = m ¯ α m ¯ β d ξ α d ξ β = g ¯ αβ d ξ α d ξ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqadohagaqeamaaCaaaleqaba GaaGOmaaaakiabg2da9iaadsgaceWHYbGbaebacqGHflY1caWGKbGa bCOCayaaraGaeyypa0JabCyBayaaraWaaSbaaSqaaiabeg7aHbqaba GccqGHflY1ceWHTbGbaebadaWgaaWcbaGaeqOSdigabeaakiaadsga cqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaadsgacqaH+oaEdaWgaa WcbaGaeqOSdigabeaakiabg2da9iqadEgagaqeamaaBaaaleaacqaH XoqycqaHYoGyaeqaaOGaamizaiabe67a4naaBaaaleaacqaHXoqyae qaaOGaamizaiabe67a4naaBaaaleaacqaHYoGyaeqaaaaa@5BAA@

This expression is known as the first fundamental form for the surface.  A similar expression can be constructed for the deformed surface.

 

· The variation of the normal vectors m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaae qaaaaa@32D7@  and m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  with position in the mid-plane of the shell play a particularly important role in describing the shape and deformation of the shell, because they characterize its curvature and bending.  To quantify this variation, let m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaae qaaaaa@32D7@  and m ¯ 3 +d m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaae qaaOGaey4kaSIaamizaiqah2gagaqeamaaBaaaleaacaaIZaaabeaa aaa@36A3@  be the vectors normal to the surface at positions r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraaaaa@31F3@  and r ¯ +d r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaey4kaSIaamizaiqahk hagaqeaaaa@34D1@  in the undeformed shell, with a similar notation for the deformed shell. We introduce symmetric curvature tensors κ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOUdyaaraaaaa@323E@  and κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdaaa@3226@  that satisfy

d m ¯ 3 = κ ¯ d r ¯ d m 3 =κdr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqah2gagaqeamaaBaaaleaaca aIZaaabeaakiabg2da9iqahQ7agaqeaiabgwSixlaadsgaceWHYbGb aebacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsgacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaCOUdiabgwSixlaads gacaWHYbaaaa@595A@

The curvatures κ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOUdyaaraaaaa@323E@  and κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdaaa@3226@  are called surface tensors, because they transform like tensors under changes of surface coordinates.

 

· The curvature components can be expressed in terms of their covariant, contravariant or mixed components.   This can be used to deduce expressions such as

d m ¯ 3 = κ ¯ αγ m ¯ α m ¯ γ m ¯ β d ξ β = κ ¯ αβ d ξ β m ¯ α d m ¯ 3 = κ ¯ γ α m ¯ α m ¯ γ m ¯ β d ξ β = κ ¯ β α d ξ β m ¯ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGabCyBayaaraWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0ZaaeWaaeaacuaH6oWAgaqeamaaBaaa leaacqaHXoqycqaHZoWzaeqaaOGabCyBayaaraWaaWbaaSqabeaacq aHXoqyaaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabeo7aNbaa aOGaayjkaiaawMcaaiabgwSixpaabmaabaGabCyBayaaraWaaSbaaS qaaiabek7aIbqabaGccaWGKbGaeqOVdG3aaSbaaSqaaiabek7aIbqa baaakiaawIcacaGLPaaacqGH9aqpcuaH6oWAgaqeamaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaamizaiabe67a4naaBaaaleaacqaHYoGy aeqaaOGabCyBayaaraWaaWbaaSqabeaacqaHXoqyaaaakeaacaWGKb GabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaeWaaeaa cuaH6oWAgaqeamaaDaaaleaacqaHZoWzaeaacqaHXoqyaaGcceWHTb GbaebadaWgaaWcbaGaeqySdegabeaakiabgEPielqah2gagaqeamaa CaaaleqabaGaeq4SdCgaaaGccaGLOaGaayzkaaGaeyyXIC9aaeWaae aaceWHTbGbaebadaWgaaWcbaGaeqOSdigabeaakiaadsgacqaH+oaE daWgaaWcbaGaeqOSdigabeaaaOGaayjkaiaawMcaaiabg2da9iqbeQ 7aRzaaraWaa0baaSqaaiabek7aIbqaaiabeg7aHbaakiaadsgacqaH +oaEdaWgaaWcbaGaeqOSdigabeaakiqah2gagaqeamaaBaaaleaacq aHXoqyaeqaaaaaaa@87DD@

 

· The curvature components can be calculated from the position vector of the mid-plane of the shell, using any of the following expressions

κ ¯ αβ = m ¯ α m ¯ 3 ξ β = r ¯ ξ α ξ β 1 λ r ¯ ξ 1 × r ¯ ξ 2 = 1 λ r ¯ ξ 1 × r ¯ ξ 2 2 r ¯ ξ α ξ β = m ¯ 3 m ¯ α ξ β = m ¯ 3 m ¯ β ξ α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH6oWAgaqeamaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaeyypa0JabCyBayaaraWaaSbaaSqaaiab eg7aHbqabaGccqGHflY1daWcaaqaaiabgkGi2kqah2gagaqeamaaBa aaleaacaaIZaaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaH YoGyaeqaaaaakiabg2da9maalaaabaGaeyOaIyRabCOCayaaraaaba GaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyyXIC9a aSaaaeaacqGHciITaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqOSdi gabeaaaaGcdaqadaqaamaalaaabaGaaGymaaqaaiabeU7aSbaadaWc aaqaaiabgkGi2kqahkhagaqeaaqaaiabgkGi2kabe67a4naaBaaale aacaaIXaaabeaaaaGccqGHxdaTcaaMc8+aaSaaaeaacqGHciITceWH YbGbaebaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaaGOmaaqabaaaaa GccaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaeWaaeaadaWcaaqaaiaa igdaaeaacqaH7oaBaaWaaSaaaeaacqGHciITceWHYbGbaebaaeaacq GHciITcqaH+oaEdaWgaaWcbaGaaGymaaqabaaaaOGaey41aqRaaGPa VpaalaaabaGaeyOaIyRabCOCayaaraaabaGaeyOaIyRaeqOVdG3aaS baaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabgwSixpaabmaa baWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcceWHYbGbae baaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaakiabgkGi 2kabe67a4naaBaaaleaacqaHYoGyaeqaaaaaaOGaayjkaiaawMcaaa qaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabg2da9iabgkHiTiqah2gagaqeamaaBaaaleaacaaIZa aabeaakiabgwSixpaalaaabaGaeyOaIyRabCyBayaaraWaaSbaaSqa aiabeg7aHbqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqOSdi gabeaaaaGccqGH9aqpcqGHsislceWHTbGbaebadaWgaaWcbaGaaG4m aaqabaGccqGHflY1daWcaaqaaiabgkGi2kqah2gagaqeamaaBaaale aacqaHYoGyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7a Hbqabaaaaaaaaa@C046@

where λ=|( r ¯ / ξ 1 )×( r ¯ / ξ 2 )| MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaaiiFaiaacIcacq GHciITceWHYbGbaebacaGGVaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaa igdaaeqaaOGaaiykaiabgEna0kaacIcacqGHciITceWHYbGbaebaca GGVaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaiykaiaa cYhaaaa@48F0@ . The mixed components follow as κ β α = g αγ κ γβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aa0baaSqaaiabek7aIbqaai abeg7aHbaakiabg2da9iaadEgadaahaaWcbeqaaiabeg7aHjabeo7a NbaakiabeQ7aRnaaBaaaleaacqaHZoWzcqaHYoGyaeqaaaaa@409E@ , where g αγ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaeqySdeMaeq 4SdCgaaaaa@353F@  are the components of the metric tensor defined in Sect 10.5.2.

 

· The magnitude of the curvature of a shell is quantified by principal curvatures κ ¯ 1 , κ ¯ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaebadaWgaaWcbaGaaGymaa qabaGccaGGSaGafqOUdSMbaebadaWgaaWcbaGaaGOmaaqabaaaaa@36FD@  - these are simply the principal values of κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdaaa@3226@ . The mean curvature ( κ 1 + κ 2 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabeQ7aRnaaBaaaleaacaaIXa aabeaakiabgUcaRiabeQ7aRnaaBaaaleaacaaIYaaabeaakiaacMca caGGVaGaaGOmaaaa@39D1@ , and Gaussian curvature κ 1 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaeqOUdS2aaSbaaSqaaiaaikdaaeqaaaaa@361D@  are also used.

 

· We will also need to calculate the variation of the remaining basis vectors with position in the surface.  These are quantified by Christoffel symbols of the second kind   Γ αβ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4KdC0aa0baaSqaaiabeg7aHjabek 7aIbqaaiaadMgaaaaaaa@36A3@  which satisfy

d m i = Γ iα k m k d ξ α d m i = Γ kα i m k d ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah2gadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcqqHtoWrdaqhaaWcbaGaamyAaiabeg7aHbqaaiaa dUgaaaGccaWHTbWaaSbaaSqaaiaadUgaaeqaaOGaamizaiabe67a4n aaBaaaleaacqaHXoqyaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGKbGaaC yBamaaCaaaleqabaGaamyAaaaakiabg2da9iabgkHiTiabfo5ahnaa DaaaleaacaWGRbGaeqySdegabaGaamyAaaaakiaah2gadaahaaWcbe qaaiaadUgaaaGccaWGKbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaa aa@6242@

The Christoffel symbols are functions of position on the surface, and can be related to the position vector of the mid-plane of the shell and its curvature components as

Γ βγ α = m α 2 r ξ β ξ γ Γ αβ 3 = κ αβ Γ 3β α = κ β α Γ 3α 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4KdC0aa0baaSqaaiabek7aIjabeo 7aNbqaaiabeg7aHbaakiabg2da9iaah2gadaahaaWcbeqaaiabeg7a HbaakiabgwSixpaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaaCOCaaqaaiabgkGi2kabe67a4naaBaaaleaacqaHYoGyaeqaaOGa eyOaIyRaeqOVdG3aaSbaaSqaaiabeo7aNbqabaaaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeu4K dC0aa0baaSqaaiabeg7aHjabek7aIbqaaiaaiodaaaGccqGH9aqpcq GHsislcqaH6oWAdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeu4KdC 0aa0baaSqaaiaaiodacqaHYoGyaeaacqaHXoqyaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabfo5ahnaaDaaale aacaaIZaGaeqySdegabaGaaG4maaaakiabg2da9iaaicdaaaa@9CD1@

 

· Some relationships between the time derivatives of these various kinematic quantities are also needed in subsequent calculations.  The rate of change in shape of the shell can be characterized by the velocity of its middle surface v ξ 1 , ξ 2 =dr/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaabmaabaGaeqOVdG3aaSbaaS qaaiaaigdaaeqaaOGaaiilaiabe67a4naaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiabg2da9iaadsgacaWHYbGaai4laiaadsgaca WG0baaaa@3F00@ .  The velocity vector can be described as components in any of the various bases: the representation v= v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaWgaaWcba GaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWGPbaaaaaa@3715@  is particularly useful.

 

· The time derivatives of the basis vectors m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacqaHXoqyaeqaaa aa@33A1@  are a convenient way to characterize the rate of change of bending of the shell.   These are related to the velocity of the shell’s mid-plane by

d m α dt = d dt dr d ξ α = dv d ξ α = v i ξ α m i + v i d m i d ξ α = v i ξ α m i + v i Γ iα k m k = v β ξ α m β + v β Γ βα λ m λ + v 3 κ α β m β + v 3 ξ α v β κ βα m 3 d m α dt = v i ξ α m i + v i d m i d ξ α = v i ξ α m i v i Γ kα i m k = v β ξ α m β v β Γ λα β m λ + v 3 κ βα m β + v 3 ξ α v β κ α β m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWHTbWaaS baaSqaaiabeg7aHbqabaaakeaacaWGKbGaamiDaaaacqGH9aqpdaWc aaqaaiaadsgaaeaacaWGKbGaamiDaaaadaqadaqaamaalaaabaGaam izaiaahkhaaeaacaWGKbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaa aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGKbGaaCODaaqaai aadsgacqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGH9aqpdaWc aaqaaiabgkGi2kaadAhadaahaaWcbeqaaiaadMgaaaaakeaacqGHci ITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccaWHTbWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSIaamODamaaCaaaleqabaGaamyAaaaakm aalaaabaGaamizaiaah2gadaWgaaWcbaGaamyAaaqabaaakeaacaWG KbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyypa0ZaaSaaae aacqGHciITcaWG2bWaaWbaaSqabeaacaWGPbaaaaGcbaGaeyOaIyRa eqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaaCyBamaaBaaaleaaca WGPbaabeaakiabgUcaRiaadAhadaahaaWcbeqaaiaadMgaaaGccqqH toWrdaqhaaWcbaGaamyAaiabeg7aHbqaaiaadUgaaaGccaWHTbWaaS baaSqaaiaadUgaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqGH9aqpdaWcaaqaaiabgkGi2kaadAhadaahaaWcbeqa aiabek7aIbaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqyae qaaaaakiaah2gadaWgaaWcbaGaeqOSdigabeaakiabgUcaRiaadAha daahaaWcbeqaaiabek7aIbaakiabfo5ahnaaDaaaleaacqaHYoGycq aHXoqyaeaacqaH7oaBaaGccaWHTbWaaSbaaSqaaiabeU7aSbqabaGc cqGHRaWkcaWG2bWaaWbaaSqabeaacaaIZaaaaOGaeqOUdS2aa0baaS qaaiabeg7aHbqaaiabek7aIbaakiaah2gadaWgaaWcbaGaeqOSdiga beaakiabgUcaRmaabmaabaWaaSaaaeaacqGHciITcaWG2bWaaWbaaS qabeaacaaIZaaaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7a HbqabaaaaOGaeyOeI0IaamODamaaCaaaleqabaGaeqOSdigaaOGaeq OUdS2aaSbaaSqaaiabek7aIjabeg7aHbqabaaakiaawIcacaGLPaaa caWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaGPaVpaalaaabaGaam izaiaah2gadaWgaaWcbaGaeqySdegabeaaaOqaaiaadsgacaWG0baa aiaaykW7caaMc8Uaeyypa0ZaaSaaaeaacqGHciITcaWG2bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7a HbqabaaaaOGaaCyBamaaCaaaleqabaGaamyAaaaakiabgUcaRiaadA hadaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiaadsgacaWHTbWaaWba aSqabeaacaWGPbaaaaGcbaGaamizaiabe67a4naaBaaaleaacqaHXo qyaeqaaaaakiabg2da9maalaaabaGaeyOaIyRaamODamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqyae qaaaaakiaah2gadaahaaWcbeqaaiaadMgaaaGccqGHsislcaWG2bWa aSbaaSqaaiaadMgaaeqaaOGaeu4KdC0aa0baaSqaaiaadUgacqaHXo qyaeaacaWGPbaaaOGaaCyBamaaCaaaleqabaGaam4AaaaaaOqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiabgkGi 2kaadAhadaWgaaWcbaGaeqOSdigabeaaaOqaaiabgkGi2kabe67a4n aaBaaaleaacqaHXoqyaeqaaaaakiaah2gadaahaaWcbeqaaiabek7a IbaakiabgkHiTiaadAhadaWgaaWcbaGaeqOSdigabeaakiabfo5ahn aaDaaaleaacqaH7oaBcqaHXoqyaeaacqaHYoGyaaGccaWHTbWaaWba aSqabeaacqaH7oaBaaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaiodaae qaaOGaeqOUdS2aaSbaaSqaaiabek7aIjabeg7aHbqabaGccaWHTbWa aWbaaSqabeaacqaHYoGyaaGccqGHRaWkdaqadaqaamaalaaabaGaey OaIyRaamODamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kabe67a 4naaBaaaleaacqaHXoqyaeqaaaaakiabgkHiTiaadAhadaWgaaWcba GaeqOSdigabeaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacqaHYoGy aaaakiaawIcacaGLPaaacaWHTbWaaWbaaSqabeaacaaIZaaaaaaaaa@4BA7@

 

· We will also need to calculate the time derivative of the vector normal to the mid-plane of the shell m ˙ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaacaWaaSbaaSqaaiaaiodaae qaaaaa@32C8@ .  Since m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  is a unit vector, its time derivative can be quantified by an angular velocity vector ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@ , defined so that

d m 3 dt =ω× m 3 ω m 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaaIZaaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iaahM8acqGH xdaTcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aahM8acqGHflY1caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Ja aGimaaaa@6098@

The components of ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  can be related to d m α /dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah2gadaWgaaWcbaGaeqySde gabeaakiaac+cacaWGKbGaamiDaaaa@3729@  as

m 3 × ω× m 3 =ω= m 3 × d m 3 dt = m 3 × ( m ˙ 1 × m 2 + m 1 × m ˙ 2 ) m 1 × m 2 = ( m 3 m ˙ 1 ) m 2 +( m 3 m ˙ 2 ) m 1 m 1 × m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaSbaaSqaaiaaiodaae qaaOGaey41aq7aaeWaaeaacaWHjpGaey41aqRaaCyBamaaBaaaleaa caaIZaaabeaaaOGaayjkaiaawMcaaiabg2da9iaahM8acqGH9aqpca WHTbWaaSbaaSqaaiaaiodaaeqaaOGaey41aq7aaSaaaeaacaWGKbGa aCyBamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0baaaiabg2 da9iaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaTdaWcaaqaaiaa cIcaceWHTbGbaiaadaWgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHTb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCyBamaaBaaaleaacaaI XaaabeaakiabgEna0kqah2gagaGaamaaBaaaleaacaaIYaaabeaaki aacMcaaeaadaabdaqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGH xdaTcaWHTbWaaSbaaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSdaaaa qaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqGH9aqpdaWcaaqaaiabgkHiTiaacIcacaWHTbWaaSbaaSqaai aaiodaaeqaaOGaeyyXICTabCyBayaacaWaaSbaaSqaaiaaigdaaeqa aOGaaiykaiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaGGOa GaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixlqah2gagaGaamaa BaaaleaacaaIYaaabeaakiaacMcacaWHTbWaaSbaaSqaaiaaigdaae qaaaGcbaWaaqWaaeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey41 aqRaaCyBamaaBaaaleaacaaIYaaabeaaaOGaay5bSlaawIa7aaaaaa aa@F379@

Recalling that m 2 × m 3 / m 1 × m 2 = m 1 m 3 × m 1 / m 1 × m 2 = m 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIYaaabeaaki abgEna0kaah2gadaWgaaWcbaGaaG4maaqabaGccaGGVaWaaeWaaeaa daabdaqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHTb WaaSbaaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSdGaaGPaVdGaayjk aiaawMcaaiabg2da9iaah2gadaahaaWcbeqaaiaaigdaaaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey 41aqRaaCyBamaaBaaaleaacaaIXaaabeaakiaac+cadaqadaqaamaa emaabaGaaCyBamaaBaaaleaacaaIXaaabeaakiabgEna0kaah2gada WgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiWoaaiaawIcacaGLPaaa cqGH9aqpcaaMc8UaaCyBamaaCaaaleqabaGaaGOmaaaaaaa@6EA3@ , we see also that

d m 3 dt =ω× m 3 =( m 3 m ˙ 1 ) m 1 ( m 3 m ˙ 2 ) m 2 =( m 3 m ˙ α ) m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaaIZaaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iaahM8acqGH xdaTcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0Iaai ikaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHflY1ceWHTbGbaiaa daWgaaWcbaGaaGymaaqabaGccaGGPaGaaCyBamaaCaaaleqabaGaaG ymaaaakiabgkHiTiaacIcacaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa eyyXICTabCyBayaacaWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaah2 gadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcqGHsislcaGGOaGaaCyB amaaBaaaleaacaaIZaaabeaakiabgwSixlqah2gagaGaamaaBaaale aacqaHXoqyaeqaaOGaaiykaiaah2gadaahaaWcbeqaaiabeg7aHbaa aaa@5EBE@

Finally we may write this as

d m 3 dt = μ ˙ α m α μ ˙ α = m 3 m ˙ α = v 3 ξ α v β κ α β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaaIZaaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iqbeY7aTzaa caWaaSbaaSqaaiabeg7aHbqabaGccaWHTbWaaWbaaSqabeaacqaHXo qyaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqb eY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpcqGHsislca WHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXICTabCyBayaacaWaaSba aSqaaiabeg7aHbqabaGccqGH9aqpcqGHsisldaqadaqaamaalaaaba GaeyOaIyRaamODamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kab e67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgkHiTiaadAhadaWgaa WcbaGaeqOSdigabeaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacqaH YoGyaaaakiaawIcacaGLPaaaaaa@81DB@

The components μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiVd0MbaiaadaWgaaWcbaGaeqySde gabeaaaaa@346A@  can also be regarded as the components of the angular velocity vector ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  in a basis m 3 × m 1 , m 3 × m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaio daaeqaaOGaey41aqRaaCyBamaaCaaaleqabaGaaGymaaaakiaacYca caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey41aqRaaCyBamaaCaaale qabaGaaGOmaaaaaOGaay5Eaiaaw2haaaaa@3F92@  in the sense that

ω= μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iqbeY7aTzaacaWaaS baaSqaaiabeg7aHbqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaCaaaleqabaGaeqySdegaaaaa@3D91@

 

· The time derivative of the curvature tensor κ ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOUdyaacaaaaa@322F@ , is related to m ˙ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaacaWaaSbaaSqaaiaaiodaae qaaaaa@32C8@  by

d m ˙ 3 = κ ˙ α β d ξ β m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqah2gagaGaamaaBaaaleaaca aIZaaabeaakiabg2da9iqbeQ7aRzaacaWaaWbaaSqabeaacqaHXoqy aaGcdaWgaaWcbaGaeqOSdigabeaakiaadsgacqaH+oaEdaWgaaWcba GaeqOSdigabeaakiaah2gadaWgaaWcbaGaeqySdegabeaaaaa@416D@

Note that

d m ˙ 3 = μ ˙ α ξ β m α + μ ˙ α m α ξ β d ξ β = μ ˙ α ξ β m α μ ˙ α Γ λβ α m λ d ξ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqah2gagaGaamaaBaaaleaaca aIZaaabeaakiabg2da9maabmaabaWaaSaaaeaacqGHciITcuaH8oqB gaGaamaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaS baaSqaaiabek7aIbqabaaaaOGaaCyBamaaCaaaleqabaGaeqySdega aOGaey4kaSIafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaakmaala aabaGaeyOaIyRaaCyBamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOa IyRaeqOVdG3aaSbaaSqaaiabek7aIbqabaaaaaGccaGLOaGaayzkaa Gaamizaiabe67a4naaBaaaleaacqaHYoGyaeqaaOGaeyypa0ZaaeWa aeaadaWcaaqaaiabgkGi2kqbeY7aTzaacaWaaSbaaSqaaiabeg7aHb qabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaaGc caWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHsislcuaH8oqBgaGaam aaBaaaleaacqaHXoqyaeqaaOGaeu4KdC0aa0baaSqaaiabeU7aSjab ek7aIbqaaiabeg7aHbaakiaah2gadaahaaWcbeqaaiabeU7aSbaaaO GaayjkaiaawMcaaiaadsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaa aaa@772E@

The components of the time derivative of curvature can therefore be expressed in terms of μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiVd0MbaiaadaWgaaWcbaGaeqySde gabeaaaaa@346A@  as

κ ˙ β α m α = κ ˙ αβ m α = μ ˙ α ξ β m α μ ˙ λ Γ αβ λ m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaiaadaqhaaWcbaGaeqOSdi gabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaHXoqyaeqaaOGaeyyp a0JafqOUdSMbaiaadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaah2 gadaahaaWcbeqaaiabeg7aHbaakiabg2da9maabmaabaWaaSaaaeaa cqGHciITcuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaaGcbaGaey OaIyRaeqOVdG3aaSbaaSqaaiabek7aIbqabaaaaOGaaCyBamaaCaaa leqabaGaeqySdegaaOGaeyOeI0IafqiVd0MbaiaadaWgaaWcbaGaeq 4UdWgabeaakiabfo5ahnaaDaaaleaacqaHXoqycqaHYoGyaeaacqaH 7oaBaaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaaakiaawIcacaGLPa aaaaa@5F3A@

It is important to note that κ ˙ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaiaadaWgaaWcbaGaeqySde MaeqOSdigabeaaaaa@3607@  are not equal to the time derivatives of the curvature components.

 

· We will also need to characterize the linear and angular acceleration of the shell.  The linear acceleration can be quantified by the acceleration of the mid-plane a= d 2 r/d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadsgadaahaaWcbe qaaiaaikdaaaGccaWHYbGaai4laiaadsgacaWG0bWaaWbaaSqabeaa caaIYaaaaaaa@3925@ . 

 

· The angular acceleration of the shell can be characterized by the angular acceleration of the normal to its mid-plane, α=dω/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9iaadsgacaWHjpGaai 4laiaadsgacaWG0baaaa@37F6@ .  The angular acceleration can be related to the acceleration of the mid-plane of the shell as follows

α= dω dt = m 3 × d 2 m 3 d t 2 = 2 m 3 m ˙ α m α m ˙ β m 3 da d ξ β m 3 × m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9maalaaabaGaamizai aahM8aaeaacaWGKbGaamiDaaaacqGH9aqpcaWHTbWaaSbaaSqaaiaa iodaaeqaaOGaey41aq7aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYa aaaOGaaCyBamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0bWa aWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8Uaeyypa0ZaamWaae aacaaIYaWaaeWaaeaacaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyX ICTabCyBayaacaWaaSbaaSqaaiabeg7aHbqabaaakiaawIcacaGLPa aadaqadaqaaiaah2gadaahaaWcbeqaaiabeg7aHbaakiabgwSixlqa h2gagaGaamaaBaaaleaacqaHYoGyaeqaaaGccaGLOaGaayzkaaGaey OeI0IaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixpaalaaabaGa amizaiaahggaaeaacaWGKbGaeqOVdG3aaSbaaSqaaiabek7aIbqaba aaaaGccaGLBbGaayzxaaGaaCyBamaaBaaaleaacaaIZaaabeaakiab gEna0kaah2gadaahaaWcbeqaaiabek7aIbaaaaa@6E1C@

where we have used m ˙ 3 =( m 3 m ˙ α ) m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaacaWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaeyOeI0Iaaiikaiaah2gadaWgaaWcbaGaaG4maaqa baGccqGHflY1ceWHTbGbaiaadaWgaaWcbaGaeqySdegabeaakiaacM cacaWHTbWaaWbaaSqabeaacqaHXoqyaaaaaa@3FE7@  and noted that   m α m β = δ β α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaCaaaleqabaGaeqySdegaaO GaeyyXICTaaCyBamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0JaeqiT dq2aa0baaSqaaiabek7aIbqaaiabeg7aHbaaaaa@3EDB@   m ˙ α m β + m α m ˙ β =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyO0H4TabCyBayaacaWaaWbaaSqabe aacqaHXoqyaaGccqGHflY1caWHTbWaaSbaaSqaaiabek7aIbqabaGc cqGHRaWkcaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHflY1ceWHTb GbaiaadaWgaaWcbaGaeqOSdigabeaakiabg2da9iaaicdaaaa@45B7@  to obtain the final result.

 

· It is convenient to express α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdaaa@321D@  in the form α= μ ¨ β m 3 × m β = μ ¨ β m 3 × m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9iqbeY7aTzaadaWaaS baaSqaaiabek7aIbqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaCaaaleqabaGaeqOSdigaaOGaeyypa0JafqiVd0 MbamaadaahaaWcbeqaaiabek7aIbaakiaah2gadaWgaaWcbaGaaG4m aaqabaGccqGHxdaTcaWHTbWaaSbaaSqaaiabek7aIbqabaaaaa@48E9@ , where μ ¨ β = g βα μ ¨ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiVd0MbamaadaahaaWcbeqaaiabek 7aIbaakiabg2da9iaadEgadaahaaWcbeqaaiabek7aIjabeg7aHbaa kiqbeY7aTzaadaWaaSbaaSqaaiabeg7aHbqabaaaaa@3D6C@  and the μ ¨ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiVd0MbamaadaWgaaWcbaGaeqOSdi gabeaaaaa@346D@  can be related to the velocity and acceleration of the mid-plane of the shell as follows

μ ¨ β =2 m 3 m ˙ α m α m ˙ β m 3 da d ξ β =2 v 3 ξ α v λ κ αλ v α ξ β + v ρ Γ βρ α + v 3 κ β α a 3 ξ β a α κ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH8oqBgaWaamaaBaaaleaacq aHYoGyaeqaaOGaeyypa0JaaGOmamaabmaabaGaaCyBamaaBaaaleaa caaIZaaabeaakiabgwSixlqah2gagaGaamaaBaaaleaacqaHXoqyae qaaaGccaGLOaGaayzkaaWaaeWaaeaacaWHTbWaaWbaaSqabeaacqaH XoqyaaGccqGHflY1ceWHTbGbaiaadaWgaaWcbaGaeqOSdigabeaaaO GaayjkaiaawMcaaiabgkHiTiaah2gadaWgaaWcbaGaaG4maaqabaGc cqGHflY1daWcaaqaaiaadsgacaWHHbaabaGaamizaiabe67a4naaBa aaleaacqaHYoGyaeqaaaaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaaikdadaqada qaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZaaabeaaaOqa aiabgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgkHiTi aadAhadaahaaWcbeqaaiabeU7aSbaakiabeQ7aRnaaBaaaleaacqaH XoqycqaH7oaBaeqaaaGccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaai abgkGi2kaadAhadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kab e67a4naaBaaaleaacqaHYoGyaeqaaaaakiabgUcaRiaadAhadaahaa Wcbeqaaiabeg8aYbaakiabfo5ahnaaDaaaleaacqaHYoGycqaHbpGC aeaacqaHXoqyaaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaeqOUdS2aa0baaSqaaiabek7aIbqaaiabeg7aHbaaaOGaayjkaiaa wMcaaiabgkHiTmaabmaabaWaaSaaaeaacqGHciITcaWGHbWaaSbaaS qaaiaaiodaaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek7a IbqabaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaeqySdegaaOGaeq OUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaaakiaawIcacaGLPaaa aaaa@A73B@

 

· These results show that

d 2 m 3 d t 2 = d dt ω× m 3 =α× m 3 +ω× ω× m 3 = μ ¨ β m β μ ˙ α μ ˙ α m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgadaahaaWcbe qaaiaaikdaaaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamiz aiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaaca WGKbaabaGaamizaiaadshaaaWaaeWaaeaacaWHjpGaey41aqRaaCyB amaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabg2da9iaahg 7acqGHxdaTcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaCyY diabgEna0oaabmaabaGaaCyYdiabgEna0kaah2gadaWgaaWcbaGaaG 4maaqabaaakiaawIcacaGLPaaaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JafqiVd0Mbamaa daahaaWcbeqaaiabek7aIbaakiaah2gadaWgaaWcbaGaeqOSdigabe aakiabgkHiTiqbeY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaGccuaH 8oqBgaGaamaaCaaaleqabaGaeqySdegaaOGaaCyBamaaBaaaleaaca aIZaaabeaaaaaa@B0BA@

where we have used ω×(ω× m 3 )=(ω m 3 )ω(ωω) m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabgEna0kaacIcacaWHjpGaey 41aqRaaCyBamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpcaGG OaGaaCyYdiabgwSixlaah2gadaWgaaWcbaGaaG4maaqabaGccaGGPa GaaCyYdiabgkHiTiaacIcacaWHjpGaeyyXICTaaCyYdiaacMcacaWH TbWaaSbaaSqaaiaaiodaaeqaaaaa@4D4F@  and noted   (ω m 3 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahM8acqGHflY1caWHTbWaaS baaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaaicdaaaa@3981@  to obtain the second line.

 

 

 HEALTH WARNING: The sign convention used to characterize the curvature of a shell can be confusing.  In the convention used here, a convex surface has positive curvature. For example, a spherical shell with coordinate system chosen so that m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  points radially out of the sphere would have two equal positive principal curvatures. The mathematical analysis of curved surfaces usually uses the opposite sign convention for curvature, and a few texts on shell theory use curvature measures with the opposite sign to the one used here.  

 

 

 

10.5.4 Approximating the displacement and velocity field

 

The position vector of a material point in the shell before deformation can be expressed as x= r ¯ ( ξ 1 , ξ 2 )+ x 3 m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iqahkhagaqeaiaacI cacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeqOVdG3aaSba aSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaadIhadaWgaaWcbaGaaG 4maaqabaGcceWHTbGbaebadaWgaaWcbaGaaG4maaqabaaaaa@4035@ , where x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  is the distance of the material particle from the mid-section of the shell.

 

After deformation of the material point that has coordinates ( ξ 1 , ξ 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabe67a4naaBaaaleaacaaIXa aabeaakiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaGGSaGa amiEamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@3AF2@  in the undeformed shell moves to a new position, which can be expressed as

y( ξ α , x 3 )=r( ξ α )+ η i ( ξ α , x k ) m i ( ξ α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiaacIcacqaH+oaEdaWgaaWcba GaeqySdegabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aiykaiabg2da9iaahkhacaGGOaGaeqOVdG3aaSbaaSqaaiabeg7aHb qabaGccaGGPaGaey4kaSIaeq4TdG2aaWbaaSqabeaacaWGPbaaaOGa aiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiilaiaadIhada WgaaWcbaGaam4AaaqabaGccaGGPaGaaCyBamaaBaaaleaacaWGPbaa beaakiaacIcacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaacMcaaa a@52E7@

where η i ( ξ α ,0)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaWbaaSqabeaacaWGPbaaaO Gaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiilaiaaicda caGGPaGaeyypa0JaaGimaaaa@3BCC@ . This is a completely general expression.   We now introduce a series of approximations that are based on the assumptions that

 

1.The shell is thin compared with its in-plane dimensions;

 

2.The principal radii of curvature of the shell (both before and after deformation) are much larger than the characteristic dimension of its cross section;

 

With this in mind, we assume that η i ( ξ α , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaWbaaSqabeaacaWGPbaaaO Gaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiilaiaadIha daWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3B42@   can be approximated by a function of the form

η i ( ξ α , x 3 )= δ 3 i + f 3 i ( ξ α ) x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaWbaaSqabeaacaWGPbaaaO Gaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiilaiaadIha daWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0ZaaeWaaeaacqaH0o azdaqhaaWcbaGaaG4maaqaaiaadMgaaaGccqGHRaWkcaWGMbWaa0ba aSqaaiaaiodaaeaacaWGPbaaaOGaaiikaiabe67a4naaBaaaleaacq aHXoqyaeqaaOGaaiykaaGaayjkaiaawMcaaiaadIhadaWgaaWcbaGa aG4maaqabaaaaa@4BDD@

where f 3 i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaDaaaleaacaaIZaaabaGaam yAaaaaaaa@33A3@  can be regarded as the first term in a Taylor expansion of η i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaWbaaSqabeaacaWGPbaaaa aa@33A7@  with respect to x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@ .  Note that   f 3 α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaDaaaleaacaaIZaaabaGaeq ySdegaaaaa@3454@  represents transverse shear deformation of the shell, while f 3 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaDaaaleaacaaIZaaabaGaaG 4maaaaaaa@3372@  quantifies the through-thickness stretching.

 

Several versions of plate theory exist, which use different approximations for the shear deformation.  Here, we will present only the simplest approach, known as Kirchhoff shell theory,  which is to assume that f 3 i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaDaaaleaacaaIZaaabaGaam yAaaaakiabg2da9iaaicdaaaa@356D@ .  This implies that material fibers that are perpendicular to the mid-plane of the shell remain perpendicular to the mid-plane of the deformed shell, and the shell does not change its thickness, as shown in the figure. This reduces the displacement field to

y( ξ α , x 3 )=r( ξ α )+ x 3 m 3 ( ξ α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiaacIcacqaH+oaEdaWgaaWcba GaeqySdegabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa aiykaiabg2da9iaahkhacaGGOaGaeqOVdG3aaSbaaSqaaiabeg7aHb qabaGccaGGPaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaa h2gadaWgaaWcbaGaaG4maaqabaGccaGGOaGaeqOVdG3aaSbaaSqaai abeg7aHbqabaGccaGGPaaaaa@4A11@

The velocity field can be approximated as

d dt y( ξ α , x 3 )=v+ x 3 m ˙ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaGaaCyEaiaacIcacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaahA hacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGabCyBayaacaWa aSbaaSqaaiaaiodaaeqaaaaa@430D@

while the acceleration is

d 2 d t 2 y( ξ α , x 3 )=a+ x 3 d 2 m 3 d t 2 =a+ x 3 α× m 3 +ω× ω× m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGa aCyEaiaacIcacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaacYcaca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg2da9iaahggacqGH RaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKbWaaW baaSqabeaacaaIYaaaaOGaaCyBamaaBaaaleaacaaIZaaabeaaaOqa aiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaahg gacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOWaamWaaeaacaWH XoGaey41aqRaaCyBamaaBaaaleaacaaIZaaabeaakiabgUcaRiaahM 8acqGHxdaTdaqadaqaaiaahM8acqGHxdaTcaWHTbWaaSbaaSqaaiaa iodaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@60BC@

where α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdaaa@321D@  and ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdaaa@3235@  denote the angular acceleration and angular velocity of the unit vector normal to the mid-plane of the plate.

 

 

HEALTH WARNING: In addition to using this approximation to the displacement and velocity field, Kirchhoff shell theory assumes that the transverse stress σ 33 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacaaIZaGaaG 4maaaaaaa@344A@  vanishes in the shell.  Strictly speaking, this is inconsistent with the deformation.  A more rigorous approach would be to introduce a uniform transverse strain f 3 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaDaaaleaacaaIZaaabaGaaG 4maaaaaaa@3372@ ,  which could be calculated as part of the solution.  However, this approach yields results that are essentially indistinguishable from the plane-stress approximation.

 

 

 

10.5.5 Approximating the deformation gradient

 

The deformation gradient can be approximated as

F=(g+ x 3 κ) m α m ¯ α g ¯ + x 3 κ ¯ 1 m α m ¯ α + x 3 ( κ β α κ ¯ β α ) m α m ¯ β + m 3 m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHgbGaeyypa0JaaiikaiaahE gacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCOUdiaacMca cqGHflY1daqadaqaaiaah2gadaWgaaWcbaGaeqySdegabeaakiabgE Pielqah2gagaqeamaaCaaaleqabaGaeqySdegaaaGccaGLOaGaayzk aaGaeyyXIC9aaeWaaeaaceWHNbGbaebacqGHRaWkcaWG4bWaaSbaaS qaaiaaiodaaeqaaOGabCOUdyaaraaacaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaaIXaaaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeyisISRaaCyBamaaBaaaleaacqaHXoqyaeqaaOGa ey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHXoqyaaGccqGHRaWkca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiabeQ7aRnaaDaaaleaa cqaHYoGyaeaacqaHXoqyaaGccqGHsislcuaH6oWAgaqeamaaDaaale aacqaHYoGyaeaacqaHXoqyaaGccaGGPaGaaCyBamaaBaaaleaacqaH XoqyaeqaaOGaey4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaa GccqGHRaWkcaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey4LIqSabCyB ayaaraWaaWbaaSqabeaacaaIZaaaaaaaaa@8045@

where g ¯ = m ¯ i m ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4zayaaraGaeyypa0JabCyBayaara WaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSabCyBayaaraWaaWbaaSqa beaacaWGPbaaaaaa@3952@  and g= m i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4zaiabg2da9iaah2gadaWgaaWcba GaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacaWGPbaaaaaa @390A@  are the metric tensors for shell before and after deformation, and κ ¯ = κ ¯ β α m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOUdyaaraGaeyypa0JafqOUdSMbae badaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGabCyBayaaraWaaSba aSqaaiabeg7aHbqabaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaai abek7aIbaaaaa@404D@  and κ= κ β α m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9iabeQ7aRnaaDaaale aacqaHYoGyaeaacqaHXoqyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqa baGccqGHxkcXcaWHTbWaaWbaaSqabeaacqaHYoGyaaaaaa@3FED@  are the curvature tensors for the mid-surface of the shell before and after deformation, respectively.  The three terms in the second formula for F can be interpreted as (i) the effects of in-plane stretching of the shell; (ii) the effects of bending; and (iii) the effects of a change in the shell’s thickness.

 

Derivation  By definition, the deformation gradient relates infinitesimal line elements in the shell before (dx) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsgacaWH4bGaaiykaaaa@3423@  and after (dy) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsgacaWH5bGaaiykaaaa@3424@  deformation by dy=Fdx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpcaWHgbGaey yXICTaamizaiaahIhaaaa@38D4@ .  We wish to construct a tensor with these properties.  

 

1. An infinitesimal line element in the deformed shell can be expressed in terms of a small change in coordinates

dy= dr d ξ α d ξ α + x 3 d m 3 d ξ α d ξ α +d x 3 m 3 = dr d ξ α d ξ α + x 3 κ ¯ β α d ξ β m α +d x 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpdaWcaaqaai aadsgacaWHYbaabaGaamizaiabe67a4naaBaaaleaacqaHXoqyaeqa aaaakiaadsgacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiabgUcaRi aadIhadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiaadsgacaWHTbWa aSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiabe67a4naaBaaaleaacq aHXoqyaeqaaaaakiaadsgacqaH+oaEdaWgaaWcbaGaeqySdegabeaa kiabgUcaRiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyBam aaBaaaleaacaaIZaaabeaakiabg2da9maalaaabaGaamizaiaahkha aeaacaWGKbGaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaamizai abe67a4naaBaaaleaacqaHXoqyaeqaaOGaey4kaSIaamiEamaaBaaa leaacaaIZaaabeaakiqbeQ7aRzaaraWaa0baaSqaaiabek7aIbqaai abeg7aHbaakiaadsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiaa h2gadaWgaaWcbaGaeqySdegabeaakiabgUcaRiaadsgacaWG4bWaaS baaSqaaiaaiodaaeqaaOGaaCyBamaaBaaaleaacaaIZaaabeaaaaa@7417@

where we have used m 3 ξ β d ξ β = κ β α d ξ β m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWHTbWaaSbaaS qaaiaaiodaaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek7a IbqabaaaaOGaamizaiabe67a4naaBaaaleaacqaHYoGyaeqaaOGaey ypa0JaeqOUdS2aa0baaSqaaiabek7aIbqaaiabeg7aHbaakiaadsga cqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiaah2gadaWgaaWcbaGaeq ySdegabeaaaaa@4B35@

 

2. This expression can be rearranged into the form

dy=( δ β α m α m β + m 3 m 3 + x 3 κ β α m α m β )( m γ d ξ γ + m 3 d x 3 ) =(g+ x 3 κ)( m γ d ξ γ + m 3 d x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaaCyEaiabg2da9iaacI cacqaH0oazdaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGaaCyBamaa BaaaleaacqaHXoqyaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaeq OSdigaaOGaey4kaSIaaCyBamaaBaaaleaacaaIZaaabeaakiabgEPi elaah2gadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeqOUdS2aa0baaSqaaiabek7aIbqaaiabeg7a Hbaakiaah2gadaWgaaWcbaGaeqySdegabeaakiabgEPielaah2gada ahaaWcbeqaaiabek7aIbaakiaacMcacqGHflY1caGGOaGaaCyBamaa BaaaleaacqaHZoWzaeqaaOGaamizaiabe67a4naaBaaaleaacqaHZo WzaeqaaOGaey4kaSIaaCyBamaaBaaaleaacaaIZaaabeaakiaadsga caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaqaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaGGOaGaaC4z aiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaWH6oGaaiykai abgwSixlaacIcacaWHTbWaaSbaaSqaaiabeo7aNbqabaGccaWGKbGa eqOVdG3aaSbaaSqaaiabeo7aNbqabaGccqGHRaWkcaWHTbWaaSbaaS qaaiaaiodaaeqaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGc caGGPaaaaaa@8BC4@

 

3. An infinitesimal line element dx in the undeformed shell can also be related to d ξ α ,d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabe67a4naaBaaaleaacqaHXo qyaeqaaOGaaiilaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa @38E0@  as

dx= d r ¯ d ξ α d ξ α + x 3 m ¯ 3 ξ α d ξ α +d x 3 m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahIhacqGH9aqpdaWcaaqaai aadsgaceWHYbGbaebaaeaacaWGKbGaeqOVdG3aaSbaaSqaaiabeg7a HbqabaaaaOGaamizaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaey 4kaSIaamiEamaaBaaaleaacaaIZaaabeaakmaalaaabaGaeyOaIyRa bCyBayaaraWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaeqOVdG 3aaSbaaSqaaiabeg7aHbqabaaaaOGaamizaiabe67a4naaBaaaleaa cqaHXoqyaeqaaOGaey4kaSIaamizaiaadIhadaWgaaWcbaGaaG4maa qabaGcceWHTbGbaebadaWgaaWcbaGaaG4maaqabaaaaa@5458@

This can be re-written as

dx=( δ β α m ¯ α m ¯ β + m ¯ 3 m ¯ 3 + x 3 κ ¯ β α m ¯ α m ¯ β )( m ¯ γ d ξ γ + m ¯ 3 d x 3 ) =( g ¯ + x 3 κ ¯ )( m ¯ γ d ξ γ + m ¯ 3 d x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaaCiEaiabg2da9iaacI cacqaH0oazdaqhaaWcbaGaeqOSdigabaGaeqySdegaaOGabCyBayaa raWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXceWHTbGbaebadaahaa Wcbeqaaiabek7aIbaakiabgUcaRiqah2gagaqeamaaBaaaleaacaaI ZaaabeaakiabgEPielqah2gagaqeamaaCaaaleqabaGaaG4maaaaki abgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccuaH6oWAgaqeamaa DaaaleaacqaHYoGyaeaacqaHXoqyaaGcceWHTbGbaebadaWgaaWcba GaeqySdegabeaakiabgEPielqah2gagaqeamaaCaaaleqabaGaeqOS digaaOGaaiykaiabgwSixlaacIcaceWHTbGbaebadaWgaaWcbaGaeq 4SdCgabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeq4SdCgabeaakiab gUcaRiqah2gagaqeamaaBaaaleaacaaIZaaabeaakiaadsgacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaaiykaaqaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaGGOaGabC4zayaara Gaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiqahQ7agaqeaiaa cMcacqGHflY1caGGOaGabCyBayaaraWaaSbaaSqaaiabeo7aNbqaba GccaWGKbGaeqOVdG3aaSbaaSqaaiabeo7aNbqabaGccqGHRaWkceWH TbGbaebadaWgaaWcbaGaaG4maaqabaGccaWGKbGaamiEamaaBaaale aacaaIZaaabeaakiaacMcaaaaa@8CFB@

so that ( m ¯ γ d ξ γ + m ¯ 3 d x 3 )= ( g ¯ + x 3 κ ¯ ) 1 dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiqah2gagaqeamaaBaaaleaacq aHZoWzaeqaaOGaamizaiabe67a4naaBaaaleaacqaHZoWzaeqaaOGa ey4kaSIabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaamizaiaadI hadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0JaaiikaiqahEga gaqeaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcceWH6oGbae bacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyyXICTaamiz aiaahIhaaaa@4D13@

 

4. Finally, note that

( m β d ξ β + m 3 d x 3 )= m i m ¯ i ( m ¯ γ d ξ γ + m ¯ 3 d x 3 )= m i m ¯ i ( g ¯ + x 3 κ ¯ ) 1 dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaah2gadaWgaaWcbaGaeqOSdi gabeaakiaadsgacqaH+oaEdaWgaaWcbaGaeqOSdigabeaakiabgUca Riaah2gadaWgaaWcbaGaaG4maaqabaGccaWGKbGaamiEamaaBaaale aacaaIZaaabeaakiaacMcacqGH9aqpdaqadaqaaiaah2gadaWgaaWc baGaamyAaaqabaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiaadM gaaaaakiaawIcacaGLPaaacqGHflY1caGGOaGabCyBayaaraWaaSba aSqaaiabeo7aNbqabaGccaWGKbGaeqOVdG3aaSbaaSqaaiabeo7aNb qabaGccqGHRaWkceWHTbGbaebadaWgaaWcbaGaaG4maaqabaGccaWG KbGaamiEamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpdaqada qaaiaah2gadaWgaaWcbaGaamyAaaqabaGccqGHxkcXceWHTbGbaeba daahaaWcbeqaaiaadMgaaaaakiaawIcacaGLPaaacqGHflY1caGGOa GabC4zayaaraGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiqa hQ7agaqeaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGKb GaaCiEaaaa@6E6E@

We can substitute this result into (2) above to see that

dy=(g+ x 3 κ) m i m ¯ i ( g ¯ + x 3 κ ¯ ) 1 dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGKbGaaCyEaiabg2da9iaacIcacaWHNbGaey4kaSIaamiEamaa BaaaleaacaaIZaaabeaakiaahQ7acaGGPaGaeyyXIC9aaeWaaeaaca WHTbWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSabCyBayaaraWaaWba aSqabeaacaWGPbaaaaGccaGLOaGaayzkaaGaeyyXICTaaiikaiqahE gagaqeaiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGcceWH6oGb aebacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamizaiaahI haaaa@58B6@

and the deformation gradient can be read off as the coefficient of dx.

 

5. The approximate expression for F is obtained by assuming that for a thin shell

( g ¯ + x 3 κ ¯ ) 1 ( g ¯ x 3 κ ¯ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caGGOaGabC4zayaaraGaey4kaSIaamiEamaaBaaaleaacaaIZaaa beaakiqahQ7agaqeaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaa GccqGHijYUcaGGOaGabC4zayaaraGaeyOeI0IaamiEamaaBaaaleaa caaIZaaabeaakiqahQ7agaqeaiaacMcaaaa@4954@

To see this, multiply out ( g ¯ + x 3 κ ¯ )( g ¯ x 3 κ ¯ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaacIcaceWHNbGbaebacqGHRa WkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGabCOUdyaaraGaaiykaiab gwSixlaacIcaceWHNbGbaebacqGHsislcaWG4bWaaSbaaSqaaiaaio daaeqaaOGabCOUdyaaraGaaiykaaaa@41E2@ , recall that g ¯ g ¯ = g ¯ , g ¯ κ ¯ = κ ¯ g ¯ = κ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4zayaaraGaeyyXICTabC4zayaara Gaeyypa0JabC4zayaaraGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UabC4zayaaraGaeyyXICTabCOUdyaaraGaeyypa0JabCOUdy aaraGaeyyXICTabC4zayaaraGaeyypa0JabCOUdyaaraaaaa@4C79@  and neglect the term of order x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaaIZaaabaGaaG Omaaaaaaa@3383@ . Finally, substitute this approximation into the formula for F, multiply out the terms and neglect x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaaIZaaabaGaaG Omaaaaaaa@3383@  terms to obtain the approximation for F.

 

 

 

10.5.6 Other deformation measures.

 

It is straightforward to calculate any other deformation of interest from the deformation gradient.  A few examples that will be used in calculations to follow are listed below.

 

The inverse of the deformation gradient can be approximated by

F 1 =( g ¯ + x 3 κ ¯ ) m α m ¯ α 1 g+ x 3 κ 1 m ¯ α m α x 3 ( κ α β κ ¯ α β ) m ¯ α m β + m ¯ 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHgbWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaeyypa0JaaiikaiqahEgagaqeaiabgUcaRiaadIha daWgaaWcbaGaaG4maaqabaGcceWH6oGbaebacaGGPaGaeyyXIC9aae WaaeaacaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXceWHTbGb aebadaahaaWcbeqaaiabeg7aHbaaaOGaayjkaiaawMcaamaaCaaale qabaGaeyOeI0IaaGymaaaakiabgwSixpaabmaabaGaaC4zaiabgUca RiaadIhadaWgaaWcbaGaaG4maaqabaGccaWH6oaacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeyisISRabCyBayaaraWaaSbaaSqaai abeg7aHbqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacqaHXoqyaaGc cqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiabeQ7aRn aaDaaaleaacqaHXoqyaeaacqaHYoGyaaGccqGHsislcuaH6oWAgaqe amaaDaaaleaacqaHXoqyaeaacqaHYoGyaaGccaGGPaGabCyBayaara WaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaa cqaHYoGyaaGccqGHRaWkceWHTbGbaebadaWgaaWcbaGaaG4maaqaba GccqGHxkcXcaWHTbWaaWbaaSqabeaacaaIZaaaaaaaaa@840E@

 

The velocity gradient tensor L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCitaaaa@31B5@ , which relates the relative velocity d y ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqahMhagaGaaaaa@32D4@  of two material particles at positions y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaaaa@31E2@  and y+dy MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiabgUcaRiaadsgacaWH5baaaa@34AF@  in the deformed shell as d y ˙ =Ldy MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqahMhagaGaaiabg2da9iaahY eacaWGKbGaaCyEaaaa@369A@  can be approximated by

L= m ˙ i m i + x 3 κ ˙ αβ m α m β m i m i + x 3 κ β α m α m β 1 m ˙ i m i + x 3 κ ˙ αβ m α m β m i m i x 3 κ β α m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHmbGaeyypa0ZaaeWaaeaace WHTbGbaiaadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaWba aSqabeaacaWGPbaaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabe aakiqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaWH TbWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXcaWHTbWaaWbaaSqabe aacqaHYoGyaaaakiaawIcacaGLPaaacqGHflY1daqadaqaaiaah2ga daWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaaca WGPbaaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabeQ7a RnaaDaaaleaacqaHYoGyaeaacqaHXoqyaaGccaWHTbWaaSbaaSqaai abeg7aHbqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacqaHYoGyaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgIKi7oaabmaabaGabCyB ayaacaWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaale qabaGaamyAaaaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGc cuaH6oWAgaGaamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaCyBam aaCaaaleqabaGaeqySdegaaOGaey4LIqSaaCyBamaaCaaaleqabaGa eqOSdigaaaGccaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWHTbWaaS baaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaamyA aaaakiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAda qhaaWcbaGaeqOSdigabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaH XoqyaeqaaOGaey4LIqSaaCyBamaaCaaaleqabaGaeqOSdigaaaGcca GLOaGaayzkaaaaaaa@A05C@

where κ ˙ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaiaadaWgaaWcbaGaeqySde MaeqOSdigabeaaaaa@3607@  are the covariant components of the time derivative of the surface curvature tensor.

 

The Lagrange strain tensor can be approximated by

E=( F T FI)/2 1 2 g αβ g ¯ αβ m ¯ α m ¯ β + x 3 ( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyraiabg2da9iaacIcacaWHgbWaaW baaSqabeaacaWGubaaaOGaaCOraiabgkHiTiaahMeacaGGPaGaai4l aiaaikdacqGHijYUdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaaba Gaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0Iabm4z ayaaraWaaSbaaSqaaiabeg7aHjabek7aIbqabaaakiaawIcacaGLPa aaceWHTbGbaebadaahaaWcbeqaaiabeg7aHbaakiabgEPielqah2ga gaqeamaaCaaaleqabaGaeqOSdigaaOGaey4kaSIaamiEamaaBaaale aacaaIZaaabeaakiaacIcacqaH6oWAdaqhaaWcbaGaeqOSdigabaGa eqySdegaaOGaeyOeI0IafqOUdSMbaebadaqhaaWcbaGaeqOSdigaba GaeqySdegaaOGaaiykaiaadEgadaWgaaWcbaGaeq4UdWMaeqySdega beaakiqah2gagaqeamaaCaaaleqabaGaeq4UdWgaaOGaey4LIqSabC yBayaaraWaaWbaaSqabeaacqaHYoGyaaaaaa@6C1B@

where terms of order x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaaIZaaabaGaaG Omaaaaaaa@3383@  have been neglected, we have used g αβ = m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaCyBamaaBaaaleaacqaHXoqyaeqaaOGaeyyX ICTaaCyBamaaBaaaleaacqaHYoGyaeqaaaaa@3E20@  and I g ¯ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCysaiabggMi6kqadEgagaqeamaaBa aaleaacqaHXoqycqaHYoGyaeqaaOGabCyBayaaraWaaWbaaSqabeaa cqaHXoqyaaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabek7aIb aaaaa@3FBE@ .

 

When we write constitutive equations relating forces to deformations, it is convenient to introduce two new strain measures defined as follows:

 

1. The `mid-plane Lagrange strain tensor’

γ= γ αβ m ¯ α m ¯ β = 1 2 g αβ g ¯ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Sdiabg2da9iabeo7aNnaaBaaale aacqaHXoqycqaHYoGyaeqaaOGabCyBayaaraWaaWbaaSqabeaacqaH XoqyaaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabek7aIbaaki abg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWGNbWa aSbaaSqaaiabeg7aHjabek7aIbqabaGccqGHsislceWGNbGbaebada WgaaWcbaGaeqySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaiqah2ga gaqeamaaCaaaleqabaGaeqySdegaaOGaey4LIqSabCyBayaaraWaaW baaSqabeaacqaHYoGyaaaaaa@55BD@ ,

where g αβ = m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaCyBamaaBaaaleaacqaHXoqyaeqaaOGaeyyX ICTaaCyBamaaBaaaleaacqaHYoGyaeqaaaaa@3E20@  and g ¯ αβ = m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpceWHTbGbaebadaWgaaWcbaGaeqySdega beaakiabgwSixlqah2gagaqeamaaBaaaleaacqaHYoGyaeqaaaaa@3E68@ .  The tensor quantifies length changes of infinitesimal material elements in the mid-plane of the shell, in the sense that the lengths d s ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqadohagaqeaaaa@32D9@  and ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadohaaaa@32C1@  of a line element before and after deformation are related by

d ξ α m ¯ α γ m ¯ β d ξ β = g αβ d ξ α d ξ β g ¯ αβ d ξ α d ξ β /2=(d s 2 d s ¯ 2 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabe67a4naaBaaaleaacqaHXo qyaeqaaOGabCyBayaaraWaaSbaaSqaaiabeg7aHbqabaGccqGHflY1 caWHZoGaeyyXICTabCyBayaaraWaaSbaaSqaaiabek7aIbqabaGcca WGKbGaeqOVdG3aaSbaaSqaaiabek7aIbqabaGccqGH9aqpdaqadaqa aiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaadsgacqaH+o aEdaWgaaWcbaGaeqySdegabeaakiaadsgacqaH+oaEdaWgaaWcbaGa eqOSdigabeaakiabgkHiTiqadEgagaqeamaaBaaaleaacqaHXoqycq aHYoGyaeqaaOGaamizaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGa amizaiabe67a4naaBaaaleaacqaHYoGyaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdacqGH9aqpcaGGOaGaamizaiaadohadaahaaWcbeqa aiaaikdaaaGccqGHsislcaWGKbGabm4CayaaraWaaWbaaSqabeaaca aIYaaaaOGaaiykaiaac+cacaaIYaaaaa@6FC9@

 

2. The `Curvature change tensor’ Δκ=Δ κ λβ m ¯ λ m ¯ β =( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaaCOUdiabg2da9iabfs5aej abeQ7aRnaaBaaaleaacqaH7oaBcqaHYoGyaeqaaOGabCyBayaaraWa aWbaaSqabeaacqaH7oaBaaGccqGHxkcXceWHTbGbaebadaahaaWcbe qaaiabek7aIbaakiabg2da9iaacIcacqaH6oWAdaqhaaWcbaGaeqOS digabaGaeqySdegaaOGaeyOeI0IafqOUdSMbaebadaqhaaWcbaGaeq OSdigabaGaeqySdegaaOGaaiykaiaadEgadaWgaaWcbaGaeq4UdWMa eqySdegabeaakiqah2gagaqeamaaCaaaleqabaGaeq4UdWgaaOGaey 4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaaaaaa@5D25@ , which quantifies the additional stretch induced by bending and twisting the shell.

 

 

 

10.5.7 Representation of forces and moments in shells

 

The figure shows a generic cross-section of the shell, in the deformed configuration. To define measures of internal and external forces acting on the shell, we define the following variables

 

· A basis { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  with vectors chosen following the scheme described in 10.5.1.  Vector and tensor quantities will be quantified by their contravariant components in this basis

 

· The body force acting on the plate b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CB@ , or in component form b= b i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaadkgadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36ED@

 

· The tractions acting on the exterior surface of the shell t= t i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9iaadshadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@3711@ .  It is convenient to define separate variables to characterize the tractions acting on the various parts of the shell, as indicated in the sketch: the upper surface of the shell (denoted by S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqGHRaWkaeqaaa aa@32C6@  ) is subjected to traction t + i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaDaaaleaacqGHRaWkaeaaca WGPbaaaaaa@33D6@ ; the lower surface S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqGHsislaeqaaa aa@32D1@  is subjected to t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaDaaaleaacqGHsislaeaaca WGPbaaaaaa@33E1@ , while the surface around the edge of the shell S e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGLbaabeaaaa a@32CE@  is subjected to t e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaDaaaleaacaWGLbaabaGaam yAaaaaaaa@33DE@

 

· The Cauchy stress within the shell σ= σ ij m i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iabeo8aZnaaCaaale qabaGaamyAaiaadQgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaOGa ey4LIqSaaCyBamaaBaaaleaacaWGQbaabeaaaaa@3D40@ .

 

 

External forces and moments acting on the shell are characterized by

 

1. The external force per unit area acting on the shell, p= p i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@3709@ .  The force components can be calculated from the tractions and body force acting on the shell as

p i ( ξ α )= t + i ( ξ α )+ t i ( ξ α )+h κ α α t + i ( ξ α ) t i ( ξ α ) /2+ h/2 h/2 b i ( ξ α , x 3 ) 1+ x 3 κ α α d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaamyAaaaaki aacIcacqaH+oaEdaWgaaWcbaGaeqySdegabeaakiaacMcacqGH9aqp caWG0bWaa0baaSqaaiabgUcaRaqaaiaadMgaaaGccaGGOaGaeqOVdG 3aaSbaaSqaaiabeg7aHbqabaGccaGGPaGaey4kaSIaamiDamaaDaaa leaacqGHsislaeaacaWGPbaaaOGaaiikaiabe67a4naaBaaaleaacq aHXoqyaeqaaOGaaiykaiabgUcaRiaadIgacqaH6oWAdaqhaaWcbaGa eqySdegabaGaeqySdegaaOWaaeWaaeaacaWG0bWaa0baaSqaaiabgU caRaqaaiaadMgaaaGccaGGOaGaeqOVdG3aaSbaaSqaaiabeg7aHbqa baGccaGGPaGaeyOeI0IaamiDamaaDaaaleaacqGHsislaeaacaWGPb aaaOGaaiikaiabe67a4naaBaaaleaacqaHXoqyaeqaaOGaaiykaaGa ayjkaiaawMcaaiaac+cacaaIYaGaey4kaSYaa8qCaeaacaWGIbWaaW baaSqabeaacaWGPbaaaOGaaiikaiabe67a4naaBaaaleaacqaHXoqy aeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaWaae WaaeaacaaIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiab eQ7aRnaaDaaaleaacqaHXoqyaeaacqaHXoqyaaaakiaawIcacaGLPa aacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacqGHsislcaWG ObGaai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipaaa a@8416@

 

2. The external moment per unit area q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyCaaaa@31DA@  acting on the shell.  It is most convenient to express the external moment as   q= q α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyCaiabg2da9iaadghadaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaT caWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3C6D@  where the components q α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaCaaaleqabaGaeqySdegaaa aa@33A2@  can be calculated from the tractions and body force as

q α ( ξ β )= t + α ( ξ β ) t α ( ξ β ) h/2+ h/2 h/2 x 3 b α ( ξ β , x 3 )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaCaaaleqabaGaeqySdegaaO Gaaiikaiabe67a4naaBaaaleaacqaHYoGyaeqaaOGaaiykaiabg2da 9maadmaabaGaamiDamaaDaaaleaacqGHRaWkaeaacqaHXoqyaaGcca GGOaGaeqOVdG3aaSbaaSqaaiabek7aIbqabaGccaGGPaGaeyOeI0Ia amiDamaaDaaaleaacqGHsislaeaacqaHXoqyaaGccaGGOaGaeqOVdG 3aaSbaaSqaaiabek7aIbqabaGccaGGPaaacaGLBbGaayzxaaGaamiA aiaac+cacaaIYaGaey4kaSYaa8qCaeaacaWG4bWaaSbaaSqaaiaaio daaeqaaOGaamOyamaaCaaaleqabaGaeqySdegaaOGaaiikaiabe67a 4naaBaaaleaacqaHYoGyaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG 4maaqabaGccaGGPaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaa baGaeyOeI0IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaIYa aaniabgUIiYdaaaa@6827@

The vector q is work conjugate to the angular velocity ω= μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iqbeY7aTzaacaWaaS baaSqaaiabeg7aHbqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaCaaaleqabaGaeqySdegaaaaa@3D91@  of the normal to the mid-plane of the shell, in the sense that qω= q α m 3 × m α μ ˙ β ( m 3 × m β )= q α μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyCaiabgwSixlaahM8acqGH9aqpca WGXbWaaWbaaSqabeaacqaHXoqyaaGcdaqadaqaaiaah2gadaWgaaWc baGaaG4maaqabaGccqGHxdaTcaWHTbWaaSbaaSqaaiabeg7aHbqaba aakiaawIcacaGLPaaacqGHflY1cuaH8oqBgaGaamaaBaaaleaacqaH YoGyaeqaaOGaaiikaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxd aTcaWHTbWaaWbaaSqabeaacqaHYoGyaaGccaGGPaGaeyypa0JaamyC amaaCaaaleqabaGaeqySdegaaOGafqiVd0MbaiaadaWgaaWcbaGaeq ySdegabeaaaaa@5702@  is the rate of work done by the external couple per unit area of the shell’s mid-plane.

 

3. The resultant force per unit length acting on the external edge of the shell.  The force per unit length can be expressed as components as P= P i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadcfadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36C9@ .  The components are related to the tractions acting on the external surface at the edge of the shell by P i = h/2 h/2 t i (1+ x 3 τ α τ β κ αβ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaCaaaleqabaGaamyAaaaaki abg2da9maapehabaGaamiDamaaCaaaleqabaGaamyAaaaakiaacIca caaIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabes8a0n aaCaaaleqabaGaeqySdegaaOGaeqiXdq3aaWbaaSqabeaacqaHYoGy aaGccqaH6oWAdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaacMcaca WGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacqGHsislcaWGObGa ai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipaaaa@5216@  

 

4. The resultant moment per unit length acting on the external edge of the shell.  The moment per unit length can be expressed as components as Q= Q α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iaadgfadaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaT caWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3C2D@ .  The components are related to the tractions acting on external surface at the edge of the shell

Q α = h/2 h/2 t α x 3 (1+ x 3 τ α τ β κ αβ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaCaaaleqabaGaeqySdegaaO Gaeyypa0Zaa8qCaeaacaWG0bWaaWbaaSqabeaacqaHXoqyaaGccaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaaigdacqGHRaWkcaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaeqiXdq3aaWbaaSqabeaacqaHXoqy aaGccqaHepaDdaahaaWcbeqaaiabek7aIbaakiabeQ7aRnaaBaaale aacqaHXoqycqaHYoGyaeqaaOGaaiykaiaadsgacaWG4bWaaSbaaSqa aiaaiodaaeqaaaqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadI gacaGGVaGaaGOmaaqdcqGHRiI8aaaa@5569@

 

 

Internal forces and moments within the shell are characterized by three surface tensors T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaaaa@31BD@ , V MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaaaa@31BF@  and M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaaaa@31B6@ ,  To visualize their physical significance, suppose that the shell is cut through so as to expose an internal surface, which lies perpendicular to the mid-plane of the shell, as shown in the figure. Let n= n α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iaad6gadaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaeqySdegabeaaaaa@3867@  denote a unit vector normal to the internal surface, and let ds denote an infinitesimal line element that lies in the both the exposed surface and the mid-plane of the shell.   The exposed surface is subjected to a distribution of traction, so that an small element of area with dimensions ds×h MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadohacqGHxdaTcaWGObaaaa@35C5@  is subjected to a resultant force df=d f i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahAgacqGH9aqpcaWGKbGaam OzamaaCaaaleqabaGaamyAaaaakiaah2gadaWgaaWcbaGaamyAaaqa baaaaa@38C7@  and resultant moment dη=d η α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahE7acqGH9aqpcaWGKbGaeq 4TdG2aaWbaaSqabeaacqaHXoqyaaGccaWHTbWaaSbaaSqaaiabeg7a Hbqabaaaaa@3B3E@ .  These forces and moments are related to T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaaaa@31BD@ , V MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaaaa@31BF@  and M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaaaa@31B6@  as outlined below:

 

1. The in-plane stress resultant tensor T= T αβ m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaadsfadaahaaWcbe qaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabgEPielaah2gadaWgaaWcbaGaeqOSdigabeaaaaa@3EAA@  quantifies internal forces that tend to stretch and shear the shell in its own plane.  It is related to the internal tractions by d f α m α =dsnT MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAgadaahaaWcbeqaaiabeg 7aHbaakiaah2gadaWgaaWcbaGaeqySdegabeaakiabg2da9iaadsga caWGZbGaaCOBaiabgwSixlaahsfaaaa@3E5A@ , and its components can be calculated from the stress distribution in the shell as

T αβ = h/2 h/2 σ αβ x 3 σ γα κ γ β (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0Zaa8qCaeaadaqadaqaaiabeo8aZnaaCaaaleqa baGaeqySdeMaeqOSdigaaOGaeyOeI0IaamiEamaaBaaaleaacaaIZa aabeaakiabeo8aZnaaCaaaleqabaGaeq4SdCMaeqySdegaaOGaeqOU dS2aa0baaSqaaiabeo7aNbqaaiabek7aIbaaaOGaayjkaiaawMcaaa WcbaGaeyOeI0IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaI YaaaniabgUIiYdGccaGGOaGaaGymaiabgUcaRiaadIhadaWgaaWcba GaaG4maaqabaGccqaH6oWAdaqhaaWcbaGaeq4UdWgabaGaeq4UdWga aOGaaiykaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@5F65@

 

2. The transverse shearing stress tensor V= V β m β m 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaiabg2da9iaadAfadaahaaWcbe qaaiabek7aIbaakiaah2gadaWgaaWcbaGaeqOSdigabeaakiabgEPi elaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3C2C@  quantifies internal forces that act to impose the constraint that material fibers that are perpendicular to the mid-plane of the shell before deformation remain perpendicular to the mid-plane after deformation.  Strictly speaking, in Kirchoff shell theory it is a Lagrange multiplier, but can be regarded as quantifying the transverse shear force d f 3 m 3 =dsnV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAgadaahaaWcbeqaaiaaio daaaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Jaamizaiaa dohacaWHUbGaeyyXICTaaCOvaaaa@3C98@ .  Its value cannot be computed from the deformation of the shell, because the transverse shearing has been neglected: instead, it must be determined by solving the equilibrium equations given in the next section.

 

3. The internal moment tensor M= M αβ m α m 3 × m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaad2eadaahaaWcbe qaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabgEPiepaabmaabaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgE na0kaah2gadaWgaaWcbaGaeqOSdigabeaaaOGaayjkaiaawMcaaaaa @442F@  characterizes internal bending and twisting moments in the shell.   It is related to the moment acting on internal through-thickness sections of the shell by dη= η α m α =dsnM MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahE7acqGH9aqpcqaH3oaAda ahaaWcbeqaaiabeg7aHbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabg2da9iaadsgacaWGZbGaaCOBaiabgwSixlaah2eaaaa@415D@ .  The components M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@351F@  can be calculated from the internal stresses in the shell as

M αβ = h/2 h/2 x 3 σ αβ x 3 σ γα κ γ β (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0Zaa8qCaeaacaWG4bWaaSbaaSqaaiaaiodaaeqa aOWaaeWaaeaacqaHdpWCdaahaaWcbeqaaiabeg7aHjabek7aIbaaki abgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccqaHdpWCdaahaaWc beqaaiabeo7aNjabeg7aHbaakiabeQ7aRnaaDaaaleaacqaHZoWzae aacqaHYoGyaaaakiaawIcacaGLPaaaaSqaaiabgkHiTiaadIgacaGG VaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aOGaaiikai aaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdS2a a0baaSqaaiabeU7aSbqaaiabeU7aSbaakiaacMcacaWGKbGaamiEam aaBaaaleaacaaIZaaabeaaaaa@614E@

The tensor M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaaaa@31B6@  is work conjugate to the gradient of the angular velocity of the normal to the mid-plane of the shell ω= μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iqbeY7aTzaacaWaaS baaSqaaiabeg7aHbqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaCaaaleqabaGaeqySdegaaaaa@3D91@ , or alternatively, to the rate of change of curvature in the sense that

M: m α ω ξ α = M αβ m α m 3 × m β : m γ ξ γ μ ˙ λ ( m 3 × m λ ) = M αβ μ ˙ β ξ α μ ˙ λ Γ αβ λ = M αβ κ ˙ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHnbGaaiOoamaabmaabaGaaC yBamaaCaaaleqabaGaeqySdegaaOGaey4LIq8aaSaaaeaacqGHciIT caWHjpaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaa GccaGLOaGaayzkaaGaeyypa0ZaaiWaaeaacaWGnbWaaWbaaSqabeaa cqaHXoqycqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGccq GHxkcXdaqadaqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaT caWHTbWaaSbaaSqaaiabek7aIbqabaaakiaawIcacaGLPaaaaiaawU hacaGL9baacaGG6aWaaiWaaeaacaWHTbWaaWbaaSqabeaacqaHZoWz aaGccqGHxkcXdaWcaaqaaiabgkGi2cqaaiabgkGi2kabe67a4naaBa aaleaacqaHZoWzaeqaaaaakmaacmaabaGafqiVd0MbaiaadaWgaaWc baGaeq4UdWgabeaakiaacIcacaWHTbWaaSbaaSqaaiaaiodaaeqaaO Gaey41aqRaaCyBamaaCaaaleqabaGaeq4UdWgaaOGaaiykaaGaay5E aiaaw2haaaGaay5Eaiaaw2haaaqaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaamytamaaCaaa leqabaGaeqySdeMaeqOSdigaaOWaaeWaaeaadaWcaaqaaiabgkGi2k qbeY7aTzaacaWaaSbaaSqaaiabek7aIbqabaaakeaacqGHciITcqaH +oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcuaH8oqBgaGaam aaBaaaleaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiabeg7aHjab ek7aIbqaaiabeU7aSbaaaOGaayjkaiaawMcaaiabg2da9iaad2eada ahaaWcbeqaaiabeg7aHjabek7aIbaakiqbeQ7aRzaacaWaaSbaaSqa aiabeg7aHjabek7aIbqabaaaaaa@D76C@

 is the rate of work done by M per unit area of the mid-plane of the shell.

 

 

 

10.5.8 Equations of motion and boundary conditions

 

We consider a shell with thickness h and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ . The internal forces and moments must satisfy

        m α ξ α V+T +p=ρha m α M ξ α + m α × m α (VT) +q= ρ h 3 12 α× m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaWbaaSqabeaacqaHXo qyaaGccqGHflY1daWcaaqaaiabgkGi2cqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakmaabmaabaGaaCOvaiabgUcaRiaahs faaiaawIcacaGLPaaacqGHRaWkcaWHWbGaeyypa0JaeqyWdiNaamiA aiaahggacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 aeaacaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHflY1daWcaaqaai abgkGi2kaah2eaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdega beaaaaGccqGHRaWkcaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxd aTdaWadaqaaiaah2gadaahaaWcbeqaaiabeg7aHbaakiabgwSixlaa cIcacaWHwbGaeyOeI0IaaCivaiaacMcaaiaawUfacaGLDbaacqGHRa WkcaWHXbGaeyypa0ZaaSaaaeaacqaHbpGCcaWGObWaaWbaaSqabeaa caaIZaaaaaGcbaGaaGymaiaaikdaaaGaaCySdiabgEna0kaah2gada WgaaWcbaGaaG4maaqabaGccaaMc8oaaaa@8A35@

The operator m α (/ ξ α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaCaaaleqabaGaeqySdegaaO GaeyyXICTaaiikaiabgkGi2kaac+cacqGHciITcqaH+oaEdaWgaaWc baGaeqySdegabeaakiaacMcaaaa@3E66@  represents the surface divergence, T, V and M are the internal forces defined in Sect 10.5.7; p and q are the external force and couple per unit area acting on the shell, a is the acceleration of the mid-plane and α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdaaa@321D@  is the angular acceleration of the unit vector normal to the mid-plane of the shell.  The two equations can be interpreted as linear and angular momentum balance for an infinitesimal element of the shell.  Note that:

 

1. If the system is in static equilibrium, the right hand sides of all the equations of motion are zero.

 

2. In addition, in many dynamic problems, the right hand sides of the angular momentum balance equations may be taken to be approximately zero.  For example, the rotational inertia may be ignored when modeling the vibration of a shell.  The rotational inertia terms can be important if the shell is rotating rapidly: for example, they would influence the out-of-plane vibration of a spinning disk.

 

The equations of motion can also be expressed in terms of components of the various force and moment tensors by substituting T= T αβ m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaadsfadaahaaWcbe qaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabgEPielaah2gadaWgaaWcbaGaeqOSdigabeaaaaa@3EAA@ , V= V β m β m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaiabg2da9iaadAfadaahaaWcbe qaaiabek7aIbaakiaah2gadaWgaaWcbaGaeqOSdigabeaakiabgEPi elaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3C2D@   M= M αβ m α m 3 × m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaad2eadaahaaWcbe qaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabgEPiepaabmaabaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgE na0kaah2gadaWgaaWcbaGaeqOSdigabeaaaOGaayjkaiaawMcaaaaa @442F@ , p= p i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@3709@ , q= q α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyCaiabg2da9iaadghadaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaT caWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3C6D@ , a= a i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iaadggadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36EB@  and α= μ ¨ β m 3 × m β + μ ˙ β μ ˙ β m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdiabg2da9iqbeY7aTzaadaWaaW baaSqabeaacqaHYoGyaaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaBaaaleaacqaHYoGyaeqaaOGaey4kaSIafqiVd0 MbaiaadaWgaaWcbaGaeqOSdigabeaakiqbeY7aTzaacaWaaWbaaSqa beaacqaHYoGyaaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaaaa@4776@  and recalling that

m α ξ γ = Γ αγ λ m λ κ αγ m 3 m 3 ξ γ = κ γ λ m λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWHTbWaaSbaaS qaaiabeg7aHbqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeq4S dCgabeaaaaGccqGH9aqpcqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdC gabaGaeq4UdWgaaOGaaCyBamaaBaaaleaacqaH7oaBaeqaaOGaeyOe I0IaeqOUdS2aaSbaaSqaaiabeg7aHjabeo7aNbqabaGccaWHTbWaaS baaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaaCyBamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHZoWzae qaaaaakiabg2da9iabeQ7aRnaaDaaaleaacqaHZoWzaeaacqaH7oaB aaGccaWHTbWaaSbaaSqaaiabeU7aSbqabaaaaa@76DF@

The result is

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =ρh a β V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =ρh a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada ahaaWcbeqaaiabeg7aHjabek7aIbaaaOqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaadsfadaahaaWcbeqaai abeg7aHjabek7aIbaakiabfo5ahnaaDaaaleaacqaHXoqycqaHZoWz aeaacqaHZoWzaaGccqGHRaWkcaWGubWaaWbaaSqabeaacqaHXoqycq aHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4SdCMaeqySdegabaGaeqOS digaaOGaey4kaSIaamOvamaaCaaaleqabaGaeqySdegaaOGaeqOUdS 2aa0baaSqaaiabeg7aHbqaaiabek7aIbaakiabgUcaRiaadchadaah aaWcbeqaaiabek7aIbaakiabg2da9iabeg8aYjaadIgacaWGHbWaaW baaSqabeaacqaHYoGyaaaakeaadaWcaaqaaiabgkGi2kaadAfadaah aaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kabe67a4naaBaaaleaacq aHXoqyaeqaaaaakiabgUcaRiaadAfadaahaaWcbeqaaiabeg7aHbaa kiabfo5ahnaaDaaaleaacqaHXoqycqaHYoGyaeaacqaHYoGyaaGccq GHsislcaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccqaH6oWA daWgaaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiaadchadaahaa WcbeqaaiaaiodaaaGccqGH9aqpcqaHbpGCcaWGObGaamyyamaaCaaa leqabaGaaG4maaaaaaaa@8BEE@   

M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β = ρ h 3 12 μ ¨ β T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaad2eada ahaaWcbeqaaiabeg7aHjabek7aIbaaaOqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaad2eadaahaaWcbeqaai abeg7aHjabek7aIbaakiabfo5ahnaaDaaaleaacqaHXoqycqaHZoWz aeaacqaHZoWzaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacqaHXoqycq aHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4SdCMaeqySdegabaGaeqOS digaaOGaeyOeI0IaamOvamaaCaaaleqabaGaeqOSdigaaOGaey4kaS IaamyCamaaCaaaleqabaGaeqOSdigaaOGaeyypa0ZaaSaaaeaacqaH bpGCcaWGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymaiaaikdaaa GafqiVd0MbamaadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsfadaah aaWcbeqaaiaaigdacaaIYaaaaOGaeyOeI0IaamivamaaCaaaleqaba GaaGOmaiaaigdaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacqaHXoqy caaIXaaaaOGaeqOUdS2aa0baaSqaaiabeg7aHbqaaiaaikdaaaGccq GHsislcaWGnbWaaWbaaSqabeaacqaHXoqycaaIYaaaaOGaeqOUdS2a a0baaSqaaiabeg7aHbqaaiaaigdaaaGccqGH9aqpcaaIWaaaaaa@7D00@

 

The last equation shows that the stress resultant and moment tensors are not symmetric.  The asymmetry is small, and is ignored in simplified versions of shell theory.  However, there are a few special shell geometries (a cylindrical shell subjected to torsional loading is one example) where neglecting the asymmetry can lead to substantial errors.

 

Edge boundary conditions for a shell are complicated and confusing.  To understand them, it is helpful to visualize the possible types of motion that can occur at the edge of a shell.  The edge of the shell is characterized by a curve C that lies in the mid-plane of the shell, encircling m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  in a counterclockwise sense.   We let s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caaaa@31D8@  denote arc-length measured around C from some convenient origin, and use τ= τ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdiabg2da9iabes8a0naaCaaale qabaGaeqySdegaaOGaaCyBamaaBaaaleaacqaHXoqyaeqaaaaa@3992@  and n= m 3 ×τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iaah2gadaWgaaWcba GaaG4maaqabaGccqGHxdaTcaWHepaaaa@382D@  denote unit vectors tangent and normal to C, as shown in the figure.  Elements of the shell that lie on C have four independent degrees of freedom, as follows:

 

1. The material element can have an arbitrary velocity, with three components δv=δ v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWG Pbaaaaaa@3A5F@

 

2. The material element can rotate about the tangent vector τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@ . To visualize this motion, imagine that the shell is supported around C by a hinge. 

 

The motion of the edge of the shell can be prescribed by constraining one or more of these degrees of freedom.   Alternatively, the edge of the shell can be subjected to one or more of four generalized forces, which are work-conjugate to these degrees of freedom.  The generalized forces can be expressed in terms of the forces P= P i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadcfadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaaaa@36C9@  and couples Q= Q α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iaadgfadaahaaWcbe qaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaT caWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3C2D@  acting on the edge of the shell as

 

1. P β + Q λ κ λ β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaCaaaleqabaGaeqOSdigaaO Gaey4kaSIaamyuamaaCaaaleqabaGaeq4UdWgaaOGaeqOUdS2aa0ba aSqaaiabeU7aSbqaaiabek7aIbaaaaa@3C63@  is work-conjugate to the in-plane displacement of the shell δ v β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacqaHYo Gyaeqaaaaa@354D@

 

2. P 3 s Q β τ β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaCaaaleqabaGaaG4maaaaki abgkHiTmaalaaabaGaeyOaIylabaGaeyOaIyRaam4CaaaadaWadaqa aiaadgfadaahaaWcbeqaaiabek7aIbaakiabes8a0naaBaaaleaacq aHYoGyaeqaaaGccaGLBbGaayzxaaaaaa@3FA5@  is work-conjugate to the out-of-plane displacement of the edge of the shell δ v 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaaIZa aabeaaaaa@3469@

 

 

3. Q β n β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaCaaaleqabaGaeqOSdigaaO GaamOBamaaBaaaleaacqaHYoGyaeqaaaaa@364D@  is work-conjugate to the rotation of the shell about its edge.

 

The four boundary conditions can be expressed in terms of these forces as follows:

n α T αβ + n α M αλ κ λ β = P β + Q λ κ λ β n α V α + s n α M αβ τ β = P 3 + s Q β τ β n α M αβ n β = Q β n β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGUbWaaSbaaSqaaiabeg7aHb qabaGccaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccqGHRaWk caWGUbWaaSbaaSqaaiabeg7aHbqabaGccaWGnbWaaWbaaSqabeaacq aHXoqycqaH7oaBaaGccqaH6oWAdaqhaaWcbaGaeq4UdWgabaGaeqOS digaaOGaeyypa0JaamiuamaaCaaaleqabaGaeqOSdigaaOGaey4kaS IaamyuamaaCaaaleqabaGaeq4UdWgaaOGaeqOUdS2aa0baaSqaaiab eU7aSbqaaiabek7aIbaaaOqaaiaad6gadaWgaaWcbaGaeqySdegabe aakiaadAfadaahaaWcbeqaaiabeg7aHbaakiabgUcaRmaalaaabaGa eyOaIylabaGaeyOaIyRaam4CaaaadaWadaqaaiaad6gadaWgaaWcba GaeqySdegabeaakiaad2eadaahaaWcbeqaaiabeg7aHjabek7aIbaa kiabes8a0naaBaaaleaacqaHYoGyaeqaaaGccaGLBbGaayzxaaGaey ypa0JaamiuamaaCaaaleqabaGaaG4maaaakiabgUcaRmaalaaabaGa eyOaIylabaGaeyOaIyRaam4CaaaadaWadaqaaiaadgfadaahaaWcbe qaaiabek7aIbaakiabes8a0naaBaaaleaacqaHYoGyaeqaaaGccaGL BbGaayzxaaGaaGPaVlaaykW7aeaacaWGUbWaaSbaaSqaaiabeg7aHb qabaGccaWGnbWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccaWGUbWa aSbaaSqaaiabek7aIbqabaGccqGH9aqpcaWGrbWaaWbaaSqabeaacq aHYoGyaaGccaWGUbWaaSbaaSqaaiabek7aIbqabaaaaaa@8BCB@

 

Derivation: Measures of internal force, the equilibrium equations, and the boundary conditions emerge naturally from the principle of virtual work.  The principle of virtual work states that, for any deformable solid that is in static equilibrium, the Cauchy stress distribution must satisfy

V σ:δLdV + V ρaδ y ˙ dV V bδ y ˙ dV S tδ y ˙ dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHdpGaaiOoaiabes7aKj aahYeacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabgUca RmaapefabaGaeqyWdiNaaCyyaiabgwSixlabes7aKjqahMhagaGaai aadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyOeI0Yaa8qu aeaacaWHIbGaeyyXICTaeqiTdqMabCyEayaacaGaamizaiaadAfaaS qaaiaadAfaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiaahshacqGH flY1cqaH0oazceWH5bGbaiaacaWGKbGaamyqaaWcbaGaam4uaaqab0 Gaey4kIipakiabg2da9iaaicdaaaa@6117@

for all virtual velocity fields δ y ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabCyEayaacaaaaa@3390@  and compatible velocity gradients δL MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCitaaaa@335A@ .  The virtual velocity field in the shell must have the same general form as the actual velocity, as outlined in Section 10.2.4.  The virtual velocity can therefore be characterized by the virtual velocity of the mid-plane of the shell δv=δ v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWG Pbaaaaaa@3A5F@ .  It is convenient to introduce the time derivative of the normal vector to the plate’s mid-plane δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabCyBayaacaWaaSbaaSqaai aaiodaaeqaaOGaeyypa0JaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGa eqySdegabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D78@  as an additional kinematic variable, which must of course be compatible with δv MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaaaa@3384@ .  We will show the following:

 

· The virtual work principle can be expressed in terms of the generalized deformation measures and forces defined in the preceding sections as

A T αβ δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα dA + A M αβ δ μ ˙ α ξ β δ μ ˙ λ Γ αβ λ dA + A hρ a i δ v i dA + A ρ h 3 12 μ ¨ α δ μ ˙ α dA A p i δ v i dA A q α δ μ ˙ α dA C P i δ v i ds C Q α δ μ ˙ α ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiaadsfadaahaaWcbe qaaiabeg7aHjabek7aIbaakmaacmaabaWaaSaaaeaacqGHciITcqaH 0oazcaWG2bWaaSbaaSqaaiabek7aIbqabaaakeaacqGHciITcqaH+o aEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcqaH0oazcaWG2bWa aSbaaSqaaiabeU7aSbqabaGccqqHtoWrdaqhaaWcbaGaeqOSdiMaeq ySdegabaGaeq4UdWgaaOGaey4kaSIaeqiTdqMaamODamaaBaaaleaa caaIZaaabeaakiabeQ7aRnaaBaaaleaacqaHYoGycqaHXoqyaeqaaa GccaGL7bGaayzFaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIi YdGccqGHRaWkdaWdrbqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaakmaabmaabaWaaSaaaeaacqGHciITcqaH0oazcuaH8oqBgaGa amaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaS qaaiabek7aIbqabaaaaOGaeyOeI0IaeqiTdqMafqiVd0MbaiaadaWg aaWcbaGaeq4UdWgabeaakiabfo5ahnaaDaaaleaacqaHXoqycqaHYo GyaeaacqaH7oaBaaaakiaawIcacaGLPaaacaWGKbGaamyqaaWcbaGa amyqaaqab0Gaey4kIipaaOqaaiaaykW7cqGHRaWkcaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+aa8quaeaacaWGObGaeqyW diNaamyyamaaCaaaleqabaGaamyAaaaakiabes7aKjaadAhadaWgaa WcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4k IipakiabgUcaRmaapefabaWaaSaaaeaacqaHbpGCcaWGObWaaWbaaS qabeaacaaIZaaaaaGcbaGaaGymaiaaikdaaaGafqiVd0Mbamaadaah aaWcbeqaaiabeg7aHbaakiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipa kiaaykW7caaMc8UaaGPaVlaaykW7aeaacqGHsislcaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+aa8quaeaacaWGWbWaaWba aSqabeaacaWGPbaaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabe aakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaeyOeI0Ya a8quaeaacaWGXbWaaWbaaSqabeaacqaHXoqyaaGccqaH0oazcuaH8o qBgaGaamaaBaaaleaacqaHXoqyaeqaaOGaamizaiaadgeaaSqaaiaa dgeaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiaadcfadaahaaWcbe qaaiaadMgaaaGccqaH0oazcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGa amizaiaadohaaSqaaiaadoeaaeqaniabgUIiYdGccqGHsisldaWdrb qaaiaadgfadaahaaWcbeqaaiabeg7aHbaakiabes7aKjqbeY7aTzaa caWaaSbaaSqaaiabeg7aHbqabaGccaWGKbGaam4CaaWcbaGaam4qaa qab0Gaey4kIipakiabg2da9iaaicdaaaaa@F45D@

 

· If the virtual work equation is satisfied for all δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  and compatible δ μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiVd0MbaiaadaWgaaWcba GaeqySdegabeaaaaa@360F@ , then the internal forces and moments must satisfy the following equilibrium equations

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =ρh a β V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =ρh a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada ahaaWcbeqaaiabeg7aHjabek7aIbaaaOqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaadsfadaahaaWcbeqaai abeg7aHjabek7aIbaakiabfo5ahnaaDaaaleaacqaHXoqycqaHZoWz aeaacqaHZoWzaaGccqGHRaWkcaWGubWaaWbaaSqabeaacqaHXoqycq aHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4SdCMaeqySdegabaGaeqOS digaaOGaey4kaSIaamOvamaaCaaaleqabaGaeqySdegaaOGaeqOUdS 2aa0baaSqaaiabeg7aHbqaaiabek7aIbaakiabgUcaRiaadchadaah aaWcbeqaaiabek7aIbaakiabg2da9iabeg8aYjaadIgacaWGHbWaaW baaSqabeaacqaHYoGyaaaakeaadaWcaaqaaiabgkGi2kaadAfadaah aaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kabe67a4naaBaaaleaacq aHXoqyaeqaaaaakiabgUcaRiaadAfadaahaaWcbeqaaiabeg7aHbaa kiabfo5ahnaaDaaaleaacqaHXoqycqaHYoGyaeaacqaHYoGyaaGccq GHsislcaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccqaH6oWA daWgaaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiaadchadaahaa WcbeqaaiaaiodaaaGccqGH9aqpcqaHbpGCcaWGObGaamyyamaaCaaa leqabaGaaG4maaaaaaaa@8BEE@  

M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β = ρ h 3 12 μ ¨ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGnbWaaWbaaS qabeaacqaHXoqycqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWgaaWc baGaeqySdegabeaaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacqaHXo qycqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdCgabaGa eq4SdCgaaOGaey4kaSIaamytamaaCaaaleqabaGaeqySdeMaeq4SdC gaaOGaeu4KdC0aa0baaSqaaiabeo7aNjabeg7aHbqaaiabek7aIbaa kiabgkHiTiaadAfadaahaaWcbeqaaiabek7aIbaakiabgUcaRiaadg hadaahaaWcbeqaaiabek7aIbaakiabg2da9maalaaabaGaeqyWdiNa amiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaaaaiqbeY 7aTzaadaWaaWbaaSqabeaacqaHYoGyaaaaaa@6417@

as well as the boundary conditions listed above.

 

· The last equilibrium equation T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaik daaaGccqGHsislcaWGubWaaWbaaSqabeaacaaIYaGaaGymaaaakiab gUcaRiaad2eadaahaaWcbeqaaiabeg7aHjaaigdaaaGccqaH6oWAda qhaaWcbaGaeqySdegabaGaaGOmaaaakiabgkHiTiaad2eadaahaaWc beqaaiabeg7aHjaaikdaaaGccqaH6oWAdaqhaaWcbaGaeqySdegaba GaaGymaaaakiabg2da9iaaicdaaaa@49B8@  does not emerge from the virtual work principle. Instead, this equation is a consequence of the symmety of the Cauchy stress tensor σ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacqaHXoqycq aHYoGyaaaaaa@3610@ , as shown below. It is automatically satisfied if the components  T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@3526@  and M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@351F@  are calculated by integrating the stresses through the thickness of the shell.  However,  for some statically determinate shell problems it is possible to avoid evaluating these integrals explicitly, in which case the equilibrium equation is useful.

 

Expressing the virtual work equation in terms of generalized force measures is a straightforward but lengthy algebraic exercise.

 

1. When applying the virtual work principle, we will need to integrate over the volume of the shell.  It is convenient to write the volume integral as separate integrals over the mid-plane of the shell and through its thickness, as follows

V dV = A h/2 h/2 y ξ 1 × y ξ 2 y x 3 d x 3 d ξ 1 d ξ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGKbGaamOvaaWcbaGaam Ovaaqab0Gaey4kIipakiabg2da9maapifabaWaa8qCaeaadaqadaqa amaalaaabaGaeyOaIyRaaCyEaaqaaiabgkGi2kabe67a4naaBaaale aacaaIXaaabeaaaaGccqGHxdaTdaWcaaqaaiabgkGi2kaahMhaaeaa cqGHciITcqaH+oaEdaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaay zkaaGaeyyXIC9aaSaaaeaacqGHciITcaWH5baabaGaeyOaIyRaamiE amaaBaaaleaacaaIZaaabeaaaaGccaWGKbGaamiEamaaBaaaleaaca aIZaaabeaaaeaacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGa ai4laiaaikdaa0Gaey4kIipaaSqaaiaadgeaaeqaniabgUIiYlabgU IiYdGccaWGKbGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaamizaiab e67a4naaBaaaleaacaaIYaaabeaaaaa@669F@

Recall that y=r+ x 3 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiabg2da9iaahkhacqGHRaWkca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyBamaaBaaaleaacaaIZaaa beaaaaa@3894@ , so that

y ξ α = m α + x 3 κ α β m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWH5baabaGaey OaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaeyypa0JaaCyB amaaBaaaleaacqaHXoqyaeqaaOGaey4kaSIaamiEamaaBaaaleaaca aIZaaabeaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacqaHYoGyaaGc caWHTbWaaSbaaSqaaiabek7aIbqabaaaaa@46E5@

Therefore

y ξ 1 × y ξ 2 y x 3 1+ x 3 κ α α m 1 × m 2 m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiabgkGi2kaahM haaeaacqGHciITcqaH+oaEdaWgaaWcbaGaaGymaaqabaaaaOGaey41 aq7aaSaaaeaacqGHciITcaWH5baabaGaeyOaIyRaeqOVdG3aaSbaaS qaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabgwSixpaalaaabaGa eyOaIyRaaCyEaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqaba aaaOGaeyisIS7aaeWaaeaacaaIXaGaey4kaSIaamiEamaaBaaaleaa caaIZaaabeaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacqaHXoqyaa aakiaawIcacaGLPaaadaqadaqaaiaah2gadaWgaaWcbaGaaGymaaqa baGccqGHxdaTcaWHTbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaay zkaaGaeyyXICTaaCyBamaaBaaaleaacaaIZaaabeaaaaa@6143@

where the term of order x 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaaIZaaabaGaaG Omaaaaaaa@3383@  has been neglected.  Substituting this result into the volume integral yields

V dV A h/2 h/2 1+ x 3 κ α α m 1 × m 2 m 3 d ξ 1 d ξ 2 d x 3 A h/2 h/2 1+ x 3 κ α α d x 3 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGKbGaamOvaaWcbaGaam Ovaaqab0Gaey4kIipakiabgIKi7oaapifabaWaa8qCaeaadaqadaqa aiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdS 2aa0baaSqaaiabeg7aHbqaaiabeg7aHbaaaOGaayjkaiaawMcaamaa bmaabaGaaCyBamaaBaaaleaacaaIXaaabeaakiabgEna0kaah2gada WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHflY1caWHTbWa aSbaaSqaaiaaiodaaeqaaaqaaiabgkHiTiaadIgacaGGVaGaaGOmaa qaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aaWcbaGaamyqaaqab0Ga ey4kIiVaey4kIipakiaadsgacqaH+oaEdaWgaaWcbaGaaGymaaqaba GccaWGKbGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaamizaiaadIha daWgaaWcbaGaaG4maaqabaGccqGHHjIUdaWdrbqaamaapehabaWaae WaaeaacaaIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiab eQ7aRnaaDaaaleaacqaHXoqyaeaacqaHXoqyaaaakiaawIcacaGLPa aacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaakiaadsgacaWGbbaa leaacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaaik daa0Gaey4kIipaaSqaaiaadgeaaeqaniabgUIiYdaaaa@8002@

where the area integral is understood to be taken over the mid-plane of the shell.

 

2. Similarly, the integrals over the outer surface of the shell can be separated into integrals taken over the upper and lower surfaces of the shell ( S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqGHRaWkaeqaaa aa@32C6@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqGHsislaeqaaa aa@32D1@  ), together with an integral over the surface at the edge of the shell S e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGLbaabeaaaa a@32CE@ , as follows

S dA = S+ dA + S dA + S e dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGKbGaamyqaaWcbaGaam 4uaaqab0Gaey4kIipakiabg2da9maapefabaGaamizaiaadgeaaSqa aiaadofacqGHRaWkaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiaads gacaWGbbaaleaacaWGtbGaeyOeI0cabeqdcqGHRiI8aOGaey4kaSYa a8quaeaacaWGKbGaamyqaaWcbaGaam4uamaaBaaameaacaWGLbaabe aaaSqab0Gaey4kIipaaaa@49FD@

Following the procedure in step (1), the integrals over S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqGHRaWkaeqaaa aa@32C6@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacqGHsislaeqaaa aa@32D1@  can be expressed in terms of integrals taken over the mid-plane of the shell as

S+ dA = A 1+h κ α α /2 dA S dA = A 1h κ α α /2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGKbGaamyqaaWcbaGaam 4uaiabgUcaRaqab0Gaey4kIipakiabg2da9maapefabaWaaeWaaeaa caaIXaGaey4kaSIaamiAaiabeQ7aRnaaDaaaleaacqaHXoqyaeaacq aHXoqyaaGccaGGVaGaaGOmaaGaayjkaiaawMcaaiaadsgacaWGbbaa leaacaWGbbaabeqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVpaapefabaGaamizaiaadgeaaSqaai aadofacqGHsislaeqaniabgUIiYdGccqGH9aqpdaWdrbqaamaabmaa baGaaGymaiabgkHiTiaadIgacqaH6oWAdaqhaaWcbaGaeqySdegaba GaeqySdegaaOGaai4laiaaikdaaiaawIcacaGLPaaacaWGKbGaamyq aaWcbaGaamyqaaqab0Gaey4kIipaaaa@7606@

The integral over S e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGLbaabeaaaa a@32CE@  can be reduced to a line integral taken around the curve(s) bounding the edge of the shell, as

S e dA = C h/2 h/2 (1+ x 3 τ α τ β κ αβ )d x 3 ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGKbGaamyqaaWcbaGaam 4uamaaBaaameaacaWGLbaabeaaaSqab0Gaey4kIipakiabg2da9maa pefabaWaa8qCaeaacaGGOaGaaGymaiabgUcaRiaadIhadaWgaaWcba GaaG4maaqabaGccqaHepaDdaahaaWcbeqaaiabeg7aHbaakiabes8a 0naaCaaaleqabaGaeqOSdigaaOGaeqOUdS2aaSbaaSqaaiabeg7aHj abek7aIbqabaGccaGGPaGaamizaiaadIhadaWgaaWcbaGaaG4maaqa baGccaWGKbGaam4CaaWcbaGaeyOeI0IaamiAaiaac+cacaaIYaaaba GaamiAaiaac+cacaaIYaaaniabgUIiYdaaleaacaWGdbaabeqdcqGH RiI8aaaa@5903@

The procedure to derive this result is very similar to the steps required to simplify the volume integral and is left as an exercise.

 

3. Next, consider the integrand

σ:δLσ: δ m ˙ i m i + x 3 δ κ ˙ αβ m α m β m i m i x 3 κ β α m α m β = σ m i m i x 3 κ β α m α m β T : δ m ˙ i m i + x 3 δ κ ˙ αβ m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHdpGaaiOoaiabes7aKjaahY eacqGHijYUcaWHdpGaaiOoamaadmaabaWaaeWaaeaacqaH0oazceWH TbGbaiaadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaS qabeaacaWGPbaaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaa kiabes7aKjqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHjabek7aIbqaba GccaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXcaWHTbWaaWba aSqabeaacqaHYoGyaaaakiaawIcacaGLPaaacqGHflY1daqadaqaai aah2gadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqa beaacaWGPbaaaOGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaaki abeQ7aRnaaDaaaleaacqaHYoGyaeaacqaHXoqyaaGccaWHTbWaaSba aSqaaiabeg7aHbqabaGccqGHxkcXcaWHTbWaaWbaaSqabeaacqaHYo GyaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWadaqaaiaa ho8adaqadaqaaiaah2gadaWgaaWcbaGaamyAaaqabaGccqGHxkcXca WHTbWaaWbaaSqabeaacaWGPbaaaOGaeyOeI0IaamiEamaaBaaaleaa caaIZaaabeaakiabeQ7aRnaaDaaaleaacqaHYoGyaeaacqaHXoqyaa GccaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXcaWHTbWaaWba aSqabeaacqaHYoGyaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaads faaaaakiaawUfacaGLDbaacaGG6aWaaeWaaeaacqaH0oazceWHTbGb aiaadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaWbaaSqabe aacaWGPbaaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiab es7aKjqbeQ7aRzaacaWaaSbaaSqaaiabeg7aHjabek7aIbqabaGcca WHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXcaWHTbWaaWbaaSqa beaacqaHYoGyaaaakiaawIcacaGLPaaaaaaa@BF00@

To reduce this to a scalar combination of the components of the various tensors and vectors, substitute σ= σ ij m i m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iabeo8aZnaaCaaale qabaGaamyAaiaadQgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaOGa ey4LIqSaaCyBamaaBaaaleaacaWGQbaabeaaaaa@3D40@ , together with the kinematic formulas:

δ m ˙ α = δ v β ξ α m β d v β Γ λα β m λ +δ v 3 κ βα m β + δ v 3 ξ α δ v β κ α β m 3 δ m ˙ 3 = v 3 ξ α v β κ α β m α δ κ ˙ αβ m α = δ μ ˙ α ξ β m α δ μ ˙ λ Γ αβ λ m α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH0oazceWHTbGbaiaadaWgaa WcbaGaeqySdegabeaakiabg2da9maalaaabaGaeyOaIyRaeqiTdqMa amODamaaBaaaleaacqaHYoGyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaS baaSqaaiabeg7aHbqabaaaaOGaaCyBamaaCaaaleqabaGaeqOSdiga aOGaeyOeI0IaamizaiaadAhadaWgaaWcbaGaeqOSdigabeaakiabfo 5ahnaaDaaaleaacqaH7oaBcqaHXoqyaeaacqaHYoGyaaGccaWHTbWa aWbaaSqabeaacqaH7oaBaaGccqGHRaWkcqaH0oazcaWG2bWaaSbaaS qaaiaaiodaaeqaaOGaeqOUdS2aaSbaaSqaaiabek7aIjabeg7aHbqa baGccaWHTbWaaWbaaSqabeaacqaHYoGyaaGccqGHRaWkdaqadaqaam aalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaa aOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaaaakiabgk HiTiabes7aKjaadAhadaWgaaWcbaGaeqOSdigabeaakiabeQ7aRnaa DaaaleaacqaHXoqyaeaacqaHYoGyaaaakiaawIcacaGLPaaacaWHTb WaaWbaaSqabeaacaaIZaaaaaGcbaGaeqiTdqMabCyBayaacaWaaSba aSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0YaaeWaaeaadaWcaaqaai abgkGi2kaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcqaH +oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcaWG2bWaaSbaaS qaaiabek7aIbqabaGccqaH6oWAdaqhaaWcbaGaeqySdegabaGaeqOS digaaaGccaGLOaGaayzkaaGaaCyBamaaCaaaleqabaGaeqySdegaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeqiTdqMafqOUdSMbaiaadaWgaaWcbaGaeqySdeMa eqOSdigabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaakiabg2da9m aabmaabaWaaSaaaeaacqGHciITcqaH0oazcuaH8oqBgaGaamaaBaaa leaacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek 7aIbqabaaaaOGaaCyBamaaCaaaleqabaGaeqySdegaaOGaeyOeI0Ia eqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeq4UdWgabeaakiabfo5ahn aaDaaaleaacqaHXoqycqaHYoGyaeaacqaH7oaBaaGccaWHTbWaaWba aSqabeaacqaHXoqyaaaakiaawIcacaGLPaaaaaaa@D8C3@

with the result

σ:δL σ αβ x 3 σ γα κ γ β δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα + x 3 σ αβ x 3 σ γα κ γ β μ ˙ α ξ β μ ˙ λ Γ αβ λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHdpGaaiOoaiabes7aKjaahY eacqGHijYUdaqadaqaaiabeo8aZnaaCaaaleqabaGaeqySdeMaeqOS digaaOGaeyOeI0IaamiEamaaBaaaleaacaaIZaaabeaakiabeo8aZn aaCaaaleqabaGaeq4SdCMaeqySdegaaOGaeqOUdS2aa0baaSqaaiab eo7aNbqaaiabek7aIbaaaOGaayjkaiaawMcaamaacmaabaWaaSaaae aacqGHciITcqaH0oazcaWG2bWaaSbaaSqaaiabek7aIbqabaaakeaa cqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcq aH0oazcaWG2bWaaSbaaSqaaiabeU7aSbqabaGccqqHtoWrdaqhaaWc baGaeqOSdiMaeqySdegabaGaeq4UdWgaaOGaey4kaSIaeqiTdqMaam ODamaaBaaaleaacaaIZaaabeaakiabeQ7aRnaaBaaaleaacqaHYoGy cqaHXoqyaeqaaaGccaGL7bGaayzFaaaabaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaae qaaOWaaeWaaeaacqaHdpWCdaahaaWcbeqaaiabeg7aHjabek7aIbaa kiabgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccqaHdpWCdaahaa Wcbeqaaiabeo7aNjabeg7aHbaakiabeQ7aRnaaDaaaleaacqaHZoWz aeaacqaHYoGyaaaakiaawIcacaGLPaaadaqadaqaamaalaaabaGaey OaIyRafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi 2kabe67a4naaBaaaleaacqaHYoGyaeqaaaaakiabgkHiTiqbeY7aTz aacaWaaSbaaSqaaiabeU7aSbqabaGccqqHtoWrdaqhaaWcbaGaeqyS deMaeqOSdigabaGaeq4UdWgaaaGccaGLOaGaayzkaaaaaaa@B12B@

 

4. Substituting this result into the first integral of the virtual work principle, reducing the volume integral to an integral over the mid-plane of the shell, and using the definitions of T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@3526@  and M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@351F@  gives

V σ:δLdV = A T αβ δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα dA + A M αβ μ ˙ α ξ β μ ˙ λ Γ αβ λ dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHdpGaaiOoaiabes7aKj aahYeacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da 9maapefabaGaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOWaai WaaeaadaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaeqOS digabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHXoqyaeqaaa aakiabgkHiTiabes7aKjaadAhadaWgaaWcbaGaeq4UdWgabeaakiab fo5ahnaaDaaaleaacqaHYoGycqaHXoqyaeaacqaH7oaBaaGccqGHRa WkcqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdS2aaSba aSqaaiabek7aIjabeg7aHbqabaaakiaawUhacaGL9baacaWGKbGaam yqaaWcbaGaamyqaaqab0Gaey4kIipakiabgUcaRmaapefabaGaamyt amaaCaaaleqabaGaeqySdeMaeqOSdigaaOWaaeWaaeaadaWcaaqaai abgkGi2kqbeY7aTzaacaWaaSbaaSqaaiabeg7aHbqabaaakeaacqGH ciITcqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaaGccqGHsislcuaH8o qBgaGaamaaBaaaleaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiab eg7aHjabek7aIbqaaiabeU7aSbaaaOGaayjkaiaawMcaaiaadsgaca WGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@87E1@

 

5. Similar manipulations can be used to reduce the remaining terms in the virtual work principle to

V ρaδ y ˙ dV = A hρ a i δ v i dA + A ρ h 3 12 μ ¨ α δ μ ˙ α dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHbpGCcaWHHbGaeyyXIC TaeqiTdqMabCyEayaacaGaamizaiaadAfaaSqaaiaadAfaaeqaniab gUIiYdGccqGH9aqpdaWdrbqaaiaadIgacqaHbpGCcaWGHbWaaWbaaS qabeaacaWGPbaaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaa kiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4kaSYaa8 quaeaadaWcaaqaaiabeg8aYjaadIgadaahaaWcbeqaaiaaiodaaaaa keaacaaIXaGaaGOmaaaacuaH8oqBgaWaamaaCaaaleqabaGaeqySde gaaOGaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaakiaa dsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@5F5A@

V bδ y ˙ dV + S tδ y ˙ dA = A p i δ v i dA + A q α δ μ ˙ α dA + C P i δ v i ds + C Q α δ μ ˙ α ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHIbGaeyyXICTaeqiTdq MabCyEayaacaGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGc cqGHRaWkdaWdrbqaaiaahshacqGHflY1cqaH0oazceWH5bGbaiaaca WGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipakiabg2da9maapefa baGaamiCamaaCaaaleqabaGaamyAaaaakiabes7aKjaadAhadaWgaa WcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4k IipakiabgUcaRmaapefabaGaamyCamaaCaaaleqabaGaeqySdegaaO GaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaakiaadsga caWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaaca WGqbWaaWbaaSqabeaacaWGPbaaaOGaeqiTdqMaamODamaaBaaaleaa caWGPbaabeaakiaadsgacaWGZbaaleaacaWGdbaabeqdcqGHRiI8aO Gaey4kaSYaa8quaeaacaWGrbWaaWbaaSqabeaacqaHXoqyaaGccqaH 0oazcuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaOGaamizaiaado haaSqaaiaadoeaaeqaniabgUIiYdaaaa@7A20@

Substituting the equations in (4) and (5) into the virtual work equation gives the first result.

 

 

Next, we show that the equilibrium equations and boundary conditions follow from the virtual work principle. 

 

1. The virtual work equation must first be augmented by a Lagrange multiplier to enforce compatibility between the velocity field δv=δ v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWG Pbaaaaaa@3A5F@  and the time derivative of the vector normal to the shell’s mid plane δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabCyBayaacaWaaSbaaSqaai aaiodaaeqaaOGaeyypa0JaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGa eqySdegabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D78@ .  To this end, we regard the unit vector m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  as an independent degree of freedom, and introduce a vector valued Lagrange multiplier V α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaeqySdegaaO GaaCyBamaaBaaaleaacqaHXoqyaeqaaaaa@3652@  which must satisfy

A m 3 m 1 × m 2 m 1 × m 2 δ V α m α dA+ A δ μ ˙ α m α + δ v 3 ξ α δ v β κ α β m α V γ m γ dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaqadaqaaiaah2gadaWgaa WcbaGaaG4maaqabaGccqGHsisldaWcaaqaaiaah2gadaWgaaWcbaGa aGymaaqabaGccqGHxdaTcaWHTbWaaSbaaSqaaiaaikdaaeqaaaGcba WaaqWaaeaacaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey41aqRaaCyB amaaBaaaleaacaaIYaaabeaaaOGaay5bSlaawIa7aaaaaiaawIcaca GLPaaaaSqaaiaadgeaaeqaniabgUIiYdGccqGHflY1cqaH0oazcaWG wbWaaWbaaSqabeaacqaHXoqyaaGccaWHTbWaaSbaaSqaaiabeg7aHb qabaGccaWGKbGaamyqaiabgUcaRmaapefabaWaaiWaaeaacqaH0oaz cuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaOGaaCyBamaaCaaale qabaGaeqySdegaaOGaey4kaSYaaeWaaeaadaWcaaqaaiabgkGi2kab es7aKjaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcqaH+o aEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcqaH0oazcaWG2bWa aSbaaSqaaiabek7aIbqabaGccqaH6oWAdaqhaaWcbaGaeqySdegaba GaeqOSdigaaaGccaGLOaGaayzkaaGaaCyBamaaCaaaleqabaGaeqyS degaaaGccaGL7bGaayzFaaaaleaacaWGbbaabeqdcqGHRiI8aOGaey yXICTaamOvamaaCaaaleqabaGaeq4SdCgaaOGaaCyBamaaBaaaleaa cqaHZoWzaeqaaOGaamizaiaadgeacqGH9aqpcaaIWaaaaa@85B3@

for all admissible variations δ V ˙ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmOvayaacaWaaWbaaSqabe aacqaHXoqyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@3800@ , δv=δ v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWG Pbaaaaaa@3A5F@  and δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabCyBayaacaWaaSbaaSqaai aaiodaaeqaaOGaeyypa0JaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGa eqySdegabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D78@ .  The second integral can simply be added to the virtual work equation to ensure compatibility of δ m ˙ 3 =δ μ ˙ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabCyBayaacaWaaSbaaSqaai aaiodaaeqaaOGaeyypa0JaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGa eqySdegabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaaaaa@3D78@  and δv=δ v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaGccaWHTbWaaWbaaSqabeaacaWG Pbaaaaaa@3A5F@  

2. The augmented virtual work equation now reads

A T αβ δ v β ξ α δ v λ Γ βα λ +δ v 3 κ βα dA + A M αβ μ ˙ α ξ β μ ˙ λ Γ αβ λ dA + A hρ a i δ v i dA + A ρ h 3 12 μ ¨ α δ μ ˙ α dA + A δ μ ˙ α + δ v 3 ξ α δ v β κ α β V α dA A p i δ v i dA A q α δ μ ˙ α dA C P i δ v i ds C Q α δ μ ˙ α ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiaadsfadaahaaWcbe qaaiabeg7aHjabek7aIbaakmaacmaabaWaaSaaaeaacqGHciITcqaH 0oazcaWG2bWaaSbaaSqaaiabek7aIbqabaaakeaacqGHciITcqaH+o aEdaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcqaH0oazcaWG2bWa aSbaaSqaaiabeU7aSbqabaGccqqHtoWrdaqhaaWcbaGaeqOSdiMaeq ySdegabaGaeq4UdWgaaOGaey4kaSIaeqiTdqMaamODamaaBaaaleaa caaIZaaabeaakiabeQ7aRnaaBaaaleaacqaHYoGycqaHXoqyaeqaaa GccaGL7bGaayzFaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIi YdGccqGHRaWkdaWdrbqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaakmaabmaabaWaaSaaaeaacqGHciITcuaH8oqBgaGaamaaBaaa leaacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabek 7aIbqabaaaaOGaeyOeI0IafqiVd0MbaiaadaWgaaWcbaGaeq4UdWga beaakiabfo5ahnaaDaaaleaacqaHXoqycqaHYoGyaeaacqaH7oaBaa aakiaawIcacaGLPaaacaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4k IipaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqGHRaWkdaWdrbqaaiaadIgacqaHbpGCcaWGHbWa aWbaaSqabeaacaWGPbaaaOGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4k aSYaa8quaeaadaWcaaqaaiabeg8aYjaadIgadaahaaWcbeqaaiaaio daaaaakeaacaaIXaGaaGOmaaaacuaH8oqBgaWaamaaCaaaleqabaGa eqySdegaaOGaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeqySdegabe aakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4kaSYa a8quaeaadaGadaqaaiabes7aKjqbeY7aTzaacaWaaSbaaSqaaiabeg 7aHbqabaGccqGHRaWkdaqadaqaamaalaaabaGaeyOaIyRaeqiTdqMa amODamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kabe67a4naaBa aaleaacqaHXoqyaeqaaaaakiabgkHiTiabes7aKjaadAhadaWgaaWc baGaeqOSdigabeaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacqaHYo GyaaaakiaawIcacaGLPaaaaiaawUhacaGL9baacaWGwbWaaWbaaSqa beaacqaHXoqyaaGccaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIi pakiaaykW7caaMc8UaaGPaVlaaykW7aeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTm aapefabaGaamiCamaaCaaaleqabaGaamyAaaaakiabes7aKjaadAha daWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0 Gaey4kIipakiabgkHiTmaapefabaGaamyCamaaCaaaleqabaGaeqyS degaaOGaeqiTdqMafqiVd0MbaiaadaWgaaWcbaGaeqySdegabeaaki aadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaeyOeI0Yaa8qu aeaacaWGqbWaaWbaaSqabeaacaWGPbaaaOGaeqiTdqMaamODamaaBa aaleaacaWGPbaabeaakiaadsgacaWGZbaaleaacaWGdbaabeqdcqGH RiI8aOGaeyOeI0Yaa8quaeaacaWGrbWaaWbaaSqabeaacqaHXoqyaa GccqaH0oazcuaH8oqBgaGaamaaBaaaleaacqaHXoqyaeqaaOGaamiz aiaadohaaSqaaiaadoeaaeqaniabgUIiYdGccqGH9aqpcaaIWaaaaa a@4F64@

 

3. The remaining steps are routine, but fiddly.  The partial derivatives of δ v α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacqaHXo qyaeqaaaaa@354B@  and δ μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiVd0MbaiaadaWgaaWcba GaeqySdegabeaaaaa@360F@  must be removed by integrating by parts.  This is accomplished by applying the surface divergence theorem, which states that if w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Daaaa@31E0@  is a differentiable vector field on an area A of the surface, and C is the curve bounding A, then

A m α w ξ α dA= C nw ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHTbWaaWbaaSqabeaacq aHXoqyaaGccqGHflY1daWcaaqaaiabgkGi2kaahEhaaeaacqGHciIT cqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccaWGKbGaamyqaiabg2 da9maapefabaGaaCOBaiabgwSixlaahEhaaSqaaiaadoeaaeqaniab gUIiYdaaleaacaWGbbaabeqdcqGHRiI8aOGaamizaiaadohaaaa@4C6D@

where n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaaaa@31D7@  is the outward normal to C.  To see how to use this theorem, consider

A T αβ δ v β ξ α δ v λ Γ βα λ dA A T αβ m α m β : m γ δ v λ m λ ξ γ dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGubWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGcdaqadaqaamaalaaabaGaeyOaIyRaeqiTdqMa amODamaaBaaaleaacqaHYoGyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaS baaSqaaiabeg7aHbqabaaaaOGaeyOeI0IaeqiTdqMaamODamaaBaaa leaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiabek7aIjabeg7aHb qaaiabeU7aSbaaaOGaayjkaiaawMcaaiaadsgacaWGbbaaleaacaWG bbaabeqdcqGHRiI8aOGaeyyyIO7aa8quaeaadaqadaqaaiaadsfada ahaaWcbeqaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqyS degabeaakiabgEPielaah2gadaWgaaWcbaGaeqOSdigabeaaaOGaay jkaiaawMcaaiaacQdadaqadaqaaiaah2gadaahaaWcbeqaaiabeo7a NbaakiabgEPiepaalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaale aacqaH7oaBaeqaaOGaaCyBamaaCaaaleqabaGaeq4UdWgaaaGcbaGa eyOaIyRaeqOVdG3aaSbaaSqaaiabeo7aNbqabaaaaaGccaGLOaGaay zkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdaaaa@7B83@

The integrand can be re-written as

T: m γ δv ξ γ = m γ ξ γ Tδv m γ T ξ γ δv MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacQdadaqadaqaaiaah2gada ahaaWcbeqaaiabeo7aNbaakiabgEPiepaalaaabaGaeyOaIyRaeqiT dqMaaCODaaqaaiabgkGi2kabe67a4naaBaaaleaacqaHZoWzaeqaaa aaaOGaayjkaiaawMcaaiabg2da9iaah2gadaahaaWcbeqaaiabeo7a NbaakiabgwSixpaalaaabaGaeyOaIylabaGaeyOaIyRaeqOVdG3aaS baaSqaaiabeo7aNbqabaaaaOWaaeWaaeaacaWHubGaeyyXICTaeqiT dqMaaCODaaGaayjkaiaawMcaaiabgkHiTiaah2gadaahaaWcbeqaai abeo7aNbaakiabgwSixpaalaaabaGaeyOaIyRaaCivaaqaaiabgkGi 2kabe67a4naaBaaaleaacqaHZoWzaeqaaaaakiabgwSixlabes7aKj aahAhaaaa@6846@

Applying the surface divergence theorem to the first term on the right hand side of this equation shows that

A T: m γ δv ξ γ dA= C nTδv ds A m γ T ξ γ δv dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHubGaaiOoamaabmaaba GaaCyBamaaCaaaleqabaGaeq4SdCgaaOGaey4LIq8aaSaaaeaacqGH ciITcqaH0oazcaWH2baabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeo 7aNbqabaaaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8 aOGaamizaiaadgeacqGH9aqpdaWdrbqaaiaah6gacqGHflY1caWHub GaeqiTdqMaaCODaaWcbaGaam4qaaqab0Gaey4kIipakiaadsgacaWG ZbGaeyOeI0Yaa8quaeaacaWHTbWaaWbaaSqabeaacqaHZoWzaaGccq GHflY1daWcaaqaaiabgkGi2kaahsfaaeaacqGHciITcqaH+oaEdaWg aaWcbaGaeq4SdCgabeaaaaGccqaH0oazcaWH2baaleaacaWGbbaabe qdcqGHRiI8aOGaamizaiaadgeaaaa@685F@

Finally, substituting T= T αβ m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaadsfadaahaaWcbe qaaiabeg7aHjabek7aIbaakiaah2gadaWgaaWcbaGaeqySdegabeaa kiabgEPielaah2gadaWgaaWcbaGaeqOSdigabeaaaaa@3EAA@  and δv=δ v α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iabes7aKj aadAhadaWgaaWcbaGaeqySdegabeaakiaah2gadaahaaWcbeqaaiab eg7aHbaaaaa@3BC1@  and remembering to differentiate the basis vectors gives the component form

A T αβ δ v α ξ β δ v λ Γ αβ λ dA = C n α T αβ δ v β ds A T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β δ v β dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGubWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGcdaqadaqaamaalaaabaGaeyOaIyRaeqiTdqMa amODamaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaS baaSqaaiabek7aIbqabaaaaOGaeyOeI0IaeqiTdqMaamODamaaBaaa leaacqaH7oaBaeqaaOGaeu4KdC0aa0baaSqaaiabeg7aHjabek7aIb qaaiabeU7aSbaaaOGaayjkaiaawMcaaiaadsgacaWGbbaaleaacaWG bbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacaWGUbWaaSbaaSqaai abeg7aHbqabaGccaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGyaaaa baGaam4qaaqab0Gaey4kIipakiabes7aKjaadAhadaWgaaWcbaGaeq OSdigabeaakiaadsgacaWGZbGaeyOeI0Yaa8quaeaadaqadaqaamaa laaabaGaeyOaIyRaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaa GcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaey4k aSIaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeu4KdC0aa0 baaSqaaiabeg7aHjabeo7aNbqaaiabeo7aNbaakiabgUcaRiaadsfa daahaaWcbeqaaiabeg7aHjabeo7aNbaakiabfo5ahnaaDaaaleaacq aHZoWzcqaHXoqyaeaacqaHYoGyaaaakiaawIcacaGLPaaacqaH0oaz caWG2bWaaSbaaSqaaiabek7aIbqabaGccaWGKbGaamyqaaWcbaGaam yqaaqab0Gaey4kIipaaaa@91DF@

 

4. Applying the procedure outlined in step (3) to similar terms, the virtual work equation can be re-written as

A T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β ρh a β δ v β A V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 ρh a 3 δ v 3 A M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β ρ h 3 12 μ ¨ β δ μ ˙ β + C n α T αβ δ v β ds+ C n α M αβ δ μ ˙ β ds+ C n α V α δ v 3 ds C P i δ v i ds C Q α δ μ ˙ α ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHsisldaWdrbqaamaacmaaba WaaSaaaeaacqGHciITcaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGy aaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccq GHRaWkcaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccqqHtoWr daqhaaWcbaGaeqySdeMaeq4SdCgabaGaeq4SdCgaaOGaey4kaSIaam ivamaaCaaaleqabaGaeqySdeMaeq4SdCgaaOGaeu4KdC0aa0baaSqa aiabeo7aNjabeg7aHbqaaiabek7aIbaakiabgUcaRiaadAfadaahaa Wcbeqaaiabeg7aHbaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacqaH YoGyaaGccqGHRaWkcaWGWbWaaWbaaSqabeaacqaHYoGyaaGccqGHsi slcqaHbpGCcaWGObGaamyyamaaCaaaleqabaGaeqOSdigaaaGccaGL 7bGaayzFaaaaleaacaWGbbaabeqdcqGHRiI8aOGaeqiTdqMaamODam aaBaaaleaacqaHYoGyaeqaaaGcbaGaeyOeI0Yaa8quaeaadaGadaqa amaalaaabaGaeyOaIyRaamOvamaaCaaaleqabaGaeqySdegaaaGcba GaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaey4kaSIa amOvamaaCaaaleqabaGaeqySdegaaOGaeu4KdC0aa0baaSqaaiabeg 7aHjabek7aIbqaaiabek7aIbaakiabgkHiTiaadsfadaahaaWcbeqa aiabeg7aHjabek7aIbaakiabeQ7aRnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiabgkHi Tiabeg8aYjaadIgacaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGL7b GaayzFaaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaaaeaacaWG bbaabeqdcqGHRiI8aaGcbaGaeyOeI0Yaa8quaeaadaGadaqaamaala aabaGaeyOaIyRaamytamaaCaaaleqabaGaeqySdeMaeqOSdigaaaGc baGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaey4kaS IaamytamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeu4KdC0aa0ba aSqaaiabeg7aHjabeo7aNbqaaiabeo7aNbaakiabgUcaRiaad2eada ahaaWcbeqaaiabeg7aHjabeo7aNbaakiabfo5ahnaaDaaaleaacqaH ZoWzcqaHXoqyaeaacqaHYoGyaaGccqGHsislcaWGwbWaaWbaaSqabe aacqaHYoGyaaGccqGHRaWkcaWGXbWaaWbaaSqabeaacqaHYoGyaaGc cqGHsisldaWcaaqaaiabeg8aYjaadIgadaahaaWcbeqaaiaaiodaaa aakeaacaaIXaGaaGOmaaaacuaH8oqBgaWaamaaCaaaleqabaGaeqOS digaaaGccaGL7bGaayzFaaGaeqiTdqMafqiVd0MbaiaadaWgaaWcba GaeqOSdigabeaaaeaacaWGbbaabeqdcqGHRiI8aaGcbaGaey4kaSYa a8quaeaacaWGUbWaaSbaaSqaaiabeg7aHbqabaGccaWGubWaaWbaaS qabeaacqaHXoqycqaHYoGyaaaabaGaam4qaaqab0Gaey4kIipakiab es7aKjaadAhadaWgaaWcbaGaeqOSdigabeaakiaadsgacaWGZbGaey 4kaSYaa8quaeaacaWGUbWaaSbaaSqaaiabeg7aHbqabaGccaWGnbWa aWbaaSqabeaacqaHXoqycqaHYoGyaaaabaGaam4qaaqab0Gaey4kIi pakiabes7aKjqbeY7aTzaacaWaaSbaaSqaaiabek7aIbqabaGccaWG KbGaam4CaiabgUcaRmaapefabaGaamOBamaaBaaaleaacqaHXoqyae qaaOGaamOvamaaCaaaleqabaGaeqySdegaaaqaaiaadoeaaeqaniab gUIiYdGccqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaamizai aadohacqGHsisldaWdrbqaaiaadcfadaahaaWcbeqaaiaadMgaaaGc cqaH0oazcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadohaaS qaaiaadoeaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiaadgfadaah aaWcbeqaaiabeg7aHbaakiabes7aKjqbeY7aTzaacaWaaSbaaSqaai abeg7aHbqabaGccaWGKbGaam4CaaWcbaGaam4qaaqab0Gaey4kIipa kiabg2da9iaaicdaaaaa@2C2F@

This equation must be satisfied for all δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  and δ μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiVd0MbaiaadaWgaaWcba GaeqySdegabeaaaaa@360F@ , which immediately gives the equilibrium equations.

 

5. Some further algebra is required to derive the boundary conditions. It is tempting to conclude that coefficients of δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  and δ μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiVd0MbaiaadaWgaaWcba GaeqySdegabeaaaaa@360F@  in the boundary terms must all vanish, but this is not the case, because δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  and δ μ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiVd0MbaiaadaWgaaWcba GaeqySdegabeaaaaa@360F@  are related by compatibility equations. The boundary terms must be expressed in terms of four independent degrees of freedom.  To this end, recall that μ ˙ α = v 3 / ξ α v β κ α β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiVd0MbaiaadaWgaaWcbaGaeqySde gabeaakiabg2da9iabgkHiTmaabmaabaGaeyOaIyRaamODamaaBaaa leaacaaIZaaabeaakiaac+cacqGHciITcqaH+oaEdaWgaaWcbaGaeq ySdegabeaakiabgkHiTiaadAhadaWgaaWcbaGaeqOSdigabeaakiab eQ7aRnaaDaaaleaacqaHXoqyaeaacqaHYoGyaaaakiaawIcacaGLPa aaaaa@49DD@ , so the integral around the boundary can be re-written as

C n α T αβ n α M αλ κ λ β P β Q λ κ λ β δ v β ds+ C n α V α P 3 δ v 3 ds C n α M αβ Q β δ v 3 ξ β ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaacmaabaGaamOBam aaBaaaleaacqaHXoqyaeqaaOGaamivamaaCaaaleqabaGaeqySdeMa eqOSdigaaOGaeyOeI0IaamOBamaaBaaaleaacqaHXoqyaeqaaOGaam ytamaaCaaaleqabaGaeqySdeMaeq4UdWgaaOGaeqOUdS2aa0baaSqa aiabeU7aSbqaaiabek7aIbaakiabgkHiTiaadcfadaahaaWcbeqaai abek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaaiabeU7aSbaakiab eQ7aRnaaDaaaleaacqaH7oaBaeaacqaHYoGyaaaakiaawUhacaGL9b aaaSqaaiaadoeaaeqaniabgUIiYdGccqaH0oazcaWG2bWaaSbaaSqa aiabek7aIbqabaGccaWGKbGaam4CaiabgUcaRmaapefabaWaaeWaae aacaWGUbWaaSbaaSqaaiabeg7aHbqabaGccaWGwbWaaWbaaSqabeaa cqaHXoqyaaGccqGHsislcaWGqbWaaWbaaSqabeaacaaIZaaaaaGcca GLOaGaayzkaaaaleaacaWGdbaabeqdcqGHRiI8aOGaeqiTdqMaamOD amaaBaaaleaacaaIZaaabeaakiaadsgacaWGZbaabaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlabgkHiTmaapefabaWaaeWaaeaacaWGUb WaaSbaaSqaaiabeg7aHbqabaGccaWGnbWaaWbaaSqabeaacqaHXoqy cqaHYoGyaaGccqGHsislcaWGrbWaaWbaaSqabeaacqaHYoGyaaaaki aawIcacaGLPaaaaSqaaiaadoeaaeqaniabgUIiYdGcdaWcaaqaaiab gkGi2kabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaaakeaacqGHci ITcqaH+oaEdaWgaaWcbaGaeqOSdigabeaaaaGccaWGKbGaam4Caiab g2da9iaaicdaaaaa@1F94@

 

6. The vector δ v 3 / ξ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeqiTdqMaamODamaaBaaale aacaaIZaaabeaakiaac+cacqGHciITcqaH+oaEdaWgaaWcbaGaeqyS degabeaaaaa@3B80@  can be expressed in terms of components parallel and perpendicular to the boundary of the plate C, as

δ v 3 ξ α = δ v 3 s τ α +δ θ ˙ n α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaH0oazcaWG2b WaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqa aiabeg7aHbqabaaaaOGaeyypa0ZaaSaaaeaacqGHciITcqaH0oazca WG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaam4CaaaacqaH epaDdaWgaaWcbaGaeqySdegabeaakiabgUcaRiabes7aKjqbeI7aXz aacaGaamOBamaaBaaaleaacqaHXoqyaeqaaaaa@4DF2@

Here, τ= τ α m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdiabg2da9iabes8a0naaBaaale aacqaHXoqyaeqaaOGaaCyBamaaCaaaleqabaGaeqySdegaaaaa@3992@  and n= n α m α = m 3 ×τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iaad6gadaWgaaWcba GaeqySdegabeaakiaah2gadaahaaWcbeqaaiabeg7aHbaakiabg2da 9iaah2gadaWgaaWcbaGaaG4maaqabaGccqGHxdaTcaWHepaaaa@3EC7@  represent unit vectors tangent and normal to C, and δ θ ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqiUdeNbaiaaaaa@3444@  is an independent degree of freedom that represents the rotation of the shell about τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@ .  Finally, we integrate by parts to see that

C n α M αβ Q β δ v 3 ξ β ds= C n α M αβ Q β τ β δ v 3 s ds+ C n α M αβ Q β n β δ θ ˙ ds = C s n α M αβ Q β τ β δ v 3 ds+ C n α M αβ Q β n β δ θ ˙ ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaabmaabaGaamOBam aaBaaaleaacqaHXoqyaeqaaOGaamytamaaCaaaleqabaGaeqySdeMa eqOSdigaaOGaeyOeI0IaamyuamaaCaaaleqabaGaeqOSdigaaaGcca GLOaGaayzkaaaaleaacaWGdbaabeqdcqGHRiI8aOWaaSaaaeaacqGH ciITcqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaeqOVdG3aaSbaaSqaaiabek7aIbqabaaaaOGaamizaiaadohacqGH 9aqpdaWdrbqaamaabmaabaGaamOBamaaBaaaleaacqaHXoqyaeqaaO GaamytamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeyOeI0Iaamyu amaaCaaaleqabaGaeqOSdigaaaGccaGLOaGaayzkaaGaeqiXdq3aaS baaSqaaiabek7aIbqabaaabaGaam4qaaqab0Gaey4kIipakmaalaaa baGaeyOaIyRaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaaaOqaai abgkGi2kaadohaaaGaamizaiaadohacqGHRaWkdaWdrbqaamaabmaa baGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamytamaaCaaaleqaba GaeqySdeMaeqOSdigaaOGaeyOeI0IaamyuamaaCaaaleqabaGaeqOS digaaaGccaGLOaGaayzkaaGaamOBamaaBaaaleaacqaHYoGyaeqaaa qaaiaadoeaaeqaniabgUIiYdGccqaH0oazcuaH4oqCgaGaaiaadsga caWGZbaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaeyOeI0Yaa8qu aeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadohaaaWaaiWaaeaada qadaqaaiaad6gadaWgaaWcbaGaeqySdegabeaakiaad2eadaahaaWc beqaaiabeg7aHjabek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaai abek7aIbaaaOGaayjkaiaawMcaaiabes8a0naaBaaaleaacqaHYoGy aeqaaaGccaGL7bGaayzFaaaaleaacaWGdbaabeqdcqGHRiI8aOGaeq iTdqMaamODamaaBaaaleaacaaIZaaabeaakiaadsgacaWGZbGaey4k aSYaa8quaeaadaqadaqaaiaad6gadaWgaaWcbaGaeqySdegabeaaki aad2eadaahaaWcbeqaaiabeg7aHjabek7aIbaakiabgkHiTiaadgfa daahaaWcbeqaaiabek7aIbaaaOGaayjkaiaawMcaaiaad6gadaWgaa WcbaGaeqOSdigabeaaaeaacaWGdbaabeqdcqGHRiI8aOGaeqiTdqMa fqiUdeNbaiaacaWGKbGaam4Caaaaaa@168E@

(The terms associated with the ends of C vanish because C is a closed curve). 

 

7. Substituting the result of (6) back into (5) gives

 

C n α T αβ n α M αλ κ λ β P β Q λ κ λ β δ v β ds + C n α V α + s n α M αβ τ β P 3 s Q β τ β δ v 3 ds C n α M αβ Q β n β δ θ ˙ ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaacmaabaGaamOBam aaBaaaleaacqaHXoqyaeqaaOGaamivamaaCaaaleqabaGaeqySdeMa eqOSdigaaOGaeyOeI0IaamOBamaaBaaaleaacqaHXoqyaeqaaOGaam ytamaaCaaaleqabaGaeqySdeMaeq4UdWgaaOGaeqOUdS2aa0baaSqa aiabeU7aSbqaaiabek7aIbaakiabgkHiTiaadcfadaahaaWcbeqaai abek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaaiabeU7aSbaakiab eQ7aRnaaDaaaleaacqaH7oaBaeaacqaHYoGyaaaakiaawUhacaGL9b aaaSqaaiaadoeaaeqaniabgUIiYdGccqaH0oazcaWG2bWaaSbaaSqa aiabek7aIbqabaGccaWGKbGaam4CaaqaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkdaWdrbqaamaabmaabaGa amOBamaaBaaaleaacqaHXoqyaeqaaOGaamOvamaaCaaaleqabaGaeq ySdegaaOGaey4kaSYaaSaaaeaacqGHciITaeaacqGHciITcaWGZbaa amaadmaabaGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamytamaaCa aaleqabaGaeqySdeMaeqOSdigaaOGaeqiXdq3aaSbaaSqaaiabek7a IbqabaaakiaawUfacaGLDbaacqGHsislcaWGqbWaaWbaaSqabeaaca aIZaaaaOGaeyOeI0YaaSaaaeaacqGHciITaeaacqGHciITcaWGZbaa amaadmaabaGaamyuamaaCaaaleqabaGaeqOSdigaaOGaeqiXdq3aaS baaSqaaiabek7aIbqabaaakiaawUfacaGLDbaaaiaawIcacaGLPaaa aSqaaiaadoeaaeqaniabgUIiYdGccqaH0oazcaWG2bWaaSbaaSqaai aaiodaaeqaaOGaamizaiaadohaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeyOeI0Yaa8quaeaadaqadaqaaiaad6 gadaWgaaWcbaGaeqySdegabeaakiaad2eadaahaaWcbeqaaiabeg7a Hjabek7aIbaakiabgkHiTiaadgfadaahaaWcbeqaaiabek7aIbaaaO GaayjkaiaawMcaaaWcbaGaam4qaaqab0Gaey4kIipakiaad6gadaWg aaWcbaGaeqOSdigabeaakiabes7aKjqbeI7aXzaacaGaamizaiaado hacqGH9aqpcaaIWaaaaaa@BE9C@

This condition must be satisfied for all δ v i ,δ θ ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiaacYcacqaH0oazcuaH4oqCgaGaaaaa@38B8@ , which gives the boundary conditions.

 

 

 

Finally, we must derive the last equilibrium equation T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaik daaaGccqGHsislcaWGubWaaWbaaSqabeaacaaIYaGaaGymaaaakiab gUcaRiaad2eadaahaaWcbeqaaiabeg7aHjaaigdaaaGccqaH6oWAda qhaaWcbaGaeqySdegabaGaaGOmaaaakiabgkHiTiaad2eadaahaaWc beqaaiabeg7aHjaaikdaaaGccqaH6oWAdaqhaaWcbaGaeqySdegaba GaaGymaaaakiabg2da9iaaicdaaaa@49B8@ .  Using the definitions of T αβ , M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaaiilaiaad2eadaahaaWcbeqaaiabeg7aHjabek7aIbaa aaa@3A1F@ , and noting that σ 12 = σ 21 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacaaIXaGaaG Omaaaakiabg2da9iabeo8aZnaaCaaaleqabaGaaGOmaiaaigdaaaaa aa@38BE@ , it is straightforward to show that

T 12 T 21 = h/2 h/2 x 3 σ γ2 κ γ 1 σ γ1 κ γ 2 (1+ x 3 κ λ λ )d x 3 M α1 κ α 2 M α2 κ α 1 = h/2 h/2 x 3 σ γ1 κ γ 2 σ γ2 κ γ 1 (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGubWaaWbaaSqabeaacaaIXa GaaGOmaaaakiabgkHiTiaadsfadaahaaWcbeqaaiaaikdacaaIXaaa aOGaeyypa0Zaa8qCaeaacaWG4bWaaSbaaSqaaiaaiodaaeqaaOWaae WaaeaacqaHdpWCdaahaaWcbeqaaiabeo7aNjaaikdaaaGccqaH6oWA daqhaaWcbaGaeq4SdCgabaGaaGymaaaakiabgkHiTiabeo8aZnaaCa aaleqabaGaeq4SdCMaaGymaaaakiabeQ7aRnaaDaaaleaacqaHZoWz aeaacaaIYaaaaaGccaGLOaGaayzkaaaaleaacqGHsislcaWGObGaai 4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipakiaacIca caaIXaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiabeQ7aRn aaDaaaleaacqaH7oaBaeaacqaH7oaBaaGccaGGPaGaamizaiaadIha daWgaaWcbaGaaG4maaqabaaakeaacaWGnbWaaWbaaSqabeaacqaHXo qycaaIXaaaaOGaeqOUdS2aa0baaSqaaiabeg7aHbqaaiaaikdaaaGc cqGHsislcaWGnbWaaWbaaSqabeaacqaHXoqycaaIYaaaaOGaeqOUdS 2aa0baaSqaaiabeg7aHbqaaiaaigdaaaGccqGH9aqpdaWdXbqaaiaa dIhadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiabeo8aZnaaCaaale qabaGaeq4SdCMaaGymaaaakiabeQ7aRnaaDaaaleaacqaHZoWzaeaa caaIYaaaaOGaeyOeI0Iaeq4Wdm3aaWbaaSqabeaacqaHZoWzcaaIYa aaaOGaeqOUdS2aa0baaSqaaiabeo7aNbqaaiaaigdaaaaakiaawIca caGLPaaaaSqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadIgaca GGVaGaaGOmaaqdcqGHRiI8aOGaaiikaiaaigdacqGHRaWkcaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeqOUdS2aa0baaSqaaiabeU7aSbqaai abeU7aSbaakiaacMcacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aaaa@9EDB@

Adding these two equations gives the last equilibrium equation.

 

 

 

10.5.9 Constitutive equations relating forces to deformation measures in elastic shells

 

The internal forces in a shell are related to its deformation by the stress-strain law for the material.  Here, we give force-deformation equations for an isotropic elastic shell which experiences small shape changes (but possibly large rotations).

 

Shape changes are characterized using the following deformation measures, defined in Sections 10.5.6

 

1. The in-plane components of the metric tensors for the mid-plane of the shell before and after deformation are denoted g ¯ αβ = m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpceWHTbGbaebadaWgaaWcbaGaeqySdega beaakiabgwSixlqah2gagaqeamaaBaaaleaacqaHYoGyaeqaaOGaaC jaVdaa@3FFA@   g αβ = m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaCyBamaaBaaaleaacqaHXoqyaeqaaOGaeyyX ICTaaCyBamaaBaaaleaacqaHYoGyaeqaaOGaaCjaVdaa@3FB2@

 

2. The `mid-plane Lagrange strain tensor’ γ= γ αβ m ¯ α m ¯ β = 1 2 g αβ g ¯ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Sdiabg2da9iabeo7aNnaaBaaale aacqaHXoqycqaHYoGyaeqaaOGabCyBayaaraWaaWbaaSqabeaacqaH XoqyaaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabek7aIbaaki abg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWGNbWa aSbaaSqaaiabeg7aHjabek7aIbqabaGccqGHsislceWGNbGbaebada WgaaWcbaGaeqySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaiqah2ga gaqeamaaCaaaleqabaGaeqySdegaaOGaey4LIqSabCyBayaaraWaaW baaSqabeaacqaHYoGyaaaaaa@55BD@ ,

 

3. The `Curvature change tensor’ Δκ=Δ κ λβ m ¯ λ m ¯ β =( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaaCOUdiabg2da9iabfs5aej abeQ7aRnaaBaaaleaacqaH7oaBcqaHYoGyaeqaaOGabCyBayaaraWa aWbaaSqabeaacqaH7oaBaaGccqGHxkcXceWHTbGbaebadaahaaWcbe qaaiabek7aIbaakiabg2da9iaacIcacqaH6oWAdaqhaaWcbaGaeqOS digabaGaeqySdegaaOGaeyOeI0IafqOUdSMbaebadaqhaaWcbaGaeq OSdigabaGaeqySdegaaOGaaiykaiaadEgadaWgaaWcbaGaeq4UdWMa eqySdegabeaakiqah2gagaqeamaaCaaaleqabaGaeq4UdWgaaOGaey 4LIqSabCyBayaaraWaaWbaaSqabeaacqaHYoGyaaaaaa@5D25@ , which quantifies the bending and twisting the shell.

 

 

Internal forces are characterized using the stress resultant tensor components T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@3526@  and internal moment components M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@351F@  defined in Section 10.5.7.

 

The shell is assumed to have a uniform thickness h, and is assumed to be made from an isotropic, linear elastic solid, with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  We assume for simplicity that the shell is homogeneous, and neglect thermal expansion (the effects of thermal expansion are included an example problem solved in Section 10.7.4)

 

It is convenient to introduce a plane stress elasticity tensor with components

D αβρμ = E 2(1 ν 2 ) ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaCaaaleqabaGaeqySdeMaeq OSdiMaeqyWdiNaeqiVd0gaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYa aaaOGaaiykaaaadaqadaqaaiaacIcaceWGNbGbaebadaahaaWcbeqa aiabeg7aHjabeg8aYbaakiqadEgagaqeamaaCaaaleqabaGaeqOSdi MaeqiVd0gaaOGaey4kaSIabm4zayaaraWaaWbaaSqabeaacqaHXoqy cqaH8oqBaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIjabeg8aYb aakiaacMcacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqGHRaWk caaIYaGaeqyVd4Mabm4zayaaraWaaWbaaSqabeaacqaHXoqycqaHYo GyaaGcceWGNbGbaebadaahaaWcbeqaaiabeg8aYjabeY7aTbaaaOGa ayjkaiaawMcaaaaa@6835@

 

The force-deformation relations can then be expressed as

T αβ =h D αβρλ γ ρλ + h 3 12 κ μ μ δ θ β κ θ β D θαρλ Δ κ ρλ h 3 12 κ μ μ D θαρλ κ θ β γ ρλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0JaamiAaiaadseadaahaaWcbeqaaiabeg7aHjab ek7aIjabeg8aYjabeU7aSbaakiabeo7aNnaaBaaaleaacqaHbpGCcq aH7oaBaeqaaOGaey4kaSYaaSaaaeaacaWGObWaaWbaaSqabeaacaaI ZaaaaaGcbaGaaGymaiaaikdaaaWaaeWaaeaacqaH6oWAdaqhaaWcba GaeqiVd0gabaGaeqiVd0gaaOGaeqiTdq2aa0baaSqaaiabeI7aXbqa aiabek7aIbaakiabgkHiTiabeQ7aRnaaDaaaleaacqaH4oqCaeaacq aHYoGyaaaakiaawIcacaGLPaaacaWGebWaaWbaaSqabeaacqaH4oqC cqaHXoqycqaHbpGCcqaH7oaBaaGccqqHuoarcqaH6oWAdaWgaaWcba GaeqyWdiNaeq4UdWgabeaakiabgkHiTmaalaaabaGaamiAamaaCaaa leqabaGaaG4maaaaaOqaaiaaigdacaaIYaaaaiabeQ7aRnaaDaaale aacqaH8oqBaeaacqaH8oqBaaGccaWGebWaaWbaaSqabeaacqaH4oqC cqaHXoqycqaHbpGCcqaH7oaBaaGccqaH6oWAdaqhaaWcbaGaeqiUde habaGaeqOSdigaaOGaeq4SdC2aaSbaaSqaaiabeg8aYjabeU7aSbqa baaaaa@8535@

M αβ = h 3 12 D αβρλ Δ κ ρλ + h 3 12 κ μ μ δ θ β κ θ β D θαρλ γ ρλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0ZaaSaaaeaacaWGObWaaWbaaSqabeaacaaIZaaa aaGcbaGaaGymaiaaikdaaaGaamiramaaCaaaleqabaGaeqySdeMaeq OSdiMaeqyWdiNaeq4UdWgaaOGaeuiLdqKaeqOUdS2aaSbaaSqaaiab eg8aYjabeU7aSbqabaGccqGHRaWkdaWcaaqaaiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaaaadaqadaqaaiabeQ7aRnaa DaaaleaacqaH8oqBaeaacqaH8oqBaaGccqaH0oazdaqhaaWcbaGaeq iUdehabaGaeqOSdigaaOGaeyOeI0IaeqOUdS2aa0baaSqaaiabeI7a Xbqaaiabek7aIbaaaOGaayjkaiaawMcaaiaadseadaahaaWcbeqaai abeI7aXjabeg7aHjabeg8aYjabeU7aSbaakiabeo7aNnaaBaaaleaa cqaHbpGCcqaH7oaBaeqaaaaa@6BA5@

 

For all but a few very rare shell geometries these expressions may be approximated by

T αβ h D αβρλ γ ρλ M αβ h 3 12 D αβρλ Δ κ ρλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyisISRaamiAaiaadseadaahaaWcbeqaaiabeg7aHjab ek7aIjabeg8aYjabeU7aSbaakiabeo7aNnaaBaaaleaacqaHbpGCcq aH7oaBaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGnbWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGccqGHijYUcaaMc8+aaSaaaeaacaWGObWaaWba aSqabeaacaaIZaaaaaGcbaGaaGymaiaaikdaaaGaamiramaaCaaale qabaGaeqySdeMaeqOSdiMaeqyWdiNaeq4UdWgaaOGaeuiLdqKaeqOU dS2aaSbaaSqaaiabeg8aYjabeU7aSbqabaaaaa@6F25@

 

 

Derivation

 

1. We have assumed that the material in the shell experiences small distortions, but arbitrary rotations.  Material behavior can therefore be modeled using the generalized Hooke’s law described in Section 3.3, which relates the Material stress to the Lagrange strain using the isotropic linear elastic constitutive equations.

 

2. We assume that the shell is in a state of plane stress, so that the material stress tensor has the form   Σ= Σ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odiabg2da9iabfo6atnaaCaaale qabaGaeqySdeMaeqOSdigaaOGabCyBayaaraWaaSbaaSqaaiabeg7a HbqabaGccqGHxkcXceWHTbGbaebadaWgaaWcbaGaeqOSdigabeaaaa a@3FD7@

 

 

3. The Lagrange strain  tensor is given in Section 10.5.6 as

E γ αβ m ¯ α m ¯ β + x 3 ( κ β α κ ¯ β α ) g λα m ¯ λ m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyraiabgIKi7kabeo7aNnaaBaaale aacqaHXoqycqaHYoGyaeqaaOGabCyBayaaraWaaWbaaSqabeaacqaH XoqyaaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiabek7aIbaaki abgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGOaGaeqOUdS2a a0baaSqaaiabek7aIbqaaiabeg7aHbaakiabgkHiTiqbeQ7aRzaara Waa0baaSqaaiabek7aIbqaaiabeg7aHbaakiaacMcacaWGNbWaaSba aSqaaiabeU7aSjabeg7aHbqabaGcceWHTbGbaebadaahaaWcbeqaai abeU7aSbaakiabgEPielqah2gagaqeamaaCaaaleqabaGaeqOSdiga aaaa@5C24@

 

4. The material stress is related to the Lagrange strain by the plane stress version of the linear elastic constitutive equations, which can be expressed as

Σ= E 1+ν E+ ν 1ν ( g ¯ :E) g ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odiabg2da9maalaaabaGaamyraa qaamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaa daGadaqaaiaahweacqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigdacq GHsislcqaH9oGBaaGaaiikaiqahEgagaqeaiaacQdacaWHfbGaaiyk aiqahEgagaqeaaGaay5Eaiaaw2haaaaa@46CA@

where g ¯ = g ¯ αβ m ¯ α m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4zayaaraGaeyypa0Jabm4zayaara WaaWbaaSqabeaacqaHXoqycqaHYoGyaaGcceWHTbGbaebadaWgaaWc baGaeqySdegabeaakiabgEPielqah2gagaqeamaaBaaaleaacqaHYo Gyaeqaaaaa@3F30@   is the in-plane component of the metric tensor associated with the undeformed shell (this replaces the identity tensor in the Cartesian version of the constitutive equations)

 

5. The Cauchy stress is related to the material stress by σ=FΣ F T /JFΣ F T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iaahAeacaWHJoGaaC OramaaCaaaleqabaGaamivaaaakiaac+cacaWGkbGaeyisISRaaCOr aiaaho6acaWHgbWaaWbaaSqabeaacaWGubaaaaaa@3E18@ .  Substituting the formulas for Σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odaaa@320F@  from (4) and approximating F as F m i m ¯ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabgIKi7kaah2gadaWgaaWcba GaamyAaaqabaGccqGHxkcXceWHTbGbaebadaahaaWcbeqaaiaadMga aaaaaa@39AC@ , we find after some algebra that

σ= σ αβ m α m β D αβλρ γ λρ + x 3 ( κ ρ μ κ ¯ ρ μ ) g λμ m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iabeo8aZnaaCaaale qabaGaeqySdeMaeqOSdigaaOGaaCyBamaaBaaaleaacqaHXoqyaeqa aOGaey4LIqSaaCyBamaaBaaaleaacqaHYoGyaeqaaOGaeyisISRaam iramaaCaaaleqabaGaeqySdeMaeqOSdiMaeq4UdWMaeqyWdihaaOWa aeWaaeaacqaHZoWzdaWgaaWcbaGaeq4UdWMaeqyWdihabeaakiabgU caRiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGOaGaeqOUdS2aa0ba aSqaaiabeg8aYbqaaiabeY7aTbaakiabgkHiTiqbeQ7aRzaaraWaa0 baaSqaaiabeg8aYbqaaiabeY7aTbaakiaacMcacaWGNbWaaSbaaSqa aiabeU7aSjabeY7aTbqabaaakiaawIcacaGLPaaacaWHTbWaaSbaaS qaaiabeg7aHbqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiabek7aIbqa baaaaa@6C60@

where

D αβρμ = E 2(1 ν 2 ) ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaCaaaleqabaGaeqySdeMaeq OSdiMaeqyWdiNaeqiVd0gaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYa aaaOGaaiykaaaadaqadaqaaiaacIcaceWGNbGbaebadaahaaWcbeqa aiabeg7aHjabeg8aYbaakiqadEgagaqeamaaCaaaleqabaGaeqOSdi MaeqiVd0gaaOGaey4kaSIabm4zayaaraWaaWbaaSqabeaacqaHXoqy cqaH8oqBaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIjabeg8aYb aakiaacMcacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqGHRaWk caaIYaGaeqyVd4Mabm4zayaaraWaaWbaaSqabeaacqaHXoqycqaHYo GyaaGcceWGNbGbaebadaahaaWcbeqaaiabeg8aYjabeY7aTbaaaOGa ayjkaiaawMcaaaaa@6835@

 

6. The components of the stress-resultant tensor are given by

T αβ = h/2 h/2 σ αβ x 3 σ γα κ γ β (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0Zaa8qCaeaadaqadaqaaiabeo8aZnaaCaaaleqa baGaeqySdeMaeqOSdigaaOGaeyOeI0IaamiEamaaBaaaleaacaaIZa aabeaakiabeo8aZnaaCaaaleqabaGaeq4SdCMaeqySdegaaOGaeqOU dS2aa0baaSqaaiabeo7aNbqaaiabek7aIbaaaOGaayjkaiaawMcaaa WcbaGaeyOeI0IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaI YaaaniabgUIiYdGccaGGOaGaaGymaiabgUcaRiaadIhadaWgaaWcba GaaG4maaqabaGccqaH6oWAdaqhaaWcbaGaeq4UdWgabaGaeq4UdWga aOGaaiykaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@5F65@

Substituting the formula for stress components into this expression and integrating through the thickness of the shell gives

T αβ =h D αβρλ γ ρλ + h 3 12 κ μ μ δ θ β κ θ β D θαρλ Δ κ ρλ h 3 12 κ μ μ D θαρλ κ θ β γ ρλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0JaamiAaiaadseadaahaaWcbeqaaiabeg7aHjab ek7aIjabeg8aYjabeU7aSbaakiabeo7aNnaaBaaaleaacqaHbpGCcq aH7oaBaeqaaOGaey4kaSYaaSaaaeaacaWGObWaaWbaaSqabeaacaaI ZaaaaaGcbaGaaGymaiaaikdaaaWaaeWaaeaacqaH6oWAdaqhaaWcba GaeqiVd0gabaGaeqiVd0gaaOGaeqiTdq2aa0baaSqaaiabeI7aXbqa aiabek7aIbaakiabgkHiTiabeQ7aRnaaDaaaleaacqaH4oqCaeaacq aHYoGyaaaakiaawIcacaGLPaaacaWGebWaaWbaaSqabeaacqaH4oqC cqaHXoqycqaHbpGCcqaH7oaBaaGccqqHuoarcqaH6oWAdaWgaaWcba GaeqyWdiNaeq4UdWgabeaakiabgkHiTmaalaaabaGaamiAamaaCaaa leqabaGaaG4maaaaaOqaaiaaigdacaaIYaaaaiabeQ7aRnaaDaaale aacqaH8oqBaeaacqaH8oqBaaGccaWGebWaaWbaaSqabeaacqaH4oqC cqaHXoqycqaHbpGCcqaH7oaBaaGccqaH6oWAdaqhaaWcbaGaeqiUde habaGaeqOSdigaaOGaeq4SdC2aaSbaaSqaaiabeg8aYjabeU7aSbqa baaaaa@8535@

Here, terms of order h 4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaCaaaleqabaGaaGinaaaaaa a@32B8@  have been neglected.

 

7. The components of the internal moment tensor are

M αβ = h/2 h/2 x 3 σ αβ x 3 σ γα κ γ β (1+ x 3 κ λ λ )d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0Zaa8qCaeaacaWG4bWaaSbaaSqaaiaaiodaaeqa aOWaaeWaaeaacqaHdpWCdaahaaWcbeqaaiabeg7aHjabek7aIbaaki abgkHiTiaadIhadaWgaaWcbaGaaG4maaqabaGccqaHdpWCdaahaaWc beqaaiabeo7aNjabeg7aHbaakiabeQ7aRnaaDaaaleaacqaHZoWzae aacqaHYoGyaaaakiaawIcacaGLPaaaaSqaaiabgkHiTiaadIgacaGG VaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aOGaaiikai aaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdS2a a0baaSqaaiabeU7aSbqaaiabeU7aSbaakiaacMcacaWGKbGaamiEam aaBaaaleaacaaIZaaabeaaaaa@614E@

Substituting the formula for stress components into this expression and integrating through the thickness of the shell gives

M αβ = h 3 12 D αβρλ Δ κ ρλ + h 3 12 κ μ μ δ θ β κ θ β D θαρλ γ ρλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0ZaaSaaaeaacaWGObWaaWbaaSqabeaacaaIZaaa aaGcbaGaaGymaiaaikdaaaGaamiramaaCaaaleqabaGaeqySdeMaeq OSdiMaeqyWdiNaeq4UdWgaaOGaeuiLdqKaeqOUdS2aaSbaaSqaaiab eg8aYjabeU7aSbqabaGccqGHRaWkdaWcaaqaaiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaaaadaqadaqaaiabeQ7aRnaa DaaaleaacqaH8oqBaeaacqaH8oqBaaGccqaH0oazdaqhaaWcbaGaeq iUdehabaGaeqOSdigaaOGaeyOeI0IaeqOUdS2aa0baaSqaaiabeI7a Xbqaaiabek7aIbaaaOGaayjkaiaawMcaaiaadseadaahaaWcbeqaai abeI7aXjabeg7aHjabeg8aYjabeU7aSbaakiabeo7aNnaaBaaaleaa cqaHbpGCcqaH7oaBaeqaaaaa@6BA5@

where terms of order h 5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaCaaaleqabaGaaGynaaaaaa a@32B9@  and higher have been neglected.

 

 

 

10.5.10 Strain energy and kinetic energy of an elastic shell

 

It is useful to express the strain energy and kinetic energy of a deformed shell in terms of the motion and deformation of its mid-plane.  To this end:

 

1. Consider an isotropic, linear elastic shell, with Young’s modulus E,  Poission’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ , mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  and thickness h.  Denote the contravariant components of the tensor of elastic constants by

D αβρμ = E 2(1 ν 2 ) ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaCaaaleqabaGaeqySdeMaeq OSdiMaeqyWdiNaeqiVd0gaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYa aaaOGaaiykaaaadaqadaqaaiaacIcaceWGNbGbaebadaahaaWcbeqa aiabeg7aHjabeg8aYbaakiqadEgagaqeamaaCaaaleqabaGaeqOSdi MaeqiVd0gaaOGaey4kaSIabm4zayaaraWaaWbaaSqabeaacqaHXoqy cqaH8oqBaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIjabeg8aYb aakiaacMcacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqGHRaWk caaIYaGaeqyVd4Mabm4zayaaraWaaWbaaSqabeaacqaHXoqycqaHYo GyaaGcceWGNbGbaebadaahaaWcbeqaaiabeg8aYjabeY7aTbaaaOGa ayjkaiaawMcaaaaa@6835@

 

2. Let γ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiabeg7aHjabek 7aIbqabaaaaa@35F3@  and Δ κ λβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiabeU 7aSjabek7aIbqabaaaaa@3778@  denote the covariant components of the mid-plane Lagrange strain tensor, defined in the preceding section,

 

3. Let v= v i m i = v i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaadAhadaahaaWcbe qaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Ja amODamaaBaaaleaacaWGPbaabeaakiaah2gadaahaaWcbeqaaiaadM gaaaaaaa@3C55@  and ω= μ ˙ α m 3 × m α = μ ˙ α m 3 × m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iqbeY7aTzaacaWaaS baaSqaaiabeg7aHbqabaGccaWHTbWaaSbaaSqaaiaaiodaaeqaaOGa ey41aqRaaCyBamaaCaaaleqabaGaeqySdegaaOGaeyypa0JafqiVd0 MbaiaadaahaaWcbeqaaiabeg7aHbaakiaah2gadaWgaaWcbaGaaG4m aaqabaGccqGHxdaTcaWHTbWaaSbaaSqaaiabeg7aHbqabaaaaa@48F7@  denote the linear and angular velocity of the mid-plane of the shell.

 

 

 The total strain energy of the shell can be calculated as

Φ= h 2 D αβρμ A γ αβ γ ρμ + h 2 12 Δ κ αβ Δ κ ρμ +2 κ λ λ Δ κ αβ γ ρμ dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0ZaaSaaaeaacaWGOb aabaGaaGOmaaaacaWGebWaaWbaaSqabeaacqaHXoqycqaHYoGycqaH bpGCcqaH8oqBaaGcdaWdrbqaamaabmaabaGaeq4SdC2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeqiV d0gabeaakiabgUcaRmaalaaabaGaamiAamaaCaaaleqabaGaaGOmaa aaaOqaaiaaigdacaaIYaaaamaabmaabaGaeuiLdqKaeqOUdS2aaSba aSqaaiabeg7aHjabek7aIbqabaGccqqHuoarcqaH6oWAdaWgaaWcba GaeqyWdiNaeqiVd0gabeaakiabgUcaRiaaikdacqaH6oWAdaqhaaWc baGaeq4UdWgabaGaeq4UdWgaaOGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeqiV d0gabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaamyqaa qab0Gaey4kIipakiaadsgacaWGbbaaaa@7384@

For all but a very few special shell geometries this result may be approximated by

Φ h 2 D αβρμ A γ αβ γ ρμ + h 2 12 Δ κ αβ Δ κ ρμ dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaGPaVlabgIKi7oaalaaaba GaamiAaaqaaiaaikdaaaGaamiramaaCaaaleqabaGaeqySdeMaeqOS diMaeqyWdiNaeqiVd0gaaOWaa8quaeaadaqadaqaaiabeo7aNnaaBa aaleaacqaHXoqycqaHYoGyaeqaaOGaeq4SdC2aaSbaaSqaaiabeg8a YjabeY7aTbqabaGccqGHRaWkdaWcaaqaaiaadIgadaahaaWcbeqaai aaikdaaaaakeaacaaIXaGaaGOmaaaacqqHuoarcqaH6oWAdaWgaaWc baGaeqySdeMaeqOSdigabeaakiabfs5aejabeQ7aRnaaBaaaleaacq aHbpGCcqaH8oqBaeqaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqd cqGHRiI8aOGaamizaiaadgeaaaa@6161@

 

The kinetic energy K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saaaa@31B0@  can be calculated using the formula

K= A h 2 ρ v i v i + h 3 24 ρ μ ˙ α μ ˙ α dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaadUeacqGH9aqpcaaMc8UaaG PaVlaaykW7daWdrbqaamaabmaabaWaaSaaaeaacaWGObaabaGaaGOm aaaacqaHbpGCcaWG2bWaaWbaaSqabeaacaWGPbaaaOGaamODamaaBa aaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaamiAamaaCaaaleqa baGaaG4maaaaaOqaaiaaikdacaaI0aaaaiabeg8aYjqbeY7aTzaaca WaaWbaaSqabeaacqaHXoqyaaGccuaH8oqBgaGaamaaBaaaleaacqaH XoqyaeqaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8aO Gaamizaiaadgeaaaa@5421@

The second term in the expression for the kinetic energy represents the rotational energy. In many practical problems, such as vibration of a shell, the rotational energy can be neglected.

 

 

Derivation: The strain energy density in the shell is given by Σ:E/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4OdiaacQdacaWHfbGaai4laiaaik daaaa@350A@ , where Σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odaaa@320F@  is the material stress tensor and E is the Lagrange strain tensor, defined in the preceding section.  The stress can be expressed in terms of the strain using the constitutive equation, while the strain can be expressed in terms of γ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiabeg7aHjabek 7aIbqabaaaaa@35F3@  and Δ κ λβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiabeU 7aSjabek7aIbqabaaaaa@3778@  using step (3) in Section 10.5.8.   Integrating over the volume of material in the shell, and evaluating the integral through the shell’s thickness explicitly gives the result stated.  The kinetic energy is calculated using the formula for the velocity field in 10.5.8.