Chapter 10

 

Approximate theories for solids with special shapes:

 rods, beams, membranes, plates and shells

 

 

 

10.6 Simplified versions of general shell theory MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqzahaeaa aaaaaaa8qacaWFtacaaa@3847@  flat plates and membranes

 

In many practical cases of interest the general equations of shell theory can be vastly simplified.  In this section, we summarize the governing equations for a number of special solids, including equations governing behavior of flat plates, and membranes.

 

 

10.6.1 Flat plates with small out-of-plane deflections and negligible in-plane loading

 

This is the simplest version of plate theory, and is used in most practical applications. The figure illustrates the problem to be solved.  An initially flat plate, which has uniform (small) thickness h, Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3152@  Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3240@  and mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3248@ ,  is subjected to a distributed force p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchaaaa@317D@  per unit area (acting vertically upwards).  The edge of the plate can be constrained in various ways, as discussed in more detail below.   We wish to determine its deformed shape, as well as the internal forces and moments in the plate.

 

All vector and tensor quantities can be expressed in a fixed Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyz amaaBaaaleaacaaIZaaabeaakiaac2haaaa@3988@  illustrated in the figure.  The covariant and reciprocal basis vectors are identical so there is no need to use the system of raised and lowered indices that was needed in general shell theory. In addition, since the basis vectors are independent of position, the Christoffel symbols are all zero.  We continue to use the convention that Greek subscripts can have values 1 or 2, while Latin subscripts may have values 1,2,3.

 

We make the following assumptions

 

  1. The variation of displacements within the plate conforms to the usual approximations of Kirchhoff plate theory, i.e. material fibers that are perpendicular to the mid-plane of the undeformed plate remain perpendicular to the mid-plane of the deformed plate, and stretching transverse to the mid-plane is neglected.
  2. The displacement of the mid-plane of the plate has the form u= u 3 ( x 1 , x 2 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aaiodaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacaWHLbWaaSbaaS qaaiaaiodaaeqaaaaa@3C36@ , i.e. material points on the mid-plane of the plate deflect only transverse to the plate.
  3. The mid-plane deflection is small compared with the dimensions of the plate, and the slope of the deflected plate is small, so that u 3 / x α <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maa qabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGa eyipaWJaeyipaWJaaGymaaaa@3B89@  for all α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHbaa@3227@ ; second order terms in displacement are ignored in all the strain definitions and also the equilibrium equations.

 

The following (approximate) results can then be extracted from the general shell equations:

 

Kinematics:

 The curvature change tensor is Δ κ αβ = 2 u 3 x α x β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejabeQ7aRnaaBaaaleaacqaHXo qycqaHYoGyaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGaeyOaIyRaamiE amaaBaaaleaacqaHYoGyaeqaaaaaaaa@45C7@ , while the in-plane strain tensor is γ αβ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo7aNnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaGimaaaa@3765@ .

 The normal vector to the deformed plate can be approximated as m 3 = e 3 u 3 ξ α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0YaaSaaaeaa cqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaeq OVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaaCyzamaaBaaaleaacqaH Xoqyaeqaaaaa@415F@

 The displacement field in the plate is approximated as u= u 3 e 3 x 3 u 3 x α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiab eg7aHbqabaaaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaaaa@438B@

 The (infinitesimal) strain field in the plate is approximated as ε αβ = x 3 Δ κ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaamiEamaaBaaaleaacaaIZaaabeaakiabfs5a ejabeQ7aRnaaBaaaleaacqaHXoqycqaHYoGyaeqaaaaa@3F1F@

 

Kinetics

 The external force is characterized by the force per unit area p e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacaWHLbWaaSbaaSqaaiaaiodaae qaaaaa@3354@  acting on the surface of the plate;

 The in-plane stress tensor T αβ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9iaaicdaaaa@3697@ , so the internal forces are completely characterized by the internal moment tensor M= M αβ e α ( m 3 × e β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcaWGnbWaaSbaaSqaai abeg7aHjabek7aIbqabaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXcaGGOaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgEna0k aahwgadaWgaaWcbaGaeqOSdigabeaakiaacMcaaaa@4396@  and transverse force tensor V= V α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAfacqGH9aqpcaWGwbWaaSbaaSqaai abeg7aHbqabaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaaaaa@37D6@ ;

 The components V α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaeqySdegabeaaaa a@332E@  represent the vertical force per unit length acting on an internal plane perpendicular to the e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3341@  direction;

 The physical significance of M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34C6@  is illustrated in the figure: M 1α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGymaiabeg7aHb qabaaaaa@33E0@  characterizes the moment per unit length acting on planes inside the shell that are normal to the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaaaaa@325D@  direction, while M 2α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGOmaiabeg7aHb qabaaaaa@33E1@  characterizes the moment per unit length acting on planes that are normal to e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@325E@ .  Note that M α1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaaGymaa qabaaaaa@33E0@  represents a moment about the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@325E@  axis, while M α2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaaGOmaa qabaaaaa@33E1@  is a moment acting about the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiaahwgadaWgaaWcbaGaaGymaa qabaaaaa@334A@  axis.

 

Moment-Curvature relation reduces to M αβ = E h 3 12(1 ν 2 ) ( (1ν)Δ κ αβ +νΔ κ λλ δ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9maalaaabaGaamyraiaadIgadaahaaWcbeqaaiaa iodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd4Maaiykaiabfs5aejabeQ7aRnaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaey4kaSIaeqyVd4MaeuiLdqKaeqOUdS2a aSbaaSqaaiabeU7aSjabeU7aSbqabaGccqaH0oazdaWgaaWcbaGaeq ySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaaaa@5AEF@

 

Equations of Motion  are approximated by

V α x α +p=ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamOvamaaBaaale aacqaHXoqyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHXoqy aeqaaaaakiabgUcaRiaadchacqGH9aqpcqaHbpGCcaWGObWaaSaaae aacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaa iodaaeqaaaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaa aa@4591@   M αβ x α V β 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamytamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaaaakiabgkHiTiaadAfadaWgaaWcbaGaeqOSdigabe aakiabgIKi7kaaicdaaaa@4088@

(rotational inertia has been neglected). These equations can be combined to eliminate V

2 M αβ x α x β +p=ρh 2 u 3 d t 2 2 M 11 x 1 2 +2 2 M 12 x 1 x 2 + 2 M 22 x 2 2 +p=ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamytamaaBaaaleaacqaHXoqycqaHYoGyaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGaeyOaIyRaamiEam aaBaaaleaacqaHYoGyaeqaaaaakiabgUcaRiaadchacqGH9aqpcqaH bpGCcaWGObWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadshadaahaaWc beqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabggMi6kaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaakiaad2eadaWgaaWcbaGaaGymaiaaigdaaeqa aaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaaaa GccqGHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWGnbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG4bWaaSbaaSqa aiaaikdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaamytamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaa cqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgU caRiaadchacqGH9aqpcqaHbpGCcaWGObWaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaaaa@9513@

and can also be expressed in terms of the displacements as

E h 3 12(1 ν 2 ) 4 u 3 x α x α x β x β +ρh 2 u 3 d t 2 =p E h 3 12(1 ν 2 ) { 4 u 3 x 1 4 +2 4 u 3 x 1 2 x 2 2 + 4 u 3 x 2 4 }+ρh 2 u 3 d t 2 =p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaG4maaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHci ITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG4bWaaSba aSqaaiabek7aIbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIb qabaaaaOGaey4kaSIaeqyWdiNaamiAamaalaaabaGaeyOaIy7aaWba aSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaai aadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaaykW7 caWGWbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacaWGfbGaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaI YaGaaiikaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa GccaGGPaaaamaacmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa isdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaam iEamaaDaaaleaacaaIXaaabaGaaGinaaaaaaGccqGHRaWkcaaIYaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG1bWaaSbaaS qaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaa baGaaGOmaaaakiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaik daaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisda aaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEam aaDaaaleaacaaIYaaabaGaaGinaaaaaaaakiaawUhacaGL9baacqGH RaWkcqaHbpGCcaWGObWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadsha daahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaamiCaaaa@B8A8@

 

Edge boundary conditions.  The edge of the plate is characterized by a curve C that lies in the mid-plane of the shell, encircling e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@325F@  in a counterclockwise sense.   We let s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadohaaaa@3180@  denote arc-length measured around C from some convenient origin, and use τ= τ α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8acqGH9aqpcqaHepaDdaWgaaWcba GaeqySdegabeaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@3931@  and n= e 3 ×τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gacqGH9aqpcaWHLbWaaSbaaSqaai aaiodaaeqaaOGaey41aqRaaCiXdaaa@37CD@  denote unit vectors tangent and normal to C.  Elementary plate theory offers the following choices of boundary condition for each point on C:

  1. Part of the boundary of the plate C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGymaaqabaaaaa@3237@  may be clamped, i.e. rotations and displacement of the boundary are completely prevented. The transverse displacement must then satisfy u 3 = n α u 3 /d x α =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGUbWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG1bWa aSbaaSqaaiaaiodaaeqaaOGaai4laiaadsgacaWG4bWaaSbaaSqaai abeg7aHbqabaGccqGH9aqpcaaIWaaaaa@3FC4@  on C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGymaaqabaaaaa@3237@ .
  2. Part of the boundary C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGOmaaqabaaaaa@3238@  may be simply supported, i.e. the boundary of the plate is prevented from moving, but is permitted to rotate freely about the tangent vector τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8aaaa@31D8@ .  In this case the transverse displacement and internal moment must satisfy

u 3 =0 n α M αβ n β =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOBamaaBaaale aacqaHXoqyaeqaaOGaamytamaaBaaaleaacqaHXoqycqaHYoGyaeqa aOGaamOBamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0JaaGimaaaa@5252@

  1. Part of the boundary C 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaG4maaqabaaaaa@3239@  may be free, i.e. the boundary is free to both translate and rotate.  In this case the transverse shear force and internal moment must satisfy

n α V α + s [ n α M αβ τ β ]=0 n α M αβ n β =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaeqySdegabeaaki aadAfadaWgaaWcbaGaeqySdegabeaakiabgUcaRmaalaaabaGaeyOa IylabaGaeyOaIyRaam4CaaaadaWadaqaaiaad6gadaWgaaWcbaGaeq ySdegabeaakiaad2eadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiab es8a0naaBaaaleaacqaHYoGyaeqaaaGccaGLBbGaayzxaaGaeyypa0 JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamytamaa BaaaleaacqaHXoqycqaHYoGyaeqaaOGaamOBamaaBaaaleaacqaHYo GyaeqaaOGaeyypa0JaaGimaaaa@6EE8@

More general boundary conditions, in which the edge of the plate is subjected to prescribed forces and moments, can also be derived from the results given in Section 10.5.8 if this is of interest.

 

Strain energy and kinetic energy of a flat plate: The formula for the strain energy and kinetic energy of the plate can be expressed in terms of displacements as

Φ= E h 3 24(1 ν 2 ) A ( (1ν) 2 u 3 x α x β 2 u 3 x α x β +ν ( 2 u 3 x α x α ) 2 ) dA K= A ( h 2 ρ v i v i + h 3 24 ρ v 3 x α v 3 x α ) dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGceaqabeaacqqHMoGrcqGH9aqpdaWcaaqaai aadweacaWGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGOmaiaaisda caGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaki aacMcaaaWaa8quaeaadaqadaqaaiaacIcacaaIXaGaeyOeI0IaeqyV d4MaaiykamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam yDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaeqySdegabeaakiabgkGi2kaadIhadaWgaaWcbaGaeqOSdigabe aaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwha daWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai abeg7aHbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaa aOGaey4kaSIaeqyVd42aaeWaaeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG4bWaaS baaSqaaiabeg7aHbqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8aO GaamizaiaadgeaaeaacaWGlbGaeyypa0JaaGPaVlaaykW7caaMc8+a a8quaeaadaqadaqaamaalaaabaGaamiAaaqaaiaaikdaaaGaeqyWdi NaamODamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyA aaqabaGccqGHRaWkdaWcaaqaaiaadIgadaahaaWcbeqaaiaaiodaaa aakeaacaaIYaGaaGinaaaacqaHbpGCdaWcaaqaaiabgkGi2kaadAha daWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai abeg7aHbqabaaaaOWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa iodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaa aaaOGaayjkaiaawMcaaaWcbaGaamyqaaqab0Gaey4kIipakiaadsga caWGbbaaaaa@9EA6@

The second term in the integral for the kinetic energy represents the energy associated with the plate’s out-of-plane rotation, and can be ignored in most practical applications.

 

 

 

10.6.2 Flat plates with small out-of-plane deflections and significant in-plane loading

 

This version of plate theory is used to model plates that are subjected to substantial loading parallel to the plane of the plate (usually due to loads applied at its boundaries).  The theory assumes that displacements are small enough to use linearized measures of strain, but includes nonlinear terms associated with the in-plane loading in the equilibrium equations.  The theory can be used to calculate buckling loads for plates, but does not accurately model their deformation if the buckling loads are exceeded.

 

The problem to be solved is stated in Sect 10.6.1.   The majority of the governing equations are identical to those of standard plate theory, given in 10.6.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  the equations which need to be modified to account for transverse forces are listed below.

 

Kinematics:

 The in-plane strain tensor is approximated as γ αβ =( u α / u β + u β / u α )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo7aNnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaiikaiabgkGi2kaadwhadaWgaaWcbaGaeqyS degabeaakiaac+cacqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqaba GccqGHRaWkcqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqabaGccaGG VaGaeyOaIyRaamyDamaaBaaaleaacqaHXoqyaeqaaOGaaiykaiaac+ cacaaIYaaaaa@4C93@

 The displacement field in the plate is approximated as u= u i e i x 3 u 3 x α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaaCyzamaaBaaaleaacaWGPbaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiab eg7aHbqabaaaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaaaa@43ED@

 The (infinitesimal) strain field in the plate is approximated as ε αβ = γ αβ + x 3 Δ κ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0Jaeq4SdC2aaSbaaSqaaiabeg7aHjabek7aIbqa baGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeuiLdqKaeq OUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaaaaa@451E@ , where the components of the curvature change tensor are given in 10.6.1. 

 

 

Kinetics

 The external force consists of a force per unit area p i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaWgaaWcbaGaamyAaaqabaGcca WHLbWaaSbaaSqaaiaadMgaaeqaaaaa@34A9@  acting on the surface of the plate.

 The internal forces are characterized as described in 10.6.1, except that the stress resultant tensor T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34CD@  is nonzero. The components of the stress resultant tensor can be interpreted as illustrated in the figure: T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34CD@  represents the force per unit length, acting in the e β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqOSdigabeaaaa a@3343@  direction, on an internal plane perpendicular to the e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3341@  direction within the plate.  

 

Stress resultant-strain and Moment-Curvature relations

T αβ = Eh (1 ν 2 ) ( (1ν) γ αβ +ν γ λλ δ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9maalaaabaGaamyraiaadIgaaeaacaGGOaGaaGym aiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaae WaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqaHZoWzdaWg aaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiabe27aUjabeo7aNn aaBaaaleaacqaH7oaBcqaH7oaBaeqaaOGaeqiTdq2aaSbaaSqaaiab eg7aHjabek7aIbqabaaakiaawIcacaGLPaaaaaa@55A9@       M αβ = E h 3 12(1 ν 2 ) ( (1ν)Δ κ αβ +νΔ κ λλ δ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9maalaaabaGaamyraiaadIgadaahaaWcbeqaaiaa iodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd4Maaiykaiabfs5aejabeQ7aRnaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaey4kaSIaeqyVd4MaeuiLdqKaeqOUdS2a aSbaaSqaaiabeU7aSjabeU7aSbqabaGccqaH0oazdaWgaaWcbaGaeq ySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaaaa@5AEF@

 

Equations of motion  reduce to

T αβ x α + p β =ρh 2 u β d t 2 V α x α T αβ Δ κ αβ p α u 3 x α + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamivamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaaaakiabgUcaRiaadchadaWgaaWcbaGaeqOSdigabe aakiabg2da9iabeg8aYjaadIgadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadwhadaWgaaWcbaGaeqOSdigabeaaaOqaaiaads gacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaey OaIyRaamOvamaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacqaHXoqyaeqaaaaakiabgkHiTiaadsfadaWgaaWcba GaeqySdeMaeqOSdigabeaakiabfs5aejabeQ7aRnaaBaaaleaacqaH XoqycqaHYoGyaeqaaOGaeyOeI0IaamiCamaaBaaaleaacqaHXoqyae qaaOWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGc baGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRi aadchadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcqaHbpGCcaWGObWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaS qaaiaaiodaaeqaaaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikda aaaaaOGaaGPaVdaa@8685@         M αβ x α V β 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamytamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaaaakiabgkHiTiaadAfadaWgaaWcbaGaeqOSdigabe aakiabgIKi7kaaicdaaaa@4088@

The second two equations can be combined to eliminate V

M αβ x α x β T αβ κ αβ p α u 3 x α + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamytamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaOGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaa aakiabgkHiTiaadsfadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiab eQ7aRnaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0IaamiCam aaBaaaleaacqaHXoqyaeqaaOWaaSaaaeaacqGHciITcaWG1bWaaSba aSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHXo qyaeqaaaaakiabgUcaRiaadchadaWgaaWcbaGaaG4maaqabaGccqGH 9aqpcqaHbpGCcaWGObWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadsha daahaaWcbeqaaiaaikdaaaaaaaaa@620C@

This result can also be expressed in terms of displacement as

E h 3 12(1 ν 2 ) 4 u 3 x α x α x β x β T αβ 2 u 3 x α x β + p α u 3 x α +ρh 2 u 3 d t 2 = p 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaG4maaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHci ITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG4bWaaSba aSqaaiabek7aIbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIb qabaaaaOGaeyOeI0IaamivamaaBaaaleaacqaHXoqycqaHYoGyaeqa aOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaS baaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaH XoqyaeqaaOGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaaki abgUcaRiaadchadaWgaaWcbaGaeqySdegabeaakmaalaaabaGaeyOa IyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhada WgaaWcbaGaeqySdegabeaaaaGccqGHRaWkcqaHbpGCcaWGObWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaai aaiodaaeqaaaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaa aOGaeyypa0JaaGPaVlaadchadaWgaaWcbaGaaG4maaqabaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaa@8878@

 

Edge boundary conditions. The edge of the plate is characterized as described in Section 10.6.1.  Boundary conditions for the transverse displacement u 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaaaaa@326B@ , transverse force V α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaeqySdegabeaaaa a@332E@  and internal moment M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34C6@  are identical to those listed in 10.6.2.   In addition, the in-plane displacements or forces must satisfy the following boundary conditions:

  1. On part of the boundary of the plate C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGymaaqabaaaaa@3237@ , one or more components of the in-plane displacement may be prescribed u β = u β * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaeqOSdigabeaaki abg2da9iaadwhadaqhaaWcbaGaeqOSdigabaGaaiOkaaaaaaa@37D5@
  2. Portions of the boundary of the plate C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGOmaaqabaaaaa@3238@  may be subjected to a prescribed in-plane force per unit length P β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadcfadaahaaWcbeqaaiabek7aIbaaaa a@332B@ . The in-plane forces must then satisfy n α T αβ = P β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaeqySdegabeaaki aadsfadaahaaWcbeqaaiabeg7aHjabek7aIbaakiabg2da9iaadcfa daahaaWcbeqaaiabek7aIbaaaaa@3B48@

 

 

 

10.6.3 Flat plates with small in-plane and large transverse deflections (von Karman theory)

 

This version of plate theory is used to model plates that are subjected to substantial loading parallel to the plane of the plate (usually due to loads applied at its boundaries), and also experience substantial out-of-plane displacement.  The theory uses a nonlinear strain measure to account for the in-plane stretching that results from finite transverse displacement and rotation, and includes nonlinear terms associated with the in-plane loading in the equilibrium equations.  The theory can be used to estimate the shape of a buckled plate if the buckling loads are exceeded.  

 

We make the following assumptions

 

  1. The variation of displacements within the plate conforms to the usual approximations of Kirchhoff plate theory;
  2. The displacement of the mid-plane of the plate has the form u= u i ( x 1 , x 2 ) e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG SaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacaWHLbWaaSbaaS qaaiaadMgaaeqaaaaa@3C98@ : all three displacement components are considered.
  3. The in-plane deflections are small, and satisfy u β / x α <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kaadwhadaWgaaWcbaGaeqOSdi gabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGc cqGH8aapcqGH8aapcaaIXaaaaa@3C6D@  for all α,β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHjaacYcacqaHYoGyaaa@3478@ ; second order terms in these displacement components are ignored in all the strain definitions and also the equilibrium equations.  The out-of-plane displacement is assumed to be small enough to use a linearized measure of curvature.  However, the terms involving products of u 3 / x α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maa qabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaaaa @38BC@  are retained when computing the strain of the mid-plane of the plate, so that the stretching due to transverse deflection is considered approximately.
  1. The in-plane forces are assumed to be much larger than transverse forces.  Nonlinear terms in the equilibrium equations involving in-plane forces are retained; those associated with transverse loading are neglected.

 

Most of the governing equations of Von-Karman plate theory are identical to those listed in the preceding section.  Nevertheless, the full set of governing equations is give below for convenience.

 

Kinematics:

 The in-plane strain tensor is approximated by γ αβ = 1 2 ( u α x β + u β x α + u 3 x α u 3 x β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo7aNnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqa amaalaaabaGaeyOaIyRaamyDamaaBaaaleaacqaHXoqyaeqaaaGcba GaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaakiabgUcaRmaa laaabaGaeyOaIyRaamyDamaaBaaaleaacqaHYoGyaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaeqySdegabeaaaaGcdaWcaaqaaiabgkGi2kaa dwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiabek7aIbqabaaaaaGccaGLOaGaayzkaaaaaa@5BB5@ .  The additional, nonlinear, term in this expression is the main feature of Von-Karman theory.

 The curvature change tensor has components Δ κ αβ = 2 u 3 x α x β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejabeQ7aRnaaBaaaleaacqaHXo qycqaHYoGyaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGaeyOaIyRaamiE amaaBaaaleaacqaHYoGyaeqaaaaaaaa@45C7@

 The normal vector to the deformed plate can be approximated as m 3 = e 3 u 3 x α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0YaaSaaaeaa cqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacqaHXoqyaeqaaaaakiaahwgadaWgaaWcbaGaeqyS degabeaaaaa@4099@

 The displacement field in the plate is approximated as u= u 3 e 3 x 3 u 3 x α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiab eg7aHbqabaaaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaaaa@438B@

 The (infinitesimal) strain field in the plate is approximated as ε αβ = γ αβ + x 3 Δ κ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0Jaeq4SdC2aaSbaaSqaaiabeg7aHjabek7aIbqa baGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeuiLdqKaeq OUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaaaaa@451E@

 

Kinetics

 The external force is characterized by the force per unit area p e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacaWHLbWaaSbaaSqaaiaaiodaae qaaaaa@3354@  acting on the surface of the plate.

 The transverse stress tensor T αβ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9iaaicdaaaa@3697@ , so the Internal forces are characterized by the in-plane stress resultant tensor T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34CD@ , the transverse force tensor V α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaeqySdegabeaaaa a@332E@  and internal moment tensor M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34C6@ .  The physical significance of the components of these tenors is discussed in Sections 10.6.1 and 10.6.2

 

 

Stress resultant-strain and Moment-Curvature relations

T αβ = Eh (1 ν 2 ) ( (1ν) γ αβ +ν γ λλ δ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9maalaaabaGaamyraiaadIgaaeaacaGGOaGaaGym aiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaae WaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqaHZoWzdaWg aaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiabe27aUjabeo7aNn aaBaaaleaacqaH7oaBcqaH7oaBaeqaaOGaeqiTdq2aaSbaaSqaaiab eg7aHjabek7aIbqabaaakiaawIcacaGLPaaaaaa@55A9@       M αβ = E h 3 12(1 ν 2 ) ( (1ν)Δ κ αβ +νΔ κ λλ δ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9maalaaabaGaamyraiaadIgadaahaaWcbeqaaiaa iodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd4Maaiykaiabfs5aejabeQ7aRnaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaey4kaSIaeqyVd4MaeuiLdqKaeqOUdS2a aSbaaSqaaiabeU7aSjabeU7aSbqabaGccqaH0oazdaWgaaWcbaGaeq ySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaaaa@5AEF@

 

 

Equations of motion  reduce to

T αβ x α + p β =ρh 2 u β d t 2 V α x α T αβ Δ κ αβ p α u 3 x α + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamivamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaaaakiabgUcaRiaadchadaWgaaWcbaGaeqOSdigabe aakiabg2da9iabeg8aYjaadIgadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadwhadaWgaaWcbaGaeqOSdigabeaaaOqaaiaads gacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaey OaIyRaamOvamaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacqaHXoqyaeqaaaaakiabgkHiTiaadsfadaWgaaWcba GaeqySdeMaeqOSdigabeaakiabfs5aejabeQ7aRnaaBaaaleaacqaH XoqycqaHYoGyaeqaaOGaeyOeI0IaamiCamaaBaaaleaacqaHXoqyae qaaOWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGc baGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRi aadchadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcqaHbpGCcaWGObWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaS qaaiaaiodaaeqaaaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikda aaaaaOGaaGPaVdaa@8685@         M αβ x α V β 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamytamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaaaakiabgkHiTiaadAfadaWgaaWcbaGaeqOSdigabe aakiabgIKi7kaaicdaaaa@4088@

where the rotational inertia term has been neglected in the last equation.

 

 

Edge boundary conditions:

  1. The boundary conditions for transverse displacement u 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaaaaa@326B@  and/or the internal moment  M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34C6@  and transverse force V α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaeqySdegabeaaaa a@332E@  are identical to those listed in Section 10.6.1
  2. The boundary conditions for in-plane displacements u α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaeqySdegabeaaaa a@334D@  and/or in-plane forces T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34CD@  are identical to those listed in Section 10.6.2.

 

 

Alternative forms for the Von-Karman equations: If the plate is in static equilibrium (so the velocity and acceleration of the plate is zero), the Von-Karman equations can be written in a compact form by expressing the in-plane forces T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34CD@  in terms of an Airy stress function ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMbaa@3250@ , following the procedure outlined for plane elasticity problems in Section 5.2.    As a result, the governing equations can be reduced to a pair of coupled, nonlinear partial differential equations for  ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMbaa@3250@  and u 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaaaaa@326B@ .  These formulas will not be given here, but can be found, e.g. in Timoshenko and Woinowsky-Krieger, `Theory of Plates and Shells,’  McGraw-Hill (1964).

 

 

 

10.6.4 Stretched, flat membrane with small out-of-plane deflections

 

This is a simplified version of the stretched plate theory outlined in 10.5, which can be used if the plate is so thin that internal bending moments can be neglected.   The problem to be solved is illustrated in the figure.  A `membrane’ with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3152@ , Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3240@ , mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3248@ , and thickness h is initially planar and lies in the plane perpendicular to the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@325F@  direction. The edge of the membrane is subjected to a load per unit length P= P α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahcfacqGH9aqpcaWGqbWaaSbaaSqaai abeg7aHbqabaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaaaaa@37CA@  and prevented from moving transverse to the membrane.  A force per unit area p= p 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahchacqGH9aqpcaWGWbWaaSbaaSqaai aaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@3646@  acts on the membrane, inducing a small, time dependent, transverse deflection u= u 3 ( x 3 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aaiodaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGG PaGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@3999@ .

 

Kinematics:

 The in-plane strain tensor is approximated as γ αβ =( u α / u β + u β / u α )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo7aNnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaiikaiabgkGi2kaadwhadaWgaaWcbaGaeqyS degabeaakiaac+cacqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqaba GccqGHRaWkcqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqabaGccaGG VaGaeyOaIyRaamyDamaaBaaaleaacqaHXoqyaeqaaOGaaiykaiaac+ cacaaIYaaaaa@4C93@

 The displacement field in the plate is approximated as u= u i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacqGH9aqpcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaaCyzamaaBaaaleaacaWGPbaabeaaaaa@36B2@ .  We assume that u 3 >> u α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH+aGpcqGH+aGpcaWG1bWaaSbaaSqaaiabeg7aHbqabaaaaa@374A@ .

 The curvature of the membrane has components Δ κ αβ = 2 u 3 x α x β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejabeQ7aRnaaBaaaleaacqaHXo qycqaHYoGyaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGaeyOaIyRaamiE amaaBaaaleaacqaHYoGyaeqaaaaaaaa@45C7@

 The (infinitesimal) strain field in the membrane is approximated as ε αβ = γ αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0Jaeq4SdC2aaSbaaSqaaiabeg7aHjabek7aIbqa baaaaa@3BBE@

 

Kinetics

 The external force consists of a force per unit area p i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaWgaaWcbaGaamyAaaqabaGcca WHLbWaaSbaaSqaaiaadMgaaeqaaaaa@34A9@  acting on the surface of the plate.

 The internal forces are characterized by the stress resultant tensor T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaaaaa@34CD@  (the internal moments are neglected).

 

Stress resultant-strain relations T αβ = Eh (1 ν 2 ) ( (1ν) γ αβ +ν γ λλ δ αβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakiabg2da9maalaaabaGaamyraiaadIgaaeaacaGGOaGaaGym aiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaae WaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqaHZoWzdaWg aaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiabe27aUjabeo7aNn aaBaaaleaacqaH7oaBcqaH7oaBaeqaaOGaeqiTdq2aaSbaaSqaaiab eg7aHjabek7aIbqabaaakiaawIcacaGLPaaaaaa@55A9@       

Equations of motion are approximated as

T αβ x α 0 T αβ Δ κ αβ + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamivamaaBaaale aacqaHXoqycqaHYoGyaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa cqaHXoqyaeqaaaaakiabgIKi7kaaicdacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTiaadsfadaWgaaWc baGaeqySdeMaeqOSdigabeaakiabfs5aejabeQ7aRnaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaey4kaSIaamiCamaaBaaaleaacaaIZaaa beaakiabg2da9iabeg8aYjaadIgadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacaWG KbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8oaaa@6445@        

The second equation can also be expressed in terms of displacement as

T αβ 2 u 3 x α x β + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaeqySdeMaeqOSdi gabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyD amaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaeqySdegabeaakiabgkGi2kaadIhadaWgaaWcbaGaeqOSdigabeaa aaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Jaeq yWdiNaamiAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amyDamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0bWaaWbaaS qabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVdaa@5D2A@

 

Edge boundary conditions On the edge of the membrane

  1. The transverse displacement must satisfy u 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3435@
  2. The in-plane forces must satisfy n α T αβ = P β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaeqySdegabeaaki aadsfadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9iaadcfa daWgaaWcbaGaeqOSdigabeaaaaa@3B46@ , where n is a unit vector in the ( e 1 , e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@3650@  plane perpendicular to the edge of the membrane.

 

 

10.6.5 Membrane equations in cylindrical-polar coordinates

 

In this section, we re-write the governing equations for a stretched membrane in a cylindrical-polar coordinate system, to provide a simple example of the use of general curvilinear coordinates.  We re-consider the membrane described in the preceding section, but now assume that the membrane is circular, with radius R.

 

HEALTH WARNING: We use polar coordinates r ξ 1 ,θ ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacqGHHjIUcqaH+oaEdaWgaaWcba GaaGymaaqabaGccaGGSaGaeqiUdeNaeyyyIORaeqOVdG3aaSbaaSqa aiaaikdaaeqaaaaa@3CD6@  as the choice of curvilinear coordinates.  However, all vector and tensor quantities will be expressed as covariant or contravariant components in the natural basis for this coordinate system, not as components in a cylindrical-polar basis of unit vectors { e r , e θ , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkhaae qaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@3ABE@ .     

 

Coordinate system and kinematic relations

  1. Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyz amaaBaaaleaacaWHZaaabeaakiaac2haaaa@3987@  be a fixed Cartesian basis of mutually perpendicular unit vectors, with e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@325F@  normal to the plane of the undeformed membrane.
  2. The position vector of a point in the membrane can be expressed as r ¯ =rcosθ e 1 +rsinθ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahkhagaqeaiabg2da9iaadkhaciGGJb Gaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamOCaiGacohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaa WcbaGaaGOmaaqabaaaaa@423D@
  3. The natural basis vectors and the reciprocal basis (for the undeformed membrane) follow as

m ¯ 1 = r ¯ r =cosθ e 1 +sinθ e 2 m ¯ 2 = r ¯ θ =rsinθ e 1 +rcosθ e 2 m ¯ 3 = e 3 m ¯ 1 =cosθ e 1 +sinθ e 2 m ¯ 2 = 1 r sinθ e 1 + 1 r cosθ e 2 m ¯ 3 = e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGabCyBayaaraWaaSbaaSqaaiaaig daaeqaaOGaeyypa0ZaaSaaaeaacqGHciITceWHYbGbaebaaeaacqGH ciITcaWGYbaaaiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaahw gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGGZbGaaiyAaiaac6ga cqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UabCyBayaaraWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0 ZaaSaaaeaacqGHciITceWHYbGbaebaaeaacqGHciITcqaH4oqCaaGa eyypa0JaeyOeI0IaamOCaiGacohacaGGPbGaaiOBaiabeI7aXjaahw gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGYbGaci4yaiaac+ga caGGZbGaeqiUdeNaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyBayaa raWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaCyzamaaBaaaleaaca aIZaaabeaaaOqaaiqah2gagaqeamaaCaaaleqabaGaaGymaaaakiab g2da9iGacogacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWa aSbaaSqaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyB ayaaraWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaeyOeI0YaaSaaae aacaaIXaaabaGaamOCaaaaciGGZbGaaiyAaiaac6gacqaH4oqCcaWH LbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaaba GaamOCaaaaciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqa aiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7ceWHTbGbaebadaahaaWcbeqaaiaaiodaaaGccqGH 9aqpcaWHLbWaaSbaaSqaaiaaiodaaeqaaaaaaa@CEE9@

Here the reciprocal basis has simply been written down by inspection MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  you can readily verify that m ¯ i m ¯ j = δ i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqah2gagaqeamaaBaaaleaacaWGPbaabe aakiabgwSixlqah2gagaqeamaaCaaaleqabaGaamOAaaaakiabg2da 9iabes7aKnaaDaaaleaacaWGPbaabaGaamOAaaaaaaa@3BED@ .  Note that neither the natural basis vectors nor the reciprocal basis vectors are unit vectors.

  1. The Christoffel symbols for the coordinate system and the curvature tensor for the undeformed membrane follow as

Γ ¯ βγ α = m ¯ α 2 r ¯ rθ Γ ¯ 11 1 = Γ ¯ 12 1 = Γ ¯ 21 1 =0 Γ ¯ 22 1 =r Γ ¯ 11 2 = Γ ¯ 22 2 =0 Γ ¯ 12 2 = Γ ¯ 21 2 = 1 r κ ¯ αβ = m ¯ 3 m ¯ α ξ β =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGafu4KdCKbaebadaqhaaWcbaGaeq OSdiMaeq4SdCgabaGaeqySdegaaOGaeyypa0JabCyBayaaraWaaWba aSqabeaacqaHXoqyaaGccqGHflY1daWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiqahkhagaqeaaqaaiabgkGi2kaadkhacqGHciIT cqaH4oqCaaGaeyO0H4Tafu4KdCKbaebadaqhaaWcbaGaaGymaiaaig daaeaacaaIXaaaaOGaeyypa0Jafu4KdCKbaebadaqhaaWcbaGaaGym aiaaikdaaeaacaaIXaaaaOGaeyypa0Jafu4KdCKbaebadaqhaaWcba GaaGOmaiaaigdaaeaacaaIXaaaaOGaeyypa0JaaGimaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cuqHtoWrgaqeamaaDa aaleaacaaIYaGaaGOmaaqaaiaaigdaaaGccqGH9aqpcqGHsislcaWG YbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uafu4KdCKbae badaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaOGaeyypa0Jafu4K dCKbaebadaqhaaWcbaGaaGOmaiaaikdaaeaacaaIYaaaaOGaeyypa0 JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7cuqHtoWrgaqeamaaDaaa leaacaaIXaGaaGOmaaqaaiaaikdaaaGccqGH9aqpcuqHtoWrgaqeam aaDaaaleaacaaIYaGaaGymaaqaaiaaikdaaaGccqGH9aqpdaWcaaqa aiaaigdaaeaacaWGYbaaaaqaaiqbeQ7aRzaaraWaaSbaaSqaaiabeg 7aHjabek7aIbqabaGccqGH9aqpcqGHsislceWHTbGbaebadaWgaaWc baGaaG4maaqabaGccqGHflY1daWcaaqaaiabgkGi2kqah2gagaqeam aaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqa aiabek7aIbqabaaaaOGaeyypa0JaaGimaaaaaa@A61B@

  1. The position vector of a point in the deformed membrane is r=rcosθ e 1 +rsinθ e 2 + u 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahkhacqGH9aqpcaWGYbGaci4yaiaac+ gacaGGZbGaeqiUdeNaaCyzamaaBaaaleaacaaIXaaabeaakiabgUca RiaadkhaciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamyDamaaBaaaleaacaaIZaaabeaakiaa hwgadaWgaaWcbaGaaG4maaqabaaaaa@46D5@
  2. The natural basis vectors and reciprocal basis for the deformed membrane follow as

m 1 = r r =cosθ e 1 +sinθ e 2 + u 3 r e 3 m 2 = r θ =rsinθ e 1 +rcosθ e 2 + u 3 θ e 3 m 3 = m 1 × m 2 /| m 1 × m 2 |( cosθ u 3 r sinθ 1 r u 3 θ ) e 1 ( sinθ u 3 r +cosθ 1 r u 3 θ ) e 2 + e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCyBamaaBaaaleaacaaIXaaabe aakiabg2da9maalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadkha aaGaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaaCyzamaaBaaale aacaaIXaaabeaakiabgUcaRiGacohacaGGPbGaaiOBaiabeI7aXjaa hwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiabgkGi2k aadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWGYbaaaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHci ITcaWHYbaabaGaeyOaIyRaeqiUdehaaiabg2da9iabgkHiTiaadkha ciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamOCaiGacogacaGGVbGaai4CaiabeI7aXjaahwga daWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcqaH4oqCaaGaaCyz amaaBaaaleaacaaIZaaabeaaaOqaaiaah2gadaWgaaWcbaGaaG4maa qabaGccqGH9aqpcaWHTbWaaSbaaSqaaiaaigdaaeqaaOGaey41aqRa aCyBamaaBaaaleaacaaIYaaabeaakiaac+cadaabdaqaaiaah2gada WgaaWcbaGaaGymaaqabaGccqGHxdaTcaWHTbWaaSbaaSqaaiaaikda aeqaaaGccaGLhWUaayjcSdGaeyisISRaeyOeI0YaaeWaaeaaciGGJb Gaai4BaiaacohacqaH4oqCdaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaaG4maaqabaaakeaacqGHciITcaWGYbaaaiabgkHiTiGacohaca GGPbGaaiOBaiabeI7aXnaalaaabaGaaGymaaqaaiaadkhaaaWaaSaa aeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaeqiUdehaaaGaayjkaiaawMcaaiaahwgadaWgaaWcbaGaaGymaaqa baGccqGHsisldaqadaqaaiGacohacaGGPbGaaiOBaiabeI7aXnaala aabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi 2kaadkhaaaGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUde3aaSaaae aacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaaG4maaqabaaakeaacqGHciITcqaH4oqCaaaacaGLOaGaayzkaa GaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRiaahwgadaWgaaWc baGaaG4maaqabaaaaaa@D509@

where terms of order ( u 3 /r ) 2 , ( u 3 /θ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaabmaabaGaeyOaIyRaamyDamaaBaaale aacaaIZaaabeaakiaac+cacqGHciITcaWGYbaacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaaiilamaabmaabaGaeyOaIyRaamyDam aaBaaaleaacaaIZaaabeaakiaac+cacqGHciITcqaH4oqCaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@43AB@ , etc have been neglected in the expression for m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaG4maaqabaaaaa@3267@ .  The reciprocal basis vectors can also be calculated, but are not required in the analysis to follow.

  1. For small transverse deflections, the Christoffel symbols associated with the deformed membrane can be approximated using those for the undeformed membrane.  The curvature tensor for the deformed membrane has covariant components

κ 11 = 2 u 3 r 2 κ 12 = κ 21 = 1 r u 3 θ 2 u 3 rθ κ 22 =r u 3 r 2 u 3 θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITca WGYbWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabeQ7aRnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqaH 6oWAdaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaaca aIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGa aG4maaqabaaakeaacqGHciITcqaH4oqCaaGaeyOeI0YaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaioda aeqaaaGcbaGaeyOaIyRaamOCaiabgkGi2kabeI7aXbaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeqOUdS2aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabgk HiTiaadkhadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqa baaakeaacqGHciITcaWGYbaaaiabgkHiTmaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqa aiabgkGi2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaaaaaa@908A@

Notice that the curvature components all have different units MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  this is because the basis vectors themselves have units. It is easy to check that the terms in the dyadic product κ αβ m α m β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaaCyBamaaCaaaleqabaGaeqySdegaaOGaey4LIqSaaCyB amaaCaaaleqabaGaeqOSdigaaaaa@3D49@  all have correct units.

 

Equations of Motion: The general equations of motion for a shell are

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =ρh a β V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =ρh a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWGubWaaW baaSqabeaacqaHXoqycqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGubWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdCga baGaeq4SdCgaaOGaey4kaSIaamivamaaCaaaleqabaGaeqySdeMaeq 4SdCgaaOGaeu4KdC0aa0baaSqaaiabeo7aNjabeg7aHbqaaiabek7a IbaakiabgUcaRiaadAfadaahaaWcbeqaaiabeg7aHbaakiabeQ7aRn aaDaaaleaacqaHXoqyaeaacqaHYoGyaaGccqGHRaWkcaWGWbWaaWba aSqabeaacqaHYoGyaaGccqGH9aqpcqaHbpGCcaWGObGaamyyamaaCa aaleqabaGaeqOSdigaaaGcbaWaaSaaaeaacqGHciITcaWGwbWaaWba aSqabeaacqaHXoqyaaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaeq ySdegabeaaaaGccqGHRaWkcaWGwbWaaWbaaSqabeaacqaHXoqyaaGc cqqHtoWrdaqhaaWcbaGaeqySdeMaeqOSdigabaGaeqOSdigaaOGaey OeI0IaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeqOUdS2a aSbaaSqaaiabeg7aHjabek7aIbqabaGccqGHRaWkcaWGWbWaaWbaaS qabeaacaaIZaaaaOGaeyypa0JaeqyWdiNaamiAaiaadggadaahaaWc beqaaiaaiodaaaaaaaa@8B96@   M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β = ρ h 3 12 μ ¨ β T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWGnbWaaW baaSqabeaacqaHXoqycqaHYoGyaaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacq aHXoqycqaHYoGyaaGccqqHtoWrdaqhaaWcbaGaeqySdeMaeq4SdCga baGaeq4SdCgaaOGaey4kaSIaamytamaaCaaaleqabaGaeqySdeMaeq 4SdCgaaOGaeu4KdC0aa0baaSqaaiabeo7aNjabeg7aHbqaaiabek7a IbaakiabgkHiTiaadAfadaahaaWcbeqaaiabek7aIbaakiabgUcaRi aadghadaahaaWcbeqaaiabek7aIbaakiabg2da9maalaaabaGaeqyW diNaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaaaai qbeY7aTzaadaWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGubWaaWba aSqabeaacaaIXaGaaGOmaaaakiabgkHiTiaadsfadaahaaWcbeqaai aaikdacaaIXaaaaOGaey4kaSIaamytamaaCaaaleqabaGaeqySdeMa aGymaaaakiabeQ7aRnaaDaaaleaacqaHXoqyaeaacaaIYaaaaOGaey OeI0IaamytamaaCaaaleqabaGaeqySdeMaaGOmaaaakiabeQ7aRnaa DaaaleaacqaHXoqyaeaacaaIXaaaaOGaeyypa0JaaGimaaaaaa@7CA8@

We proceed to simplify these for a flat membrane.

  1. No external moments q β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadghadaahaaWcbeqaaiabek7aIbaaaa a@334C@  act on the membrane, and the membrane thickness is assumed to be so small that the internal moments M αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34C7@  can be neglected. We may also assume ρ h 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYjaadIgadaahaaWcbeqaaiaaio daaaGccqGHijYUcaaIWaaaaa@3694@ .   The equations of motion in the right-hand column then show that transverse forces V α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaahaaWcbeqaaiabeg7aHbaaaa a@332F@  must vanish, and that the in-plane forces T αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiabeg7aHjabek 7aIbaaaaa@34CE@  are symmetric T 12 = T 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiaaigdacaaIYa aaaOGaeyypa0JaamivamaaCaaaleqabaGaaGOmaiaaigdaaaaaaa@3692@ .  
  2. Substituting for the Christoffel symbols and curvature components into the remaining equations of motion and recalling that in-plane forces p β =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaahaaWcbeqaaiabek7aIbaaki abg2da9iaaicdaaaa@3515@ , we find that the three remaining equilibrium equations reduce to

T 11 r + T 21 θ + T 11 r T 22 r=0 T 22 θ + T 12 r +3 T 12 r =0 T 11 2 u 3 r 2 +2 T 12 ( 2 u 3 rθ 1 r u 3 θ )+ T 22 ( r u 3 r + 2 u 3 θ 2 )+ p 3 =ρh 2 u 3 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWGubWaaW baaSqabeaacaaIXaGaaGymaaaaaOqaaiabgkGi2kaadkhaaaGaey4k aSYaaSaaaeaacqGHciITcaWGubWaaWbaaSqabeaacaaIYaGaaGymaa aaaOqaaiabgkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiaadsfadaah aaWcbeqaaiaaigdacaaIXaaaaaGcbaGaamOCaaaacqGHsislcaWGub WaaWbaaSqabeaacaaIYaGaaGOmaaaakiaadkhacqGH9aqpcaaIWaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaaba GaeyOaIyRaamivamaaCaaaleqabaGaaGOmaiaaikdaaaaakeaacqGH ciITcqaH4oqCaaGaey4kaSYaaSaaaeaacqGHciITcaWGubWaaWbaaS qabeaacaaIXaGaaGOmaaaaaOqaaiabgkGi2kaadkhaaaGaey4kaSIa aG4mamaalaaabaGaamivamaaCaaaleqabaGaaGymaiaaikdaaaaake aacaWGYbaaaiabg2da9iaaicdaaeaacaWGubWaaWbaaSqabeaacaaI XaGaaGymaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadkhadaah aaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmaiaadsfadaahaaWcbe qaaiaaigdacaaIYaaaaOWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaa leqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacq GHciITcaWGYbGaeyOaIyRaeqiUdehaaiabgkHiTmaalaaabaGaaGym aaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaio daaeqaaaGcbaGaeyOaIyRaeqiUdehaaaGaayjkaiaawMcaaiabgUca RiaadsfadaahaaWcbeqaaiaaikdacaaIYaaaaOWaaeWaaeaacaWGYb WaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGa eyOaIyRaamOCaaaacqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciIT cqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaey 4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiabg2da9iabeg8aYjaa dIgadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhada WgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG0bWaaWbaaSqabeaa caaIYaaaaaaaaaaa@AF71@

 

Boundary conditions:

  1. The transverse displacement must satisfy u 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3435@  on the edge of the membrane at r=R.
  2. The in-plane forces must satisfy T 1β = P β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiaaigdacqaHYo GyaaGccqGH9aqpcaWGqbWaaWbaaSqabeaacqaHYoGyaaaaaa@379D@ , where P= P β m ¯ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahcfacqGH9aqpcaWGqbWaaWbaaSqabe aacqaHYoGyaaGcceWHTbGbaebadaWgaaWcbaGaeqOSdigabeaaaaa@37EF@  is the force per unit length acting on the edge of the membrane at r=R.

 

 

Special case: membrane subjected to uniform biaxial in-plane loading: If the membrane is subjected to a uniform radial force per unit length P= T 0 m ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahcfacqGH9aqpcaWGubWaaSbaaSqaai aaicdaaeqaaOGabCyBayaaraWaaSbaaSqaaiaaigdaaeqaaaaa@3625@  acting on its edge at r=R, the first two equations of motion and the boundary conditions are satisfied by T 11 = T 0 T 22 = T 0 / r 2 T 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaahaaWcbeqaaiaaigdacaaIXa aaaOGaeyypa0JaamivamaaBaaaleaacaaIWaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caWGubWaaWbaaSqabeaacaaIYaGaaGOmaaaaki abg2da9iaadsfadaWgaaWcbaGaaGimaaqabaGccaGGVaGaamOCamaa CaaaleqabaGaaGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamivamaaCaaaleqabaGaaGymaiaaikda aaGccqGH9aqpcaaIWaaaaa@549C@ .  This corresponds to a state of uniform biaxial tension in the membrane.  The equation of motion for the transverse deflection reduces to 

T 0 ( 2 u 3 r 2 + 1 r u 3 r + 1 r 2 2 u 3 θ 2 )+ p 3 =ρh 2 u 3 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyD amaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadkhadaahaaWcbe qaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCaaaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacq GHciITcaWGYbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkhadaah aaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRa eqiUde3aaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU caRiaadchadaahaaWcbeqaaiaaiodaaaGccqGH9aqpcqaHbpGCcaWG ObWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaS baaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGa aGOmaaaaaaaaaa@5DFB@