10.6 Simplified versions of general shell theory MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzahaeaaaaaaaaa8qacaWFtacaaa@3218@  flat plates and membranes

 

In many practical cases of interest the general equations of shell theory can be vastly simplified.  In this section, we summarize the governing equations for a number of special solids, including equations governing behavior of flat plates, and membranes.

 

 

 

10.6.1 Flat plates with small out-of-plane deflections and negligible in-plane loading

 

This is the simplest version of plate theory, and is used in most practical applications. The figure illustrates the problem to be solved.  An initially flat plate, which has uniform (small) thickness h, Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ ,  is subjected to a distributed force p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaaaa@31D5@  per unit area (acting vertically upwards).  The edge of the plate can be constrained in various ways, as discussed in more detail below.   We wish to determine its deformed shape, as well as the internal forces and moments in the plate.

 

All vector and tensor quantities can be expressed in a fixed Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  illustrated in the figure.  The covariant and reciprocal basis vectors are identical so there is no need to use the system of raised and lowered indices that was needed in general shell theory. In addition, since the basis vectors are independent of position, the Christoffel symbols are all zero.  We continue to use the convention that Greek subscripts can have values 1 or 2, while Latin subscripts may have values 1,2,3.

 

We make the following assumptions

 

1. The variation of displacements within the plate conforms to the usual approximations of Kirchhoff plate theory, i.e. material fibers that are perpendicular to the mid-plane of the undeformed plate remain perpendicular to the mid-plane of the deformed plate, and stretching transverse to the mid-plane is neglected.

 

2. The displacement of the mid-plane of the plate has the form u= u 3 ( x 1 , x 2 ) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaahwgadaWgaa WcbaGaaG4maaqabaaaaa@3C8E@ , i.e. material points on the mid-plane of the plate deflect only transverse to the plate.

 

3. The mid-plane deflection is small compared with the dimensions of the plate, and the slope of the deflected plate is small, so that u 3 / x α <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaaIZa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGc cqGH8aapcqGH8aapcaaIXaaaaa@3BE1@  for all α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@ ; second order terms in displacement are ignored in all the strain definitions and also the equilibrium equations.

 

 

The following (approximate) results can then be extracted from the general shell equations:

 

 

Kinematics:

 

· The curvature change tensor is Δ κ αβ = 2 u 3 x α x β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiabeg 7aHjabek7aIbqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG 4bWaaSbaaSqaaiabek7aIbqabaaaaaaa@461F@ , while the in-plane strain tensor is γ αβ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcaaIWaaaaa@37BD@ .

 

· The normal vector to the deformed plate can be approximated as m 3 = e 3 u 3 ξ α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaki abg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGccqGHsisldaWcaaqa aiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcq aH+oaEdaWgaaWcbaGaeqySdegabeaaaaGccaWHLbWaaSbaaSqaaiab eg7aHbqabaaaaa@41B7@

 

· The displacement field in the plate is approximated as u= u 3 e 3 x 3 u 3 x α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaaIZaaabeaakmaalaaabaGaeyOaIyRaamyDam aaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa eqySdegabeaaaaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaaaaa@43E3@

 

· The (infinitesimal) strain field in the plate is approximated as ε αβ = x 3 Δ κ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeuiL dqKaeqOUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaaaaa@3F77@

 

 

Kinetics

 

· The external force is characterized by the force per unit area p e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaahwgadaWgaaWcbaGaaG4maa qabaaaaa@33AC@  acting on the surface of the plate;

 

· The in-plane stress tensor T αβ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaGimaaaa@36EF@ , so the internal forces are completely characterized by the internal moment tensor M= M αβ e α ( m 3 × e β ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaad2eadaWgaaWcba GaeqySdeMaeqOSdigabeaakiaahwgadaWgaaWcbaGaeqySdegabeaa kiabgEPielaacIcacaWHTbWaaSbaaSqaaiaaiodaaeqaaOGaey41aq RaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaaiykaaaa@43EE@  and transverse force tensor V= V α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaiabg2da9iaadAfadaWgaaWcba GaeqySdegabeaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@382E@ ;

 

· The components V α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacqaHXoqyaeqaaa aa@3386@  represent the vertical force per unit length acting on an internal plane perpendicular to the e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHXoqyaeqaaa aa@3399@  direction;

 

· The physical significance of M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@351E@  is illustrated in the figure. M 1α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaGaeqySde gabeaaaaa@3438@  characterizes the moment per unit length acting on planes inside the shell that are normal to the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  direction, while M 2α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIYaGaeqySde gabeaaaaa@3439@  characterizes the moment per unit length acting on planes that are normal to e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@ .  Note that M α1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycaaIXa aabeaaaaa@3438@  represents a moment about the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  axis, while M α2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycaaIYa aabeaaaaa@3439@  is a moment acting about the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaaIXa aabeaaaaa@33A2@  axis.

 

 

Moment-Curvature relation reduces to

M αβ = E h 3 12(1 ν 2 ) (1ν)Δ κ αβ +νΔ κ λλ δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamiAamaaCaaaleqabaGa aG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsislcqaH9o GBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaabmaabaGaaiikaiaa igdacqGHsislcqaH9oGBcaGGPaGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqGHRaWkcqaH9oGBcqqHuoarcqaH6oWA daWgaaWcbaGaeq4UdWMaeq4UdWgabeaakiabes7aKnaaBaaaleaacq aHXoqycqaHYoGyaeqaaaGccaGLOaGaayzkaaaaaa@5B47@

 

Equations of Motion  are approximated by

V α x α +p=ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbWaaSbaaS qaaiabeg7aHbqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiabeg7a HbqabaaaaOGaey4kaSIaamiCaiabg2da9iabeg8aYjaadIgadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGa aG4maaqabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaa aaaa@45E9@   M αβ x α V β 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGnbWaaSbaaS qaaiabeg7aHjabek7aIbqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaaaaOGaeyOeI0IaamOvamaaBaaaleaacqaHYoGyae qaaOGaeyisISRaaGimaaaa@40E0@

(rotational inertia has been neglected). These equations can be combined to eliminate V

2 M αβ x α x β +p=ρh 2 u 3 d t 2 2 M 11 x 1 2 +2 2 M 12 x 1 x 2 + 2 M 22 x 2 2 +p=ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWGnbWaaSbaaSqaaiabeg7aHjabek7aIbqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG4b WaaSbaaSqaaiabek7aIbqabaaaaOGaey4kaSIaamiCaiabg2da9iab eg8aYjaadIgadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aadwhadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaamiDamaaCaaa leqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamytamaaBaaaleaacaaIXaGaaGymaaqa baaakeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaa aakiabgUcaRiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaakiaad2eadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaaIXaaabeaakiabgkGi2kaadIhadaWgaaWc baGaaGOmaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWGnbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqa aiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaey 4kaSIaamiCaiabg2da9iabeg8aYjaadIgadaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaake aacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaaaaa@956B@

and can also be expressed in terms of the displacements as

E h 3 12(1 ν 2 ) 4 u 3 x α x α x β x β +ρh 2 u 3 d t 2 =p E h 3 12(1 ν 2 ) 4 u 3 x 1 4 +2 4 u 3 x 1 2 x 2 2 + 4 u 3 x 2 4 +ρh 2 u 3 d t 2 =p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadweacaWGObWaaW baaSqabeaacaaIZaaaaaGcbaGaaGymaiaaikdacaGGOaGaaGymaiab gkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaaSaaae aacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG1bWaaSbaaSqaaiaa iodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaO GaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGaeyOaIyRaamiE amaaBaaaleaacqaHYoGyaeqaaOGaeyOaIyRaamiEamaaBaaaleaacq aHYoGyaeqaaaaakiabgUcaRiabeg8aYjaadIgadaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqaba aakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqp caaMc8UaamiCaiaaykW7aeaacqGHHjIUcaaMc8+aaSaaaeaacaWGfb GaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaGaaiik aiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPa aaamaacmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGc caWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaDa aaleaacaaIXaaabaGaaGinaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG1bWaaSbaaSqaaiaaio daaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaabaGaaGOm aaaakiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaO Gaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG 1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaale aacaaIYaaabaGaaGinaaaaaaaakiaawUhacaGL9baacqGHRaWkcqaH bpGCcaWGObWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadshadaahaaWc beqaaiaaikdaaaaaaOGaeyypa0JaamiCaaaaaa@9BB6@

 

 

Edge boundary conditions.  The edge of the plate is characterized by a curve C that lies in the mid-plane of the shell, encircling e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  in a counterclockwise sense.   We let s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caaaa@31D8@  denote arc-length measured around C from some convenient origin, and use τ= τ α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdiabg2da9iabes8a0naaBaaale aacqaHXoqyaeqaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaaaa@3989@  and n= e 3 ×τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iaahwgadaWgaaWcba GaaG4maaqabaGccqGHxdaTcaWHepaaaa@3825@  denote unit vectors tangent and normal to C.  Elementary plate theory offers the following choices of boundary condition for each point on C:

 

1. Part of the boundary of the plate C 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaaaa a@328F@  may be clamped, i.e. rotations and displacement of the boundary are completely prevented. The transverse displacement must then satisfy u 3 = n α u 3 /d x α =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaad6gadaWgaaWcbaGaeqySdegabeaakiabgkGi2kaadwha daWgaaWcbaGaaG4maaqabaGccaGGVaGaamizaiaadIhadaWgaaWcba GaeqySdegabeaakiabg2da9iaaicdaaaa@401C@  on C 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaaaa a@328F@ .

 

2. Part of the boundary C 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIYaaabeaaaa a@3290@  may be simply supported, i.e. the boundary of the plate is prevented from moving, but is permitted to rotate freely about the tangent vector τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@ .  In this case the transverse displacement and internal moment must satisfy

u 3 =0 n α M αβ n β =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGUbWaaSbaaS qaaiabeg7aHbqabaGccaWGnbWaaSbaaSqaaiabeg7aHjabek7aIbqa baGccaWGUbWaaSbaaSqaaiabek7aIbqabaGccqGH9aqpcaaIWaaaaa@52AA@

 

3. Part of the boundary C 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIZaaabeaaaa a@3291@  may be free, i.e. the boundary is free to both translate and rotate.  In this case the transverse shear force and internal moment must satisfy

n α V α + s n α M αβ τ β =0 n α M αβ n β =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacqaHXoqyaeqaaO GaamOvamaaBaaaleaacqaHXoqyaeqaaOGaey4kaSYaaSaaaeaacqGH ciITaeaacqGHciITcaWGZbaaamaadmaabaGaamOBamaaBaaaleaacq aHXoqyaeqaaOGaamytamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGa eqiXdq3aaSbaaSqaaiabek7aIbqabaaakiaawUfacaGLDbaacqGH9a qpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGUbWaaSbaaSqaaiabeg7aHbqabaGccaWGnbWa aSbaaSqaaiabeg7aHjabek7aIbqabaGccaWGUbWaaSbaaSqaaiabek 7aIbqabaGccqGH9aqpcaaIWaaaaa@6F40@

 

More general boundary conditions, in which the edge of the plate is subjected to prescribed forces and moments, can also be derived from the results given in Section 10.5.8 if this is of interest.

 

Strain energy and kinetic energy of a flat plate: The formula for the strain energy and kinetic energy of the plate can be expressed in terms of displacements as

Φ= E h 3 24(1 ν 2 ) A (1ν) 2 u 3 x α x β 2 u 3 x α x β +ν 2 u 3 x α x α 2 dA K= A h 2 ρ v i v i + h 3 24 ρ v 3 x α v 3 x α dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHMoGrcqGH9aqpdaWcaaqaai aadweacaWGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGOmaiaaisda caGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaki aacMcaaaWaa8quaeaadaqadaqaaiaacIcacaaIXaGaeyOeI0IaeqyV d4MaaiykamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam yDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaeqySdegabeaakiabgkGi2kaadIhadaWgaaWcbaGaeqOSdigabe aaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwha daWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai abeg7aHbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaa aOGaey4kaSIaeqyVd42aaeWaaeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG4bWaaS baaSqaaiabeg7aHbqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8aO GaamizaiaadgeaaeaacaWGlbGaeyypa0JaaGPaVlaaykW7caaMc8+a a8quaeaadaqadaqaamaalaaabaGaamiAaaqaaiaaikdaaaGaeqyWdi NaamODamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyA aaqabaGccqGHRaWkdaWcaaqaaiaadIgadaahaaWcbeqaaiaaiodaaa aakeaacaaIYaGaaGinaaaacqaHbpGCdaWcaaqaaiabgkGi2kaadAha daWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai abeg7aHbqabaaaaOWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa iodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaa aaaOGaayjkaiaawMcaaaWcbaGaamyqaaqab0Gaey4kIipakiaadsga caWGbbaaaaa@9D84@

The second term in the integral for the kinetic energy represents the energy associated with the plate’s out-of-plane rotation, and can be ignored in most practical applications.

 

 

 

10.6.2 Flat plates with small out-of-plane deflections and significant in-plane loading

 

This version of plate theory is used to model plates that are subjected to substantial loading parallel to the plane of the plate (usually due to loads applied at its boundaries, as shown in the figure). The theory assumes that displacements are small enough to use linearized measures of strain, but includes nonlinear terms associated with the in-plane loading in the equilibrium equations.  The theory can be used to calculate buckling loads for plates, but does not accurately model their deformation if the buckling loads are exceeded.

 

The problem to be solved is stated in Sect 10.6.1.   The majority of the governing equations are identical to those of standard plate theory, given in 10.6.1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the equations which need to be modified to account for transverse forces are listed below.

 

Kinematics:

 

· The in-plane strain tensor is approximated as γ αβ =( u α / u β + u β / u α )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcaGGOaGaeyOaIyRaamyDamaaBaaaleaacqaH XoqyaeqaaOGaai4laiabgkGi2kaadwhadaWgaaWcbaGaeqOSdigabe aakiabgUcaRiabgkGi2kaadwhadaWgaaWcbaGaeqOSdigabeaakiaa c+cacqGHciITcaWG1bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaGaai 4laiaaikdaaaa@4CEB@

 

· The displacement field in the plate is approximated as u= u i e i x 3 u 3 x α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaamyAaaqabaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaaIZaaabeaakmaalaaabaGaeyOaIyRaamyDam aaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa eqySdegabeaaaaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaaaaa@4445@

 

· The (infinitesimal) strain field in the plate is approximated as

ε αβ = γ αβ + x 3 Δ κ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcqaHZoWzdaWgaaWcbaGaeqySdeMaeqOSdiga beaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqqHuoarcq aH6oWAdaWgaaWcbaGaeqySdeMaeqOSdigabeaaaaa@4576@

where the components of the curvature change tensor are given in 10.6.1. 

 

 

Kinetics

 

· The external force consists of a force per unit area p i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaki aahwgadaWgaaWcbaGaamyAaaqabaaaaa@3501@  acting on the surface of the plate.

 

· The internal forces are characterized as described in 10.6.1, except that the stress resultant tensor T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@  is nonzero. The components of the stress resultant tensor can be interpreted as illustrated below: T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@  represents the force per unit length, acting in the e β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHYoGyaeqaaa aa@339B@  direction, on an internal plane perpendicular to the e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHXoqyaeqaaa aa@3399@  direction within the plate.  

 


 

 

Stress resultant-strain and Moment-Curvature relations

T αβ = Eh (1 ν 2 ) (1ν) γ αβ +ν γ λλ δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamiAaaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaada qadaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiabeo7aNnaa BaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSIaeqyVd4Maeq4SdC 2aaSbaaSqaaiabeU7aSjabeU7aSbqabaGccqaH0oazdaWgaaWcbaGa eqySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaaaa@5601@

M αβ = E h 3 12(1 ν 2 ) (1ν)Δ κ αβ +νΔ κ λλ δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamiAamaaCaaaleqabaGa aG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsislcqaH9o GBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaabmaabaGaaiikaiaa igdacqGHsislcqaH9oGBcaGGPaGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqGHRaWkcqaH9oGBcqqHuoarcqaH6oWA daWgaaWcbaGaeq4UdWMaeq4UdWgabeaakiabes7aKnaaBaaaleaacq aHXoqycqaHYoGyaeqaaaGccaGLOaGaayzkaaaaaa@5B47@

 

 

Equations of motion reduce to

T αβ x α + p β =ρh 2 u β d t 2 V α x α T αβ Δ κ αβ p α u 3 x α + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada WgaaWcbaGaeqySdeMaeqOSdigabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGWbWaaSbaaSqaaiabek 7aIbqabaGccqGH9aqpcqaHbpGCcaWGObWaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiabek7aIbqabaaake aacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaaakeaadaWcaaqa aiabgkGi2kaadAfadaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcaWGubWaaSba aSqaaiabeg7aHjabek7aIbqabaGccqqHuoarcqaH6oWAdaWgaaWcba GaeqySdeMaeqOSdigabeaakiabgkHiTiaadchadaWgaaWcbaGaeqyS degabeaakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabe aaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaaGccqGH RaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeqyWdiNaam iAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0bWaaWbaaSqabeaaca aIYaaaaaaakiaaykW7aaaa@7901@  

M αβ x α V β 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGnbWaaSbaaS qaaiabeg7aHjabek7aIbqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaaaaOGaeyOeI0IaamOvamaaBaaaleaacqaHYoGyae qaaOGaeyisISRaaGimaaaa@40E0@

The second two equations can be combined to eliminate V

M αβ x α x β T αβ κ αβ p α u 3 x α + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGnbWaaSbaaS qaaiabeg7aHjabek7aIbqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqaba aaaOGaeyOeI0IaamivamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGa eqOUdS2aaSbaaSqaaiabeg7aHjabek7aIbqabaGccqGHsislcaWGWb WaaSbaaSqaaiabeg7aHbqabaGcdaWcaaqaaiabgkGi2kaadwhadaWg aaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiabeg 7aHbqabaaaaOGaey4kaSIaamiCamaaBaaaleaacaaIZaaabeaakiab g2da9iabeg8aYjaadIgadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbGaamiD amaaCaaaleqabaGaaGOmaaaaaaaaaa@6264@

This result can also be expressed in terms of displacement as

E h 3 12(1 ν 2 ) 4 u 3 x α x α x β x β T αβ 2 u 3 x α x β + p α u 3 x α +ρh 2 u 3 d t 2 = p 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbGaamiAamaaCaaale qabaGaaG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsisl cqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaakiabgk Gi2kaadIhadaWgaaWcbaGaeqySdegabeaakiabgkGi2kaadIhadaWg aaWcbaGaeqOSdigabeaakiabgkGi2kaadIhadaWgaaWcbaGaeqOSdi gabeaaaaGccqGHsislcaWGubWaaSbaaSqaaiabeg7aHjabek7aIbqa baGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhada WgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiab eg7aHbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaaaO Gaey4kaSIaamiCamaaBaaaleaacqaHXoqyaeqaaOWaaSaaaeaacqGH ciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacqaHXoqyaeqaaaaakiabgUcaRiabeg8aYjaadIgadaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcba GaaG4maaqabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaa aaGccqGH9aqpcaaMc8UaamiCamaaBaaaleaacaaIZaaabeaakiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oaaa@88D0@

 

 

Edge boundary conditions. The edge of the plate is characterized as described in Section 10.6.1.  Boundary conditions for the transverse displacement u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@ , transverse force V α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacqaHXoqyaeqaaa aa@3386@  and internal moment M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@351E@  are identical to those listed in 10.6.2.   In addition, the in-plane displacements or forces must satisfy the following boundary conditions:

 

1. On part of the boundary of the plate C 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaaaa a@328F@ , one or more components of the in-plane displacement may be prescribed u β = u β * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacqaHYoGyaeqaaO Gaeyypa0JaamyDamaaDaaaleaacqaHYoGyaeaacaGGQaaaaaaa@382D@

 

2. Portions of the boundary of the plate C 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIYaaabeaaaa a@3290@  may be subjected to a prescribed in-plane force per unit length P β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaCaaaleqabaGaeqOSdigaaa aa@3383@ . The in-plane forces must then satisfy n α T αβ = P β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacqaHXoqyaeqaaO GaamivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeyypa0Jaamiu amaaCaaaleqabaGaeqOSdigaaaaa@3BA0@

 

 

 

10.6.3 Flat plates with small in-plane and large transverse deflections (von Karman theory)

 

This version of plate theory is used to model plates that are subjected to substantial loading parallel to the plane of the plate (usually caused by loads applied at its boundaries), and also experience substantial out-of-plane displacement.  The theory uses a nonlinear strain measure to account for the in-plane stretching that results from finite transverse displacement and rotation, and includes nonlinear terms associated with the in-plane loading in the equilibrium equations.  The theory can be used to estimate the shape of a buckled plate if the buckling loads are exceeded.  

 

We make the following assumptions

 

1. The variation of displacements within the plate conforms to the usual approximations of Kirchhoff plate theory;

 

2. The displacement of the mid-plane of the plate has the form u= u i ( x 1 , x 2 ) e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaamyAaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaahwgadaWgaa WcbaGaamyAaaqabaaaaa@3CF0@ : all three displacement components are considered.

 

3. The in-plane deflections are small, and satisfy u β / x α <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacqaHYo GyaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaa kiabgYda8iabgYda8iaaigdaaaa@3CC5@  for all α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@ ; second order terms in these displacement components are ignored in all the strain definitions and also the equilibrium equations.  The out-of-plane displacement is assumed to be small enough to use a linearized measure of curvature.  However, the terms involving products of u 3 / x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaaIZa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaa aa@3914@  are retained when computing the strain of the mid-plane of the plate, so that the stretching due to transverse deflection is considered approximately.

 

4. The in-plane forces are assumed to be much larger than transverse forces.  Nonlinear terms in the equilibrium equations involving in-plane forces are retained; those associated with transverse loading are neglected.

 

 

Most of the governing equations of Von-Karman plate theory are identical to those listed in the preceding section.  Nevertheless, the full set of governing equations is give below for convenience.

 

 

Kinematics:

 

· The in-plane strain tensor is approximated by

γ αβ = 1 2 u α x β + u β x α + u 3 x α u 3 x β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaa baWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeg7aHbqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaOGaey4kaSYaaSaa aeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacqaHXoqyaeqaaaaakmaalaaabaGaeyOaIyRa amyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaa WcbaGaeqOSdigabeaaaaaakiaawIcacaGLPaaaaaa@5C0D@

The additional, nonlinear, term in this expression is the main feature of Von-Karman theory.

 

· The curvature change tensor has components Δ κ αβ = 2 u 3 x α x β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiabeg 7aHjabek7aIbqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG 4bWaaSbaaSqaaiabek7aIbqabaaaaaaa@461F@

 

· The normal vector to the deformed plate can be approximated as m 3 = e 3 u 3 x α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaki abg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGccqGHsisldaWcaaqa aiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITca WG4bWaaSbaaSqaaiabeg7aHbqabaaaaOGaaCyzamaaBaaaleaacqaH Xoqyaeqaaaaa@40F1@

 

· The displacement field in the plate is approximated as u= u 3 e 3 x 3 u 3 x α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaaIZaaabeaakmaalaaabaGaeyOaIyRaamyDam aaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa eqySdegabeaaaaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaaaaa@43E3@

· The (infinitesimal) strain field in the plate is approximated as ε αβ = γ αβ + x 3 Δ κ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcqaHZoWzdaWgaaWcbaGaeqySdeMaeqOSdiga beaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqqHuoarcq aH6oWAdaWgaaWcbaGaeqySdeMaeqOSdigabeaaaaa@4576@

 

 

 

Kinetics

 

· The external force is characterized by the force per unit area p e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaahwgadaWgaaWcbaGaaG4maa qabaaaaa@33AC@  acting on the surface of the plate.

 

· The transverse stress tensor T αβ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaGimaaaa@36EF@ , so the Internal forces are characterized by the in-plane stress resultant tensor T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@ , the transverse force tensor V α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacqaHXoqyaeqaaa aa@3386@  and internal moment tensor M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@351E@ .  The physical significance of the components of these tenors is discussed in Sections 10.6.1 and 10.6.2

 

 

Stress resultant-strain and Moment-Curvature relations

T αβ = Eh (1 ν 2 ) (1ν) γ αβ +ν γ λλ δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamiAaaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaada qadaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiabeo7aNnaa BaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSIaeqyVd4Maeq4SdC 2aaSbaaSqaaiabeU7aSjabeU7aSbqabaGccqaH0oazdaWgaaWcbaGa eqySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaaaa@5601@

M αβ = E h 3 12(1 ν 2 ) (1ν)Δ κ αβ +νΔ κ λλ δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamiAamaaCaaaleqabaGa aG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsislcqaH9o GBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaabmaabaGaaiikaiaa igdacqGHsislcqaH9oGBcaGGPaGaeuiLdqKaeqOUdS2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqGHRaWkcqaH9oGBcqqHuoarcqaH6oWA daWgaaWcbaGaeq4UdWMaeq4UdWgabeaakiabes7aKnaaBaaaleaacq aHXoqycqaHYoGyaeqaaaGccaGLOaGaayzkaaaaaa@5B47@

 

Equations of motion  reduce to

T αβ x α + p β =ρh 2 u β d t 2 V α x α T αβ Δ κ αβ p α u 3 x α + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada WgaaWcbaGaeqySdeMaeqOSdigabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaeqySdegabeaaaaGccqGHRaWkcaWGWbWaaSbaaSqaaiabek 7aIbqabaGccqGH9aqpcqaHbpGCcaWGObWaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiabek7aIbqabaaake aacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaada WcaaqaaiabgkGi2kaadAfadaWgaaWcbaGaeqySdegabeaaaOqaaiab gkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaaGccqGHsislcaWGub WaaSbaaSqaaiabeg7aHjabek7aIbqabaGccqqHuoarcqaH6oWAdaWg aaWcbaGaeqySdeMaeqOSdigabeaakiabgkHiTiaadchadaWgaaWcba GaeqySdegabeaakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaI ZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaaaa GccqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeqyW diNaamiAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam yDamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0bWaaWbaaSqa beaacaaIYaaaaaaakiaaykW7aaaa@86E4@

M αβ x α V β 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGnbWaaSbaaS qaaiabeg7aHjabek7aIbqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaaaaOGaeyOeI0IaamOvamaaBaaaleaacqaHYoGyae qaaOGaeyisISRaaGimaaaa@40E0@

where the rotational inertia term has been neglected in the last equation.

 

 

Edge boundary conditions:

 

1. The boundary conditions for transverse displacement u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  and/or the internal moment  M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@351E@  and transverse force V α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacqaHXoqyaeqaaa aa@3386@  are identical to those listed in Section 10.6.1

 

2. The boundary conditions for in-plane displacements u α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacqaHXoqyaeqaaa aa@33A5@  and/or in-plane forces T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@  are identical to those listed in Section 10.6.2.

 

 

Alternative forms for the Von-Karman equations: If the plate is in static equilibrium (so the velocity and acceleration of the plate is zero), the Von-Karman equations can be written in a compact form by expressing the in-plane forces T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@  in terms of an Airy stress function ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@ , following the procedure outlined for plane elasticity problems in Section 5.2.    As a result, the governing equations can be reduced to a pair of coupled, nonlinear partial differential equations for   ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@  and u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@ .  These formulas will not be given here, but can be found, e.g. in Timoshenko and Woinowsky-Krieger, (1964).

 

 

 

10.6.4 Stretched, flat membrane with small out-of-plane deflections

 

This is a simplified version of the stretched plate theory outlined in 10.5, which can be used if the plate is so thin that internal bending moments can be neglected.   The problem to be solved is illustrated in the figure. A `membrane’ with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@ , Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ , mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , and thickness h is initially planar and lies in the plane perpendicular to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction. The edge of the membrane is subjected to a load per unit length P= P α e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadcfadaWgaaWcba GaeqySdegabeaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@3822@  and prevented from moving transverse to the membrane.  A force per unit area p= p 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaWgaaWcba GaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@369E@  acts on the membrane, inducing a small, time dependent, transverse deflection u= u 3 ( x 3 ) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaaG4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaa cMcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@39F1@ .

 

 

Kinematics:

 

· The in-plane strain tensor is approximated as

γ αβ =( u α / u β + u β / u α )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcaGGOaGaeyOaIyRaamyDamaaBaaaleaacqaH XoqyaeqaaOGaai4laiabgkGi2kaadwhadaWgaaWcbaGaeqOSdigabe aakiabgUcaRiabgkGi2kaadwhadaWgaaWcbaGaeqOSdigabeaakiaa c+cacqGHciITcaWG1bWaaSbaaSqaaiabeg7aHbqabaGccaGGPaGaai 4laiaaikdaaaa@4CEB@

 

· The displacement field in the plate is approximated as u= u i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaamyAaaqabaGccaWHLbWaaSbaaSqaaiaadMgaaeqaaaaa@370A@ .  We assume that u 3 >> u α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg6da+iabg6da+iaadwhadaWgaaWcbaGaeqySdegabeaaaaa@37A2@ .

 

· The curvature of the membrane has components Δ κ αβ = 2 u 3 x α x β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiabeg 7aHjabek7aIbqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG 4bWaaSbaaSqaaiabek7aIbqabaaaaaaa@461F@

 

· The (infinitesimal) strain field in the membrane is approximated as ε αβ = γ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcqaHZoWzdaWgaaWcbaGaeqySdeMaeqOSdiga beaaaaa@3C16@

 

 

Kinetics

 

· The external force consists of a force per unit area p i e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGPbaabeaaki aahwgadaWgaaWcbaGaamyAaaqabaaaaa@3501@  acting on the surface of the plate.

 

· The internal forces are characterized by the stress resultant tensor T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@  (the internal moments are neglected).

 

 

 

Stress resultant-strain relations

T αβ = Eh (1 ν 2 ) (1ν) γ αβ +ν γ λλ δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamiAaaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaada qadaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiabeo7aNnaa BaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSIaeqyVd4Maeq4SdC 2aaSbaaSqaaiabeU7aSjabeU7aSbqabaGccqaH0oazdaWgaaWcbaGa eqySdeMaeqOSdigabeaaaOGaayjkaiaawMcaaaaa@5601@

 

Equations of motion are approximated as

T αβ x α 0 T αβ Δ κ αβ + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada WgaaWcbaGaeqySdeMaeqOSdigabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaeqySdegabeaaaaGccqGHijYUcaaIWaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacqGHsislcaWG ubWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccqqHuoarcqaH6oWAda WgaaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiaadchadaWgaaWc baGaaG4maaqabaGccqGH9aqpcqaHbpGCcaWGObWaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqa aaGcbaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVd aaaa@64A4@        

The second equation can also be expressed in terms of displacement as

T αβ 2 u 3 x α x β + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG 1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaale aacqaHXoqyaeqaaOGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqa aaaakiabgUcaRiaadchadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcq aHbpGCcaWGObWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadshadaahaa WcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8oaaa@5D82@

 

 

Edge boundary conditions On the edge of the membrane

 

1. The transverse displacement must satisfy u 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@348D@

 

2. The in-plane forces must satisfy n α T αβ = P β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacqaHXoqyaeqaaO GaamivamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0Jaamiu amaaBaaaleaacqaHYoGyaeqaaaaa@3B9E@ , where n is a unit vector in the ( e 1 , e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@36A8@  plane perpendicular to the edge of the membrane.

 

 

 

10.6.5 Membrane equations in cylindrical-polar coordinates

 

In this section, we re-write the governing equations for a stretched membrane in a cylindrical-polar coordinate system, to provide a simple example of the use of general curvilinear coordinates.  We re-consider the membrane described in the preceding section, but now assume that the membrane is circular, with radius R.

 

HEALTH WARNING: We use polar coordinates r ξ 1 ,θ ξ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabggMi6kabe67a4naaBaaale aacaaIXaaabeaakiaacYcacqaH4oqCcqGHHjIUcqaH+oaEdaWgaaWc baGaaGOmaaqabaaaaa@3D2E@  illustrated in the figure as the choice of curvilinear coordinates.  However, all vector and tensor quantities will be expressed as covariant or contravariant components in the natural basis for this coordinate system, not as components in a cylindrical-polar basis of unit vectors { e r , e θ , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3B16@ .     

 

 

Coordinate system and kinematic relations

 

1. Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaahodaaeqaaOGaaiyFaaaa@39DF@  be a fixed Cartesian basis of mutually perpendicular unit vectors, with e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  normal to the plane of the undeformed membrane.

 

2. The position vector of a point in the membrane can be expressed as r ¯ =rcosθ e 1 +rsinθ e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JaamOCaiGaco gacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGYbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBa aaleaacaaIYaaabeaaaaa@4295@

 

3. The natural basis vectors and the reciprocal basis (for the undeformed membrane) follow as

m ¯ 1 = r ¯ r =cosθ e 1 +sinθ e 2 m ¯ 2 = r ¯ θ =rsinθ e 1 +rcosθ e 2 m ¯ 3 = e 3 m ¯ 1 =cosθ e 1 +sinθ e 2 m ¯ 2 = 1 r sinθ e 1 + 1 r cosθ e 2 m ¯ 3 = e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWHTbGbaebadaWgaaWcbaGaaG ymaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kqahkhagaqeaaqaaiab gkGi2kaadkhaaaGaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaaC yzamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacohacaGGPbGaaiOB aiabeI7aXjaahwgadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7ceWHTbGbaebadaWgaaWcbaGaaGOmaaqabaGccqGH9a qpdaWcaaqaaiabgkGi2kqahkhagaqeaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpcqGHsislcaWGYbGaci4CaiaacMgacaGGUbGaeqiUdeNaaC yzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadkhaciGGJbGaai4B aiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ceWHTbGb aebadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWHLbWaaSbaaSqaai aaiodaaeqaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaaIXaaaaOGa eyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaaCyzamaaBaaaleaaca aIXaaabeaakiabgUcaRiGacohacaGGPbGaaiOBaiabeI7aXjaahwga daWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ceWH TbGbaebadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcqGHsisldaWcaa qaaiaaigdaaeaacaWGYbaaaiGacohacaGGPbGaaiOBaiabeI7aXjaa hwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaaigdaae aacaWGYbaaaiGacogacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWc baGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlqah2gagaqeamaaCaaaleqabaGaaG4maaaakiab g2da9iaahwgadaWgaaWcbaGaaG4maaqabaaaaaa@CF41@

Here the reciprocal basis has simply been written down by inspection MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  you can readily verify that m ¯ i m ¯ j = δ i j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaadMgaae qaaOGaeyyXICTabCyBayaaraWaaWbaaSqabeaacaWGQbaaaOGaeyyp a0JaeqiTdq2aa0baaSqaaiaadMgaaeaacaWGQbaaaaaa@3C45@ .  Note that neither the natural basis vectors nor the reciprocal basis vectors are unit vectors.

 

4. The Christoffel symbols for the coordinate system and the curvature tensor for the undeformed membrane follow as

Γ ¯ βγ α = m ¯ α 2 r ¯ rθ Γ ¯ 11 1 = Γ ¯ 12 1 = Γ ¯ 21 1 =0 Γ ¯ 22 1 =r Γ ¯ 11 2 = Γ ¯ 22 2 =0 Γ ¯ 12 2 = Γ ¯ 21 2 = 1 r κ ¯ αβ = m ¯ 3 m ¯ α ξ β =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuqHtoWrgaqeamaaDaaaleaacq aHYoGycqaHZoWzaeaacqaHXoqyaaGccqGH9aqpceWHTbGbaebadaah aaWcbeqaaiabeg7aHbaakiabgwSixpaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGabCOCayaaraaabaGaeyOaIyRaamOCaiabgkGi 2kabeI7aXbaaaeaacqGHshI3cuqHtoWrgaqeamaaDaaaleaacaaIXa GaaGymaaqaaiaaigdaaaGccqGH9aqpcuqHtoWrgaqeamaaDaaaleaa caaIXaGaaGOmaaqaaiaaigdaaaGccqGH9aqpcuqHtoWrgaqeamaaDa aaleaacaaIYaGaaGymaaqaaiaaigdaaaGccqGH9aqpcaaIWaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqbfo5ahzaara Waa0baaSqaaiaaikdacaaIYaaabaGaaGymaaaakiabg2da9iabgkHi TiaadkhacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cuqHto WrgaqeamaaDaaaleaacaaIXaGaaGymaaqaaiaaikdaaaGccqGH9aqp cuqHtoWrgaqeamaaDaaaleaacaaIYaGaaGOmaaqaaiaaikdaaaGccq GH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlqbfo5ahzaaraWa a0baaSqaaiaaigdacaaIYaaabaGaaGOmaaaakiabg2da9iqbfo5ahz aaraWaa0baaSqaaiaaikdacaaIXaaabaGaaGOmaaaakiabg2da9maa laaabaGaaGymaaqaaiaadkhaaaaabaGafqOUdSMbaebadaWgaaWcba GaeqySdeMaeqOSdigabeaakiabg2da9iabgkHiTiqah2gagaqeamaa BaaaleaacaaIZaaabeaakiabgwSixpaalaaabaGaeyOaIyRabCyBay aaraWaaSbaaSqaaiabeg7aHbqabaaakeaacqGHciITcqaH+oaEdaWg aaWcbaGaeqOSdigabeaaaaGccqGH9aqpcaaIWaaaaaa@A674@

 

5. The position vector of a point in the deformed membrane is r=rcosθ e 1 +rsinθ e 2 + u 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9iaadkhaciGGJbGaai 4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamOCaiGacohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGa aCyzamaaBaaaleaacaaIZaaabeaaaaa@472D@

 

6. The natural basis vectors and reciprocal basis for the deformed membrane follow as

m 1 = r r =cosθ e 1 +sinθ e 2 + u 3 r e 3 m 2 = r θ =rsinθ e 1 +rcosθ e 2 + u 3 θ e 3 m 3 = m 1 × m 2 / m 1 × m 2 cosθ u 3 r sinθ 1 r u 3 θ e 1 sinθ u 3 r +cosθ 1 r u 3 θ e 2 + e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOC aaaacqGH9aqpciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNa aCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaeyOaIy RaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadkhaaaGa aCyzamaaBaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vdqaaiaah2gadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaai abgkGi2kaahkhaaeaacqGHciITcqaH4oqCaaGaeyypa0JaeyOeI0Ia amOCaiGacohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWGYbGaci4yaiaac+gacaGGZbGaeqiUdeNa aCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaeyOaIy RaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kabeI7aXbaa caWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyBamaaBaaaleaaca aIZaaabeaakiabg2da9iaah2gadaWgaaWcbaGaaGymaaqabaGccqGH xdaTcaWHTbWaaSbaaSqaaiaaikdaaeqaaOGaai4lamaaemaabaGaaC yBamaaBaaaleaacaaIXaaabeaakiabgEna0kaah2gadaWgaaWcbaGa aGOmaaqabaaakiaawEa7caGLiWoaaeaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab gIKi7kabgkHiTmaabmaabaGaci4yaiaac+gacaGGZbGaeqiUde3aaS aaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOa IyRaamOCaaaacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCdaWcaa qaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaaIZaaabeaaaOqaaiabgkGi2kabeI7aXbaaaiaawIcacaGLPa aacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaeWaaeaaciGG ZbGaaiyAaiaac6gacqaH4oqCdaWcaaqaaiabgkGi2kaadwhadaWgaa WcbaGaaG4maaqabaaakeaacqGHciITcaWGYbaaaiabgUcaRiGacoga caGGVbGaai4CaiabeI7aXnaalaaabaGaaGymaaqaaiaadkhaaaWaaS aaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOa IyRaeqiUdehaaaGaayjkaiaawMcaaiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWHLbWaaSbaaSqaaiaaiodaaeqaaaaaaa@E65C@

where terms of order u 3 /r 2 , u 3 /θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqGHciITcaWG1bWaaSbaaS qaaiaaiodaaeqaaOGaai4laiabgkGi2kaadkhaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaGccaGGSaWaaeWaaeaacqGHciITcaWG1b WaaSbaaSqaaiaaiodaaeqaaOGaai4laiabgkGi2kabeI7aXbGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@4403@ , etc have been neglected in the expression for m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@ .  The reciprocal basis vectors can also be calculated, but are not required in the analysis to follow.

 

7. For small transverse deflections, the Christoffel symbols associated with the deformed membrane can be approximated using those for the undeformed membrane.  The curvature tensor for the deformed membrane has covariant components

κ 11 = 2 u 3 r 2 κ 12 = κ 21 = 1 r u 3 θ 2 u 3 rθ κ 22 =r u 3 r 2 u 3 θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2k aadkhadaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iab eQ7aRnaaBaaaleaacaaIYaGaaGymaaqabaGccqGH9aqpdaWcaaqaai aaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kabeI7aXbaacqGHsisldaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4m aaqabaaakeaacqGHciITcaWGYbGaeyOaIyRaeqiUdehaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqaH6oWAdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Jaey OeI0IaamOCamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaa beaaaOqaaiabgkGi2kaadkhaaaGaeyOeI0YaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGc baGaeyOaIyRaeqiUde3aaWbaaSqabeaacaaIYaaaaaaaaaa@90E2@

Notice that the curvature components all have different units MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this is because the basis vectors themselves have units. It is easy to check that the terms in the dyadic product κ αβ m α m β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccaWHTbWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXcaWH TbWaaWbaaSqabeaacqaHYoGyaaaaaa@3DA1@  all have correct units.

 

Equations of Motion: The general equations of motion for a shell are

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =ρh a β V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =ρh a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada ahaaWcbeqaaiabeg7aHjabek7aIbaaaOqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaadsfadaahaaWcbeqaai abeg7aHjabek7aIbaakiabfo5ahnaaDaaaleaacqaHXoqycqaHZoWz aeaacqaHZoWzaaGccqGHRaWkcaWGubWaaWbaaSqabeaacqaHXoqycq aHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4SdCMaeqySdegabaGaeqOS digaaOGaey4kaSIaamOvamaaCaaaleqabaGaeqySdegaaOGaeqOUdS 2aa0baaSqaaiabeg7aHbqaaiabek7aIbaakiabgUcaRiaadchadaah aaWcbeqaaiabek7aIbaakiabg2da9iabeg8aYjaadIgacaWGHbWaaW baaSqabeaacqaHYoGyaaaakeaadaWcaaqaaiabgkGi2kaadAfadaah aaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kabe67a4naaBaaaleaacq aHXoqyaeqaaaaakiabgUcaRiaadAfadaahaaWcbeqaaiabeg7aHbaa kiabfo5ahnaaDaaaleaacqaHXoqycqaHYoGyaeaacqaHYoGyaaGccq GHsislcaWGubWaaWbaaSqabeaacqaHXoqycqaHYoGyaaGccqaH6oWA daWgaaWcbaGaeqySdeMaeqOSdigabeaakiabgUcaRiaadchadaahaa WcbeqaaiaaiodaaaGccqGH9aqpcqaHbpGCcaWGObGaamyyamaaCaaa leqabaGaaG4maaaaaaaa@8BEE@  

M αβ ξ α + M αβ Γ αγ γ + M αγ Γ γα β V β + q β = ρ h 3 12 μ ¨ β T 12 T 21 + M α1 κ α 2 M α2 κ α 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaad2eada ahaaWcbeqaaiabeg7aHjabek7aIbaaaOqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaad2eadaahaaWcbeqaai abeg7aHjabek7aIbaakiabfo5ahnaaDaaaleaacqaHXoqycqaHZoWz aeaacqaHZoWzaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacqaHXoqycq aHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4SdCMaeqySdegabaGaeqOS digaaOGaeyOeI0IaamOvamaaCaaaleqabaGaeqOSdigaaOGaey4kaS IaamyCamaaCaaaleqabaGaeqOSdigaaOGaeyypa0ZaaSaaaeaacqaH bpGCcaWGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymaiaaikdaaa GafqiVd0MbamaadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsfadaah aaWcbeqaaiaaigdacaaIYaaaaOGaeyOeI0IaamivamaaCaaaleqaba GaaGOmaiaaigdaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacqaHXoqy caaIXaaaaOGaeqOUdS2aa0baaSqaaiabeg7aHbqaaiaaikdaaaGccq GHsislcaWGnbWaaWbaaSqabeaacqaHXoqycaaIYaaaaOGaeqOUdS2a a0baaSqaaiabeg7aHbqaaiaaigdaaaGccqGH9aqpcaaIWaaaaaa@7D00@

 

We proceed to simplify these for a flat membrane.

 

1. No external moments q β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaCaaaleqabaGaeqOSdigaaa aa@33A4@  act on the membrane, and the membrane thickness is assumed to be so small that the internal moments M αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@351F@  can be neglected. We may also assume ρ h 3 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdiNaamiAamaaCaaaleqabaGaaG 4maaaakiabgIKi7kaaicdaaaa@36EC@ .   The equations of motion in the right-hand column then show that transverse forces V α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaeqySdegaaa aa@3387@  must vanish, and that the in-plane forces T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@3526@  are symmetric T 12 = T 21 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaik daaaGccqGH9aqpcaWGubWaaWbaaSqabeaacaaIYaGaaGymaaaaaaa@36EA@ .  

 

2. Substituting for the Christoffel symbols and curvature components into the remaining equations of motion and recalling that in-plane forces p β =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaeqOSdigaaO Gaeyypa0JaaGimaaaa@356D@ , we find that the three remaining equilibrium equations reduce to

T 11 r + T 21 θ + T 11 r T 22 r=0 T 22 θ + T 12 r +3 T 12 r =0 T 11 2 u 3 r 2 +2 T 12 2 u 3 rθ 1 r u 3 θ + T 22 r u 3 r + 2 u 3 θ 2 + p 3 =ρh 2 u 3 t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada ahaaWcbeqaaiaaigdacaaIXaaaaaGcbaGaeyOaIyRaamOCaaaacqGH RaWkdaWcaaqaaiabgkGi2kaadsfadaahaaWcbeqaaiaaikdacaaIXa aaaaGcbaGaeyOaIyRaeqiUdehaaiabgUcaRmaalaaabaGaamivamaa CaaaleqabaGaaGymaiaaigdaaaaakeaacaWGYbaaaiabgkHiTiaads fadaahaaWcbeqaaiaaikdacaaIYaaaaOGaamOCaiabg2da9iaaicda caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacqGHciITcaWGubWaaWbaaSqabeaacaaIYaGaaGOmaaaaaOqaaiab gkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiabgkGi2kaadsfadaahaa WcbeqaaiaaigdacaaIYaaaaaGcbaGaeyOaIyRaamOCaaaacqGHRaWk caaIZaWaaSaaaeaacaWGubWaaWbaaSqabeaacaaIXaGaaGOmaaaaaO qaaiaadkhaaaGaeyypa0JaaGimaaqaaiaadsfadaahaaWcbeqaaiaa igdacaaIXaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamOCamaa CaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIYaGaamivamaaCaaale qabaGaaGymaiaaikdaaaGcdaqadaqaamaalaaabaGaeyOaIy7aaWba aSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaai abgkGi2kaadkhacqGHciITcqaH4oqCaaGaeyOeI0YaaSaaaeaacaaI XaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG 4maaqabaaakeaacqGHciITcqaH4oqCaaaacaGLOaGaayzkaaGaey4k aSIaamivamaaCaaaleqabaGaaGOmaiaaikdaaaGcdaqadaqaaiaadk hadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaa cqGHciITcaWGYbaaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi 2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacq GHRaWkcaWGWbWaaWbaaSqabeaacaaIZaaaaOGaeyypa0JaeqyWdiNa amiAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDam aaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadshadaahaaWcbeqa aiaaikdaaaaaaaaaaa@AFC9@

 

Boundary conditions:

 

1. The transverse displacement must satisfy u 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@348D@  on the edge of the membrane at r=R.

 

2. The in-plane forces must satisfy T 1β = P β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiabek 7aIbaakiabg2da9iaadcfadaahaaWcbeqaaiabek7aIbaaaaa@37F5@ , where P= P β m ¯ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadcfadaahaaWcbe qaaiabek7aIbaakiqah2gagaqeamaaBaaaleaacqaHYoGyaeqaaaaa @3847@  is the force per unit length acting on the edge of the membrane at r=R.

 

 

Special case: membrane subjected to uniform biaxial in-plane loading: If the membrane is subjected to a uniform radial force per unit length P= T 0 m ¯ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaadsfadaWgaaWcba GaaGimaaqabaGcceWHTbGbaebadaWgaaWcbaGaaGymaaqabaaaaa@367D@  acting on its edge at r=R, the first two equations of motion and the boundary conditions are satisfied by T 11 = T 0 T 22 = T 0 / r 2 T 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaig daaaGccqGH9aqpcaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaadsfadaahaaWcbeqaaiaaikdacaaIYaaaaO Gaeyypa0JaamivamaaBaaaleaacaaIWaaabeaakiaac+cacaWGYbWa aWbaaSqabeaacaaIYaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGubWaaWbaaSqabeaacaaIXaGaaGOm aaaakiabg2da9iaaicdaaaa@54F4@ .  This corresponds to a state of uniform biaxial tension in the membrane.  The equation of motion for the transverse deflection reduces to 

T 0 2 u 3 r 2 + 1 r u 3 r + 1 r 2 2 u 3 θ 2 + p 3 =ρh 2 u 3 t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaakm aabmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG 1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamOCamaaCaaale qabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbaa amaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaai abgkGi2kaadkhaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCamaa CaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciIT cqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaey 4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiabg2da9iabeg8aYjaa dIgadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhada WgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG0bWaaWbaaSqabeaa caaIYaaaaaaaaaa@5E53@