10.7 Solutions to simple problems involving membranes, plates and shells

 

In this section, we derive solutions to several initial and boundary value problems for plates and shells to illustrate applications of the general theories derived in the preceding sections.

 

 

 

10.7.1 Thin circular plate bent by pressure applied to one face

 

A thin circular plate, with radius R and thickness h is made from a linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ , as shown in the figure. It is subjected to a pressure p= p 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iaadchadaWgaaWcba GaaG4maaqabaGccaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@369E@  acting perpendicular to the plate, and is simply supported at its edge.  The solution can be derived using the simplified version of plate theory described in Section 10.6.1.  Although the plate is circular, the problem can be solved by expressing all vector and tensor quantities as components in a Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  shown in the figure.

 

The deflection of the plate is given by

u 3 = 3(1 ν 2 )p 16E h 3 R 2 r 2 5+ν 1+ν R 2 r 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9maalaaabaGaaG4maiaacIcacaaIXaGaeyOeI0IaeqyVd42a aWbaaSqabeaacaaIYaaaaOGaaiykaiaadchaaeaacaaIXaGaaGOnai aadweacaWGObWaaWbaaSqabeaacaaIZaaaaaaakmaabmaabaGaamOu amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadkhadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaadaqadaqaamaalaaabaGaaGynaiab gUcaRiabe27aUbqaaiaaigdacqGHRaWkcqaH9oGBaaGaamOuamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadkhadaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaaaaa@5279@

where r= x α x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaBaaaleaacqaHXoqyaeqaaOGaamiEamaaBaaaleaacqaHXoqyaeqa aaqabaaaaa@3887@ .The internal force and moment in the plate are

M αβ = 1 8 (1ν)p x α x β 1 16 p r 2 (1+3ν) R 2 (3+ν) δ αβ V β = M αβ x α =p x β /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGnbWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaI 4aaaaiaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaiaadchacaWG4b WaaSbaaSqaaiabeg7aHbqabaGccaWG4bWaaSbaaSqaaiabek7aIbqa baGccqGHsisldaWcaaqaaiaaigdaaeaacaaIXaGaaGOnaaaacaWGWb WaaeWaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaaigda cqGHRaWkcaaIZaGaeqyVd4MaaiykaiabgkHiTiaadkfadaahaaWcbe qaaiaaikdaaaGccaGGOaGaaG4maiabgUcaRiabe27aUjaacMcaaiaa wIcacaGLPaaacqaH0oazdaWgaaWcbaGaeqySdeMaeqOSdigabeaaaO qaaiaadAfadaWgaaWcbaGaeqOSdigabeaakiabg2da9maalaaabaGa eyOaIyRaamytamaaBaaaleaacqaHXoqycqaHYoGyaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacqaHXoqyaeqaaaaakiabg2da9iabgkHi TiaadchacaWG4bWaaSbaaSqaaiabek7aIbqabaGccaGGVaGaaGOmaa aaaa@7264@

 

 

Derivation:

 

1. The transverse deflection must satisfy the static equilibrium equation

E h 3 12(1 ν 2 ) 4 u 3 x α x α x β x β =p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbGaamiAamaaCaaale qabaGaaG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsisl cqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaeqySdegabeaakiabgk Gi2kaadIhadaWgaaWcbaGaeqySdegabeaakiabgkGi2kaadIhadaWg aaWcbaGaeqOSdigabeaakiabgkGi2kaadIhadaWgaaWcbaGaeqOSdi gabeaaaaGccqGH9aqpcaaMc8UaamiCaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8oaaa@5B37@

 

2. The solution must be axially symmetric, so that u 3 =w r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaadEhadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@374F@  where r= x α x α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaBaaaleaacqaHXoqyaeqaaOGaamiEamaaBaaaleaacqaHXoqyaeqa aaqabaaaaa@3887@ .  Substituting this expression into the equilibrium equation, and using r/ x α = x α /r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamOCaiaac+cacqGHciITca WG4bWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpcaWG4bWaaSbaaSqa aiabeg7aHbqabaGccaGGVaGaamOCaaaa@3DAA@ , reduces the governing equation to

E h 3 12(1 ν 2 ) d 4 w d r 4 + 2 r d 3 w d r 3 1 r 2 d 2 w d r 2 + 1 r 3 dw dr = E h 3 12(1 ν 2 ) 1 r d dr r d dr 1 r d dr r dw dr =p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbGaamiAamaaCaaale qabaGaaG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsisl cqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaabmaabaWaaS aaaeaacaWGKbWaaWbaaSqabeaacaaI0aaaaOGaam4Daaqaaiaadsga caWGYbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaalaaabaGaaG OmaaqaaiaadkhaaaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIZaaa aOGaam4DaaqaaiaadsgacaWGYbWaaWbaaSqabeaacaaIZaaaaaaaki abgkHiTmaalaaabaGaaGymaaqaaiaadkhadaahaaWcbeqaaiaaikda aaaaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam4Daa qaaiaadsgacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaa laaabaGaaGymaaqaaiaadkhadaahaaWcbeqaaiaaiodaaaaaaOWaaS aaaeaacaWGKbGaam4DaaqaaiaadsgacaWGYbaaaaGaayjkaiaawMca aiabg2da9maalaaabaGaamyraiaadIgadaahaaWcbeqaaiaaiodaaa aakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWba aSqabeaacaaIYaaaaOGaaiykaaaadaWcaaqaaiaaigdaaeaacaWGYb aaamaalaaabaGaamizaaqaaiaadsgacaWGYbaaamaabmaabaGaamOC amaalaaabaGaamizaaqaaiaadsgacaWGYbaaamaabmaabaWaaSaaae aacaaIXaaabaGaamOCaaaadaWcaaqaaiaadsgaaeaacaWGKbGaamOC aaaadaqadaqaaiaadkhadaWcaaqaaiaadsgacaWG3baabaGaamizai aadkhaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzk aaGaeyypa0JaaGPaVlaadchacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVdaa@87C0@

 

3. This equation can be integrated repeatedly to give

w= 1 ν 2 E h 3 3 16 p r 4 +A r 2 logr+Blogr+C r 2 +D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Daiabg2da9maalaaabaGaaGymai abgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaaOqaaiaadweacaWG ObWaaWbaaSqabeaacaaIZaaaaaaakmaabmaabaWaaSaaaeaacaaIZa aabaGaaGymaiaaiAdaaaGaamiCaiaadkhadaahaaWcbeqaaiaaisda aaGccqGHRaWkcaWGbbGaamOCamaaCaaaleqabaGaaGOmaaaakiGacY gacaGGVbGaai4zaiaadkhacqGHRaWkcaWGcbGaciiBaiaac+gacaGG NbGaamOCaiabgUcaRiaadoeacaWGYbWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamiraaGaayjkaiaawMcaaaaa@52AA@

where A,B,C,D are constants of integration.

 

4. The curvature is related to w by

κ αβ = 2 u 3 x α x β = d 2 w d r 2 1 r dw dr x α x β r 2 dw dr δ αβ r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHci ITcaWG4bWaaSbaaSqaaiabeg7aHbqabaGccqGHciITcaWG4bWaaSba aSqaaiabek7aIbqabaaaaOGaeyypa0JaeyOeI0YaaeWaaeaadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG3baabaGaamizaiaa dkhadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacaaIXa aabaGaamOCaaaadaWcaaqaaiaadsgacaWG3baabaGaamizaiaadkha aaaacaGLOaGaayzkaaWaaSaaaeaacaWG4bWaaSbaaSqaaiabeg7aHb qabaGccaWG4bWaaSbaaSqaaiabek7aIbqabaaakeaacaWGYbWaaWba aSqabeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaamizaiaadEhaae aacaWGKbGaamOCaaaadaWcaaqaaiabes7aKnaaBaaaleaacqaHXoqy cqaHYoGyaeqaaaGcbaGaamOCaaaaaaa@6702@

 

5. Substituting this result into the curvature-moment equations gives the following equation for the internal moment distribution

M αβ = E h 3 12 1 ν 2 (1ν) d 2 w d r 2 1 r dw dr x α x β r 2 +ν d 2 w d r 2 + 1 r dw dr δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacqGHsislcaWGfbGaamiAamaaCaaa leqabaGaaG4maaaaaOqaaiaaigdacaaIYaWaaeWaaeaacaaIXaGaey OeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaa amaabmaabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaWaaeWaae aadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG3baabaGa amizaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0YaaSaaae aacaaIXaaabaGaamOCaaaadaWcaaqaaiaadsgacaWG3baabaGaamiz aiaadkhaaaaacaGLOaGaayzkaaWaaSaaaeaacaWG4bWaaSbaaSqaai abeg7aHbqabaGccaWG4bWaaSbaaSqaaiabek7aIbqabaaakeaacaWG YbWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRiabe27aUnaabmaaba WaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam4Daaqaaiaa dsgacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaaba GaaGymaaqaaiaadkhaaaWaaSaaaeaacaWGKbGaam4Daaqaaiaadsga caWGYbaaaaGaayjkaiaawMcaaiabes7aKnaaBaaaleaacqaHXoqycq aHYoGyaeqaaaGccaGLOaGaayzkaaaaaa@7245@

 

6. The displacement and curvature of the plate must be finite at r=0, which is only possible if A=B=0 To see this, note that the Blog(r) term in the formula for w is inifite at r=0; similarly, substituting the expression for w into the curvature formula produces a term involving Alog(r) which is also infinite at r=0.    The remaining constants must be determined from the boundary conditions at the edge of the plate.  For a simply supported plate, the boundary conditions are w=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Daiabg2da9iaaicdaaaa@339C@  and M αβ n α n β = M αβ x α x β / r 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaamOBamaaBaaaleaacqaHXoqyaeqaaOGaamOBamaaBaaa leaacqaHYoGyaeqaaOGaeyypa0JaamytamaaBaaaleaacqaHXoqycq aHYoGyaeqaaOGaamiEamaaBaaaleaacqaHXoqyaeqaaOGaamiEamaa BaaaleaacqaHYoGyaeqaaOGaai4laiaadkhadaahaaWcbeqaaiaaik daaaGccqGH9aqpcaaIWaaaaa@4A0B@  on r=R, where n α = x α /r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacqaHXoqyaeqaaO Gaeyypa0JaamiEamaaBaaaleaacqaHXoqyaeqaaOGaai4laiaadkha aaa@392A@  is a unit vector normal to the edge of the plate.  This yields two equations that can be solved for C and D.  Substituting the results back into the formulas in (3) and (5) then gives the solution.

 

 

 

10.7.2 Vibration modes and natural frequencies for a circular membrane

 

A thin circular membrane with thickness h, radius R and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  is subjected to a uniform radial force per unit length T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaaaa a@329F@   acting on its edge, as shown in the figure   Our goal is to calculate the mode shapes and natural frequencies of vibration of the membrane (the physical significance of natural frequencies and mode shapes for a continuous system are described in more detail in Section 10.4.1)

 

The natural frequencies of vibration and mode shapes are identified by two integers (m,n) that characterize the mode shape.  The index m=1,2,3… corresponds to the number of circumferential lines (with r=constant) on the membrane that have zero displacement, while n=0,1,2… corresponds to the number of diametral lines (with θ= MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0daaa@339C@  constant) that have zero displacement.

 

The natural frequencies of vibration are given by the solutions to the equation J n ( ω (m,n) R ρh/ T 0 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGUbaabeaaki aacIcacqaHjpWDdaWgaaWcbaGaaiikaiaad2gacaGGSaGaamOBaiaa cMcaaeqaaOGaamOuamaakaaabaGaeqyWdiNaamiAaiaac+cacaWGub WaaSbaaSqaaiaaicdaaeqaaaqabaGccaGGPaGaeyypa0JaaGimaaaa @41F2@ ,  where J n (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGUbaabeaaki aacIcacaWG4bGaaiykaaaa@352E@  is a Bessel function of the first kind of order n  (This sounds scary, but symbolic manipulation programs have predefined functions that compute roots of Bessel functions).  A few zeros for Bessel functions of order n=0,1,2 are listed in Table 10.3.

 

The first few natural frequencies are ω (1,0) =2.4048 T 0 /(ρh R 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaacIcacaaIXa GaaiilaiaaicdacaGGPaaabeaakiabg2da9iaaikdacaGGUaGaaGin aiaaicdacaaI0aGaaGioamaakaaabaGaamivamaaBaaaleaacaaIWa aabeaakiaac+cacaGGOaGaeqyWdiNaamiAaiaadkfadaahaaWcbeqa aiaaikdaaaGccaGGPaaaleqaaaaa@4434@ , ω (1,1) =3.8317 T 0 /(ρh R 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaacIcacaaIXa GaaiilaiaaigdacaGGPaaabeaakiabg2da9iaaiodacaGGUaGaaGio aiaaiodacaaIXaGaaG4namaakaaabaGaamivamaaBaaaleaacaaIWa aabeaakiaac+cacaGGOaGaeqyWdiNaamiAaiaadkfadaahaaWcbeqa aiaaikdaaaGccaGGPaaaleqaaaaa@4439@   ω (1,2) =5.1356 T 0 /(ρh R 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaacIcacaaIXa GaaiilaiaaikdacaGGPaaabeaakiabg2da9iaaiwdacaGGUaGaaGym aiaaiodacaaI1aGaaGOnamaakaaabaGaamivamaaBaaaleaacaaIWa aabeaakiaac+cacaGGOaGaeqyWdiNaamiAaiaadkfadaahaaWcbeqa aiaaikdaaaGccaGGPaaaleqaaaaa@4438@ , and so on.

 

 

The mode shapes are U (m,n) (r,θ)=A J n (r ω (m,n) ρh/ T 0 )sin(nθ+ θ 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaGGOaGaamyBai aacYcacaWGUbGaaiykaaqabaGccaGGOaGaamOCaiaacYcacqaH4oqC caGGPaGaeyypa0JaamyqaiaadQeadaWgaaWcbaGaamOBaaqabaGcca GGOaGaamOCaiabeM8a3naaBaaaleaacaGGOaGaamyBaiaacYcacaWG UbGaaiykaaqabaGcdaGcaaqaaiabeg8aYjaadIgacaGGVaGaamivam aaBaaaleaacaaIWaaabeaaaeqaaOGaaiykaiGacohacaGGPbGaaiOB aiaacIcacaWGUbGaeqiUdeNaey4kaSIaeqiUde3aaSbaaSqaaiaaic daaeqaaOGaaiykaaaa@5633@

 

 

Contour plots of the displacements for the first few vibration modes are shown in the figure.

 

 

Derivation:

 

1. The equation that governs transverse motion of a membrane under equibiaxial tension was derived in Section 10.6.5 as

T 0 2 u 3 r 2 + 1 r u 3 r + 1 r 2 2 u 3 θ 2 =ρh 2 u 3 t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaakm aabmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG 1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamOCamaaCaaale qabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbaa amaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaai abgkGi2kaadkhaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCamaa CaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciIT cqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaey ypa0JaeqyWdiNaamiAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaads hadaahaaWcbeqaaiaaikdaaaaaaaaa@5B88@

 

2. The general solution to this equation (which can be found by separation of variables, or if you are lazy, using a symbolic manipulation program) is

u 3 (r,θ)= A J n ( k (m,n) r)sin(nθ+ θ 0 )+B Y n ( k (m,n) r)sin(nθ+ θ 1 ) cos( ω (m,n) t+ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWGYbGaaiilaiabeI7aXjaacMcacqGH9aqpdaqadaqaaiaa dgeacaWGkbWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadUgadaWgaa WcbaGaaiikaiaad2gacaGGSaGaamOBaiaacMcaaeqaaOGaamOCaiaa cMcaciGGZbGaaiyAaiaac6gacaGGOaGaamOBaiabeI7aXjabgUcaRi abeI7aXnaaBaaaleaacaaIWaaabeaakiaacMcacqGHRaWkcaWGcbGa amywamaaBaaaleaacaWGUbaabeaakiaacIcacaWGRbWaaSbaaSqaai aacIcacaWGTbGaaiilaiaad6gacaGGPaaabeaakiaadkhacaGGPaGa ci4CaiaacMgacaGGUbGaaiikaiaad6gacqaH4oqCcqGHRaWkcqaH4o qCdaWgaaWcbaGaaGymaaqabaGccaGGPaaacaGLOaGaayzkaaGaci4y aiaac+gacaGGZbGaaiikaiabeM8a3naaBaaaleaacaGGOaGaamyBai aacYcacaWGUbGaaiykaaqabaGccaWG0bGaey4kaSIaeqy1dyMaaiyk aaaa@71CD@

where k (m,n) = ω (m,n) ρh/ T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaGGOaGaamyBai aacYcacaWGUbGaaiykaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGa aiikaiaad2gacaGGSaGaamOBaiaacMcaaeqaaOWaaOaaaeaacqaHbp GCcaWGObGaai4laiaadsfadaWgaaWcbaGaaGimaaqabaaabeaaaaa@421A@ , A, B, n, θ 0 , θ 1 ,ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaicdaaeqaaO GaaiilaiaaykW7caaMc8UaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa aiilaiaaykW7caaMc8UaaGPaVlabew9aMbaa@410C@  are arbitrary constants, and J n , Y n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGUbaabeaaki aacYcacaWGzbWaaSbaaSqaaiaad6gaaeqaaaaa@3585@  are Bessel functions of the first and second kinds, with order n, respectively. 

 

3. The solution must satisfy u 3 (θ)= u 3 (2π+θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacqaH4oqCcaGGPaGaeyypa0JaamyDamaaBaaaleaacaaIZaaa beaakiaacIcacqGHYaGmcqaHapaCcqGHRaWkcqaH4oqCcaGGPaaaaa@3F6D@ , which is only possible if n is an integer.

 

4. The Bessel function of the second kind is infinite at r=0, so B=0.

 

5. The transverse displacement must satisfy the boundary condition u 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@348D@  on the edge of the membrane, which leads to the condition J n ( ω (m,n) R ρh/ T 0 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGUbaabeaaki aacIcacqaHjpWDdaWgaaWcbaGaaiikaiaad2gacaGGSaGaamOBaiaa cMcaaeqaaOGaamOuamaakaaabaGaeqyWdiNaamiAaiaac+cacaWGub WaaSbaaSqaaiaaicdaaeqaaaqabaGccaGGPaGaeyypa0JaaGimaaaa @41F2@ .

 

 

 

10.7.3 Estimate for the fundamental frequency of vibration of a simply supported rectangular flat plate

 

The figure shows an initially flat plate, which lies in the e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  plane and is free of external force.  The plate has Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@ , mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , and thickness h.  Its edges are simply supported.  We wish to calculate the lowest natural frequency of vibration for the plate.

 

The exact natural frequencies and modes of vibration for a rectangular plate are best calculated using a numerical method (e.g. finite elements).   However, it is very straightforward to estimate the lowest natural frequency of vibration using the Rayleigh-Ritz method described in Section 5.9.

 

The Rayleigh-Ritz method proceeds as follows:

 

1. Select a suitable estimate for the lowest frequency mode of vibration. MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  which must satisfy all displacement boundary conditions.  For present purposes, the following mode shape is reasonable

U ^ 3 ( x 1 , x 2 )=( x 1 a)( x 1 +a)( x 2 b)( x 2 +b)+C ( x 1 a) 2 ( x 1 +a) 2 ( x 2 b) 2 ( x 2 +b) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaajaWaaSbaaSqaaiaaiodaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiE amaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaGGOaGaamiEam aaBaaaleaacaaIXaaabeaakiabgkHiTiaadggacaGGPaGaaiikaiaa dIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGHbGaaiykaiaacI cacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamOyaiaacMca caGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkgaca GGPaGaey4kaSIaam4qaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadggacaGGPaWa aWbaaSqabeaacaaIYaaaaOGaaiikaiaadIhadaWgaaWcbaGaaGOmaa qabaGccqGHsislcaWGIbGaaiykamaaCaaaleqabaGaaGOmaaaakiaa cIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOyaiaacM cadaahaaWcbeqaaiaaikdaaaaaaa@67C1@

where C is a parameter that can be adjusted to obtain the best estimate for the natural frequency.  More terms could be added to obtain a more accurate solution.

 

2. Calculate the kinetic energy measures

V ^ = E h 3 24(1 ν 2 ) A (1ν) 2 U 3 x α x β 2 U 3 x α x β +ν 2 U 3 x α x α 2 dA T ^ = A h 2 ρ U 3 U 3 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaGaeyypa0ZaaSaaaeaaca WGfbGaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaikdacaaI0aGa aiikaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGcca GGPaaaamaapefabaWaaeWaaeaacaGGOaGaaGymaiabgkHiTiabe27a UjaacMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadw fadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiabeg7aHbqabaGccqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqaba aaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGvbWa aSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacq aHXoqyaeqaaOGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaa kiabgUcaRiabe27aUnaabmaabaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWGvbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOa IyRaamiEamaaBaaaleaacqaHXoqyaeqaaOGaeyOaIyRaamiEamaaBa aaleaacqaHXoqyaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaOGaayjkaiaawMcaaaWcbaGaamyqaaqab0Gaey4kIipaki aadsgacaWGbbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7ceWGubGbaKaacqGH9aqpcaaMc8UaaGPaVlaaykW7da WdrbqaamaabmaabaWaaSaaaeaacaWGObaabaGaaGOmaaaacqaHbpGC caWGvbWaaSbaaSqaaiaaiodaaeqaaOGaamyvamaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaaWcbaGaamyqaaqab0Gaey4kIipakiaa dsgacaWGbbaaaa@9316@

 

3. The frequency is estimated as ω 2 V ^ / T ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaO GaeyizImQabmOvayaajaGaai4laiqadsfagaqcaaaa@37DC@  - we therefore need to choose C to minimize V ^ / T ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaGaai4laiqadsfagaqcaa aa@3367@ .  Although an exact formula can be calculated for the resulting upper bound to the natural frequency, the expression is very long, and is best displayed graphically.  The figure shows the variation of normalized natural frequency as a function of the aspect ratio of the plate b/a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyaiaac+cacaWGHbaaaa@3360@ .  As a guide to the accuracy of the solution, an exact solution can be calculated for the natural frequency in the limit b/a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyaiaac+cacaWGHbGaeyOKH4Qaey OhIukaaa@36BE@  (in this limit the plate is a beam), following the procedure described in Section 10.4.1.  The result is 12(1 ν 2 ) ω 2 ρ a 4 /E h 2 = (π/2) 4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaikdacaGGOaGaaGymaiabgk HiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcacqaHjpWDdaah aaWcbeqaaiaaikdaaaGccqaHbpGCcaWGHbWaaWbaaSqabeaacaaI0a aaaOGaai4laiaadweacaWGObWaaWbaaSqabeaacaaIYaaaaOGaeyyp a0Jaaiikaiabec8aWjaac+cacaaIYaGaaiykamaaCaaaleqabaGaaG inaaaaaaa@4831@ .  It is clear that the Rayleigh-Ritz method gives an excellent estimate of the natural frequency in this limit.

 

 

 

10.7.4 Bending induced by inelastic strain in a thin film on a substrate  

 

The figure illustrates the problem to be solved.   A thin film, with Young’s modulus E f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGMbaabeaaaa a@32C1@ , Poisson’s ratio ν f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd42aaSbaaSqaaiaadAgaaeqaaa aa@33AF@  and thickness h f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaBaaaleaacaWGMbaabeaaaa a@32E4@  is deposited onto the surface of an initially flat, circular wafer, which has Young’s modulus E s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGZbaabeaaaa a@32CE@ , Poisson’s ratio ν s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd42aaSbaaSqaaiaadohaaeqaaa aa@33BC@ , radius R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaaaa@31B7@ , and thickness h s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaBaaaleaacaWGZbaabeaaaa a@32F1@ .   An inelastic strain ε 11 p = ε 22 p = ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaaigdacaaIXa aabaGaamiCaaaakiabg2da9iabew7aLnaaDaaaleaacaaIYaGaaGOm aaqaaiaadchaaaGccqGH9aqpcqaH1oqzdaWgaaWcbaGaaGimaaqaba aaaa@3E0D@  is introduced into the film by some external process, which generates stresses in the film, and also causes the substrate to bend.  Provided the inelastic strain is not too large, the plate adopts a state of uniform curvature κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  (its deformed shape can be visualized as a spherical cap, with large radius of curvature 1/κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaac+cacqaH6oWAaaa@3400@  ).  Our goal is to relate the curvature κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  to the inelastic strain ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaa aa@336D@ , and to calculate the stress in the film.  The results are important because stresses in thin films are often determined by measuring the curvature of the substrate. 

 

The inelastic strain may be caused by a number of different processes, including

 

  1. A mismatch in thermal expansion between the film and the substrate.  In this case the inelastic strain is related to the thermal expansion coefficients α f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadAgaaeqaaa aa@3396@ , α s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadohaaeqaaa aa@33A3@  of the film and substrate and the temperature T by ε 0 =( α f α s )(T T 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0Jaaiikaiabeg7aHnaaBaaaleaacaWGMbaabeaakiabgkHi Tiabeg7aHnaaBaaaleaacaWGZbaabeaakiaacMcacaGGOaGaamivai abgkHiTiaadsfadaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa@4138@ , where T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaaaa a@329F@  is the temperature at which the system is stress free (many films are approximately free of stress at deposition temperature)

 

  1. The film may grow epitaxially on the substrate, so that the spacing between atoms in the film is forced to match that of the substrate.  In this case the inelastic strain can be calculated as follows.  Suppose that, in their stress free states, the film and substrate have lattice spacing  a f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGMbaabeaaaa a@32DD@  and a s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGZbaabeaaaa a@32EA@ , respectively.  Then ε 0 =( a f a s )/ a s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaaiikaiaadggadaWgaaWcbaGaamOzaaqabaGccqGHsisl caWGHbWaaSbaaSqaaiaadohaaeqaaOGaaiykaiaac+cacaWGHbWaaS baaSqaaiaadohaaeqaaaaa@3D9B@ .

 

  1. Mismatch strain may develop in the film as a result of the deposition process. 

 

  1. Mismatch strain may be developed as a result of interdiffusion and possibly chemical reactions between the film and substrate.

 

 

Solution: The inelastic strain in the film is related to the curvature of the substrate by

ε 0 = κ h s (1+ ρ 4 η 2 +4ρη+4ρ η 3 +6 ρ 2 η) 6ρη(1+ρ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0ZaaSaaaeaacqaH6oWAcaWGObWaaSbaaSqaaiaadohaaeqa aOGaaiikaiaaigdacqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaisdaaa GccqaH3oaAdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqyW diNaeq4TdGMaey4kaSIaaGinaiabeg8aYjabeE7aOnaaCaaaleqaba GaaG4maaaakiabgUcaRiaaiAdacqaHbpGCdaahaaWcbeqaaiaaikda aaGccqaH3oaAcaGGPaaabaGaaGOnaiabeg8aYjabeE7aOjaacIcaca aIXaGaey4kaSIaeqyWdiNaaiykaaaaaaa@5A93@

where ρ= h f / h s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdiNaeyypa0JaamiAamaaBaaale aacaWGMbaabeaakiaac+cacaWGObWaaSbaaSqaaiaadohaaeqaaaaa @3878@ , and η= E f (1 ν s )/( E s (1 ν f )) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGMaeyypa0JaamyramaaBaaale aacaWGMbaabeaakiaacIcacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqa aiaadohaaeqaaOGaaiykaiaac+cacaGGOaGaamyramaaBaaaleaaca WGZbaabeaakiaacIcacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqaaiaa dAgaaeqaaOGaaiykaiaacMcaaaa@4542@ .  Note that with the sign convention adopted here, the substrate has a positive curvature if the film is on the convex side of the bent plate.

 

The stress in the film is related to the curvature by

σ 11 = σ 22 = κ E s (1 ν s ) [(1+ ρ 3 η) h s 6ηρz(1+ρ)] 6ρ(1+ρ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpdaWcaaqaaiabgkHiTiabeQ7aRjaadweadaWgaaWcbaGaam 4CaaqabaaakeaacaGGOaGaaGymaiabgkHiTiabe27aUnaaBaaaleaa caWGZbaabeaakiaacMcaaaWaaSaaaeaacaGGBbGaaiikaiaaigdacq GHRaWkcqaHbpGCdaahaaWcbeqaaiaaiodaaaGccqaH3oaAcaGGPaGa amiAamaaBaaaleaacaWGZbaabeaakiabgkHiTiaaiAdacqaH3oaAcq aHbpGCcaWG6bGaaiikaiaaigdacqGHRaWkcqaHbpGCcaGGPaGaaiyx aaqaaiaaiAdacqaHbpGCcaGGOaGaaGymaiabgUcaRiabeg8aYjaacM caaaaaaa@619F@

where z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaaaa@31DF@  is the distance above the mid-plane of the film.

 

In most practical situations the thickness of the substrate greatly exceeds the thickness of the film, in which case these results can be approximated by

ε 0 κ h s 2 E s (1 ν f ) 6 h f E f (1 ν s ) σ 11 = σ 22 κ h s 2 E s 6 h f (1 ν s ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaO GaeyisIS7aaSaaaeaacqaH6oWAcaWGObWaa0baaSqaaiaadohaaeaa caaIYaaaaOGaamyramaaBaaaleaacaWGZbaabeaakiaacIcacaaIXa GaeyOeI0IaeqyVd42aaSbaaSqaaiaadAgaaeqaaOGaaiykaaqaaiaa iAdacaWGObWaaSbaaSqaaiaadAgaaeqaaOGaamyramaaBaaaleaaca WGMbaabeaakiaacIcacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqaaiaa dohaaeqaaOGaaiykaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWC daWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaS qaaiaaikdacaaIYaaabeaakiabgIKi7oaalaaabaGaeyOeI0IaeqOU dSMaamiAamaaDaaaleaacaWGZbaabaGaaGOmaaaakiaadweadaWgaa WcbaGaam4CaaqabaaakeaacaaI2aGaamiAamaaBaaaleaacaWGMbaa beaakiaacIcacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqaaiaadohaae qaaOGaaiykaaaaaaa@7883@

These are known as the Stoney equations.

 

Derivation:  It is simplest to derive these results by using the general equations of shell theory to write down the potential energy of the bent plate, and then calculating the values of mid-plane strain and curvature that minimize the potential energy. To this end:

 

1. We consider the plate to consist of the film and substrate together, with combined thickness h= h f + h s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiabg2da9iaadIgadaWgaaWcba GaamOzaaqabaGccqGHRaWkcaWGObWaaSbaaSqaaiaadohaaeqaaaaa @37D4@ .  The mid-plane of the plate is at height h/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiaac+cacaaIYaaaaa@333C@  above the base of the substrate.

 

2. We assume that the deformed plate has a small, uniform curvature κ 11 = κ 22 =κ κ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaykW7cqaH6oWAdaWgaaWcbaGaaGOmaiaaikda aeqaaOGaeyypa0JaeqOUdSMaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaeqOUdS2aaSbaaSqaaiaaigda caaIYaaabeaakiabg2da9iaaicdaaaa@4FE9@ , and mid-plane strain γ 11 = γ 22 =γ γ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaykW7caaMc8Uaeq4SdC2aaSbaaSqaaiaaikda caaIYaaabeaakiabg2da9iabeo7aNjaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4SdC2aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da 9iaaicdaaaa@4B1C@ .  As long as the curvature of the plate is small, the in-plane strain is a function only of the in-plane displacement components of the plate, while the curvature is a function only of the out-of-plane displacement (see Sect 10.6.2).  This means that γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3287@  and κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  can be taken as independent variables that describe the deformed shape of the plate.

 

3. The total strain in the substrate follows as ε 11 = ε 22 =γ+ x 3 κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaHZoWzcqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaO GaeqOUdSgaaa@3FBF@ , where x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  is the distance from the mid-plane of the plate. 

 

4. The stress in the substrate is proportional to the total strain.  We assume that the plate is in a state of plane stress, so that the stress components in the substrate are

σ 11 = σ 22 = E s 1 ν s γ+ x 3 κ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaykW7cqaHdpWCdaWgaaWcbaGaaGOmaiaaikda aeqaaOGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadohaaeqaaa GcbaWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqaaiaadoha aeqaaaGccaGLOaGaayzkaaaaamaabmaabaGaeq4SdCMaey4kaSIaam iEamaaBaaaleaacaaIZaaabeaakiabeQ7aRbGaayjkaiaawMcaaaaa @4B29@

The strain energy density in the substrate can then be calculated as

U s = 1 2 σ ij ε ij = E s 1 ν s γ+ x 3 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGZbaabeaaki abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeq4Wdm3aaSbaaSqa aiaadMgacaWGQbaabeaakiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaadweadaWgaaWcbaGaam4Caaqabaaa keaadaqadaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWcbaGaam4Caa qabaaakiaawIcacaGLPaaaaaWaaeWaaeaacqaHZoWzcqGHRaWkcaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdSgacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaaGPaVdaa@505B@

 

5. In the film, the total strain includes contributions from an elastic distorsion of the lattice, together with the inelastic strain, so ε ij = ε ij e + ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dwgaaaGccqGHRaWkcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaaca WGWbaaaaaa@3FCD@ .  The stress in the film is proportional to the elastic strain ε ij e = ε ij ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaGaamyzaaaakiabg2da9iabew7aLnaaBaaaleaacaWGPbGaamOA aaqabaGccqGHsislcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaaca WGWbaaaaaa@3FD8@ . The nonzero components of elastic strain follow as ε 11 e = ε 22 e =γ+ x 3 κ ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaaigdacaaIXa aabaGaamyzaaaakiabg2da9iabew7aLnaaDaaaleaacaaIYaGaaGOm aaqaaiaadwgaaaGccqGH9aqpcqaHZoWzcqGHRaWkcaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeqOUdSMaeyOeI0IaeqyTdu2aaSbaaSqaaiaa icdaaeqaaaaa@450F@  and the stress in the film is

σ 11 = σ 22 = E f 1 ν f γ+ x 3 κ ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaykW7cqaHdpWCdaWgaaWcbaGaaGOmaiaaikda aeqaaOGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadAgaaeqaaa GcbaWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqaaiaadAga aeqaaaGccaGLOaGaayzkaaaaamaabmaabaGaeq4SdCMaey4kaSIaam iEamaaBaaaleaacaaIZaaabeaakiabeQ7aRjabgkHiTiabew7aLnaa BaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@4E93@ .

The strain energy density in the film is

U f = 1 2 σ ij ε ij e = E f 1 ν f γ+ x 3 κ ε 0 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGMbaabeaaki abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeq4Wdm3aaSbaaSqa aiaadMgacaWGQbaabeaakiabew7aLnaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaadweadaWgaaWcbaGaamOz aaqabaaakeaadaqadaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWcba GaamOzaaqabaaakiaawIcacaGLPaaaaaWaaeWaaeaacqaHZoWzcqGH RaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeqOUdSMaeyOeI0Iaeq yTdu2aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaaGPaVdaa@54A3@

 

6. The total potential energy of the system is the integral of the strain energy density

V= 0 R h/2 h/2 h f 2πr U s d x 3 dr + 0 R h/2 h f h/2 2πr U f d x 3 dr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9maapehabaGaaGPaVl aaykW7daWdXbqaaiaaikdacqaHapaCcaWGYbGaamyvamaaBaaaleaa caWGZbaabeaakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaam izaiaadkhaaSqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadIga caGGVaGaaGOmaiabgkHiTiaadIgadaWgaaadbaGaamOzaaqabaaani abgUIiYdGccqGHRaWkaSqaaiaaicdaaeaacaWGsbaaniabgUIiYdGc daWdXbqaaiaaykW7caaMc8+aa8qCaeaacaaIYaGaeqiWdaNaamOCai aadwfadaWgaaWcbaGaamOzaaqabaGccaWGKbGaamiEamaaBaaaleaa caaIZaaabeaakiaadsgacaWGYbaaleaacaWGObGaai4laiaaikdacq GHsislcaWGObWaaSbaaWqaaiaadAgaaeqaaaWcbaGaamiAaiaac+ca caaIYaaaniabgUIiYdaaleaacaaIWaaabaGaamOuaaqdcqGHRiI8aa aa@6B4A@

The resulting expression is lengthy and will not be written out here.

 

7. Finally, the equilibrium values of γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3287@  and κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  can be calculated from the condition that the potential energy must be a minimum, which requires that

V κ =0 V γ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbaabaGaey OaIyRaeqOUdSgaaiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8+aaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaeq4SdCga aiabg2da9iaaicdaaaa@5336@

Solving the resulting linear equations for γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3287@  and ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaa aa@336D@  in terms of κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  gives the formula relating ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaa aa@336D@  and κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@ ; substituting the results into the formula for stress in (5) and setting x 3 =(h h f )/2+z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaacIcacaWGObGaeyOeI0IaamiAamaaBaaaleaacaWGMbaa beaakiaacMcacaGGVaGaaGOmaiabgUcaRiaadQhaaaa@3C67@  gives the formula for stress. 

 

 

 

10.7.5 Bending of a circular plate caused by a through-thickness temperature gradient

 

The figure illustrates the problem to be solved.  An initially flat, circular plate, which lies in the e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  plane is free of external force.  The plate has Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@ , thermal expansion coefficient α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@ , radius R and thickness h.  Its edges are free.  The plate is heated on one face, and cooled on the other, so as to establish a temperature distribution T= T 0 +ΔT x 3 /h MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivaiabg2da9iaadsfadaWgaaWcba GaaGimaaqabaGccqGHRaWkcqqHuoarcaWGubGaamiEamaaBaaaleaa caaIZaaabeaakiaac+cacaWGObaaaa@3B39@  through the thickness of the plate.  Here, T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIWaaabeaaaa a@329F@  is the temperature of the mid-plane of the plate, while ΔT MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaaaa@331F@  is the drop in temperature across the plate.  The thermal expansion of the plate causes it to bend: our objective is to estimate the curvature of the plate as a function of the temperature gradient ΔT/h MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaiaac+cacaWGObaaaa@34BF@ .  The solution will account for large out-of-plane deflections, and will predict that the plate buckles when the temperature gradient reaches a critical value.

 

We will derive an approximate solution, by assuming that the curvature of the plate is uniform.  Since we are interested in calculating the plate’s shape after buckling, the solution is obtained by means of the Von-Karman theory described in Section 10.6.3. We denote the two principal curvatures of the deformed plate by κ 1 , κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeQ7aRnaaBaaaleaacaaIYaaabeaaaaa@36CD@ .   There are three possible equilibrium configurations, as follows

 

1. For temperature gradients satisfying

αΔT R 2 (1+ν) 3/2 4 h 2 <2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHXoqycqqHuoarcaWGub GaamOuamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaey4kaSIa eqyVd4MaaiykamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaGcba GaaGinaiaadIgadaahaaWcbeqaaiaaikdaaaaaaOGaeyipaWJaaGOm aaaa@4207@

the plate bends into a spherical cap shape, with two equal principal curvatures.  The curvatures are related to the temperature gradient by

αΔT R 2 (1+ν) 3/2 4 h 2 = κ ¯ κ ¯ 2 (1ν)+(1+ν) κ 1 = κ 2 = 4h κ ¯ R 2 1+ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHXoqycqqHuoarcaWGub GaamOuamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaey4kaSIa eqyVd4MaaiykamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaGcba GaaGinaiaadIgadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JafqOU dSMbaebadaqadaqaaiqbeQ7aRzaaraWaaWbaaSqabeaacaaIYaaaaO GaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaey4kaSIaaiikaiaa igdacqGHRaWkcqaH9oGBcaGGPaaacaGLOaGaayzkaaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqaH6oWAdaWgaaWcbaGaaGymaaqabaGccqGH9aqp cqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaMc8UaaGPaVl aaykW7caaMc8+aaSaaaeaacaaI0aGaamiAaiqbeQ7aRzaaraaabaGa amOuamaaCaaaleqabaGaaGOmaaaakmaakaaabaGaaGymaiabgUcaRi abe27aUbWcbeaaaaaaaa@86C0@

 

2. For temperature gradients

αΔT R 2 (1+ν) 3/2 4 h 2 >2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHXoqycqqHuoarcaWGub GaamOuamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaey4kaSIa eqyVd4MaaiykamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaGcba GaaGinaiaadIgadaahaaWcbeqaaiaaikdaaaaaaOGaeyOpa4JaaGOm aaaa@420B@

the solution (1) is still a possible equilibrium configuration, but is unstable.  There are infinitely many additional stable configurations, which have two unequal principal curvatures.  One of these solutions can be related to the temperature gradient by

αΔT R 2 (1+ν) 3/2 4 h 2 = κ ^ 2 +1 κ ^ κ 1 = 4h κ ^ R 2 1+ν κ 2 = 4h κ ^ R 2 1+ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHXoqycqqHuoarcaWGub GaamOuamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaey4kaSIa eqyVd4MaaiykamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaGcba GaaGinaiaadIgadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaa aeaacuaH6oWAgaqcamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaig daaeaacuaH6oWAgaqcaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOUdS2aaSbaaSqaai aaigdaaeqaaOGaeyypa0JaaGPaVlaaykW7caaMc8+aaSaaaeaacaaI 0aGaamiAaaqaaiqbeQ7aRzaajaGaamOuamaaCaaaleqabaGaaGOmaa aakmaakaaabaGaaGymaiabgUcaRiabe27aUbWcbeaaaaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOUdS2aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGPaVlaaykW7caaMc8+aaSaaaeaa caaI0aGaamiAaiqbeQ7aRzaajaaabaGaamOuamaaCaaaleqabaGaaG OmaaaakmaakaaabaGaaGymaiabgUcaRiabe27aUbWcbeaaaaaaaa@83B9@

The other solutions have the same principal curvatures, but the principal directions are different.

 

 

These results are displayed by plotting the normalized curvature κ 1 R 2 1+ν /(4h) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaamOuamaaCaaaleqabaGaaGOmaaaakmaakaaabaGaaGymaiabgUca Riabe27aUbWcbeaakiaac+cacaGGOaGaaGinaiaadIgacaGGPaaaaa@3C7E@  as a function of the dimensionless temperature gradient αΔT R 2 (1+ν) 3/2 /(4 h 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeuiLdqKaamivaiaadkfada ahaaWcbeqaaiaaikdaaaGccaGGOaGaaGymaiabgUcaRiabe27aUjaa cMcadaahaaWcbeqaaiaaiodacaGGVaGaaGOmaaaakiaac+cacaGGOa GaaGinaiaadIgadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@4243@  in the figure, for a Poisson’s ratio ν=0.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aIZaaaaa@35C7@  (the graph is virtually identical for other values of ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  ). To visualize the significance of the graph, suppose that the temperature drop across the plate is gradually increased from zero.  The plate will first deform with two equal principal curvatures, which are related to the temperature by the formula given in (1).  At the critical temperature, the plate will buckle, and assume one of the two possible equilibrium configurations, with two unequal principal curvatures.

 

 

Derivation: The solution is derived by approximating the shape of the plate, and selecting the deformed shape that minimizes the potential energy. 

 

1. The displacement of the mid-plane of the plate will be approximated as

u 3 = κ 1 x 1 2 /2+ κ 2 x 2 2 /2 u 1 = A 1 x 1 + A 2 x 1 3 + A 3 x 1 x 2 2 u 2 = B 1 x 2 + B 2 x 2 3 + B 3 x 2 x 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iabeQ7aRnaaBaaaleaacaaIXaaabeaakiaadIhadaqhaaWc baGaaGymaaqaaiaaikdaaaGccaGGVaGaaGOmaiabgUcaRiabeQ7aRn aaBaaaleaacaaIYaaabeaakiaadIhadaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccaGGVaGaaGOmaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamyDamaaBaaaleaacaaIXaaabeaakiabg2da9iaadgeada WgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakiaadIhadaqhaaWcba GaaGymaaqaaiaaiodaaaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaioda aeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaqhaaWcba GaaGOmaaqaaiaaikdaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadwhadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaa caaIYaaabeaakiabgUcaRiaadkeadaWgaaWcbaGaaGOmaaqabaGcca WG4bWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaey4kaSIaamOqamaa BaaaleaacaaIZaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGcca WG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaa@8A41@

where κ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaa aa@3379@  and κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaa aa@337A@  are the two principal curvatures of the plate, and A i , B i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbaabeaaki aacYcacaWGcbWaaSbaaSqaaiaadMgaaeqaaaaa@355B@  are six adjustable parameters that must be selected to minimize the potential energy of the plate.

 

2. The total strain in the plate must be calculated using the Von-Karman formulas in Section 10.6.3, which yield

ε αβ = 1 2 u α x β + u β x α + u 3 x α u 3 x β + x 3 κ αβ ε 11 = A 1 +3 A 2 x 1 2 + A 3 x 2 2 + κ 1 2 x 1 2 /2+ x 3 κ 1 ε 22 = B 1 +3 B 2 x 2 2 + B 3 x 1 2 + κ 2 2 x 2 2 /2+ x 3 κ 2 ε 12 =( A 3 + B 3 ) x 1 x 2 + κ 1 κ 2 x 1 x 2 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaa baWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeg7aHbqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaOGaey4kaSYaaSaa aeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacqaHXoqyaeqaaaaakmaalaaabaGaeyOaIyRa amyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaa WcbaGaeqOSdigabeaaaaaakiaawIcacaGLPaaacqGHRaWkcaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeqOUdS2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGHshI3daGabaabaeqabaGaeqyTdu2aaSbaaSqaaiaa igdacaaIXaaabeaakiabg2da9iaadgeadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaaIZaGaamyqamaaBaaaleaacaaIYaaabeaakiaadIha daqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWGbbWaaSbaaS qaaiaaiodaaeqaaOGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaa kiabgUcaRiabeQ7aRnaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadI hadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGVaGaaGOmaiabgUca RiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAdaWgaaWcbaGaaG ymaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGa eyypa0JaamOqamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaiodaca WGcbWaaSbaaSqaaiaaikdaaeqaaOGaamiEamaaDaaaleaacaaIYaaa baGaaGOmaaaakiabgUcaRiaadkeadaWgaaWcbaGaaG4maaqabaGcca WG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeqOUdS2a a0baaSqaaiaaikdaaeaacaaIYaaaaOGaamiEamaaDaaaleaacaaIYa aabaGaaGOmaaaakiaac+cacaaIYaGaey4kaSIaamiEamaaBaaaleaa caaIZaaabeaakiabeQ7aRnaaBaaaleaacaaIYaaabeaaaOqaaiabew 7aLnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaGGOaGaamyq amaaBaaaleaacaaIZaaabeaakiabgUcaRiaadkeadaWgaaWcbaGaaG 4maaqabaGccaGGPaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIha daWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH6oWAdaWgaaWcbaGaaG ymaaqabaGccqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSba aSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiaac+ cacaaIYaaaaiaawUhaaaaa@BF3C@

 

3. The plate is assumed to be in a state of plane stress: the stress components can be calculated using the plane stress version of the linear elastic constitutive equations

σ αβ = E 1+ν ε αβ + ν 1ν ε γγ δ αβ Eα( T 0 +ΔT x 3 /h) 1ν δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpdaWcaaqaaiaadweaaeaacaaIXaGaey4kaSIa eqyVd4gaamaacmaabaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek7aIb qabaGccqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigdacqGHsislcqaH 9oGBaaGaeqyTdu2aaSbaaSqaaiabeo7aNjabeo7aNbqabaGccqaH0o azdaWgaaWcbaGaeqySdeMaeqOSdigabeaaaOGaay5Eaiaaw2haaiab gkHiTmaalaaabaGaamyraiabeg7aHjaacIcacaWGubWaaSbaaSqaai aaicdaaeqaaOGaey4kaSIaeuiLdqKaamivaiaadIhadaWgaaWcbaGa aG4maaqabaGccaGGVaGaamiAaiaacMcaaeaacaaIXaGaeyOeI0Iaeq yVd4gaaiabes7aKnaaBaaaleaacqaHXoqycqaHYoGyaeqaaaaa@6895@

 

4. The strain energy density in the plate can be calculated using the formulas given in Section 3.1.7 as U=((1+ν) σ αβ σ αβ ν σ γγ σ αα )/2E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9iaacIcacaGGOaGaaG ymaiabgUcaRiabe27aUjaacMcacqaHdpWCdaWgaaWcbaGaeqySdeMa eqOSdigabeaakiabeo8aZnaaBaaaleaacqaHXoqycqaHYoGyaeqaaO GaeyOeI0IaeqyVd4Maeq4Wdm3aaSbaaSqaaiabeo7aNjabeo7aNbqa baGccqaHdpWCdaWgaaWcbaGaeqySdeMaeqySdegabeaakiaacMcaca GGVaGaaGOmaiaadweaaaa@5295@ .  The result is lengthy and is best calculated using a symbolic manipulation program.

 

5. The total strain energy of the plate follows by integrating the strain energy density over the volume of the plate as

Φ= 0 R 0 2π h/2 h/2 U(r,θ, x 3 )d x 3 dθ r dr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0Zaa8qCaeaadaWdXb qaamaapehabaGaamyvaiaacIcacaWGYbGaaiilaiabeI7aXjaacYca caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaadsgacaWG4bWaaS baaSqaaiaaiodaaeqaaaqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqa aiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aOGaamizaiabeI7aXbWcba GaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaadkhaaSqaaiaa icdaaeaacaWGsbaaniabgUIiYdGccaWGKbGaamOCaaaa@558C@ .

 To evaluate the integral, the strain energy density can be expressed in polar coordinates by substituting x 1 =rcosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadkhaciGGJbGaai4BaiaacohacqaH4oqCaaa@3954@ , x 2 =rsinθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaadkhaciGGZbGaaiyAaiaac6gacqaH4oqCaaa@395A@  into the results of (4).  Again, a symbolic manipulation program makes the algebra painless.

 

6. The coefficients A i , B i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbaabeaaki aacYcacaWGcbWaaSbaaSqaaiaadMgaaeqaaaaa@355B@  and the curvatures must now be determined by minimizing the potential energy Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@325A@ .  To proceed, we first calculate the coefficients A i , B i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbaabeaaki aacYcacaWGcbWaaSbaaSqaaiaadMgaaeqaaaaa@355B@  in terms of the temperature gradient and curvature by solving the six simultaneous equations Φ/ A i =0Φ/ B i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeuOPdyKaai4laiabgkGi2k aadgeadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHciITcq qHMoGrcaGGVaGaeyOaIyRaamOqamaaBaaaleaacaWGPbaabeaakiab g2da9iaaicdaaaa@4E7F@ .  Substituting the resulting formulas for A i , B i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbaabeaaki aacYcacaWGcbWaaSbaaSqaaiaadMgaaeqaaaaa@355B@  back into the results of (5), and using the two remaining conditions Φ/ κ 1 =0Φ/ κ 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeuOPdyKaai4laiabgkGi2k abeQ7aRnaaBaaaleaacaaIXaaabeaakiabg2da9iaaicdacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHciITcqqHMoGrcaGGVa GaeyOaIyRaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGim aaaa@4CDB@  yields two equations for κ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaa aa@3379@  and κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaa aa@337A@

κ 1 κ 2 2 (1 ν 2 ) R 4 +16 h 2 κ 1 +16 h 2 ν κ 2 16(1+ν)αΔTh=0 κ 2 κ 1 2 (1 ν 2 ) R 4 +16 h 2 κ 2 +16 h 2 ν κ 1 16(1+ν)αΔTh=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH6oWAdaWgaaWcbaGaaGymaa qabaGccqaH6oWAdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGOaGa aGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaca WGsbWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGymaiaaiAdacaWG ObWaaWbaaSqabeaacaaIYaaaaOGaeqOUdS2aaSbaaSqaaiaaigdaae qaaOGaey4kaSIaaGymaiaaiAdacaWGObWaaWbaaSqabeaacaaIYaaa aOGaeqyVd4MaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ymaiaaiAdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacqaHXoqy cqqHuoarcaWGubGaamiAaiabg2da9iaaicdaaeaacqaH6oWAdaWgaa WcbaGaaGOmaaqabaGccqaH6oWAdaqhaaWcbaGaaGymaaqaaiaaikda aaGccaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaa aakiaacMcacaWGsbWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGym aiaaiAdacaWGObWaaWbaaSqabeaacaaIYaaaaOGaeqOUdS2aaSbaaS qaaiaaikdaaeqaaOGaey4kaSIaaGymaiaaiAdacaWGObWaaWbaaSqa beaacaaIYaaaaOGaeqyVd4MaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaaGymaiaaiAdacaGGOaGaaGymaiabgUcaRiabe27aUjaa cMcacqaHXoqycqqHuoarcaWGubGaamiAaiabg2da9iaaicdaaaaa@8613@

 

7. Eliminating the temperature from these equations and simplifying the result gives the expression

( κ 1 κ 2 )( κ 1 κ 2 R 4 (1+ν)16 h 2 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabeQ7aRnaaBaaaleaacaaIXa aabeaakiabgkHiTiabeQ7aRnaaBaaaleaacaaIYaaabeaakiaacMca caGGOaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaOGaeqOUdS2aaSbaaS qaaiaaikdaaeqaaOGaamOuamaaCaaaleqabaGaaGinaaaakiaacIca caaIXaGaey4kaSIaeqyVd4MaaiykaiabgkHiTiaaigdacaaI2aGaam iAamaaCaaaleqabaGaaGOmaaaakiaacMcacqGH9aqpcaaIWaaaaa@4B8F@

This shows that there are two possible equilibrium configurations: in the first, κ 1 = κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaeqOUdS2aaSbaaSqaaiaaikdaaeqaaaaa@3723@ ; in the second, the two curvatures are related by κ 1 R 4 (1+ν)=16 h 2 / κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaO GaamOuamaaCaaaleqabaGaaGinaaaakiaacIcacaaIXaGaey4kaSIa eqyVd4Maaiykaiabg2da9iaaigdacaaI2aGaamiAamaaCaaaleqaba GaaGOmaaaakiaac+cacqaH6oWAdaWgaaWcbaGaaGOmaaqabaaaaa@41AB@ .  Finally, these two possible relationships can be substituted back into either of the two equations in (6) to relate the temperature gradient to the curvatures.

 

 

 

10.7.6 Buckling of a cylindrical shell subjected to axial loading

 

The figure illustrates a thin-walled cylinder, with radius a, height L and wall thickness h.  The shell is made from a linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  It is loaded in compression by subjecting its ends to a prescribed axial displacement Δ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqeaaa@3246@ .   We wish to estimate the critical axial strain Δ/L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaai4laiaadYeaaaa@33CA@  or axial force P MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaaaa@31B5@  that will cause the cylinder to buckle.

 

We will derive an approximate solution, by assuming a shape for the buckled cylinder, and calculating the shape that minimizes the potential energy of the system.   Specifically, we assume that the radial displacement of the surface of the cylinder at the instant of buckling has the form u r =C+Asin(λπz/L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki abg2da9iaadoeacqGHRaWkcaWGbbGaci4CaiaacMgacaGGUbGaaiik aiabeU7aSjabec8aWjaadQhacaGGVaGaamitaiaacMcaaaa@40A2@ .  The solution shows that:

 

1. Buckling occurs at a critical axial strain Δ/L=h/ 3 a(1 ν 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaai4laiaadYeacqGH9aqpca WGObGaai4lamaabmaabaWaaOaaaeaacaaIZaaaleqaaOGaamyyaiaa cIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaai ykaaGaayjkaiaawMcaaaaa@3F6D@

 

2. The corresponding axial load is P=2πE h 2 / (1 ν 2 ) 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iaaikdacqaHapaCca WGfbGaamiAamaaCaaaleqabaGaaGOmaaaakiaac+cadaqadaqaaiaa cIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaai ykamaakaaabaGaaG4maaWcbeaaaOGaayjkaiaawMcaaaaa@40A8@

 

3. The wavelength of the buckling mode is L/λ=π ah / (12) 1/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitaiaac+cacqaH7oaBcqGH9aqpcq aHapaCdaGcaaqaaiaadggacaWGObaaleqaaOGaai4laiaacIcacaaI XaGaaGOmaiaacMcadaahaaWcbeqaaiaaigdacaGGVaGaaGinaaaaaa a@3EAF@ .  Note that the buckling mode describes the shape of the cylinder at the instant when buckling begins; it does not correspond to the shape of the cylinder after buckling.

 

The exact buckling strain and load are a factor 1 ν 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaaqabaaaaa@3539@  smaller than this approximate result.

 

 

Derivation: We must calculate, and then minimize, the potential energy of the cylinder.  It is convenient to work through this problem using curvilinear coordinates: we shall use cylindrical-polar coordinates   ξ 1 z, ξ 2 θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaO GaeyyyIORaamOEaiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGc cqGHHjIUcqaH4oqCaaa@3D40@  to identify a point on the mid-plane of the shell.   

 

1. The position vector of a point in the undeformed shell is r ¯ =acosθ e 1 +asinθ e 2 +z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JaamyyaiGaco gacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGHbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBa aaleaacaaIYaaabeaakiabgUcaRiaadQhacaWHLbWaaSbaaSqaaiaa iodaaeqaaaaa@4635@

 

2. The natural basis vectors for the undeformed shell are therefore

m ¯ 1 = r ¯ z = e 3 m ¯ 2 = r ¯ θ =asinθ e 1 +acosθ e 2 m ¯ 3 =(cosθ e 1 +sinθ e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacqGHciITceWHYbGbaebaaeaacqGHciIT caWG6baaaiabg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyBayaaraWa aSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITceWHYb GbaebaaeaacqGHciITcqaH4oqCaaGaeyypa0JaeyOeI0IaamyyaiGa cohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGHbGaci4yaiaac+gacaGGZbGaeqiUdeNaaCyzamaa BaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlqah2gagaqeamaaBaaaleaacaaIZaaabeaakiabg2da9iab gkHiTiaacIcaciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNa aCyzamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@7CF0@

and the reciprocal basis vectors are m ¯ 1 = e 3 m ¯ 2 =(sinθ e 1 +cosθ e 2 )/a m ¯ 3 = m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaaCyzamaaBaaaleaacaaIZaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyBayaara WaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaiikaiabgkHiTiGacoha caGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccq GHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaa ikdaaeqaaOGaaiykaiaac+cacaWGHbGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqah2gagaqe amaaCaaaleqabaGaaG4maaaakiabg2da9iqah2gagaqeamaaBaaale aacaaIZaaabeaaaaa@6B2A@

 

3. The components of the metric tensor are

g ¯ αβ = m ¯ α m ¯ β g ¯ 11 =1, g ¯ 12 =0, g ¯ 22 =1/ a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaWbaaSqabeaacqaHXo qycqaHYoGyaaGccqGH9aqpceWHTbGbaebadaahaaWcbeqaaiabeg7a HbaakiabgwSixlqah2gagaqeamaaCaaaleqabaGaeqOSdigaaOGaey O0H4Tabm4zayaaraWaaWbaaSqabeaacaaIXaGaaGymaaaakiabg2da 9iaaigdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uabm4zayaaraWaaWbaaSqabeaacaaIXaGaaGOmaaaakiabg2da9iaa icdacaGGSaGaaGPaVlaaykW7ceWGNbGbaebadaahaaWcbeqaaiaaik dacaaIYaaaaOGaeyypa0JaaGymaiaac+cacaWGHbWaaWbaaSqabeaa caaIYaaaaaaa@5E64@

g ¯ αβ = m ¯ α m ¯ β g ¯ 11 =1 g ¯ 12 =0 g ¯ 22 = a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpceWHTbGbaebadaWgaaWcbaGaeqySdega beaakiabgwSixlqah2gagaqeamaaBaaaleaacqaHYoGyaeqaaOGaey O0H4Tabm4zayaaraWaaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da 9iaaigdacaaMc8UaaGPaVlaaykW7caaMc8Uabm4zayaaraWaaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7ceWGNbGbaebadaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0JaamyyamaaCaaaleqabaGaaGOmaaaaaaa@5EA6@

 

4. The covariant components of the curvature tensor for the undeformed shell are

κ ¯ αβ = m ¯ 3 m ¯ α ξ β κ ¯ 11 = κ ¯ 12 =0 κ ¯ 22 =a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaebadaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9iabgkHiTiqah2gagaqeamaaBaaaleaa caaIZaaabeaakiabgwSixpaalaaabaGaeyOaIyRabCyBayaaraWaaS baaSqaaiabeg7aHbqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGa eqOSdigabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgk DiElaaykW7caaMc8UaaGPaVlaaykW7cuaH6oWAgaqeamaaBaaaleaa caaIXaGaaGymaaqabaGccqGH9aqpcuaH6oWAgaqeamaaBaaaleaaca aIXaGaaGOmaaqabaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlqbeQ7aRzaaraWaaSbaaSqaaiaaik dacaaIYaaabeaakiabg2da9iabgkHiTiaadggaaaa@70C8@

 

5. The position vector of the mid-plane of the deformed shell is approximated as

r= a+C+Asinλπz/L cosθ e 1 +sinθ e 2 +(1Δ/L)z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaiabg2da9maabmaabaGaamyyai abgUcaRiaadoeacqGHRaWkcaWGbbGaci4CaiaacMgacaGGUbGaeq4U dWMaeqiWdaNaamOEaiaac+cacaWGmbaacaGLOaGaayzkaaWaaeWaae aaciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBa aaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaacIcacaaI XaGaeyOeI0IaeuiLdqKaai4laiaadYeacaGGPaGaamOEaiaahwgada WgaaWcbaGaaG4maaqabaaaaa@5A52@

It will greatly simplify subsequent calculations to assume a priori that λ>>1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyOpa4JaeyOpa4JaaGymaa aa@355F@

 

6. The natural basis vectors for the deformed shell are therefore

m 1 = r z = Aλπ/L sinλπz/L cosθ e 1 +sinθ e 2 +(1Δ/L) e 3 m 2 = r θ = a+C+Asinλπz/L sinθ e 1 +cosθ e 2 m 3 Aλπ/L cos(λπz/L) e 3 cosθ e 1 +sinθ e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOE aaaacqGH9aqpdaqadaqaaiaadgeacqaH7oaBcqaHapaCcaGGVaGaam itaaGaayjkaiaawMcaaiGacohacaGGPbGaaiOBaiabeU7aSjabec8a WjaadQhacaGGVaGaamitamaabmaabaGaci4yaiaac+gacaGGZbGaeq iUdeNaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacohacaGG PbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacqGHRaWkcaGGOaGaaGymaiabgkHiTiabfs5aejaac+ca caWGmbGaaiykaiaahwgadaWgaaWcbaGaaG4maaqabaaakeaacaWHTb WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWH YbaabaGaeyOaIyRaeqiUdehaaiabg2da9maabmaabaGaamyyaiabgU caRiaadoeacqGHRaWkcaWGbbGaci4CaiaacMgacaGGUbGaeq4UdWMa eqiWdaNaamOEaiaac+cacaWGmbaacaGLOaGaayzkaaWaaeWaaeaacq GHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaaCyzam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaah2gadaWg aaWcbaGaaG4maaqabaGccqGHijYUdaqadaqaaiaadgeacqaH7oaBcq aHapaCcaGGVaGaamitaaGaayjkaiaawMcaaiGacogacaGGVbGaai4C aiaacIcacqaH7oaBcqaHapaCcaWG6bGaai4laiaadYeacaGGPaGaaC yzamaaBaaaleaacaaIZaaabeaakiabgkHiTmaabmaabaGaci4yaiaa c+gacaGGZbGaeqiUdeNaaCyzamaaBaaaleaacaaIXaaabeaakiabgU caRiGacohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaaaaaa@B0F9@

 

7. The covariant components of the metric tensor and curvature for the deformed shell follow as

g αβ = m α m β g 11 = λπA/L 2 cos 2 (λπz/L)+ 1Δ/L 2 g 12 =0 g 22 = a+C+Asin(λπz/L) 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGNbWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpcaWHTbWaaSbaaSqaaiabeg7aHbqabaGc cqGHflY1caWHTbWaaSbaaSqaaiabek7aIbqabaGccqGHshI3caWGNb WaaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9maabmaabaGaeq4U dWMaeqiWdaNaamyqaiaac+cacaWGmbGaaGPaVdGaayjkaiaawMcaai aaykW7daahaaWcbeqaaiaaikdaaaGcciGGJbGaai4Baiaacohadaah aaWcbeqaaiaaikdaaaGccaGGOaGaeq4UdWMaeqiWdaNaamOEaiaac+ cacaWGmbGaaiykaiabgUcaRmaabmaabaGaaGymaiabgkHiTiabfs5a ejaac+cacaWGmbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa GcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadEgadaWgaaWcbaGaaGymaiaaikdaae qaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadEgadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Zaae WaaeaacaWGHbGaey4kaSIaam4qaiabgUcaRiaadgeaciGGZbGaaiyA aiaac6gacaGGOaGaeq4UdWMaeqiWdaNaamOEaiaac+cacaWGmbGaai ykaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaa@C6DE@

κ αβ = m 3 m α ξ β κ 11 πλ/L 2 Asin(λπz/L) κ 12 =0 κ 22 (a+C+Asin(λπz/L)) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH6oWAdaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9iabgkHiTiaah2gadaWgaaWcbaGaaG4m aaqabaGccqGHflY1daWcaaqaaiabgkGi2kaah2gadaWgaaWcbaGaeq ySdegabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacqaHYoGyaeqa aaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyO0H4TaaGPaVl aaykW7caaMc8UaaGPaVlabeQ7aRnaaBaaaleaacaaIXaGaaGymaaqa baGccqGHijYUdaqadaqaaiabec8aWjabeU7aSjaac+cacaWGmbaaca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamyqaiGacohacaGG PbGaaiOBaiaacIcacqaH7oaBcqaHapaCcaWG6bGaai4laiaadYeaca GGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8oabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq OUdS2aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaaicdacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabeQ7aRnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGHijYUcqGHsislcaGGOaGaamyyaiabgUcaRiaadoeacqGHRaWkca WGbbGaci4CaiaacMgacaGGUbGaaiikaiabeU7aSjabec8aWjaadQha caGGVaGaamitaiaacMcacaGGPaaaaaa@FA22@

 

8. The in-plane strain tensor and curvature change tensor may be approximated as

γ αβ =( g αβ g ¯ αβ )/2 γ 11 =Δ/L+ λπA/L 2 cos 2 (πλz/L)/2 γ 12 =0 γ 22 aC+Aacos(πλz/L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHZoWzdaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9iaacIcacaWGNbWaaSbaaSqaaiabeg7a Hjabek7aIbqabaGccqGHsislceWGNbGbaebadaWgaaWcbaGaeqySde MaeqOSdigabeaakiaacMcacaGGVaGaaGOmaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyO0H4TaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4SdC2aaSbaaSqaaiaaigda caaIXaaabeaakiabg2da9iabgkHiTiabfs5aejaac+cacaWGmbGaey 4kaSYaaeWaaeaacqaH7oaBcqaHapaCcaWGbbGaai4laiaadYeaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcciGGJbGaai4Baiaaco hadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqiWdaNaeq4UdWMaamOE aiaac+cacaWGmbGaaiykaiaac+cacaaIYaGaaGPaVdqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaeq4SdC2aaSbaaSqaaiaaigdacaaIYaaabeaakiab g2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4SdC2aaSbaaSqaaiaaikdacaaIYaaabeaakiabgIKi7kaadggacaWG dbGaey4kaSIaamyqaiaadggaciGGJbGaai4BaiaacohacaGGOaGaeq iWdaNaeq4UdWMaamOEaiaac+cacaWGmbGaaiykaaaaaa@1E3C@

Δ κ αβ = κ αβ κ ¯ αλ g ¯ λμ g μβ Δ κ 11 (λπ/L) 2 Asin(λπz/L)Δ κ 12 =0Δ κ 22 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqOUdS2aaSbaaSqaaiabeg 7aHjabek7aIbqabaGccqGH9aqpcaaMc8UaaGPaVlabeQ7aRnaaBaaa leaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0IafqOUdSMbaebadaWgaa WcbaGaeqySdeMaeq4UdWgabeaakiqadEgagaqeamaaCaaaleqabaGa eq4UdWMaeqiVd0gaaOGaam4zamaaBaaaleaacqaH8oqBcqaHYoGyae qaaOGaaGPaVlaaykW7caaMc8UaeyO0H4TaaGPaVlaaykW7caaMc8Ua aGPaVlabfs5aejabeQ7aRnaaBaaaleaacaaIXaGaaGymaaqabaGccq GHijYUcaGGOaGaeq4UdWMaeqiWdaNaai4laiaadYeacaGGPaWaaWba aSqabeaacaaIYaaaaOGaamyqaiGacohacaGGPbGaaiOBaiaacIcacq aH7oaBcqaHapaCcaWG6bGaai4laiaadYeacaGGPaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl abfs5aejabeQ7aRnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqp caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl abfs5aejabeQ7aRnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHijYU caaIWaaaaa@9DCC@

 

9. The strain energy of the deformed shell can be calculated from

Φ= A h 2 D αβρμ γ αβ γ ρμ + h 3 24 D αβρμ Δ κ αβ Δ κ ρμ dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0ZaaeWaaeaadaWdrb qaamaalaaabaGaamiAaaqaaiaaikdaaaGaamiramaaCaaaleqabaGa eqySdeMaeqOSdiMaeqyWdiNaeqiVd0gaaOGaeq4SdC2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqaHZoWzdaWgaaWcbaGaeqyWdiNaeqiV d0gabeaakiabgUcaRaWcbaGaamyqaaqab0Gaey4kIipakmaalaaaba GaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaikdacaaI0aaaaiaa dseadaahaaWcbeqaaiabeg7aHjabek7aIjabeg8aYjabeY7aTbaaki abfs5aejabeQ7aRnaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeuiL dqKaeqOUdS2aaSbaaSqaaiabeg8aYjabeY7aTbqabaaakiaawIcaca GLPaaacaWGKbGaamyqaaaa@66E5@  

with

  D αβρμ = E 2(1 ν 2 ) ( g ¯ αρ g ¯ βμ + g ¯ αμ g ¯ βρ )(1ν)+2ν g ¯ αβ g ¯ ρμ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaCaaaleqabaGaeqySdeMaeq OSdiMaeqyWdiNaeqiVd0gaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYa aaaOGaaiykaaaadaqadaqaaiaacIcaceWGNbGbaebadaahaaWcbeqa aiabeg7aHjabeg8aYbaakiqadEgagaqeamaaCaaaleqabaGaeqOSdi MaeqiVd0gaaOGaey4kaSIabm4zayaaraWaaWbaaSqabeaacqaHXoqy cqaH8oqBaaGcceWGNbGbaebadaahaaWcbeqaaiabek7aIjabeg8aYb aakiaacMcacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqGHRaWk caaIYaGaeqyVd4Mabm4zayaaraWaaWbaaSqabeaacqaHXoqycqaHYo GyaaGcceWGNbGbaebadaahaaWcbeqaaiabeg8aYjabeY7aTbaaaOGa ayjkaiaawMcaaaaa@6835@

Substituting for g ¯ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaWbaaSqabeaacqaHXo qycqaHYoGyaaaaaa@3551@  and noting that γ 12 =Δ κ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iabfs5aejabeQ7aRnaaBaaaleaacaaIXaGaaGOm aaqabaGccqGH9aqpcaaIWaaaaa@3BBF@  reduces this result to

Φ= πahE (1 ν 2 ) 0 L γ 11 2 + γ 22 2 / a 4 +2ν γ 11 γ 22 / a 2 + h 2 12 Δ κ 11 2 +Δ κ 22 2 / a 4 +2νΔ κ 11 Δ κ 22 / a 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0ZaaSaaaeaacqaHap aCcaWGHbGaamiAaiaadweaaeaacaGGOaGaaGymaiabgkHiTiabe27a UnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaa8qCaeaadaqadaqaai abeo7aNnaaDaaaleaacaaIXaGaaGymaaqaaiaaikdaaaGccqGHRaWk cqaHZoWzdaqhaaWcbaGaaGOmaiaaikdaaeaacaaIYaaaaOGaai4lai aadggadaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqyVd4Ma eq4SdC2aaSbaaSqaaiaaigdacaaIXaaabeaakiabeo7aNnaaBaaale aacaaIYaGaaGOmaaqabaGccaGGVaGaamyyamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamiAamaaCaaale qabaGaaGOmaaaaaOqaaiaaigdacaaIYaaaamaabmaabaGaeuiLdqKa eqOUdS2aa0baaSqaaiaaigdacaaIXaaabaGaaGOmaaaakiabgUcaRi abfs5aejabeQ7aRnaaDaaaleaacaaIYaGaaGOmaaqaaiaaikdaaaGc caGGVaGaamyyamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacq aH9oGBcqqHuoarcqaH6oWAdaWgaaWcbaGaaGymaiaaigdaaeqaaOGa euiLdqKaeqOUdS2aaSbaaSqaaiaaikdacaaIYaaabeaakiaac+caca WGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaleaacaaI WaaabaGaamitaaqdcqGHRiI8aaaa@7EC0@

 

10. The potential energy can be evaluated exactly, but the resulting expression is too long to write out in full.  To proceed, we eliminate C by finding the value of C that minimizes the potential energy (set Φ/C=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeuOPdyKaai4laiabgkGi2k aadoeacqGH9aqpcaaIWaaaaa@3861@  and solve for C, then substitute the result back into Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@325A@  ).  For λ>>1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyOpa4JaeyOpa4JaaGymaa aa@355F@  the resulting expression for   Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@325A@  may be simplified to

ΦEπahL Δ L 2 + π 2 Ehaλ A 2 4(1 ν 2 )L ϕ 1 ϕ 2 Δ L +O( A 4 ) ϕ 1 = π 3 λ 3 h 2 6 L 2 + 2 L 2 πλ a 2 ϕ 2 =(1 ν 2 )2πλ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHMoGrcqGHijYUcaWGfbGaeq iWdaNaamyyaiaadIgacaWGmbWaaeWaaeaadaWcaaqaaiabfs5aebqa aiaadYeaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaSaaaeaacqaHapaCdaahaaWcbeqaaiaaikdaaaGccaWGfbGa amiAaiaadggacqaH7oaBcaWGbbWaaWbaaSqabeaacaaIYaaaaaGcba GaaGinaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaI YaaaaOGaaiykaiaadYeaaaWaaeWaaeaacqaHvpGzdaWgaaWcbaGaaG ymaaqabaGccqGHsislcqaHvpGzdaWgaaWcbaGaaGOmaaqabaGcdaqa daqaamaalaaabaGaeuiLdqeabaGaamitaaaaaiaawIcacaGLPaaaai aawIcacaGLPaaacqGHRaWkcaWGpbGaaiikaiaadgeadaahaaWcbeqa aiaaisdaaaGccaGGPaaabaGaeqy1dy2aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0ZaaSaaaeaacqaHapaCdaahaaWcbeqaaiaaiodaaaGccqaH 7oaBdaahaaWcbeqaaiaaiodaaaGccaWGObWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGOnaiaadYeadaahaaWcbeqaaiaaikdaaaaaaOGaey4k aSYaaSaaaeaacaaIYaGaamitamaaCaaaleqabaGaaGOmaaaaaOqaai abec8aWjabeU7aSjaadggadaahaaWcbeqaaiaaikdaaaaaaOGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabew9aMnaaBaaaleaacaaIYaaa beaakiabg2da9iaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabe aacaaIYaaaaOGaaiykaiaaikdacqaHapaCcqaH7oaBcaaMc8oaaaa@98E4@

 

11. The buckling load can now be deduced from this result.  Note that both ϕ 1 >0, ϕ 2 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaigdaaeqaaO GaeyOpa4JaaGimaiaacYcacqaHvpGzdaWgaaWcbaGaaGOmaaqabaGc cqGH+aGpcaaIWaaaaa@3A87@ , so the potential energy is minimized with A=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9iaaicdaaaa@3366@  (no buckling) if Δ/L< ϕ 1 / ϕ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaai4laiaadYeacqGH8aapcq aHvpGzdaWgaaWcbaGaaGymaaqabaGccaGGVaGaeqy1dy2aaSbaaSqa aiaaikdaaeqaaaaa@3AEA@ , and with A>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg6da+iaaicdaaaa@3368@  if Δ/L> ϕ 1 / ϕ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaai4laiaadYeacqGH+aGpcq aHvpGzdaWgaaWcbaGaaGymaaqabaGccaGGVaGaeqy1dy2aaSbaaSqa aiaaikdaaeqaaaaa@3AEE@ .  The critical axial strain for which buckling is first possible corresponds to the minimum value of ϕ 1 / ϕ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaigdaaeqaaO Gaai4laiabew9aMnaaBaaaleaacaaIYaaabeaaaaa@36FC@  with respect to λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@ .  The minimum occurs for λ= (12) 1/4 L/(π ah ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0Jaaiikaiaaigdaca aIYaGaaiykamaaCaaaleqabaGaaGymaiaac+cacaaI0aaaaOGaamit aiaac+cacaGGOaGaeqiWda3aaOaaaeaacaWGHbGaamiAaaWcbeaaki aacMcaaaa@3F5F@ , which gives a critical axial strain of Δ/L=h/ a(1 ν 2 ) 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaai4laiaadYeacqGH9aqpca WGObGaai4lamaabmaabaGaamyyaiaacIcacaaIXaGaeyOeI0IaeqyV d42aaWbaaSqabeaacaaIYaaaaOGaaiykamaakaaabaGaaG4maaWcbe aaaOGaayjkaiaawMcaaaaa@3F6D@ .

 

12. The axial force at buckling can be computed trivially by noting that the cylinder is in a state of uniaxial axial stress.  The axial force is therefore 2πahEΔ/L=2πE h 2 / (1 ν 2 ) 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiabec8aWjaadggacaWGObGaam yraiabfs5aejaac+cacaWGmbGaeyypa0JaaGOmaiabec8aWjaadwea caWGObWaaWbaaSqabeaacaaIYaaaaOGaai4lamaabmaabaGaaiikai aaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaWa aOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaaaaa@47D3@

 

 

 

10.7.7 Torsion of an open-walled circular cylinder

 

The figure shows a thin-walled tube, with radius a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaaaa@31C6@  and wall-thickness h, which has been slit along a line parallel to its axis.  The tube is made from a linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ , and is subjected to a twisting moment Λ=Λ e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Mdiabg2da9iabfU5amjaahwgada WgaaWcbaGaamOEaaqabaaaaa@369B@  parallel to its axis.  The moment causes the end of the tube at z=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaadYeaaaa@33B6@  to twist through an angle ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@  relative to the end at z=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaaicdaaaa@339F@ .

 

The displacement field and the internal forces in the shell can be expressed as components in a cylindrical-polar basis { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B58@  as follows

u= 3Λ(1+ν) π h 3 aE aθ e z +z e θ T= Λ 4π a 2 e z e θ M= Λ 4πa e z e θ + e θ e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH1bGaeyypa0ZaaSaaaeaaca aIZaGaeu4MdWKaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaabaGa eqiWdaNaamiAamaaCaaaleqabaGaaG4maaaakiaadggacaWGfbaaam aabmaabaGaamyyaiabeI7aXjaahwgadaWgaaWcbaGaamOEaaqabaGc cqGHRaWkcaWG6bGaaCyzamaaBaaaleaacqaH4oqCaeqaaaGccaGLOa GaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7aeaacaWHubGaeyypa0ZaaSaaae aacqqHBoataeaacaaI0aGaeqiWdaNaamyyamaaCaaaleqabaGaaGOm aaaaaaGccaaMc8UaaCyzamaaBaaaleaacaWG6baabeaakiabgEPiel aahwgadaWgaaWcbaGaeqiUdehabeaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2eacqGH9aqpda WcaaqaaiabfU5ambqaaiaaisdacqaHapaCcaWGHbaaamaabmaabaGa aCyzamaaBaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWcba GaeqiUdehabeaakiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaa kiabgEPielaahwgadaWgaaWcbaGaamOEaaqabaaakiaawIcacaGLPa aaaaaa@908E@

Note that this is one of the rare shell geometries for which the internal force tensor T is not symmetric.

 

 

Derivation: We choose the cylindrical-polar coordinates  ξ 1 z, ξ 2 θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaO GaeyyyIORaamOEaiaacYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGc cqGHHjIUcqaH4oqCaaa@3D40@  as our coordinate system.  

 

1. The position vector of a point in the undeformed shell is r ¯ =acosθ e 1 +asinθ e 2 +z e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JaamyyaiGaco gacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGHbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBa aaleaacaaIYaaabeaakiabgUcaRiaadQhacaWHLbWaaSbaaSqaaiaa iodaaeqaaaaa@4635@

 

2. The natural basis vectors for the undeformed shell are therefore

m ¯ 1 = r ¯ z = e 3 m ¯ 2 = r ¯ θ =asinθ e 1 +acosθ e 2 m ¯ 3 =(cosθ e 1 +sinθ e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacqGHciITceWHYbGbaebaaeaacqGHciIT caWG6baaaiabg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyBayaaraWa aSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITceWHYb GbaebaaeaacqGHciITcqaH4oqCaaGaeyypa0JaeyOeI0IaamyyaiGa cohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGHbGaci4yaiaac+gacaGGZbGaeqiUdeNaaCyzamaa BaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlqah2gagaqeamaaBaaaleaacaaIZaaabeaakiabg2da9iab gkHiTiaacIcaciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNa aCyzamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@7CF0@

and the reciprocal basis vectors are m ¯ 1 = e 3 m ¯ 2 =(sinθ e 1 +cosθ e 2 )/a m ¯ 3 = m ¯ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaaraWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaaCyzamaaBaaaleaacaaIZaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCyBayaara WaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaiikaiabgkHiTiGacoha caGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccq GHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaa ikdaaeqaaOGaaiykaiaac+cacaWGHbGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqah2gagaqe amaaCaaaleqabaGaaG4maaaakiabg2da9iqah2gagaqeamaaBaaale aacaaIZaaabeaaaaa@6B2A@

 

3. The components of the metric tensor are

g ¯ αβ = m ¯ α m ¯ β g ¯ 11 =1, g ¯ 12 =0, g ¯ 22 =1/ a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaWbaaSqabeaacqaHXo qycqaHYoGyaaGccqGH9aqpceWHTbGbaebadaahaaWcbeqaaiabeg7a HbaakiabgwSixlqah2gagaqeamaaCaaaleqabaGaeqOSdigaaOGaey O0H4Tabm4zayaaraWaaWbaaSqabeaacaaIXaGaaGymaaaakiabg2da 9iaaigdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uabm4zayaaraWaaWbaaSqabeaacaaIXaGaaGOmaaaakiabg2da9iaa icdacaGGSaGaaGPaVlaaykW7ceWGNbGbaebadaahaaWcbeqaaiaaik dacaaIYaaaaOGaeyypa0JaaGymaiaac+cacaWGHbWaaWbaaSqabeaa caaIYaaaaaaa@5E64@

g ¯ αβ = m ¯ α m ¯ β g ¯ 11 =1 g ¯ 12 =0 g ¯ 22 = a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaaraWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpceWHTbGbaebadaWgaaWcbaGaeqySdega beaakiabgwSixlqah2gagaqeamaaBaaaleaacqaHYoGyaeqaaOGaey O0H4Tabm4zayaaraWaaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da 9iaaigdacaaMc8UaaGPaVlaaykW7caaMc8Uabm4zayaaraWaaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7ceWGNbGbaebadaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0JaamyyamaaCaaaleqabaGaaGOmaaaaaaa@5EA6@

 

4. The covariant components of the curvature tensor for the undeformed shell are

κ ¯ αβ = m ¯ 3 m ¯ α ξ β κ ¯ 11 = κ ¯ 12 =0 κ ¯ 22 =a κ ¯ β α = κ ¯ βλ g ¯ αλ κ ¯ 1 1 = κ ¯ 2 1 = κ ¯ 1 2 =0 κ ¯ 2 2 =1/a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH6oWAgaqeamaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaeyypa0JaeyOeI0IabCyBayaaraWaaSba aSqaaiaaiodaaeqaaOGaeyyXIC9aaSaaaeaacqGHciITceWHTbGbae badaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2kabe67a4naaBaaa leaacqaHYoGyaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlqbeQ7aRzaaraWaaSba aSqaaiaaigdacaaIXaaabeaakiabg2da9iqbeQ7aRzaaraWaaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UafqOUdSMbaebadaWgaaWcba GaaGOmaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaamyyaaqaaiqbeQ7a RzaaraWaa0baaSqaaiabek7aIbqaaiabeg7aHbaakiabg2da9iqbeQ 7aRzaaraWaaSbaaSqaaiabek7aIjabeU7aSbqabaGcceWGNbGbaeba daahaaWcbeqaaiabeg7aHjabeU7aSbaakiabgkDiElqbeQ7aRzaara Waa0baaSqaaiaaigdaaeaacaaIXaaaaOGaeyypa0JafqOUdSMbaeba daqhaaWcbaGaaGOmaaqaaiaaigdaaaGccqGH9aqpcuaH6oWAgaqeam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabg2da9iaaicdacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqbeQ7aRz aaraWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeyypa0JaeyOeI0Ia aGymaiaac+cacaWGHbaaaaa@A5A1@

 

5. The Christoffel symbols for the undeformed shell are Γ ¯ βα λ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafu4KdCKbaebadaqhaaWcbaGaeqOSdi MaeqySdegabaGaeq4UdWgaaOGaeyypa0JaaGimaaaa@394B@

 

6. To proceed, we assume that the internal stresses and moments in the cylinder are uniform; in addition, we assume small strains, so that the geometric terms in the equilibrium equations can be approximated using the geometry of the undeformed shell.  The equilibrium equations therefore reduce to

V 2 =0 T 22 a=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaaGOmaaaaki abg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamivamaaCaaaleqabaGaaGOmaiaaikdaaaGccaWGHbGaey ypa0JaaGimaaaa@4469@          V β =0 T 12 T 21 + M 21 /a=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamOvamaaCaaaleqabaGaeq OSdigaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaamivamaaCaaaleqabaGaaGymaiaaik daaaGccqGHsislcaWGubWaaWbaaSqabeaacaaIYaGaaGymaaaakiab gUcaRiaad2eadaahaaWcbeqaaiaaikdacaaIXaaaaOGaai4laiaadg gacqGH9aqpcaaIWaaaaa@4F4E@

 

7. The boundary conditions on θ=0,θ=2π MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaaGimaiaacYcacq aH4oqCcqGH9aqpcaaIYaGaeqiWdahaaa@3A3B@  are   T 21 =0 T 22 M 22 /a=0 M 22 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGOmaiaaig daaaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGubWaaWbaaS qabeaacaaIYaGaaGOmaaaakiabgkHiTiaad2eadaahaaWcbeqaaiaa ikdacaaIYaaaaOGaai4laiaadggacqGH9aqpcaaIWaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGnbWaaWbaaSqabeaacaaIYaGaaGOmaaaakiabg2da9i aaicdaaaa@64A8@

 

8. The boundary conditions on z=0,z=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaaicdacaGGSaGaam OEaiabg2da9iaadYeaaaa@3725@  are T 11 =0 T 12 M 12 /a= P 2 M 11 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaig daaaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaahaaWcbeqaai aaigdacaaIYaaaaOGaeyOeI0IaamytamaaCaaaleqabaGaaGymaiaa ikdaaaGccaGGVaGaamyyaiabg2da9iaadcfadaahaaWcbeqaaiaaik daaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaad2eadaahaaWcbeqaaiaaigdacaaIXaaaaOGaeyypa0JaaG imaaaa@5F85@

 

9. The only nonzero components of internal force are the in-plane shear forces T 12 , T 21 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaik daaaGccaGGSaGaamivamaaCaaaleqabaGaaGOmaiaaigdaaaaaaa@3694@  and the twisting moments M 12 , M 21 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaaGymaiaaik daaaGccaGGSaGaamytamaaCaaaleqabaGaaGOmaiaaigdaaaaaaa@3686@ .  We therefore assume that the shell deforms in shear, so that the position vector of a point in the deformed shell is

r ¯ =acosθ e 1 +asinθ e 2 +z e 3 +Caθ e 3 +(azϕ/L)(sinθ e 1 +cosθ e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JaamyyaiGaco gacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGHbGaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBa aaleaacaaIYaaabeaakiabgUcaRiaadQhacaWHLbWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaam4qaiaadggacqaH4oqCcaWHLbWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaaiikaiaadggacaWG6bGaeqy1dyMa ai4laiaadYeacaGGPaGaaiikaiabgkHiTiGacohacaGGPbGaaiOBai abeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGGJbGa ai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaai ykaaaa@63D0@

 

10. The natural basis vectors for the deformed shell are

m 1 = e 3 +(aϕ/L)(sinθ e 1 +cosθ e 2 ) m 2 =asinθ e 1 +acosθ e 2 +Ca e 3 (zϕa/L)(cosθ e 1 +sinθ e 2 ) m 3 cosθ e 1 +sinθ e 2 +(zϕ/L) sinθ e 1 cosθ e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHTbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRiaa cIcacaWGHbGaeqy1dyMaai4laiaadYeacaGGPaGaaiikaiabgkHiTi GacohacaGGPbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqa baGccqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaS qaaiaaikdaaeqaaOGaaiykaaqaaiaah2gadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcqGHsislcaWGHbGaci4CaiaacMgacaGGUbGaeqiUde NaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadggaciGGJbGa ai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaam4qaiaadggacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaeyOe I0IaaiikaiaadQhacqaHvpGzcaWGHbGaai4laiaadYeacaGGPaGaai ikaiGacogacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaGym aaqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaS baaSqaaiaaikdaaeqaaOGaaiykaaqaaiaah2gadaWgaaWcbaGaaG4m aaqabaGccqGHijYUcqGHsisldaqadaqaaiGacogacaGGVbGaai4Cai abeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGGZbGa aiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaaGcca GLOaGaayzkaaGaey4kaSIaaiikaiaadQhacqaHvpGzcaGGVaGaamit aiaacMcadaqadaqaaiGacohacaGGPbGaaiOBaiabeI7aXjaahwgada WgaaWcbaGaaGymaaqabaGccqGHsislciGGJbGaai4BaiaacohacqaH 4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa a@A413@

11. The metric tensor for the deformed shell can be approximated by

g αβ = m α m β g 11 1 g 12 =Ca( a 2 ϕ/L) g 22 a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0JaaCyBamaaBaaaleaacqaHXoqyaeqaaOGaeyyX ICTaaCyBamaaBaaaleaacqaHYoGyaeqaaOGaeyO0H4Taam4zamaaBa aaleaacaaIXaGaaGymaaqabaGccqGHijYUcaaIXaGaaGPaVlaaykW7 caaMc8UaaGPaVlaadEgadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaey ypa0Jaam4qaiaadggacqGHsislcaGGOaGaamyyamaaCaaaleqabaGa aGOmaaaakiabew9aMjaac+cacaWGmbGaaiykaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaadEgadaWgaaWcbaGaaGOmaiaaikda aeqaaOGaeyisISRaamyyamaaCaaaleqabaGaaGOmaaaaaaa@67CB@

 

12. The strain and curvature components follow as

γ 11 = γ 22 =0, γ 12 = Ca( a 2 ϕ/L) /2,Δ κ 11 =0,Δ κ 12 =(aϕ/L),Δ κ 22 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo7aNnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqaHZoWzdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaeWaae aacaWGdbGaamyyaiabgkHiTiaacIcacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaeqy1dyMaai4laiaadYeacaGGPaaacaGLOaGaayzkaaGaaG PaVlaac+cacaaIYaGaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabfs5aejabeQ7aRnaaBaaale aacaaIXaGaaGymaaqabaGccqGH9aqpcaaIWaGaaiilaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeuiLdqKaeqOUdS2aaSbaaSqaaiaaig dacaaIYaaabeaakiabg2da9iaacIcacaWGHbGaeqy1dyMaai4laiaa dYeacaGGPaGaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlabfs5aejabeQ7aRnaaBaaaleaacaaI YaGaaGOmaaqabaGccqGHijYUcaaIWaaaaa@9F9B@

 

13. The constitutive equations can be reduced to

T 12 = Eh (1+ν) a 2 γ 12 E h 3 12(1+ν) a 4 γ 12 T 21 = Eh (1+ν) a 2 γ 12 h 2 12a Δ κ 12 M 12 = E h 3 12(1+ν) a 2 Δ κ 12 M 21 = E h 3 12(1+ν) a 2 Δ κ 12 γ 12 /a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGubWaaWbaaSqabeaacaaIXa GaaGOmaaaakiabg2da9maalaaabaGaamyraiaadIgaaeaacaGGOaGa aGymaiabgUcaRiabe27aUjabgMcaPiaadggadaahaaWcbeqaaiaaik daaaaaaOGaeq4SdC2aaSbaaSqaaiaaigdacaaIYaaabeaakiabgkHi TiaaykW7daWcaaqaaiaadweacaWGObWaaWbaaSqabeaacaaIZaaaaa GcbaGaaGymaiaaikdacaGGOaGaaGymaiabgUcaRiabe27aUjabgMca PiaadggadaahaaWcbeqaaiaaisdaaaaaaOGaaGPaVlabeo7aNnaaBa aaleaacaaIXaGaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadsfadaahaaWcbeqaaiaaikdacaaIXaaaaOGaeyypa0ZaaS aaaeaacaWGfbGaamiAaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Ma eyykaKIaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiabeo 7aNnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHsisldaWcaaqaaiaa dIgadaahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaaGOmaiaadggaaa GaeuiLdqKaeqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaaaOGaayjk aiaawMcaaiaaykW7aeaacaaMc8UaamytamaaCaaaleqabaGaaGymai aaikdaaaGccqGH9aqpdaWcaaqaaiaadweacaWGObWaaWbaaSqabeaa caaIZaaaaaGcbaGaaGymaiaaikdacaGGOaGaaGymaiabgUcaRiabe2 7aUjabgMcaPiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaeuiLdqKa eqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaad2eadaahaaWcbeqaaiaaikdacaaIXaaaaOGaeyypa0 ZaaSaaaeaacaWGfbGaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaa igdacaaIYaGaaiikaiaaigdacqGHRaWkcqaH9oGBcqGHPaqkcaWGHb WaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaGaeuiLdqKaeqOUdS2a aSbaaSqaaiaaigdacaaIYaaabeaakiabgkHiTiabeo7aNnaaBaaale aacaaIXaGaaGOmaaqabaGccaGGVaGaamyyaaGaayjkaiaawMcaaaaa aa@B890@

Note that this is one of the rare shell geometries for which the full coupled constitutive equations must be used.

 

14. The equations listed in 6-8 and 12,13 can be solved to show that C=(aϕ/L)(1+ h 2 /12 a 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiabg2da9iaacIcacaWGHbGaeq y1dyMaai4laiaadYeacaGGPaGaaiikaiaaigdacqGHRaWkcaWGObWa aWbaaSqabeaacaaIYaaaaOGaai4laiaaigdacaaIYaGaamyyamaaCa aaleqabaGaaGOmaaaakiaacMcaaaa@4112@ ,

T 12 = E h 3 12(1+ν) a 3 aϕ L 1 h 2 12 a 2 M 12 = E h 3 12(1+ν) a 2 aϕ L M 21 = E h 3 12(1+ν) a 2 aϕ L 1 h 2 12 a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGubWaaWbaaSqabeaacaaIXa GaaGOmaaaakiabg2da9maalaaabaGaamyraiaadIgadaahaaWcbeqa aiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaey4kaSIaeq yVd4MaaiykaiaadggadaahaaWcbeqaaiaaiodaaaaaaOWaaSaaaeaa caWGHbGaeqy1dygabaGaamitaaaadaqadaqaaiaaigdacqGHsislda WcaaqaaiaadIgadaahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaaGOm aiaadggadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8oabaGaamytamaaCaaaleqabaGaaGymaiaaikdaaaGccqGH9aqpda WcaaqaaiaadweacaWGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGym aiaaikdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaWGHbWaaW baaSqabeaacaaIYaaaaaaakmaalaaabaGaamyyaiabew9aMbqaaiaa dYeaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWGnbWaaWbaaSqabeaacaaIYaGaaGymaaaakiabg2da9maa laaabaGaamyraiaadIgadaahaaWcbeqaaiaaiodaaaaakeaacaaIXa GaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaiaadggadaah aaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaWGHbGaeqy1dygabaGaam itaaaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaadIgadaahaaWc beqaaiaaikdaaaaakeaacaaIXaGaaGOmaiaadggadaahaaWcbeqaai aaikdaaaaaaaGccaGLOaGaayzkaaaaaaa@9176@

 

15. The components of internal force and moment may be expressed in terms of cylindrical-polar coordinates by noting that m 1 = e z m 2 =a e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaki abg2da9iaahwgadaWgaaWcbaGaamOEaaqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaaleaacaaIYa aabeaakiabg2da9iaadggacaWHLbWaaSbaaSqaaiabeI7aXbqabaaa aa@4761@ , whence

T= T αβ m α m β =a T 12 e z e θ M= M αβ m α m β =a M 12 e z e θ +a M 21 e θ e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHubGaeyypa0JaamivamaaCa aaleqabaGaeqySdeMaeqOSdigaaOGaaCyBamaaBaaaleaacqaHXoqy aeqaaOGaey4LIqSaaCyBamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0 JaamyyaiaadsfadaahaaWcbeqaaiaaigdacaaIYaaaaOGaaCyzamaa BaaaleaacaWG6baabeaakiabgEPielaahwgadaWgaaWcbaGaeqiUde habeaaaOqaaiaah2eacqGH9aqpcaWGnbWaaWbaaSqabeaacqaHXoqy cqaHYoGyaaGccaWHTbWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXca WHTbWaaSbaaSqaaiabek7aIbqabaGccqGH9aqpcaWGHbGaamytamaa CaaaleqabaGaaGymaiaaikdaaaGccaWHLbWaaSbaaSqaaiaadQhaae qaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIa amyyaiaad2eadaahaaWcbeqaaiaaikdacaaIXaaaaOGaaCyzamaaBa aaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baa beaaaaaa@6EB0@

 

16. Finally, external force and couple per unit length acting on the end of the cylinder at z=L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaadYeaaaa@33B6@  are P= e z TQ= e z M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iaahwgadaWgaaWcba GaamOEaaqabaGccqGHflY1caWHubGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaahgfacqGH9aqpcaWHLbWaaSbaaSqaai aadQhaaeqaaOGaeyyXICTaaCytaaaa@49F9@ .  The resultant moment about the axis of the cylinder due to these tractions is

Λ=Λ e z = 0 2π a e r ×P+Q adθ= 2πE h 3 12(1+ν) aϕ L 2 h 2 12 a 2 πE h 3 3(1+ν) aϕ L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Mdiabg2da9iabfU5amjaahwgada WgaaWcbaGaamOEaaqabaGccqGH9aqpdaWdXbqaamaabmaabaGaamyy aiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxdaTcaWHqbGaey4kaS IaaCyuaaGaayjkaiaawMcaaaWcbaGaaGimaaqaaiaaikdacqaHapaC a0Gaey4kIipakiaadggacaWGKbGaeqiUdeNaeyypa0ZaaSaaaeaaca aIYaGaeqiWdaNaamyraiaadIgadaahaaWcbeqaaiaaiodaaaaakeaa caaIXaGaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaaaada WcaaqaaiaadggacqaHvpGzaeaacaWGmbaaamaabmaabaGaaGOmaiab gkHiTmaalaaabaGaamiAamaaCaaaleqabaGaaGOmaaaaaOqaaiaaig dacaaIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGL PaaacaaMc8UaeyisIS7aaSaaaeaacqaHapaCcaWGfbGaamiAamaaCa aaleqabaGaaG4maaaaaOqaaiaaiodacaGGOaGaaGymaiabgUcaRiab e27aUjaacMcaaaWaaSaaaeaacaWGHbGaeqy1dygabaGaamitaaaaaa a@731A@

It follows that the twist per unit length is related to the twisting moment by ϕ/L=3Λ(1+ν)/ πa h 3 E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaai4laiaadYeacqGH9aqpca aIZaGaeu4MdWKaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaai4l amaabmaabaGaeqiWdaNaamyyaiaadIgadaahaaWcbeqaaiaaiodaaa GccaWGfbaacaGLOaGaayzkaaaaaa@439C@ .  Substituting this result back into the formulas for T and M and neglecting the terms of order h 2 / a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaCaaaleqabaGaaGOmaaaaki aac+cacaWGHbWaaWbaaSqabeaacaaIYaaaaaaa@3542@  gives the result stated.

 

 

 

10.7.8 Membrane shell theory analysis of a spherical dome under gravitational loading

 

The figure shows a thin-walled, spherical dome with radius R, thickness h and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ .  We wish to calculate the internal forces induced by gravitational loading of the structure.   Shells that are used for structural applications are usually modeled using a simplified version of general shell theory, known as `Membrane Shell Theory.’   The theory simplifies the governing equations by neglecting internal moments, so that the structure is supported entirely by in-plane forces T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaeqySdeMaeq OSdigaaaaa@3526@ .   The theory is intended to be applied to masonry or concrete structures, which can generally support substantial (compressive) in-plane forces but are weak in bending.  Of course, some bending resistance is critical to ensure stability against buckling; in addition, significant bending moments may develop near the edges of the structure if the boundary conditions constrain the rotation or transverse motion of the shell; so membrane theory must be used with caution.

 

The internal forces are best expressed as components in a spherical-polar basis of unit vectors { e R , e ϕ , e θ } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOuaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqiUdehabeaakiaac2haaaa@3C01@  shown in Figure 10.40.  The solution shows that the in-plane membrane forces are

T=ρghR 1 (1+cosθ) cosθ e ϕ e ϕ ρghR (1+cosθ) e θ e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iabeg8aYjaadEgaca WGObGaamOuamaabmaabaWaaSaaaeaacaaIXaaabaGaaiikaiaaigda cqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaGGPaaaaiaaykW7ca aMc8UaaGPaVlaaykW7cqGHsislciGGJbGaai4BaiaacohacqaH4oqC aiaawIcacaGLPaaacaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxk cXcaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHsisldaWcaaqaaiab eg8aYjaadEgacaWGObGaamOuaaqaaiaacIcacaaIXaGaey4kaSIaci 4yaiaac+gacaGGZbGaeqiUdeNaaiykaaaacaWHLbWaaSbaaSqaaiab eI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaaaaa@6928@

where g is the gravitational acceleration.

 

A concrete dome should be designed so that the membrane forces are compressive everywhere.  The solution shows that the hoop forces T θθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaH4oqCcqaH4o qCaeqaaaaa@3551@  are always compressive, but the circumferential forces T ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHvpGzcqaHvp Gzaeqaaaaa@3575@  are compressive only if cosθ>1/(1+cosθ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaeqiUdeNaey Opa4JaaGymaiaac+cacaGGOaGaaGymaiabgUcaRiGacogacaGGVbGa ai4CaiabeI7aXjaacMcaaaa@3F5E@ .   The dome should therefore be designed with θ 0 < 51.8 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaicdaaeqaaO GaeyipaWJaaGynaiaaigdacaGGUaGaaGioamaaCaaaleqabaGaaGim aaaaaaa@385F@

 

Derivation: We adopt as curvilinear coordinates the spherical-polar coordinates (ϕ,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabew9aMjaacYcacqaH4oqCca GGPaaaaa@3667@  shown in Figure 10.40.  Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  be the Cartesian basis that is used to provide reference directions for (ϕ,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabew9aMjaacYcacqaH4oqCca GGPaaaaa@3667@  as indicated in the figure.  Then

 

1. The position vector of a point in the undeformed shell can be expressed as

r ¯ =Rcosϕsinθ e 1 +Rsinϕsinθ e 2 +Rcosϕ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JaamOuaiGaco gacaGGVbGaai4Caiabew9aMjGacohacaGGPbGaaiOBaiabeI7aXjaa hwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGsbGaci4CaiaacM gacaGGUbGaeqy1dyMaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaa BaaaleaacaaIYaaabeaakiabgUcaRiaadkfaciGGJbGaai4Baiaaco hacqaHvpGzcaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@53CA@

 

2. The natural basis vectors follow as

m ¯ 1 = r ¯ ϕ =Rsinϕsinθ e 1 +Rcosϕsinθ e 2 m ¯ 2 = r ¯ θ =Rcosϕcosθ e 1 +Rsinϕcosθ e 2 Rsinθ e 3 m ¯ 3 = cosϕsinθ e 1 +sinϕsinθ e 2 +cosθ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWHTbGbaebadaWgaaWcbaGaaG ymaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kqahkhagaqeaaqaaiab gkGi2kabew9aMbaacqGH9aqpcqGHsislcaWGsbGaci4CaiaacMgaca GGUbGaeqy1dyMaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadkfaciGGJbGaai4Baiaacohacq aHvpGzciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaa ikdaaeqaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaikdaaeqaaOGaey ypa0ZaaSaaaeaacqGHciITceWHYbGbaebaaeaacqGHciITcqaH4oqC aaGaeyypa0JaamOuaiGacogacaGGVbGaai4Caiabew9aMjGacogaca GGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGsbGaci4CaiaacMgacaGGUbGaeqy1dyMaci4yaiaac+gaca GGZbGaeqiUdeNaaCyzamaaBaaaleaacaaIYaaabeaakiabgkHiTiaa dkfaciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaio daaeqaaaGcbaGabCyBayaaraWaaSbaaSqaaiaaiodaaeqaaOGaeyyp a0JaeyOeI0YaaeWaaeaaciGGJbGaai4BaiaacohacqaHvpGzciGGZb GaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaci4CaiaacMgacaGGUbGaeqy1dyMaci4CaiaacMgacaGGUb GaeqiUdeNaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRiGacoga caGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaG4maaqabaaaki aawIcacaGLPaaaaaaa@A27E@

 

3. The reciprocal base vectors are

m ¯ 1 = sinϕ e 1 +cosϕ e 2 /Rsinθ m ¯ 2 = cosϕcosθ e 1 +sinϕcosθ e 2 sinθ e 3 /R m ¯ 3 = cosϕsinθ e 1 +sinϕsinθ e 2 +cosθ e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWHTbGbaebadaahaaWcbeqaai aaigdaaaGccqGH9aqpdaqadaqaaiabgkHiTiGacohacaGGPbGaaiOB aiabew9aMjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGGJb Gaai4BaiaacohacqaHvpGzcaWHLbWaaSbaaSqaaiaaikdaaeqaaaGc caGLOaGaayzkaaGaai4laiaadkfaciGGZbGaaiyAaiaac6gacqaH4o qCaeaaceWHTbGbaebadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaqa daqaaiGacogacaGGVbGaai4Caiabew9aMjGacogacaGGVbGaai4Cai abeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGGZbGa aiyAaiaac6gacqaHvpGzciGGJbGaai4BaiaacohacqaH4oqCcaWHLb WaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaci4CaiaacMgacaGGUbGa eqiUdeNaaCyzamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaai aac+cacaWGsbaabaGabCyBayaaraWaaWbaaSqabeaacaaIZaaaaOGa eyypa0JaeyOeI0YaaeWaaeaaciGGJbGaai4BaiaacohacqaHvpGzci GGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaci4CaiaacMgacaGGUbGaeqy1dyMaci4CaiaacMgaca GGUbGaeqiUdeNaaCyzamaaBaaaleaacaaIYaaabeaakiabgUcaRiGa cogacaGGVbGaai4CaiabeI7aXjaahwgadaWgaaWcbaGaaG4maaqaba aakiaawIcacaGLPaaaaaaa@927E@

 

4. The Christoffel symbols for the undeformed shell and its curvature components can be calculated as

Γ βγ α = m ¯ α 2 r ¯ ξ β ξ γ Γ ¯ 11 1 = Γ ¯ 22 1 =0 Γ ¯ 12 1 = Γ ¯ 21 1 = cosθ sinθ Γ ¯ 11 2 =sinθcosθ Γ ¯ 12 2 = Γ ¯ 21 2 = Γ ¯ 22 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHtoWrdaqhaaWcbaGaeqOSdi Maeq4SdCgabaGaeqySdegaaOGaeyypa0JabCyBayaaraWaaWbaaSqa beaacqaHXoqyaaGccqGHflY1daWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiqahkhagaqeaaqaaiabgkGi2kabe67a4naaBaaaleaa cqaHYoGyaeqaaOGaeyOaIyRaeqOVdG3aaSbaaSqaaiabeo7aNbqaba aaaOGaeyO0H4Tafu4KdCKbaebadaqhaaWcbaGaaGymaiaaigdaaeaa caaIXaaaaOGaeyypa0Jafu4KdCKbaebadaqhaaWcbaGaaGOmaiaaik daaeaacaaIXaaaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uafu4KdCKbaebadaqhaaWcba GaaGymaiaaikdaaeaacaaIXaaaaOGaeyypa0Jafu4KdCKbaebadaqh aaWcbaGaaGOmaiaaigdaaeaacaaIXaaaaOGaeyypa0ZaaSaaaeaaci GGJbGaai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyAaiaac6gacqaH 4oqCaaGaaGPaVlaaykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uafu4KdCKbaebadaqhaaWcbaGaaGymaiaaigdaaeaa caaIYaaaaOGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUde Naci4yaiaac+gacaGGZbGaeqiUdeNaaGPaVlaaykW7caaMc8UaaGPa Vlqbfo5ahzaaraWaa0baaSqaaiaaigdacaaIYaaabaGaaGOmaaaaki abg2da9iqbfo5ahzaaraWaa0baaSqaaiaaikdacaaIXaaabaGaaGOm aaaakiabg2da9iqbfo5ahzaaraWaa0baaSqaaiaaikdacaaIYaaaba GaaGOmaaaakiabg2da9iaaicdaaaaa@F412@

κ ¯ αβ = m ¯ 3 m ¯ α ξ β κ ¯ 11 =R sin 2 θ κ ¯ 12 =0 κ ¯ 22 =R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqOUdSMbaebadaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9iabgkHiTiqah2gagaqeamaaCaaaleqa baGaaG4maaaakiabgwSixpaalaaabaGaeyOaIyRabCyBayaaraWaaS baaSqaaiabeg7aHbqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGa eqOSdigabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaeyO0H4TaaG PaVlaaykW7caaMc8UaaGPaVlqbeQ7aRzaaraWaaSbaaSqaaiaaigda caaIXaaabeaakiabg2da9iabgkHiTiaadkfaciGGZbGaaiyAaiaac6 gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UafqOUdSMbaebadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cuaH6oWAga qeamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpcqGHsislcaWG sbaaaa@85E2@

 

5. We now introduce two assumptions (i) the bending resistance of the shell is zero, so that the internal moment components M αβ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0JaaGimaaaa@36E9@ ; (ii) the deformations are small enough so that the Christoffel symbols and curvature terms in the equilibrium equations can be approximated using the values for the undeformed shell (this amounts to enforcing equilibrium in the undeformed configuration of the shell). In addition, the shell is in static equilibrium, and the external couples are zero. The equations of motion of Section 10.5.8 can therefore be reduced to

T αβ ξ α + T αβ Γ αγ γ + T αγ Γ γα β + V α κ α β + p β =0 V β =0 V α ξ α + V α Γ αβ β T αβ κ αβ + p 3 =0 T 12 T 21 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada ahaaWcbeqaaiabeg7aHjabek7aIbaaaOqaaiabgkGi2kabe67a4naa BaaaleaacqaHXoqyaeqaaaaakiabgUcaRiaadsfadaahaaWcbeqaai abeg7aHjabek7aIbaakiabfo5ahnaaDaaaleaacqaHXoqycqaHZoWz aeaacqaHZoWzaaGccqGHRaWkcaWGubWaaWbaaSqabeaacqaHXoqycq aHZoWzaaGccqqHtoWrdaqhaaWcbaGaeq4SdCMaeqySdegabaGaeqOS digaaOGaey4kaSIaamOvamaaCaaaleqabaGaeqySdegaaOGaeqOUdS 2aa0baaSqaaiabeg7aHbqaaiabek7aIbaakiabgUcaRiaadchadaah aaWcbeqaaiabek7aIbaakiabg2da9iaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOv amaaCaaaleqabaGaeqOSdigaaOGaeyypa0JaaGimaaqaamaalaaaba GaeyOaIyRaamOvamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRa eqOVdG3aaSbaaSqaaiabeg7aHbqabaaaaOGaey4kaSIaamOvamaaCa aaleqabaGaeqySdegaaOGaeu4KdC0aa0baaSqaaiabeg7aHjabek7a Ibqaaiabek7aIbaakiabgkHiTiaadsfadaahaaWcbeqaaiabeg7aHj abek7aIbaakiabeQ7aRnaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGa ey4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiabg2da9iaaicdaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGubWaaWbaaSqabeaacaaIXaGaaGOm aaaakiabgkHiTiaadsfadaahaaWcbeqaaiaaikdacaaIXaaaaOGaey ypa0JaaGimaaaaaa@D6A2@  

 

 

6. We note that T 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaik daaaGccqGH9aqpcaaIWaaaaa@3507@  by symmetry, and the external force acting on unit area of the shell is p=ρgh e 3 = p i m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiabg2da9iabgkHiTiabeg8aYj aadEgacaWGObGaaCyzamaaBaaaleaacaaIZaaabeaakiabg2da9iaa dchadaahaaWcbeqaaiaadMgaaaGccaWHTbWaaSbaaSqaaiaadMgaae qaaaaa@3E76@ .  The contravariant components of p can therefore be computed as p i =ρgh m i e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaamyAaaaaki abg2da9iabgkHiTiabeg8aYjaadEgacaWGObGaaCyBamaaCaaaleqa baGaamyAaaaakiabgwSixlaahwgadaWgaaWcbaGaaG4maaqabaaaaa@3EC2@ .   Substituting these, as well as the Christoffel symbols and curvature components reduces the equilibrium equations to

T 11 ϕ =0 T 22 θ + T 22 cosθ sinθ T 11 sinθcosθ+ ρgh R sinθ=0 T 11 R sin 2 θ+ T 22 R+ρghcosθ=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada ahaaWcbeqaaiaaigdacaaIXaaaaaGcbaGaeyOaIyRaeqy1dygaaiab g2da9iaaicdacaaMc8oabaWaaSaaaeaacqGHciITcaWGubWaaWbaaS qabeaacaaIYaGaaGOmaaaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWk caWGubWaaWbaaSqabeaacaaIYaGaaGOmaaaakmaalaaabaGaci4yai aac+gacaGGZbGaeqiUdehabaGaci4CaiaacMgacaGGUbGaeqiUdeha aiabgkHiTiaadsfadaahaaWcbeqaaiaaigdacaaIXaaaaOGaci4Cai aacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqiUdeNaey4k aSYaaSaaaeaacqaHbpGCcaWGNbGaamiAaaqaaiaadkfaaaGaci4Cai aacMgacaGGUbGaeqiUdeNaeyypa0JaaGimaaqaaiaadsfadaahaaWc beqaaiaaigdacaaIXaaaaOGaamOuaiGacohacaGGPbGaaiOBamaaCa aaleqabaGaaGOmaaaakiabeI7aXjabgUcaRiaadsfadaahaaWcbeqa aiaaikdacaaIYaaaaOGaamOuaiabgUcaRiabeg8aYjaadEgacaWGOb Gaci4yaiaac+gacaGGZbGaeqiUdeNaeyypa0JaaGimaaaaaa@7F24@

 

7. Eliminating T 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaig daaaaaaa@335C@  from the second and third equations gives

T 22 θ +2 T 22 cosθ sinθ = ρgh Rsinθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGubWaaWbaaS qabeaacaaIYaGaaGOmaaaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWk caaIYaGaamivamaaCaaaleqabaGaaGOmaiaaikdaaaGcdaWcaaqaai GacogacaGGVbGaai4CaiabeI7aXbqaaiGacohacaGGPbGaaiOBaiab eI7aXbaacqGH9aqpdaWcaaqaaiabeg8aYjaadEgacaWGObaabaGaam OuaiGacohacaGGPbGaaiOBaiabeI7aXbaaaaa@4F5B@

 

8. This equation can be integrated directly by substituting T 22 =Ψ/ sin 2 θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGOmaiaaik daaaGccqGH9aqpcqqHOoqwcaGGVaGaci4CaiaacMgacaGGUbWaaWba aSqabeaacaaIYaaaaOGaeqiUdehaaa@3C31@ , with the solution

T 22 = ρgh R sin 2 θ (cosθ1)+C= ρgh R(1+cosθ) +C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGOmaiaaik daaaGccqGH9aqpdaWcaaqaaiabeg8aYjaadEgacaWGObaabaGaamOu aiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeI7aXb aacaGGOaGaci4yaiaac+gacaGGZbGaeqiUdeNaeyOeI0IaaGymaiaa cMcacqGHRaWkcaWGdbGaeyypa0ZaaSaaaeaacqGHsislcqaHbpGCca WGNbGaamiAaaqaaiaadkfacaGGOaGaaGymaiabgUcaRiGacogacaGG VbGaai4CaiabeI7aXjaacMcaaaGaey4kaSIaam4qaaaa@573F@

where C is a constant of integration. 

 

9. The constant of integration can be found using the boundary condition at the edge of the shell at θ= θ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaeqiUde3aaSbaaS qaaiaaicdaaeqaaaaa@3638@ .  The reaction force must act in the plane of the shell, and the vertical component of the force must balance the shell’s weight, so that the force per unit length is P=ρghR(1cos θ 0 ) e θ / sin 2 θ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9iabeg8aYjaadEgaca WGObGaamOuaiaacIcacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGa eqiUde3aaSbaaSqaaiaaicdaaeqaaOGaaiykaiaahwgadaWgaaWcba GaeqiUdehabeaakiaac+caciGGZbGaaiyAaiaac6gadaahaaWcbeqa aiaaikdaaaGccqaH4oqCdaWgaaWcbaGaaGimaaqabaaaaa@499D@ .  The boundary condition requires that e θ T=P MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaO GaeyyXICTaaCivaiabg2da9iaahcfaaaa@38C0@  at θ= θ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaeqiUde3aaSbaaS qaaiaaicdaaeqaaaaa@3638@ , which shows that C=0.

 

10. T 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaig daaaaaaa@335C@  can be calculated from the third equation in (6), giving

T 11 = ρgh (1+cosθ) 1 cosθ R sin 2 θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaCaaaleqabaGaaGymaiaaig daaaGccqGH9aqpdaWcaaqaaiabeg8aYjaadEgacaWGObWaaeWaaeaa caGGOaGaaGymaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXjaacM cadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaMc8UaaGPaVlaaykW7 caaMc8UaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdehacaGLOaGaay zkaaaabaGaamOuaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOm aaaakiabeI7aXbaaaaa@54F6@

 

11. Finally, the components of T in the cylindrical-polar basis can be calculated by noting that m 1 =Rsinθ e ϕ m 2 =R e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaki abg2da9iaadkfaciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSba aSqaaiabew9aMbqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaikdaaeqa aOGaeyypa0JaamOuaiaahwgadaWgaaWcbaGaeqiUdehabeaaaaa@5096@ , whence

T= T 11 m 1 m 1 + T 22 m 2 m 2 = T 11 R 2 sin 2 θ e ϕ e ϕ + T 22 R 2 e θ e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaadsfadaahaaWcbe qaaiaaigdacaaIXaaaaOGaaCyBamaaBaaaleaacaaIXaaabeaakiab gEPielaah2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGubWaaW baaSqabeaacaaIYaGaaGOmaaaakiaah2gadaWgaaWcbaGaaGOmaaqa baGccqGHxkcXcaWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaam ivamaaCaaaleqabaGaaGymaiaaigdaaaGccaWGsbWaaWbaaSqabeaa caaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaO GaeqiUdeNaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyz amaaBaaaleaacqaHvpGzaeqaaOGaey4kaSIaamivamaaCaaaleqaba GaaGOmaiaaikdaaaGccaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaCyz amaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacq aH4oqCaeqaaaaa@6402@