Chapter 1

Overview of Solid Mechanics

 

 

Solid Mechanics is a collection of physical laws, mathematical techniques, and computer algorithms that can be used to predict the behavior of a solid material that is subjected to mechanical or thermal loading. The field has a wide range of applications, including

2600_detail_orthopedic

FEA model of a knee joint from the MSC website.  They have several nice FEA analysis movies

 

1.  Geomechanics. Modeling the deformation of planets; tectonics; and earthquake prediction.

2.  Civil engineering. Designing structures or soil foundations.

3.  Mechanical engineering. Designing load-bearing components for vehicles, engines or turbines for power generation and transmission, as well as appliances.

4.  Manufacturing engineering. Designing processes (such as machining) for forming metals and polymers.

5.  Biomechanics. Designing implants and medical devices, as well as modeling stress driven phenomena controlling cellular and molecular processes.

6.  Materials science. Designing composites; alloy microstructures, thin films, energy storage materials (for batteries), and developing techniques for processing materials.

7.  Microelectronics. Designing failure resistant packaging and interconnects for microelectronic circuits.

8.  Nanotechnology. Modeling stress driven self-assembly on surfaces, manufacturing processes such as nano-imprinting, and modeling atomic-force microscope/sample interactions.

 

This chapter describes how solid mechanics can be used to solve practical problems.  The remainder of the book contains a more detailed description of the physical laws that govern deformation and failure in solids, as well as the mathematical and computational methods that are used to solve problems involving deformable solids. Specifically,

 

Chapter 2. Covers the mathematical description of shape changes and internal forces in solids.

Chapter 3. Discusses constitutive laws that are used to relate shape changes to internal forces.

Chapter 4. Contains analytical solutions to a series of simple problems involving elastic solids.

Chapter 5. Provides a short summary of analytical techniques and solutions for linear elastic solids.

Chapter 6. Describes analytical techniques and solutions for plastically deforming solids.

Chapter 7. Gives an introduction to finite element analysis, focusing on using commercial software.

Chapter 8. Expands on the implementation of the finite element method.

Chapter 9. Describes how to use solid mechanics to model material failure

Chapter 10. Discusses solids with special geometries (rods, beams, membranes, plates and shells)

 

Solid mechanics is incomprehensible without some background in vectors, tensors and index notation.  These topics are reviewed briefly in the appendices.

 

 

1.1 Defining a Problem in Solid Mechanics

machining

FEM simulation of chip formation during machining. From Third Wave Systems.

 

Regardless of the application, the general steps in setting up a problem in solid mechanics are always the same:

 

1. Decide upon the goal of the problem and desired information

2. Identify the geometry of the solid to be modeled

3. Determine the loading applied to the solid

4. Decide what physics must be included in the model

5. Choose (and calibrate) a constitutive law that describes the behavior of the material

6. Choose a method of analysis

7. Solve the problem

 

Each step in the process is discussed in more detail below.

 

 

 

1.1.1 Deciding what to calculate

 

This question seems rather silly, but at some point in their careers, most engineers have been told

mode01a

An animation showing one of the vibration modes of the Mars Orbiter Laser Altimiter, from a NASA website.

by their manager “Why don’t you just set up a finite element model of our (crank-case; airframe; material, etc) so we can stop it from (corroding, fatiguing, fracturing, etc)?” If you find yourself in this situation, you are doomed. Models can certainly be helpful in preventing failure, but unless you have a very clear idea of why the failure is occurring, you won’t know what to model.

 

Here is a list of things that can be calculated accurately using solid mechanics:

 

1. The deformed shape of a structure or component subjected to mechanical, thermal or electrical loading

2. The forces required to cause a particular shape change

3. The stiffness of a structure or component

4. The internal forces (stresses) in a structure or component

5. The critical forces that lead to failure by structural instability (buckling)

6. Natural frequencies of vibration for a structure or component

 

In addition, solid mechanics can be used to model a variety of failure mechanisms.  Failure

 predictions are more difficult, however, because the physics of failure can only be modeled using approximate constitutive equations.  These mathematical relationships must be calibrated experimentally, and do not always perfectly characterize the failure mechanism.  Nevertheless, there are well established procedures for each of the following:

 

1. Predicting the critical loads to cause fracture in a brittle or ductile solid containing a crack

2. Predicting the fatigue life of a component under cyclic loading

3. Predicting the rate of growth of a stress-corrosion crack in a component

4. Predicting the creep life of a component

5. Finding the length of a crack that a component can contain and still withstand fatigue or fracture

6. Predicting the wear rate of a surface under contact loading

7. Predicting the fretting or contact fatigue life of a surface

 

Solid mechanics is increasingly being used for applications other than structural and mechanical

microstructure

FEA model of the evolution of grain structure of a polycrystal during deformation.  From ORNL

 

engineering design.  These are active research areas, and some are better developed than others.  Applications include

 

1. Calculating the properties (e.g., elastic modulus, yield stress, stress-strain curve, fracture toughness, etc) of a composite material in terms of those of its constituents

2. Predicting the influence of the microstructure (e.g., texture, grain structure, dispersoids, etc) on the mechanical properties of metals such as modulus, yield stress, strain hardening, etc

3. Modeling the physics of failure in materials, including fracture, fatigue, plasticity, and wear, and using the models to design failure resistant materials

4. Modeling materials processing MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  examples include additive manufacturing, casting and solidification, alloy heat treatments, and thin film and surface coating deposition (e.g., by sputtering, vapor deposition, or electroplating)

5. Modeling biological phenomena and processes, such as bone growth, cell mobility, cell wall/particle interactions, and bacterial mobility

 

Modern computer aided design codes can also couple finite element simulations of a solid with other techniques that model heat transfer, fluid flow, and chemical processes.    

 

 

 

1.1.2 Defining the geometry of the solid

 

 daimler1_CMYB.jpg

FEA crash simulation, from the Ansys LS DYNA website

 

Again, this step seems rather obvious MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  surely the shape of the solid is always known?  True MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  but

 it is usually not obvious how much of the component to model, and at what level of detail.     For example, in a crash simulation, must the entire vehicle be modelled, or just the front part?  Should the engine block be included? The driver?  The cell-phone that distracted the driver into crashing in the first place?  A typical crash simulation does model the entire vehicle and passengers at a very fine level of detail (including, for example, each individual spot weld in the body structure). 

 

At the other extreme, it is often not obvious how much geometrical detail needs to be included in a computation.  If you model a component, do you need to include every geometrical feature (such as bolt holes, cutouts, chamfers, etc)?  The following guidelines might be helpful

 

1. For modeling brittle fracture, fatigue failure, or for calculating critical loads required to initiate plastic flow in a component, it is very important to model the geometry in great detail, because geometrical features can lead to stress concentrations that initiate damage.

2. For modeling creep damage, large scale plastic deformation (e.g., metal forming), or vibration analysis, geometrical details are less important.  Geometrical features with dimensions under 10% of the macroscopic cross section can generally be neglected.

3. Geometrical features often only influence local stresses MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they do not have much influence far away.  Saint Venant’s principle, which will be discussed in more detail in Chapter 5, suggests that a geometrical feature with characteristic dimension L (e.g., the dimension of a hole in the solid) will influence stresses over a region with dimension around 3L surrounding the feature.  In other words, if you are interested in the stress state at a particular point in an elastic solid, you don’t need to worry about geometrical features that are far from the region of interest.  Strictly speaking,  Saint-Venants’ principle only applies to elastic solids, although it can usually also be applied to plastic solids that strain harden.

 

As a general rule, it is best to start with the simplest possible model, and see what it predicts.  If the simplest model answers your question, you’re done.  If not, the results can serve as a guide in refining the calculation.

 

 

 

1.1.3 Defining loading

 

There are five ways that mechanical loads can be induced in a solid:

1. The boundaries can be subjected to a prescribed displacement or motion.

2. The boundaries can be subjected to a distribution of pressure normal to the surface, or frictional traction tangent to the surface, as shown in the sketch.

3. A boundary may be subjected to a combination of displacement and traction (“mixed”) boundary conditions MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  for example, you could prescribe horizontal displacements, together with the vertical traction, at some point on the boundary.

4. The interior of the solid can be subjected to gravitational or electromagnetic body forces.

5. The solid can contact another solid, or in some cases can contact itself.

6. Stresses can be induced by non-uniform thermal expansion in the solid, or some other materials process such as phase transformation that causes the solid to change its shape.

 

When specifying boundary conditions, you must follow these rules:

 

1. In a 3D analysis, you must specify three components of either displacement ( u 1 , u 2 , u 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamyDamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 1bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@395D@  or traction t 1 , t 2 , t 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWG0bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadshadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa amiDamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaaa@398A@  (but not both) at each point on the boundary.  You can mix these MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  so for example you could prescribe ( u 1 , t 2 , t 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiDamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 0bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@395B@  or ( u 1 , u 2 , t 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadwhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamyDamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 0bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@395C@ , but exactly three components must always be prescribed. This rule also applies to free surfaces, where the tractions are prescribed to be zero.

2. Similarly, in a 2D analysis you must prescribe two components of displacement or traction at each point on the boundary.

3. If you are solving a static problem with only tractions prescribed on the boundary, you must ensure that the total external force and moment acting on the solid sum to zero (otherwise a static equilibrium solution cannot exist).

 

In practice, it can be surprisingly difficult to find out exactly what the loading on your system looks like.  For example, earthquake loading on a building can be modeled as a prescribed acceleration of the building’s base MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  but what acceleration should you apply?  Pressure loading usually arises from wind or fluid forces, but you might need to do some sophisticated calculations just to identify these forces.  In the case of contact loading, you’ll need to be able to estimate friction coefficients.  For nanoscale or biological applications, you may also need to model attractive forces between the two contacting surfaces. Here, standards are helpful.  For example, building codes regulate civil engineernig structures, NHTSA specify design requirements for vehicles, and so on. 

 

You can also avoid the need to find exactly what loading a structure will experience in service by simply calculating the critical loads that will lead to failure, or the fatigue life as a function of loading.  In this case, some other unfortunate engineer will have to decide whether or not the failure loads are acceptable.

 

 

 

1.1.4 Deciding what physics to include in the model

 

There are three decisions to make here:

 

1. Do you need to calculate additional field quantities, such as temperature, electric or magnetic fields, or mass/fluid diffusion through the solid?  Temperature is the most common additional field quantity. Here are some rough guidelines that will help you to decide whether to account for heating effects.

 

The stress induced by temperature variation in a component can be estimated from the formula σ=E (αT) max (αT) min MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaamyramaadmaaba Gaaiikaiabeg7aHjaadsfacaGGPaWaaSbaaSqaaiGac2gacaGGHbGa aiiEaaqabaGccqGHsislcaGGOaGaeqySdeMaamivaiaacMcadaWgaa WcbaGaciyBaiaacMgacaGGUbaabeaaaOGaay5waiaaw2faaaaa@4506@ , where E is the Young’s modulus of the material; α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  is its thermal expansion coefficient, and T is temperature. The symbols αT max , αT min MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaHXoqycaWGubaacaGLOa GaayzkaaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaGGSaWa aeWaaeaacqaHXoqycaWGubaacaGLOaGaayzkaaWaaSbaaSqaaiGac2 gacaGGPbGaaiOBaaqabaaaaa@3F9A@  denote the maximum and minimum values of the product αT MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaamivaaaa@3358@  in the component.  You need to account for temperature variations if σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdmhaaa@32A3@  is a significant fraction of the stress induced by mechanical loading.

 


Thermal stress analysis of a turbine casing, from PredictiveEngineering website

To decide whether you need to do a transient heat conduction analysis, note that the temperature rise at a distance r from a point source of heat of intensity Q ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyuayaacaaaaa@31BF@  in an infinite solid is ΔT= Q ˙ erfc r/2 χt / 4πκr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaiabg2da9iqadgfaga GaaiaaykW7caaMc8UaaeyzaiaabkhacaqGMbGaae4yamaabmaabaGa amOCaiaac+cacaaIYaWaaOaaaeaacqaHhpWycaWG0baaleqaaaGcca GLOaGaayzkaaGaai4lamaabmaabaGaaGinaiabec8aWjabeQ7aRjaa dkhaaiaawIcacaGLPaaaaaa@49EA@ , where erfc() denotes the complementary error function, κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  is the material’s thermal conductivity, and χ=κ/(ρ c p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4XdmMaeyypa0JaeqOUdSMaai4lai aacIcacqaHbpGCcaaMc8Uaam4yamaaBaaaleaacaWGWbaabeaakiaa cMcaaaa@3CB9@  is its thermal diffusivity, with ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  the mass density and c p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGWbaabeaaaa a@32E9@  the specific heat capacity. This equation suggests  that a solid with dimension L will reach its steady state temperature in time t25 L 2 /χ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabgIKi7kaaikdacaaI1aGaam itamaaCaaaleqabaGaaGOmaaaakiaac+cacqaHhpWyaaa@3933@ .  If the time-scale of interest in your problem is significantly larger than this, and heat flux is contstant, you can use the steady-state temperature distribution.  If not, you must account for transients.

 

Finally to decide whether you need to account for heat generated by plastic flow, note that the rate of heat generation per unit volume is of order q ˙ = σ Y ε ˙ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyCayaacaGaeyypa0Jaeq4Wdm3aaS baaSqaaiaadMfaaeqaaOGafqyTduMbaiaadaahaaWcbeqaaiaadcha aaaaaa@388E@  where σ Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMfaaeqaaa aa@33AD@  is the material yield stress, and ε ˙ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaahaaWcbeqaaiaadc haaaaaaa@33B2@  is the plastic strain rate.  The temperature rise due to rapid (adiabatic) plastic heating is thus of order ΔT= σ Y Δ ε p /(ρ c p ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaiabg2da9iabeo8aZn aaBaaaleaacaWGzbaabeaakiabfs5aejabew7aLnaaCaaaleqabaGa amiCaaaakiaac+cacaGGOaGaeqyWdiNaaGPaVlaadogadaWgaaWcba GaamiCaaqabaGccaGGPaaaaa@429E@ , where Δ ε p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaWbaaSqabeaaca WGWbaaaaaa@350F@  is the strain increment applied to the material.

 

2. Do you need to do a dynamic analysis, or a static analysis?  Here are some rough guidelines that will help you to decide:

 


A dynamic analysis stress wave propagation in a simple component.

 

The speed of a shear wave propagating through an elastic solid is c= μ/ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabg2da9maakaaabaGaeqiVd0 Maai4laiabeg8aYbWcbeaaaaa@3712@ , where ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  is the mass density of the solid, μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is its shear modulus.  The time taken for a wave to propagate across a component with size L is of order t=L/c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaadYeacaGGVaGaam 4yaaaa@354B@ .  In many cases, stresses decay to their static values after about 10L/c.  If the loading applied to the component does not change significantly during this time period a quasi-static computation (possibly including accelerations as body forces) should suffice.

 

The stress induced by acceleration (e.g. in a rotating component) is of order Lρa MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitaiabeg8aYjaadggaaaa@3457@ , where L is the approximate size of the component, ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  is its mass density, and a is the magnitude of the acceleration.  If this stress is negligible compared with other forces applied to the solid, it can be neglected.  If not, it should be included (as a body force if wave propagation can be neglected).

 

3. Are you solving a coupled fluid/solid interaction problem?  These situations arise in aeroelasticity (design of flexible aircraft wings or helicopter rotor blades, or very long bridges), offshore structures, pipelines, or fluid containers.  In these applications, the fluid flow has a high Reynold’s number (so fluid forces are dominated by inertial effects).  Coupled problems are also very common in biomedical applications such as blood flow or cellular mechanics. In these applications, the Reynolds number for the fluid flow is much lower, and fluid forces are dominated by viscous effects.  Several analysis techniques are available for solving such coupled fluid/structure interaction problems, but are beyond the scope of this book.

 

 

 

1.1.5 Defining material behavior

 

Choosing the right equations to describe material behavior is the most critical part of setting up a solid mechanics calculation.  Using the wrong model, or inaccurate material properties, will always invalidate your predictions.  Here are a few of your choices, with suggested applications:

 

1. Isotropic linear elasticity (familiar in one dimension as σ=Eε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaamyraiabew7aLb aa@361A@  ). This equation is useful for polycrystalline metals, ceramics, glasses, and polymers undergoing small deformations and subjected to low loads (less than the material yield stress).  Only two material constants are required to characterize the material, and accurate values for these constants are readily available.

 

2. Anisotropic linear elasticity. This model is similar to isotropic linear elasticity, but models materials that are stiffer in some directions than others. It is useful for reinforced composites, wood, and single crystals of metals and ceramics. At least 3, and up to 21, material properties  must be determined to characterize an anisotropic material. Material data are accurate and readily available. Isotropic or anisotropic linear elasticity may be applied to the vast majority of engineering design calculations, where components cannot safely exceed yield.  It can be used for deflection calculations, fatigue analysis, and vibration analysis.

 

 

https://www.testpaks.com/Images/hyperelastic_tire.gif

FEA model of a rubber tire, using a hyperelastic constitutive equation. From the Testpaks website

3.  Hyperelasticity.’ These models are used for rubber and foams, which can sustain huge, reversible shape changes.  There are several models from which to choose.  The simplest model is the incompressible Neo-Hookean solid, which, in uniaxial stress,  has a true stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  true strain relation given by σ=C(exp(2ε)1/exp(ε)) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaam4qaiaacIcaci GGLbGaaiiEaiaacchacaGGOaGaaGOmaiabew7aLjaacMcacqGHsisl caaIXaGaai4laiGacwgacaGG4bGaaiiCaiaacIcacqaH1oqzcaGGPa Gaaiykaaaa@4497@  ). It has only a single material constant.  More complex models have several parameters, and it may be difficult to find values for your material in the published literature.  Experimental calibration will almost certainly be required.

 

4. Viscoelasticity. This model is used for materials that exhibit a gradual increase in strain when loaded at constant stress (with stress rate-v-strain rate ε ˙ = σ ˙ /E+ησ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaacqGH9aqpcuaHdpWCga Gaaiaac+cacaWGfbGaey4kaSIaeq4TdGMaeq4Wdmhaaa@3B30@  ) or which show hysteresis during cyclic loading (with stress-v-strain rate of form  σ=Eε+λ ε ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaamyraiabew7aLj abgUcaRiabeU7aSjqbew7aLzaacaaaaa@3A60@  ).   It is usually used to model polymeric materials and polymer based composites, and biological tissue, and can also model slow creep in amorphous solids such as glass.  Constitutive equations contain at least 3 parameters, and usually many more. Material behavior varies widely between materials and is highly temperature dependent.  Experimental calibration will almost certainly be required to obtain accurate predictions.

 

5. Rate Independent Plasticity This model is used to calculate permanent deformation in metals loaded above their yield point.  A wide range of models are available.  The simplest  is a rigid perfectly plastic solid, which changes its shape only if loaded above its yield stress σ Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMfaaeqaaa aa@33AD@ , and then deforms at constant stress.  An elastic-perfectly plastic solid deforms according to linear elastic equations when loaded below the yield stress, but deforms at constant stress if yield is exceeded.  These models can  predict energy dissipation in a crash analysis, or calculate tool forces in a metal cutting operation, for example. Data for material yield stress are readily available, but are sensitive to material processing and microstructure and so should be used with caution. More sophisticated models describe strain hardening in some way (the change in the yield stress of the solid with plastic deformation).   These equations are used in modeling ductile fracture, low cycle fatigue (where the material is repeatedly plastically deformed), and when predicting residual stresses and springback in metal forming operations. Finally, the most sophisticated plasticity models attempt to track the development of microstructure or damage in the metal.  For example, the Gurson plasticity model models the nucleation and growth of voids in a metal, and is widely used to simulate ductile fracture.  Such models typically have a large number of parameters, and can  differ widely in their predictions. They must be very carefully chosen and calibrated to obtain accurate results.

 

metal_stamping_simulation-success

FEA simulation of fracture during a metal forming

operation, from the stampingsimulation website

6. Viscoplasticity. Similar in structure to metal plasticity, these models account for the tendency of the flow stress of a metal to increase when deformed at high strain rates.   They  are used in modeling high-speed machining, for example, or in applications involving explosive shock loading.  Viscoplastic constitutive equations are also used to model creep MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the steady accumulation of plastic strain in a metal when loaded below its yield stress, and subjected to high temperatures.  The simplest viscoplastic constitutive law has  only two parameters--uniaxial strain rate versus stress response of the form ε ˙ =A σ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaacqGH9aqpcaWGbbGaeq 4Wdm3aaWbaaSqabeaacaWGUbaaaaaa@373F@ .  More complex models account for elastic deformation and strain hardening.  Data for the simple models is quite easy to find, but more sophisticated and accurate models must be calibrated experimentally.

 

7. Crystal plasticity. These models are used for calculating anisotropic plastic flow in a single crystal of a metal.  They are mostly used in materials science calculations and in modeling some metal forming processes.  These models are still under development as material data are not easily  found, and are laborious and expensive to measure.

 

8. Strain Gradient Plasticity. This formulation was developed in the last 10-20 years to model the behavior of very small volumes of a metal (less than 100 μm MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0MaamyBaaaa@3388@  ).  Typically, small volumes of metal are stronger than bulk  samples.  These models are still under development, are difficult to calibrate, and don’t always work well.

stdis_fail_e2

Discrete dislocation plasticity simulation of dislocations near the tip of a propagating crack. 

 

9.  Discrete Dislocation Plasticity. Currently used for research only, this technique models plastic flow in very small volumes of material by tracking the nucleation, motion, and annihiliation of individual dislocations in the solid.  DDP models contain a large number of material parameters that are difficult to calibrate.

 

10. Critical state plasticity (cam-clay). This model is used for soils, whose behavior depends on moisture content.  It is somewhat similar in structure to the metal plasticity model, except that the yield strength of a soil is highly pressure dependent (increases with compressive pressure).  Simple models contain only 3 or 4 material parameters, which can be calibrated quite accurately.

 

11. Pressure-dependent viscoplasticity. This model is similar to critical state plasticity, in that they both account for changes in flow stress of a material with confining pressure.  It is used to model granular materials, and some polymers and composite materials (typically in modeling processes such as extrusion or drawing).

 

12. Concrete models. They are intended to model the crushing (in compression) or fracture (in tension) of concrete (obviously!). The mathematical structure resembles that of pressure dependent plasticity.

                                                   

quasi_continuum

Quasicontinuum simulation of a crack approaching a bi-material interface.  From the Quasicontinuum website.

 

13. Atomistic models. They replace traditional stress-strain laws with a direct calculation of stress-strain behavior using embedded atomic scale simulations.  The atomic scale computations use empirical potentials to model atom interactions, or may approximate the Schrodinger wave equation directly. Techiques include the `Quasi-Continuum’ method, and the Coupled-Atomistic-Discrete Dislocation Method. Their advantage is that they capture the physics of material behavior extremely accurately; their disadvantage is that they currently can only model extremely small material volumes (20-100nm or so). Atomistic models based on empirical potentials contain a large number of adjustable parameters MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  these are usually calibrated against known quantities such as elastic moduli and stacking fault energies, and can also be computed using ab initio techniques.  The accuracy of the predictions depends strongly on the accuracy of the potentials. Currently these kinds of simulations are used mostly as a research tool for nanotechnology and materials design applications.

 

This list is by no means exhaustive MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  additional models are available for materials such as shape memory alloys, metallic glasses, and piezoelectric materials.

 

These material models are intended primarily to approximate stress-strain behavior.  Special constitutive equations have also been developed to model the behavior of contacting surfaces or interfaces between two solids (Coulomb friction is a simple example). In addition, if you need to model damage (fracture or fatigue), you may need to select and calibrate additional material models.  For example, to model brittle fracture, you would need to know the fracture toughness of the material.  To model the growth of a fatigue crack, you would probably use Paris’ crack growth law  da/dt=C ΔK n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadggacaGGVaGaamizaiaads hacqGH9aqpcaWGdbWaaeWaaeaacqqHuoarcaWGlbaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGUbaaaaaa@3BF1@  and would need data for the Paris constant C and exponent n.  There are several other stress- or strain-based fatigue laws in common use.  These models are often curve fits to experimental data, and are not based on any detailed physical understanding of the failure mechanism.  They must therefore be used with caution, and material properties must be measured carefully.

 

 

 

1.1.6 A representative initial value problem in solid mechanics

 

The result of the decisions made in Sections 1.1.1-1.1.5 is a boundary value problem (for static problems) or initial value problem (for dynamic problems).  This information consists of a set of partial differential equations, together with initial and boundary conditions, that must be solved for the displacement and stress fields, as well as any auxiliary fields (such as temperature) in the solid.   To illustrate the structure of these equations, this section provides a list of the governing equations for a representative initial value problem.

As a representative example, we state the initial value problem that governs elastic wave propagation in a linear elastic solid.  A representative problem is sketched in the figure.  Given:

 

1. The shape of the solid in its unloaded condition R 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIWaaabeaaaa a@329D@ ;

2. The Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  for the solid;

3. The thermal expansion coefficient α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  for the solid, and temperature distribution T(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivaiaacIcacaWG4bGaaiykaaaa@340F@  in the solid (for simplicity we assume that the temperature does not vary with time);

4. The initial displacement field in the solid u o (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWH1baaleqabaGaam4Baa aakiaacIcacaWH4bGaaiykaaaa@357F@ , and the initial velocity field v o (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWH2baaleqabaGaam4Baa aakiaacIcacaWH4bGaaiykaaaa@3580@ ;

5. A body force distribution b(x,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiaacIcacaWH4bGaaiilaiaads hacaGGPaaaaa@35CE@  (force per unit volume) acting on the solid;

6. Boundary conditions, specifying displacements u * (x,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiilaiaadshacaGGPaaaaa@36C6@  on a portion S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@  and  tractions t * (x,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiilaiaadshacaGGPaaaaa@36C5@  on a portion S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@  of the boundary of R

 

Calculate displacements u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@ , strains ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3490@  and stresses σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  satisfying the governing equations of linear elastodynamics:

 

1. The strain-displacement (compatibility) equation

ε ij = 1 2 u i x j + u j x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@47CA@

 

2. The linear elastic stress-strain law

σ ij = E 1+ν ε ij + ν 12ν ε kk δ ij Eν (1+ν)(12ν) αΔT δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbaacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHi TmaalaaabaGaamyraiabe27aUbqaaiaacIcacaaIXaGaey4kaSIaeq yVd4MaaiykaiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMca aaGaeqySdeMaeuiLdqKaamivaiabes7aKnaaBaaaleaacaWGPbGaam OAaaqabaaaaa@6297@

 

3. The equation of motion for a continuum (F=ma)

σ ij x i + b j =ρ 2 u j t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaaaaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadQgaaeqaaO Gaeyypa0JaeqyWdi3aaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaamiDam aaCaaaleqabaGaaGOmaaaaaaaaaa@4737@

 

4. The fields must satisfy initial conditions

u i ( x i ,t=0)= u i 0 u i ( x i ,t=0) t = v i 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadshacqGH 9aqpcaaIWaGaaiykaiabg2da9maaxacabaGaamyDamaaBaaaleaaca WGPbaabeaaaeqabaGaaGimaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8+aaSaaaeaacqGHciITcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG SaGaamiDaiabg2da9iaaicdacaGGPaaabaGaeyOaIyRaamiDaaaacq GH9aqpdaWfGaqaaiaadAhadaWgaaWcbaGaamyAaaqabaaabeqaaiaa icdaaaGccaaMc8oaaa@73F8@

 

5. As well as boundary conditions

u i = u i * ( x k ,t)on S 1 σ ij n i = t j * ( x k ,t)on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaamyDamaaDaaaleaacaWGPbaabaGaaiOkaaaakiaa cIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadshacaGGPa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caqGVbGaaeOBaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua am4uamaaBaaaleaacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaaca WGPbGaamOAaaqabaGccaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaeyyp a0JaamiDamaaDaaaleaacaWGQbaabaGaaiOkaaaakiaacIcacaWG4b WaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadshacaGGPaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaae4Baiaab6gacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadofadaWgaaWcbaGaaGOmaaqabaaaaaa@8E5E@

 

 

1.1.7 Choosing a method of analysis

 

Once you have set up the problem, you will need to solve the equations of motion (or equilibrium) for a continuum, together with the equations governing material behavior, to determine the stress and strain distributions in the solid.  Several methods are available for this purpose.

 


Analytical solution to the stress field around a hypotrochoidal hole in an elastic solid

Exact solutions. There is a good chance that you can find an exact solution for:

 

1. 2D (plane stress or plane strain) linear elastic solids, particularly under static loading.  Solution techniques include transforms, stress function methods, and complex variable methods. Dynamic solutions are also possible, but somewhat more difficult.

2. 2D viscoelastic solids.

3. 3D linear elasticitity problems can be solved (usually using integral transforms) if they are simple enough.

4. 2D (plane strain) deformation of rigid plastic solids (using slip line fields).

 

Naturally, analytical solutions are most easily found for solids with a simple geometry (e.g., an infinite solid containing a crack, loading applied to a flat surface, etc).  In addition, special analytical techniques can be used for problems for which the solid’s geometry can be approximated.  Examples include membrane theory, shell and plate theory, beam theory, and truss analysis.

 

Even when you can’t find an exact solution to the stress and strain fields in your solid, you can sometimes get the information you need using powerful mathematical theorems.  For example, bounding theorems allow you to estimate the plastic collapse loads for a structure quickly and easily. 

 

Numerical Solutions.  Computer simulations are used for most engineering design calculations in practice, and include

 

1. The finite element method (FEM). We will discuss this method in detail in this book.  It is the most widely used technique, and can be used to solve almost any problem in solid mechanics, provided you understand how to model your material, and have access to a fast enough computer.

2. Finite difference methods. They are somewhat similar to FEM but much less widely used.

3. Boundary integral equation methods (or boundary element methods). A more efficient computer technique for linear elastic problems, but hard to use for nonlinear materials or geometry.

4. Free volume methods. They are used more in computational fluid dynamics than in solids, but are useful for problems involving very large deformations, where the solid flows much like a fluid.

5. Atomistic methods. They are used in nanotechnology applications to model material behavior at the atomic scale.  Molecular dynamic techniques integrate the equations of motion (Newton’s laws) for individual atoms, molecular statics solve equilibrium equations to calculate atom positions.  The forces between atoms are computed using empirical constitutive equations, or sometimes using approximations to quantum mechanics.  These computations can only consider exceedingly small material volumes (up to a few million atoms) and short time-scales (up to a few tens or hundreds of nanoseconds).