2.2 Mathematical description of shape changes in solids

 

In this section, we list the various mathematical formulas that are used to characterize shape changes in solids (and in fluids).  The formulas might look scary at first, but they are mostly just definitions.  You might find it helpful to refresh your memory on vectors and matrices (Appendix A), and to read the brief discussion of Tensors (Appendix B) and Index Notation (Appendix C) before wading through this section.

 

As you work through the various definitions, you should bear in mind that shape changes near a point can always be characterized by six numbers.  These could be could be the six independent components of the Lagrangian strain, Eulerian strain, the left or right stretch tensors, or your own favorite deformation measure.  Given the complete set of six numbers for any one deformation measure, you can always calculate the components of other strain measures. The reason that so many different deformation measures exist is partly that different material models adopt different strain measures, and partly because each measure is useful for describing a particular type of shape change.

 

 

 

2.2.1 Reference and deformed configurations of a solid

 

The configuration of a solid is a region of space occupied (filled) by the solid.   When we describe motion, we normally choose some convenient configuration of the solid to use as reference  - this is often the initial, undeformed solid, but it can be any convenient region that could be occupied by the solid.   The material changes its shape under the action of external loads, and at some time t occupies a new region which is called the deformed or current configuration of the solid, as shown in the figure. 

 

For some applications (fluids, problems with growth or evolving microstructures) a fixed reference configuration can’t be identified MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  in this case we usually use the deformed material as the reference configuration.

 

Mathematically, we describe a deformation as a 1:1 mapping which transforms points from the reference configuration of a solid to the deformed configuration.  For example, let us choose the undeformed solid as reference configuration, and, let ξ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaa aa@33BD@  (with i=1,2 or 3) be three numbers specifying the position of some point in the undeformed solid (these could be the three components of position vector in a Cartesian coordinate system, or they could be a more general coordinate system, such as polar coordinates).  As the solid deforms, the values of the three coordinates change to different numbers.  We can write this in general form as η i = f i ( ξ k ,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamOzamaaBaaaleaacaWGPbaabeaakiaacIcacqaH+oaE daWgaaWcbaGaam4AaaqabaGccaGGSaGaamiDaiaacMcaaaa@3CB0@ .  This is called a deformation mapping.

 

To be a physically admissible deformation

 

(i) The coordinates must specify positions in a Newtonian (or inertial) reference frame.  This means that it must be possible to find some coordinate transformation x i ( ξ k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaki aacIcacqaH+oaEdaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3743@ , such that x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  are components in an orthogonal basis, which is taken to be ‘stationary’ in the sense of Newtonian dynamics;

 

(ii) The functions f i ( ξ k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGPbaabeaaki aacIcacqaH+oaEdaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3731@  must be 1:1 on the full set of real numbers; and f i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGPbaabeaaaa a@32E5@  must be invertible;

 

(iii)   f i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGPbaabeaaaa a@32E5@  must be continuous and continuously differentiable (we occasionally relax these two assumptions, but this has to be dealt with on a case-by-case basis);

 

(iv)  The mapping must satisfy det( η i / ξ j )>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiabgk Gi2kabeE7aOnaaBaaaleaacaWGPbaabeaakiaac+cacqGHciITcqaH +oaEdaWgaaWcbaGaamOAaaqabaGccaGGPaGaeyOpa4JaaGimaaaa@3FFD@ .

 

To begin with, we will describe all motions and deformations by expressing positions of points in both undeformed and deformed solids as components in a Cartesian inertial reference frame (which is also taken to be an inertial frame).  Thus x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  will denote components of the position vector of a material particle before deformation, and y i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaa@367E@  will be components of its position vector after deformation, as shown in the figure.   We will see what happens if we choose an arbitrary reference configuration in Section 2.7, which discusses how the vectors and tensors we use in solid mechanics change when we choose to use different coordinate systems.

 

 

 

2.2.2 The Displacement and Velocity Fields

 

The displacement vector u(x,t) describes the motion of each point in the solid. To make this precise,  visualize a solid deforming under external loads, as shown in the figure.  Every point in the solid moves as the load is applied: for example, a point at position x in the undeformed solid might move to a new position y at time t.  The displacement vector is defined as

y=x+u(x,t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiabg2da9iaahIhacqGHRaWkca WH1bGaaiikaiaahIhacaGGSaGaamiDaiaacMcaaaa@39CB@

We could also express this formula using index notation, which is discussed in detail in Appendix C, as

y i = x i + u i ( x 1 , x 2 , x 3 ,t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadshacaGGPaaaaa@4357@

Here, the subscript i  has  values 1,2, or 3, and (for example) y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaaa a@32F8@  represents the three Cartesian components of the vector y.

 

The displacement field completely specifies the change in shape of the solid. The velocity field would describe its motion, as

v i ( x k ,t)= y i t = u i ( x k ,t) t x k =const MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0ZaaSaaaeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaae qaaaGcbaGaeyOaIyRaamiDaaaacqGH9aqpdaabcaqaamaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bWaaS baaSqaaiaadUgaaeqaaOGaaiilaiaadshacaGGPaaabaGaeyOaIyRa amiDaaaaaiaawIa7amaaBaaaleaacaWG4bWaaSbaaWqaaiaadUgaae qaaSGaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabshaaeqaaaaa @54E1@

 

Some examples of deformations are listed in the table


 

 

2.2.3 Eulerian and Lagrangean descriptions of motion and deformation.

 

The displacement and velocity are vector valued functions.   In any application, we have a choice of writing the vectors as functions of the position of material particles before deformation x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@

y i = x i + u i ( x j ,t) y i t x i =const = u i t = v i ( x j ,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamOAaa qabaGccaGGSaGaamiDaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8+aaqGaaeaadaWcaaqaaiabgk Gi2kaadMhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG0baa aaGaayjcSdWaaSbaaSqaaiaadIhadaWgaaadbaGaamyAaaqabaWccq GH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaaqabaGccqGH9aqp daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG0baaaiabg2da9iaadAhadaWgaaWcbaGaamyAaaqabaGc caGGOaGaamiEamaaBaaaleaacaWGQbaabeaakiaacYcacaWG0bGaai ykaaaa@83C4@

This is called the lagrangean description of motion.  It is usually the easiest way to visualize a deformation.

 

But in some applications (eg fluid flow problems, where it’s hard to identify a reference configuration) it is preferable to write the displacement, velocity and acceleration vectors as functions of the deformed position of particles.  

y i = x i + u i ( y j ,t) y i t x i =const = v i ( y j ,t) 2 y i t 2 x i =const = a i ( y j ,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadMgaaeqaaOGaaiikaiaadMhadaWgaaWcbaGaamOAaa qabaGccaGGSaGaamiDaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaaeiaabaWaaSaaaeaacqGH ciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiDaa aaaiaawIa7amaaBaaaleaacaWG4bWaaSbaaWqaaiaadMgaaeqaaSGa eyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshaaeqaaOGaeyypa0 JaamODamaaBaaaleaacaWGPbaabeaakiaacIcacaWG5bWaaSbaaSqa aiaadQgaaeqaaOGaaiilaiaadshacaGGPaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVp aaeiaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG 5bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiDamaaCaaale qabaGaaGOmaaaaaaaakiaawIa7amaaBaaaleaacaWG4bWaaSbaaWqa aiaadMgaaeqaaSGaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabs haaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGPbaabeaakiaacIca caWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaiilaiaadshacaGGPaaaaa@A783@

These express displacement, velocity and displacement as functions of a particular point in space (visualize describing air flow, for example).  This is called the Eulerian description of motion. Of course the functions of x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  and y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaaa a@32F8@  are not the same MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  we just run out of symbols if we introduce different variables in the Lagrangian and Eulerian descriptions.     

 

The relationships between displacement, velocity, and acceleration are somewhat more complicated in the Eulerian description.  In the laws of motion, we normally are interested in the velocity and acceleration of a particular material particle, rather the rate of change of displacement and velocity at a particular point in space.  When computing the time derivatives, it is necessary to take into account that y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaaa a@32F8@  is a function of time.  Thus, displacement, velocity and acceleration are related by

δ ij u i y k y k t x i =const = u i t y i =const 2 y i t 2 x i =const = a i ( y j ,t)= v i t y i =const + v k ( y j ,t) v i y k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaabcaqaaiaaykW7daqadaqaai abes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqa aiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITca WG5bWaaSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMcaamaalaaa baGaeyOaIyRaamyEamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2k aadshaaaaacaGLiWoadaWgaaWcbaGaamiEamaaBaaameaacaWGPbaa beaaliabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaaki abg2da9maaeiaabaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaa dMgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaaca WG5bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0Jaae4yaiaab+gacaqG UbGaae4CaiaabshaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7aeaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaaeiaabaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG5bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOm aaaaaaaakiaawIa7amaaBaaaleaacaWG4bWaaSbaaWqaaiaadMgaae qaaSGaeyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshaaeqaaOGa eyypa0JaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWG5bWaaS baaSqaaiaadQgaaeqaaOGaaiilaiaadshacaGGPaGaeyypa0ZaaqGa aeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamyAaaqabaaake aacqGHciITcaWG0baaaaGaayjcSdWaaSbaaSqaaiaadMhadaWgaaad baGaamyAaaqabaWccqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaae iDaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaadUgaaeqaaOGaaiik aiaadMhadaWgaaWcbaGaamOAaaqabaGccaGGSaGaamiDaiaacMcada WcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGH ciITcaWG5bWaaSbaaSqaaiaadUgaaeqaaaaaaaaa@DBFF@

You can derive these results by a simple application of the chain rule.

 

 

 

2.2.4 The Displacement gradient and Deformation gradient tensors

 

These quantities are defined by

 

Displacement Gradient Tensor:   u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabgEGirdaa@3363@  is a tensor with components u i x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaaMc8UaamyDam aaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa am4Aaaqabaaaaaaa@397D@

Deformation Gradient Tensor:

F=y=I+u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahMhacqGHhis0cq GH9aqpcaWHjbGaey4kaSIaaCyDaiabgEGirdaa@3A7A@  or in Cartesian components F ik = y i x k = δ ik + u i x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaam4Aaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadMhadaWgaaWcbaGaamyA aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadUgaaeqaaaaaki abg2da9iabes7aKnaaBaaaleaacaWGPbGaam4AaaqabaGccqGHRaWk daWcaaqaaiabgkGi2kaaykW7caWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcbaGaam4Aaaqabaaaaaaa @4BAF@

 

Here, I  is the identity tensor, with components described by the Kronekor delta symbol:

δ ik = 1,i=k 0,ik MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaadMgacaWGRb aabeaakiabg2da9maaceaaeaqabeaacaaIXaGaaiilaiaaykW7caaM c8UaaGPaVlaadMgacqGH9aqpcaWGRbaabaGaaGimaiaacYcacaaMc8 UaaGPaVlaadMgacqGHGjsUcaWGRbaaaiaawUhaaaaa@47D4@

and MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIenaaa@3266@  represents the gradient operator. Formally, the gradient of a vector field u(x) is defined so that

u n= Lim α0 u(x+αn)u(x) α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWH1bGaey4bIenacaGLBb GaayzxaaGaaCOBaiabg2da9maaxababaGaaeitaiaabMgacaqGTbaa leaacqaHXoqycqGHsgIRcaqGWaaabeaakmaalaaabaGaaCyDaiaacI cacaWH4bGaey4kaSIaeqySdeMaaCOBaiaacMcacqGHsislcaWH1bGa aiikaiaahIhacaGGPaaabaGaeqySdegaaaaa@4B44@

Texts use various different conventions to denote the gradient operator, which can be confusing.   Here, we use the convention that if gradient operator appears on the right of the vector, the gradient tensor should be multiplied by n on the right.  The gradient could also be taken from the left: n u = u n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaadmaabaGaey4bIeTaaCyDaa Gaay5waiaaw2faaiabg2da9maadmaabaGaaCyDaiabgEGirdGaay5w aiaaw2faaiaah6gaaaa@3CC0@ .  Evidently u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabgEGirdaa@3363@  is the transpose of u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIeTaaCyDaaaa@3363@ . For more details see Appendix A. In practice the component formula u i / x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa @3895@  is more useful, and avoids the confusion.

 

Note also that

y= x+u(x) =F or    y i x j = x j x i + u i = δ ij + u i x j = F ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWH5bGaey4bIeTaeyypa0Zaae WaaeaacaWH4bGaey4kaSIaaCyDaiaacIcacaWH4bGaaiykaaGaayjk aiaawMcaaiabgEGirlabg2da9iaahAeaaeaacaqGVbGaaeOCaiaabc cacaqGGaGaaeiiamaalaaabaGaeyOaIyRaamyEamaaBaaaleaacaWG PbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaO Gaeyypa0ZaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqa aiaadQgaaeqaaaaakmaabmaabaGaamiEamaaBaaaleaacaWGPbaabe aakiabgUcaRiaadwhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaacqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey 4kaSYaaSaaaeaacqGHciITcaaMc8UaamyDamaaBaaaleaacaWGPbaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey ypa0JaamOramaaBaaaleaacaWGPbGaamOAaaqabaaaaaa@6853@

The rules of differentiation using index notation are described in more detail in Appendix C.

 

The concepts of displacement gradient and deformation gradient are introduced to quantify the change in shape of infinitesimal line elements in a solid body. To see this, imagine drawing a straight line on the undeformed configuration of a solid, as shown in the figure. The line would be mapped to a smooth curve on the deformed configuration.  However, suppose we focus attention on a line segment dx, much shorter than the radius of curvature of this curve, as shown.  The segment would be straight in the undeformed configuration, and would also be (almost) straight in the deformed configuration.  Thus, no matter how complex a deformation we impose on a solid, infinitesimal line segments are merely stretched and rotated by a deformation.The infinitesimal line segments dx and dy are related by

dy=Fdxor   d y i = F ik d x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpcaWHgbGaam izaiaahIhacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gacaqG YbGaaeiiaiaabccacaqGGaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadUgaaeqaaaaa@4C02@

Written out as a matrix equation, we have

d y 1 d y 2 d y 3 = 1+ u 1 x 1 u 1 x 2 u 1 x 3 u 2 x 1 1+ u 2 x 2 u 2 x 3 u 3 x 1 u 3 x 2 1+ u 3 x 3 d x 1 d x 2 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaamizai aadMhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamyEamaaBaaa leaacaaIYaaabeaaaOqaaiaadsgacaWG5bWaaSbaaSqaaiaaiodaae qaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabmWaaaqa aiaaigdacqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG ymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa aOqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaa aeaacqGHciITcaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaaIZaaabeaaaaaakeaadaWcaaqaaiabgkGi 2kaadwhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaS baaSqaaiaaigdaaeqaaaaaaOqaaiaaigdacqGHRaWkdaWcaaqaaiab gkGi2kaadwhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamyD amaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaaG4maaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqa aiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabe aaaaaakeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4maaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaai aaigdacqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG4m aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaa aakiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacaWGKbGaamiE amaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaai aaikdaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaa aaGccaGLBbGaayzxaaaaaa@8A49@

To derive this result, consider an infinitesimal line element dx in a deforming solid.  When the solid is deformed, this line element is stretched and rotated to a deformed line element dy.  If we know the displacement field in the solid, we can compute dy=[x+dx+u(x+dx)][x+u(x)] MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpcaGGBbGaaC iEaiabgUcaRiaadsgacaWH4bGaey4kaSIaamyDaiaacIcacaWH4bGa ey4kaSIaamizaiaahIhacaGGPaGaaiyxaiabgkHiTiaacUfacaWH4b Gaey4kaSIaaCyDaiaacIcacaWH4bGaaiykaiaac2faaaa@4847@  from the position vectors of its two end points

d y i = x i +d x i + u i ( x k +d x k )( x i + u i ( x k )) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIa amizaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWaaS baaSqaaiaadMgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaam4Aaaqa baGccqGHRaWkcaWGKbGaamiEamaaBaaaleaacaWGRbaabeaakiaacM cacqGHsislcaGGOaGaamiEamaaBaaaleaacaWGPbaabeaakiabgUca RiaadwhadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamiEamaaBaaale aacaWGRbaabeaakiaacMcacaGGPaaaaa@504A@

Expand u i ( x k +d x k ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamizaiaa dIhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3A67@  as a Taylor series

u i ( x k +d x k ) u i ( x k )+ u i x k d x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamizaiaa dIhadaWgaaWcbaGaam4AaaqabaGccaGGPaGaeyisISRaamyDamaaBa aaleaacaWGPbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqa aOGaaiykaiabgUcaRmaalaaabaGaeyOaIyRaaGPaVlaadwhadaWgaa WcbaGaamyAaaqabaaakeaacqGHciITcaaMc8UaamiEamaaBaaaleaa caWGRbaabeaaaaGccaWGKbGaamiEamaaBaaaleaacaWGRbaabeaaaa a@4FC9@

so that

d y i =d x i + u i x k d x k = δ ik + u i x k d x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGKbGaamiEamaaBaaaleaacaWGPbaabeaakiab gUcaRmaalaaabaGaeyOaIyRaaGPaVlaadwhadaWgaaWcbaGaamyAaa qabaaakeaacqGHciITcaaMc8UaamiEamaaBaaaleaacaWGRbaabeaa aaGccaWGKbGaamiEamaaBaaaleaacaWGRbaabeaakiabg2da9maabm aabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGRbaabeaakiabgUcaRmaa laaabaGaeyOaIyRaaGPaVlaadwhadaWgaaWcbaGaamyAaaqabaaake aacqGHciITcaaMc8UaamiEamaaBaaaleaacaWGRbaabeaaaaaakiaa wIcacaGLPaaacaWGKbGaamiEamaaBaaaleaacaWGRbaabeaaaaa@5A7A@

We identify the term in parentheses as the deformation gradient, so

d y i = F ik d x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadUgaaeqaaaaa@3AD1@

 

The inverse of the deformation gradient F 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOramaaCaaaleqabaGaeyOeI0IaaG ymaaaaaaa@3384@  arises in many calculations.  It is defined through

d x i = F ik 1 d y k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaa0baaSqaaiaadMgacaWGRbaabaGaeyOe I0IaaGymaaaakiaadsgacaWG5bWaaSbaaSqaaiaadUgaaeqaaaaa@3C7A@

or alternatively

F ij 1 = x i y j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbGaamOAaa qaaiabgkHiTiaaigdaaaGccqGH9aqpdaWcaaqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaai aadQgaaeqaaaaaaaa@3D83@

 

 


 

2.2.5 Deformation gradient resulting from two successive deformations

 

Suppose that two successive deformations are applied to a solid, as shown in the figure. Let

dy= F (1) dxdz= F (2) dyord y i = F ij (1) d x j d z i = F ij (2) d y j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpcaWHgbWaaW baaSqabeaacaGGOaGaaGymaiaacMcaaaGccaWGKbGaaCiEaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamizai aahQhacqGH9aqpcaWHgbWaaWbaaSqabeaacaGGOaGaaGOmaiaacMca aaGccaWGKbGaaCyEaiaaykW7caaMc8UaaGPaVlaaykW7caqGVbGaae OCaiaaykW7caaMc8UaaGPaVlaadsgacaWG5bWaaSbaaSqaaiaadMga aeqaaOGaeyypa0JaamOramaaDaaaleaacaWGPbGaamOAaaqaaiaacI cacaaIXaGaaiykaaaakiaadsgacaWG4bWaaSbaaSqaaiaadQgaaeqa aOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaadsgacaWG6bWaaSbaaSqaaiaadMgaaeqaaOGa eyypa0JaamOramaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaaIYa GaaiykaaaakiaadsgacaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa@815E@

map infinitesimal line elements from the original configuration to the first deformed shape, and from the first deformed shape to the second, respectively, with

F (1) =y x F (2) =z y or F ij (1) = y i x j F ij (2) = z i y j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOramaaCaaaleqabaGaaiikaiaaig dacaGGPaaaaOGaeyypa0JaaCyEaiabgEGirpaaBaaaleaacaWH4baa beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCOramaaCaaale qabaGaaiikaiaaikdacaGGPaaaaOGaeyypa0JaaCOEaiabgEGirpaa BaaaleaacaWH5baabeaakiaaykW7caaMc8UaaGPaVlaab+gacaqGYb GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaaDaaa leaacaWGPbGaamOAaaqaaiaacIcacaaIXaGaaiykaaaakiabg2da9m aalaaabaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaOqaaiab gkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaa DaaaleaacaWGPbGaamOAaaqaaiaacIcacaaIYaGaaiykaaaakiabg2 da9maalaaabaGaeyOaIyRaamOEamaaBaaaleaacaWGPbaabeaaaOqa aiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaaaa@8030@

Here, the subscripts on the gradient operators show that y and z are differentiated with respect to x and y, respectively. The deformation gradient that maps infinitesimal line elements from the original configuration directly to the second deformed shape then follows as

dz=Fdxwith  F= F (2) F (1) ord z i = F ij d x j F ij = F ik (2) F kj (1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahQhacqGH9aqpcaWHgbGaam izaiaahIhacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabEhacaqG PbGaaeiDaiaabIgacaqGGaGaaeiiaiaahAeacqGH9aqpcaWHgbWaaW baaSqabeaacaGGOaGaaGOmaiaacMcaaaGccaWHgbWaaWbaaSqabeaa caGGOaGaaGymaiaacMcaaaGccaaMc8UaaGPaVlaaykW7caqGVbGaae OCaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsgacaWG 6bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamOramaaBaaaleaaca WGPbGaamOAaaqabaGccaWGKbGaamiEamaaBaaaleaacaWGQbaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamOramaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWGgbWa a0baaSqaaiaadMgacaWGRbaabaGaaiikaiaaikdacaGGPaaaaOGaam OramaaDaaaleaacaWGRbGaamOAaaqaaiaacIcacaaIXaGaaiykaaaa aaa@7F3B@

Thus, the cumulative deformation gradient due to two successive deformations follows by multiplying their individual deformation gradients.

 

To see this, write the cumulative mapping as z i y j ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEamaaBaaaleaacaWGPbaabeaakm aabmaabaGaamyEamaaBaaaleaacaWGQbaabeaakiaacIcacaWG4bWa aSbaaSqaaiaadUgaaeqaaOGaaiykaaGaayjkaiaawMcaaaaa@3A2B@  and apply the chain rule

d z i = z i y j y j x k d x k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadQhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadQhadaWgaaWcbaGaamyA aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakm aalaaabaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaOqaaiab gkGi2kaadIhadaWgaaWcbaGaam4AaaqabaaaaOGaamizaiaadIhada WgaaWcbaGaam4Aaaqabaaaaa@4638@

 

 

 

2.2.6 The Jacobian of the deformation gradient MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326D@  change of volume

 

The Jacobian is defined as

J=det F =det δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDamaabmaabaGaaCOraaGaayjkaiaawMcaaiabg2da9iGacsgacaGG LbGaaiiDamaabmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaa beaaaOqaaiabgkGi2kaaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaa aaaOGaayjkaiaawMcaaaaa@4A72@

It is a measure of the volume change produced by a deformation.  To see this, consider the infinitessimal volume element with sides dx, dy, and dz shown in the figure. The original volume of the element is

d V 0 =dz(dx×dy)= ijk d z i d x j d y k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfadaWgaaWcbaGaaGimaa qabaGccqGH9aqpcaWGKbGaaCOEaiabgwSixlaacIcacaWGKbGaaCiE aiabgEna0kaadsgacaWH5bGaaiykaiabg2da9iabgIGiopaaBaaale aacaWGPbGaamOAaiaadUgaaeqaaOGaamizaiaadQhadaWgaaWcbaGa amyAaaqabaGccaWGKbGaamiEamaaBaaaleaacaWGQbaabeaakiaads gacaWG5bWaaSbaaSqaaiaadUgaaeqaaaaa@4EBB@

Here, ijk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4Aaaqabaaaaa@355C@  is the permutation symbol. The element is mapped to a paralellepiped with sides dr, dv, and dw with volume given by

dV= ijk d w i d r j d v k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfacqGH9aqpcqGHiiIZda WgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiaadsgacaWG3bWaaSba aSqaaiaadMgaaeqaaOGaamizaiaadkhadaWgaaWcbaGaamOAaaqaba GccaWGKbGaamODamaaBaaaleaacaWGRbaabeaaaaa@413E@

Recall that

d r i = F il d x l ,d v j = F jm d y m ,d w k = F kn d z n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadkhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGSbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadYgaaeqaaOGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamizaiaadAhadaWgaaWcbaGaamOAaaqa baGccqGH9aqpcaWGgbWaaSbaaSqaaiaadQgacaWGTbaabeaakiaads gacaWG5bWaaSbaaSqaaiaad2gaaeqaaOGaaiilaiaaykW7caaMc8Ua aGPaVlaadsgacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaam OramaaBaaaleaacaWGRbGaamOBaaqabaGccaWGKbGaamOEamaaBaaa leaacaWGUbaabeaaaaa@5C8A@

so that

dV= ijk F il d x l F jm d y m F kn d z n = ijk F il F jm F kn d x l d y m d z n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfacqGH9aqpcqGHiiIZda WgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiaadAeadaWgaaWcbaGa amyAaiaadYgaaeqaaOGaamizaiaadIhadaWgaaWcbaGaamiBaaqaba GccaWGgbWaaSbaaSqaaiaadQgacaWGTbaabeaakiaadsgacaWG5bWa aSbaaSqaaiaad2gaaeqaaOGaamOramaaBaaaleaacaWGRbGaamOBaa qabaGccaWGKbGaamOEamaaBaaaleaacaWGUbaabeaakiabg2da9iab gIGiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaamOramaaBa aaleaacaWGPbGaamiBaaqabaGccaWGgbWaaSbaaSqaaiaadQgacaWG TbaabeaakiaadAeadaWgaaWcbaGaam4Aaiaad6gaaeqaaOGaamizai aadIhadaWgaaWcbaGaamiBaaqabaGccaWGKbGaamyEamaaBaaaleaa caWGTbaabeaakiaadsgacaWG6bWaaSbaaSqaaiaad6gaaeqaaaaa@6159@

Recall that

ijk A il A jm A kn = lmn det(A) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccaWGbbWaaSbaaSqaaiaadMgacaWGSbaabeaakiaa dgeadaWgaaWcbaGaamOAaiaad2gaaeqaaOGaamyqamaaBaaaleaaca WGRbGaamOBaaqabaGccqGH9aqpcqGHiiIZdaWgaaWcbaGaamiBaiaa d2gacaWGUbaabeaakiGacsgacaGGLbGaaiiDaiaacIcacaWHbbGaai ykaaaa@4881@

so that

dV=det(F) lmn d x l d y m d z n =det F d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfacqGH9aqpciGGKbGaai yzaiaacshacaGGOaGaaCOraiaacMcacqGHiiIZdaWgaaWcbaGaamiB aiaad2gacaWGUbaabeaakiaadsgacaWG4bWaaSbaaSqaaiaadYgaae qaaOGaamizaiaadMhadaWgaaWcbaGaamyBaaqabaGccaWGKbGaamOE amaaBaaaleaacaWGUbaabeaakiabg2da9iGacsgacaGGLbGaaiiDam aabmaabaGaaCOraaGaayjkaiaawMcaaiaadsgacaWGwbWaaSbaaSqa aiaaicdaaeqaaaaa@4F2C@

Hence

dV d V 0 =det F =J MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamOvaaqaaiaads gacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaakiabg2da9iGacsgacaGG LbGaaiiDamaabmaabaGaaCOraaGaayjkaiaawMcaaiabg2da9iaadQ eaaaa@3D65@

Observe that

 

· For any physically admissible deformation, the volume of the deformed element must be positive (no matter how much you deform a solid, you can’t make material disappear).  Therefore, all physically admissible displacement fields must satisfy J>0

 

· If a material is incompressible, its volume remains constant.  This requires J=1.

 

· If the mass density of the material at a point in the undeformed solid is ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3385@ , its mass density in the deformed solid is ρ= ρ 0 /J MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaS qaaiaaicdaaeqaaOGaai4laiaadQeaaaa@37D7@

 

Derivatives of J. When working with constitutive equations, it is occasionally necessary to evaluate derivatives of J with respect to the components of F.  The following result (which can be proved e.g. by expanding the Jacobian using index notation) is extremely useful

J F ij =J F ji 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGkbaabaGaey OaIyRaamOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0Ja amOsaiaadAeadaqhaaWcbaGaamOAaiaadMgaaeaacqGHsislcaaIXa aaaaaa@3DBB@

 

 

 

 

2.2.7 Transformation of internal surface area elements

 

When we deal with internal forces in a solid, we need to work with forces acting on internal surfaces in a solid.  An important question arises in this treatment: if we identify an element of area d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGimaa qabaaaaa@3375@  with normal n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaBaaaleaacaaIWaaabeaaaa a@32BD@  in the reference configuration, and then what are the area of dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeaaaa@328F@  and normal n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaaaa@31D7@  of this area element in the deformed solid?

 

The two are related through

dAn=J F T d A 0 n 0 dA n i =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWHUbGaeyypa0Jaam OsaiaahAeadaahaaWcbeqaaiabgkHiTiaadsfaaaGccaWGKbGaamyq amaaBaaaleaacaaIWaaabeaakiaah6gadaWgaaWcbaGaaGimaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamizaiaadgeacaWGUb Waa0baaSqaaiaadMgaaeaaaaGccqGH9aqpcaWGkbGaamOramaaDaaa leaacaWGRbGaamyAaaqaaiabgkHiTiaaigdaaaGccaWGUbWaa0baaS qaaiaadUgaaeaacaaIWaaaaOGaamizaiaadgeadaWgaaWcbaGaaGim aaqabaaaaa@6048@

 

To see this,

 

1. Let d v i 0 ,d w j 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhadaqhaaWcbaGaamyAaa qaaiaaicdaaaGccaGGSaGaamizaiaadEhadaqhaaWcbaGaamOAaaqa aiaaicdaaaaaaa@390E@  be two infinitesimal material fibers with different orientations at some point in the reference configuration, as shown in the figure.  These fibers bound a parallelapiped with area and normal

d A 0 n i 0 = ijk d w j 0 d v k 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGimaa qabaGccaWGUbWaa0baaSqaaiaadMgaaeaacaaIWaaaaOGaeyypa0Ja eyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaWGKbGaam 4DamaaDaaaleaacaWGQbaabaGaaGimaaaakiaadsgacaWG2bWaa0ba aSqaaiaadUgaaeaacaaIWaaaaaaa@435E@

 

2. The vectors map to d v j = F jq d v q 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhadaWgaaWcbaGaamOAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadQgacaWGXbaabeaakiaa dsgacaWG2bWaa0baaSqaaiaadghaaeaacaaIWaaaaaaa@3B96@ d w k = F kn d w n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaWgaaWcbaGaam4Aaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadUgacaWGUbaabeaakiaa dsgacaWG3bWaa0baaSqaaiaad6gaaeaacaaIWaaaaaaa@3B94@  in the deformed solid

 

3. In the deformed solid the area element is thus

dA n i = ijk F jq d v q 0 F kn d w n 0 = F ml F li 1 mjk F jq F kn d v q 0 d w n 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaaSbaaSqaai aadMgaaeqaaOGaeyypa0JaeyicI48aaSbaaSqaaiaadMgacaWGQbGa am4AaaqabaGccaWGgbWaaSbaaSqaaiaadQgacaWGXbaabeaakiaads gacaWG2bWaa0baaSqaaiaadghaaeaacaaIWaaaaOGaamOramaaBaaa leaacaWGRbGaamOBaaqabaGccaWGKbGaam4DamaaDaaaleaacaWGUb aabaGaaGimaaaakiabg2da9iaadAeadaWgaaWcbaGaamyBaiaadYga aeqaaOGaamOramaaDaaaleaacaWGSbGaamyAaaqaaiabgkHiTiaaig daaaGccqGHiiIZdaWgaaWcbaGaamyBaiaadQgacaWGRbaabeaakiaa dAeadaWgaaWcbaGaamOAaiaadghaaeqaaOGaamOramaaBaaaleaaca WGRbGaamOBaaqabaGccaWGKbGaamODamaaDaaaleaacaWGXbaabaGa aGimaaaakiaadsgacaWG3bWaa0baaSqaaiaad6gaaeaacaaIWaaaaa aa@61E2@

 

4. Recall the identity lmn det(A)= ijk A il A jm A kn MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadYgacaWGTb GaamOBaaqabaGcciGGKbGaaiyzaiaacshacaGGOaGaaCyqaiaacMca caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlabgIGiopaaBa aaleaacaWGPbGaamOAaiaadUgaaeqaaOGaamyqamaaBaaaleaacaWG PbGaamiBaaqabaGccaWGbbWaaSbaaSqaaiaadQgacaWGTbaabeaaki aadgeadaWgaaWcbaGaam4Aaiaad6gaaeqaaaaa@502E@  - so dA n i = F li 1 lqn Jd v q 0 d w n 0 =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaaSbaaSqaai aadMgaaeqaaOGaeyypa0JaamOramaaDaaaleaacaWGSbGaamyAaaqa aiabgkHiTiaaigdaaaGccqGHiiIZdaWgaaWcbaGaamiBaiaadghaca WGUbaabeaakiaadQeacaWGKbGaamODamaaDaaaleaacaWGXbaabaGa aGimaaaakiaadsgacaWG3bWaa0baaSqaaiaad6gaaeaacaaIWaaaaO Gaeyypa0JaamOsaiaadAeadaqhaaWcbaGaam4AaiaadMgaaeaacqGH sislcaaIXaaaaOGaamOBamaaDaaaleaacaWGRbaabaGaaGimaaaaki aadsgacaWGbbWaaSbaaSqaaiaaicdaaeqaaaaa@52F1@

 

 

 

2.2.8 The Lagrange strain tensor

 

The Lagrange strain tensor is defined as

E= 1 2 ( F T FI)or E ij = 1 2 ( F ki F kj δ ij ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyraiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaGaaiikaiaahAeadaahaaWcbeqaaiaadsfaaaGccaWH gbGaeyOeI0IaaCysaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caqGVbGaaeOCaiaaykW7caaMc8UaaGPaVlaaykW7caWG fbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9maalaaabaGaaG ymaaqaaiaaikdaaaGaaiikaiaadAeadaWgaaWcbaGaam4AaiaadMga aeqaaOGaamOramaaBaaaleaacaWGRbGaamOAaaqabaGccqGHsislcq aH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiykaaaa@5C7D@

The components of Lagrange strain can also be expressed in terms of the displacement gradient as

E ij = 1 2 u i x j + u j x i + u k x j u k x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWa aSaaaeaacqGHciITcaaMc8UaamyDamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiab gUcaRmaalaaabaGaeyOaIyRaaGPaVlaadwhadaWgaaWcbaGaamOAaa qabaaakeaacqGHciITcaaMc8UaamiEamaaBaaaleaacaWGPbaabeaa aaGccqGHRaWkdaWcaaqaaiabgkGi2kaaykW7caWG1bWaaSbaaSqaai aadUgaaeqaaaGcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcbaGaamOA aaqabaaaaOWaaSaaaeaacqGHciITcaaMc8UaamyDamaaBaaaleaaca WGRbaabeaaaOqaaiabgkGi2kaaykW7caWG4bWaaSbaaSqaaiaadMga aeqaaaaaaOGaayjkaiaawMcaaaaa@6261@

 

The Lagrange strain tensor quantifies the changes in length of a material fiber, and angles between pairs of fibers in a deformable solid.  It is used in calculations where large shape changes are expected.

 

To visualize the physical significance of E, suppose we mark out an imaginary tensile specimen with (very short) length l 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiBamaaBaaaleaacaaIWaaabeaaaa a@32B6@  on our deforming solid, as shown in the figure. The orientation of the specimen is arbitrary, and is specified by a unit vector m, with components m i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaWGPbaabeaaaa a@32EB@ .  Upon deformation, the specimen increases in length to l= l 0 +δl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiBaiabg2da9iaadYgadaWgaaWcba GaaGimaaqabaGccqGHRaWkcqaH0oazcaWGSbaaaa@3830@ . Define the strain of the specimen as

ε L ( m i )= l 2 l 0 2 2 l 0 2 = δl l 0 + δl 2 2 l 0 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadYeaaeqaaO Gaaiikaiaad2gadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0Za aSaaaeaacaWGSbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiBam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaGOmaaaaaOqaaiaa ikdacaWGSbWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaaIYa aaaaaakiabg2da9maalaaabaGaeqiTdqMaamiBaaqaaiaadYgadaWg aaWcbaGaaGimaaqabaaaaOGaey4kaSYaaSaaaeaadaqadaqaaiabes 7aKjaadYgaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaa caaIYaGaamiBamaaDaaaleaacaaIWaaabaGaaGOmaaaaaaaaaa@5028@

Note that this definition of strain is similar to the definition ε=δl/ l 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0JaeqiTdqMaamiBai aac+cacaWGSbWaaSbaaSqaaiaaicdaaeqaaaaa@38AD@  you are familiar with, but contains an additional term.  The additional term is negligible for small δl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamiBaaaa@3376@ . Given the Lagrange strain components E ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B2@ , the strain of the specimen may be computed from

ε L (m)=mEmor    ε L ( m i )= E ij m i m j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadYeaaeqaaO Gaaiikaiaah2gacaGGPaGaeyypa0JaaCyBaiabgwSixlaahweacaWH TbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caqGVbGaaeOCaiaabccacaqGGaGaaeiiaiabew7aLnaaBaaaleaa caWGmbaabeaakiaacIcacaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaai ykaiabg2da9iaadweadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamyB amaaBaaaleaacaWGPbaabeaakiaad2gadaWgaaWcbaGaamOAaaqaba aaaa@5A31@

We proceed to derive this result. Note that

d x i = l 0 m i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaamyBamaa BaaaleaacaWGPbaabeaaaaa@38DC@

is an infinitesimal vector with length and orientation of our undeformed specimen.  From the preceding section, this vector is stretched and rotated to

d y k = δ kj + u k x j d x j = δ kj + u k x j l 0 m j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaam4Aaa qabaGccqGH9aqpdaqadaqaaiabes7aKnaaBaaaleaacaWGRbGaamOA aaqabaGccqGHRaWkdaWcaaqaaiabgkGi2kaaykW7caWG1bWaaSbaaS qaaiaadUgaaeqaaaGcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcbaGa amOAaaqabaaaaaGccaGLOaGaayzkaaGaamizaiaadIhadaWgaaWcba GaamOAaaqabaGccqGH9aqpdaqadaqaaiabes7aKnaaBaaaleaacaWG RbGaamOAaaqabaGccqGHRaWkdaWcaaqaaiabgkGi2kaaykW7caWG1b WaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOaIyRaaGPaVlaadIhadaWg aaWcbaGaamOAaaqabaaaaaGccaGLOaGaayzkaaGaamiBamaaBaaale aacaaIWaaabeaakiaad2gadaWgaaWcbaGaamOAaaqabaaaaa@5DA3@

The length of the deformed specimen is equal to the length of  dy, so we see that

l 2 =d y k d y k = δ kj + u k x j l 0 m j δ ki + u k x i l 0 m i = δ ij + u i x j + u j x i + u k x i u k x j l 0 2 m j m i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGSbWaaWbaaSqabeaacaaIYa aaaOGaeyypa0JaamizaiaadMhadaWgaaWcbaGaam4AaaqabaGccaWG KbGaamyEamaaBaaaleaacaWGRbaabeaakiabg2da9maabmaabaGaeq iTdq2aaSbaaSqaaiaadUgacaWGQbaabeaakiabgUcaRmaalaaabaGa eyOaIyRaaGPaVlaadwhadaWgaaWcbaGaam4AaaqabaaakeaacqGHci ITcaaMc8UaamiEamaaBaaaleaacaWGQbaabeaaaaaakiaawIcacaGL PaaacaWGSbWaaSbaaSqaaiaaicdaaeqaaOGaamyBamaaBaaaleaaca WGQbaabeaakmaabmaabaGaeqiTdq2aaSbaaSqaaiaadUgacaWGPbaa beaakiabgUcaRmaalaaabaGaeyOaIyRaaGPaVlaadwhadaWgaaWcba Gaam4AaaqabaaakeaacqGHciITcaaMc8UaamiEamaaBaaaleaacaWG PbaabeaaaaaakiaawIcacaGLPaaacaWGSbWaaSbaaSqaaiaaicdaae qaaOGaamyBamaaBaaaleaacaWGPbaabeaaaOqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlabg2da9maabmaabaGaeqiTdq2aaSba aSqaaiaadMgacaWGQbaabeaakiabgUcaRmaalaaabaGaeyOaIyRaaG PaVlaadwhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaaMc8Ua amiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqaaiabgk Gi2kaaykW7caWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRa aGPaVlaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaey4kaSYaaSaaae aacqGHciITcaaMc8UaamyDamaaBaaaleaacaWGRbaabeaaaOqaaiab gkGi2kaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaaaakmaalaaaba GaeyOaIyRaaGPaVlaadwhadaWgaaWcbaGaam4AaaqabaaakeaacqGH ciITcaaMc8UaamiEamaaBaaaleaacaWGQbaabeaaaaaakiaawIcaca GLPaaacaWGSbWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaaI YaaaaOGaamyBamaaBaaaleaacaWGQbaabeaakiaad2gadaWgaaWcba GaamyAaaqabaaaaaa@CA88@

Hence,  the strain for our line element is

ε L ( m i )= l 2 l 0 2 2 l 0 2 = 1 2 u i x j + u j x i + u k x j u k x i m i m j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadYeaaeqaaO Gaaiikaiaad2gadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0Za aSaaaeaacaWGSbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiBam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaGOmaaaaaOqaaiaa ikdacaWGSbWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaaIYa aaaaaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaaykW7caWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcbaGaamOAaaqabaaaaOGa ey4kaSYaaSaaaeaacqGHciITcaaMc8UaamyDamaaBaaaleaacaWGQb aabeaaaOqaaiabgkGi2kaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqa aaaakiabgUcaRmaalaaabaGaeyOaIyRaaGPaVlaadwhadaWgaaWcba Gaam4AaaqabaaakeaacqGHciITcaaMc8UaamiEamaaBaaaleaacaWG QbaabeaaaaGcdaWcaaqaaiabgkGi2kaaykW7caWG1bWaaSbaaSqaai aadUgaaeqaaaGcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcbaGaamyA aaqabaaaaaGccaGLOaGaayzkaaGaamyBamaaBaaaleaacaWGPbaabe aakiaad2gadaWgaaWcbaGaamOAaaqabaaaaa@740F@

giving the results stated.

 

 

 

2.2.9 The Eulerian strain tensor

 

The Eulerian strain tensor is defined as

                                        E * = 1 2 (I F T F 1 ) E ij * = 1 2 ( δ ij F ki 1 F kj 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyramaaCaaaleqabaGaaiOkaaaaki abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaahMeacqGH sislcaWHgbWaaWbaaSqabeaacqGHsislcaWGubaaaOGaaCOramaaCa aaleqabaGaeyOeI0IaaGymaaaakiaacMcacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadweadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQa aaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaeqiT dq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadAeadaqhaa WcbaGaam4AaiaadMgaaeaacqGHsislcaaIXaaaaOGaamOramaaDaaa leaacaWGRbGaamOAaaqaaiabgkHiTiaaigdaaaGccaGGPaaaaa@5A90@

Its physical significance is similar to the Lagrange strain tensor, except that it enables you to compute the strain of an infinitesimal line element from its orientation after deformation.

 

Specifically, suppose that n denotes a unit vector parallel to the deformed material fiber, as shown in the figure. Then

ε E (n)= l 2 l 0 2 2 l 2 =n E * nor    ε E ( n i )= E ij * n i n j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadweaaeqaaO Gaaiikaiaah6gacaGGPaGaeyypa0ZaaSaaaeaacaWGSbWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaamiBamaaBaaaleaacaaIWaaabeaakm aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGSbWaaWbaaSqabeaa caaIYaaaaaaakiabg2da9iaah6gacqGHflY1caWHfbWaaWbaaSqabe aacaGGQaaaaOGaaCOBaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaae4BaiaabkhacaqGGaGaaeiiaiaabccacq aH1oqzdaWgaaWcbaGaamyraaqabaGccaGGOaGaamOBamaaBaaaleaa caWGPbaabeaakiaacMcacqGH9aqpcaWGfbWaa0baaSqaaiaadMgaca WGQbaabaGaaiOkaaaakiaad6gadaWgaaWcbaGaamyAaaqabaGccaWG UbWaaSbaaSqaaiaadQgaaeqaaaaa@6518@

The proof is left as an exercise.

 

 

 

2.2.10 The Infinitesimal strain tensor

 

 

The infinitesimal strain tensor is defined as

ε= 1 2 u+ u T or      ε ij = 1 2 u i x j + u j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaaeWaaeaacaWH1bGaey4bIeTaey4kaSYaaeWaaeaa caWH1bGaey4bIenacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaa GccaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caqGVbGaaeOCaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da 9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiabgk Gi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@6711@

where u is the displacement vector.  Written out in full

ε ij u 1 x 1 1 2 u 1 x 2 + u 2 x 1 1 2 u 1 x 3 + u 3 x 1 1 2 u 2 x 1 + u 1 x 2 u 2 x 2 1 2 u 2 x 3 + u 3 x 2 1 2 u 3 x 1 + u 1 x 3 1 2 u 3 x 2 + u 2 x 3 u 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPa VlaaykW7daWadaqaauaabeqadmaaaeaadaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaaigdaaeqaaaaaaOqaamaalaaabaGaaGymaaqaaiaaikdaaaWaae WaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGymaaqabaaa keaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgUcaRm aalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiab gkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGaayzkaa aabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaaG4maaqabaaaaOGaey4kaSYaaSaaaeaacqGHciIT caWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaaaeaadaWcaaqaaiaa igdaaeaacaaIYaaaamaabmaabaWaaSaaaeaacqGHciITcaWG1bWaaS baaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaI XaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcba GaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqa aaaaaOGaayjkaiaawMcaaaqaamaalaaabaGaeyOaIyRaamyDamaaBa aaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOm aaqabaaaaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaam aalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiab gkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaey4kaSYaaSaaae aacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaaaeaada WcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWaaSaaaeaacqGHciIT caWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadwha daWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai aaiodaaeqaaaaaaOGaayjkaiaawMcaaaqaamaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcba GaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqa aaaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIYa aabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGc caGLOaGaayzkaaaabaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaai aaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZaaabeaa aaaaaaGccaGLBbGaayzxaaaaaa@BF9D@

 

The infinitesimal strain tensor is an approximate deformation measure, which is only valid for small shape changes.  It is more convenient than the Lagrange or Eulerian strain, because it is linear.

 

Specifically, suppose the deformation gradients are small, so that all u i / x j <<1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGa eyipaWJaeyipaWJaaGymaaaa@3B61@ . Then the Lagrange strain tensor is

E ij = 1 2 u i x j + u j x i + u k x j u k x i 1 2 u i x j + u j x i ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWa aSaaaeaacqGHciITcaaMc8UaamyDamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaaykW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiab gUcaRmaalaaabaGaeyOaIyRaaGPaVlaadwhadaWgaaWcbaGaamOAaa qabaaakeaacqGHciITcaaMc8UaamiEamaaBaaaleaacaWGPbaabeaa aaGccqGHRaWkdaWcaaqaaiabgkGi2kaaykW7caWG1bWaaSbaaSqaai aadUgaaeqaaaGcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcbaGaamOA aaqabaaaaOWaaSaaaeaacqGHciITcaaMc8UaamyDamaaBaaaleaaca WGRbaabeaaaOqaaiabgkGi2kaaykW7caWG4bWaaSbaaSqaaiaadMga aeqaaaaaaOGaayjkaiaawMcaaiabgIKi7oaalaaabaGaaGymaaqaai aaikdaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaaykW7caWG1bWaaSba aSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaaGPaVlaadIhadaWgaaWcba GaamOAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcaaMc8UaamyD amaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaaykW7caWG4bWaaS baaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiabgIKi7kabew7a LnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@81C9@

so the infinitesimal strain approximates the Lagrange strain.  You can show that it also approximates the Eulerian strain with the same accuracy.

 

Properties of the infinitesimal strain tensor

 

· For small strains, the engineering strain of an infinitesimal fiber aligned with a unit vector m can be estimated as

ε e (m)= l l 0 l 0 ε ij m i m j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaO Gaaiikaiaah2gacaGGPaGaeyypa0ZaaSaaaeaacaWGSbGaeyOeI0Ia amiBamaaBaaaleaacaaIWaaabeaaaOqaaiaadYgadaWgaaWcbaGaaG imaaqabaaaaOGaeyisISRaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaa beaakiaad2gadaWgaaWcbaGaamyAaaqabaGccaWGTbWaaSbaaSqaai aadQgaaeqaaaaa@4639@

 

· Note that

trace ε ε kk = u 1 x 1 + u 2 x 2 + u 3 x 3 = dVd V 0 d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gadaqadaqaaiaahw7aaiaawIcacaGLPaaacqGHHjIUcqaH1oqzdaWg aaWcbaGaam4AaiaadUgaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITca WG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaa ikdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaale aacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqa baaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamOvaiabgkHiTiaadsgaca WGwbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamizaiaadAfadaWgaaWc baGaaGimaaqabaaaaaaa@5DE1@

 (see Sect 2.2.12 for more details)

 

· The infinitesimal strain tensor is closely related to the strain matrix introduced in elementary strength of materials courses.  For example, the physical significance of the (2 dimensional) strain matrix

ε 11 γ 12 γ 21 ε 22 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGacaaabaGaeqyTdu 2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo7aNnaaBaaaleaa caaIXaGaaGOmaaqabaaakeaacqaHZoWzdaWgaaWcbaGaaGOmaiaaig daaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaaikdacaaIYaaabeaaaaaa kiaawUfacaGLDbaaaaa@4031@

 

is illustrated in the figure.

 

To relate this to the infintesimal strain tensor, let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39DF@  be a Cartesian basis, with e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@  parallel to x and e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@  parallel to y as shown.  Let ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@348F@  denote the components of the infinitesimal strain tensor in this basis.  Then

ε 11 = ε xx ε 22 = ε yy ε 12 = ε 21 = γ xy /2= γ yx /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabew7aLnaaBaaaleaacaWG4bGaamiEaaqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeqyTdu2aaSbaaSqaaiaaikdacaaIYaaabeaakiab g2da9iabew7aLnaaBaaaleaacaWG5bGaamyEaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLnaa BaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqaH1oqzdaWgaaWcba GaaGOmaiaaigdaaeqaaOGaeyypa0Jaeq4SdC2aaSbaaSqaaiaadIha caWG5baabeaakiaac+cacaaIYaGaeyypa0Jaeq4SdC2aaSbaaSqaai aadMhacaWG4baabeaakiaac+cacaaIYaaaaa@7151@

 

 

 

2.2.11 Engineering shear strains

 

For a general strain tensor (which could be any of E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyraaaa@31AE@ , E * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyramaaCaaaleqabaGaaiOkaaaaaa a@3289@  or ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdaaa@3221@ , among others), the diagonal strain components ε 11 , ε 22 , ε 33 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiaacYcacqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGa aiilaiabew7aLnaaBaaaleaacaaIZaGaaG4maaqabaaaaa@3C35@  are known as `direct’ strains, while the off diagonal terms  ε 12 = ε 21 ε 13 = ε 31 ε 23 = ε 32 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaGymaaqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzdaWgaa WcbaGaaGymaiaaiodaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaa iodacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeqyTdu2aaSbaaSqaaiaaikdacaaIZaaabeaa kiabg2da9iabew7aLnaaBaaaleaacaaIZaGaaGOmaaqabaaaaa@5D7F@  are known as ‘shear strains’

 

The shear strains are sometimes reported as ‘Engineering Shear Strains’ which are related to the formal definition by a factor of 2 i.e.

γ 12 =2 ε 12 γ 13 =2 ε 13 γ 23 =2 ε 23 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iaaikdacqaH1oqzdaWgaaWcbaGaaGymaiaaikda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaeq4SdC2aaSbaaSqaaiaaigdacaaIZaaabeaakiab g2da9iaaikdacqaH1oqzdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabeo7aNnaaBaaaleaacaaIYaGaaG4maaqabaGccqGH9a qpcaaIYaGaeqyTdu2aaSbaaSqaaiaaikdacaaIZaaabeaaaaa@676B@

 

This factor of 2 is an endless source of confusion.  Whenever someone reports shear strain to you, be sure to check which definition they are using.  In particular, many commercial finite element codes output engineering shear strains.

 

 

 

2.2.12 Decomposition of infinitesimal strain into volumetric and deviatoric parts

 

The volumetric infinitesimal strain is defined as trace(ε) ε kk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaeiDaiaabkhacaqGHbGaae4yaiaabw gacaqGOaGaaCyTdiaacMcacaaMc8UaaGPaVlabggMi6kabew7aLnaa BaaaleaacaWGRbGaam4Aaaqabaaaaa@40A9@

The deviatoric infinitesimal strain is defined as e=ε 1 3 Itrace(ε) e ij = ε ij 1 3 δ ij ε kk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzaiaab2dacaWH1oGaeyOeI0YaaS aaaeaacaaIXaaabaGaaG4maaaacaWHjbGaaGPaVlaabshacaqGYbGa aeyyaiaabogacaqGLbGaaeikaiaahw7acaGGPaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8Ua aGPaVlaadwgadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0Jaeq yTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaabaGa aGymaaqaaiaaiodaaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aakiabew7aLnaaBaaaleaacaWGRbGaam4Aaaqabaaaaa@62AC@

 

The volumetric strain is a measure of volume changes, and for small strains is related to the Jacobian of the deformation gradient by ε kk J1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadUgacaWGRb aabeaakiabgIKi7kaadQeacqGHsislcaaIXaaaaa@38C5@ .  To see this, recall that

J=det 1+ u 1 x 1 u 1 x 2 u 1 x 3 u 2 x 1 1+ u 2 x 2 u 2 x 3 u 3 x 1 u 3 x 2 1+ u 3 x 3 1+ u 1 x 1 1+ u 2 x 2 1+ u 3 x 3 1+ u 1 x 1 + u 2 x 2 + u 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDamaadmaabaqbaeqabmWaaaqaaiaaigdacqGHRaWkdaWcaaqaaiab gkGi2kaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamyD amaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaaGOmaaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZaaabe aaaaaakeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGOmaaqa baaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaOqaai aaigdacqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGOm aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaO qaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaaaOqa aiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGcbaWaaSaaae aacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2k aadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSba aSqaaiaaikdaaeqaaaaaaOqaaiaaigdacqGHRaWkdaWcaaqaaiabgk Gi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaaiodaaeqaaaaaaaaakiaawUfacaGLDbaacqGHijYUda qadaqaaiaaigdacqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaae qaaaaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaWaaeWa aeaacaaIXaGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaai aaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIZaaabeaa aaaakiaawIcacaGLPaaacqGHijYUcaaIXaGaey4kaSYaaSaaaeaacq GHciITcaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2k aadwhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSba aSqaaiaaikdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamyDam aaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa aG4maaqabaaaaaaa@B143@

The deviatioric strain is a measure of shear deformation (shear deformation involves no volume change).

 

 

 

2.2.13 The Infinitesimal rotation tensor

 

The infinitesimal rotation tensor is defined as

w= 1 2 u u T or     w ij = 1 2 u i x j u j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Daiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaaeWaaeaacaWH1bGaey4bIeTaeyOeI0YaaeWaaeaa caWH1bGaey4bIenacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaa GccaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8Uaae4BaiaabkhacaqGGaGaaeiiaiaabccacaqGGaGaam4DamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaa caaIYaaaamaabmaabaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaai aadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaa aaGccqGHsisldaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamOAaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaOGa ayjkaiaawMcaaaaa@6282@

Written out as a matrix, the components of w ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33E4@  are

w ij 0 1 2 u 1 x 2 u 2 x 1 1 2 u 1 x 3 u 3 x 1 1 2 u 2 x 1 u 1 x 2 0 1 2 u 2 x 3 u 3 x 2 1 2 u 3 x 1 u 1 x 3 1 2 u 3 x 2 u 2 x 3 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7 caaMc8+aamWaaeaafaqabeWadaaabaGaaGimaaqaamaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWg aaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaik daaeqaaaaakiabgkHiTmaalaaabaGaeyOaIyRaamyDamaaBaaaleaa caaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqaba aaaaGccaGLOaGaayzkaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa daqadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabe aaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaeyOe I0YaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGL PaaaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWaaSaaae aacqGHciITcaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaaIXaaabeaaaaGccqGHsisldaWcaaqaaiabgk Gi2kaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaaqaaiaaicdaae aadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWaaSaaaeaacqGH ciITcaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacaaIZaaabeaaaaGccqGHsisldaWcaaqaaiabgkGi2kaa dwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaaqaamaalaaabaGaaGym aaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaa WcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigda aeqaaaaakiabgkHiTmaalaaabaGaeyOaIyRaamyDamaaBaaaleaaca aIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaa aaGccaGLOaGaayzkaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaada qadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaa aOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaeyOeI0 YaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPa aaaeaacaaIWaaaaaGaay5waiaaw2faaaaa@AD3D@

Observe that w ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33E4@  is skew symmetric: w ij = w ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqGHsislcaWG3bWaaSbaaSqaaiaadQgacaWGPbaa beaaaaa@38E6@ . 

 

A skew tensor represents a rotation through a small angle.  Specifically, the operation d y i = δ ij + w ij d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpdaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaamOA aaqabaGccqGHRaWkcaWG3bWaaSbaaSqaaiaadMgacaWGQbaabeaaaO GaayjkaiaawMcaaiaadsgacaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa @4124@  rotates the infinitesimal line element d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIhadaWgaaWcbaGaamOAaa qabaaaaa@33E1@  through a small angle θ= w ij w ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0ZaaOaaaeaacaWG3b WaaSbaaSqaaiaadMgacaWGQbaabeaakiaadEhadaWgaaWcbaGaamyA aiaadQgaaeqaaOGaai4laiaaikdaaSqabaaaaa@3B44@  about an axis parallel to the unit vector n i = ijk w kj /(2θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abg2da9iabgIGiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGa am4DamaaBaaaleaacaWGRbGaamOAaaqabaGccaGGVaGaaiikaiaaik dacqaH4oqCcaGGPaaaaa@4013@ .  (A skew tensor also sometimes represents an angular velocity). 

 

To visualize the significance of  w ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33E4@ , consider the behavior of an imaginary, infinitesimal, tensile specimen embedded in a deforming solid, as shown in the figure.  The specimen is stretched, and then rotated through an angle ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  about some axis q.  If the displacement gradients are small, then ϕ<<1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyipaWJaeyipaWJaaGymaa aa@356A@ .

 

The rotation of the specimen depends on its original orientation, represented by the unit vector m.  One can show (although MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  in the immortal words of Bartelby the Scrivener MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  “I would prefer not to”) that w ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33E4@  represents the average rotation, over all possible orientations of m, of material fibers passing through a point.

 

As a final remark, we note that a general deformation can always be decomposed into an infinitesimal strain and rotation

u i x j = 1 2 u i x j + u j x i + 1 2 u i x j u j x i = ε ij + w ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaaba WaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaa qaaiabgkGi2kaadwhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaadQgaaeqaaaaakiabgkHiTmaalaaabaGaeyOaIyRa amyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaa WcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0JaeqyTdu2a aSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiaadEhadaWgaaWcba GaamyAaiaadQgaaeqaaaaa@66E9@

Physically, this sum of ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3490@  and w ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33E5@  can be regarded as representing two successive deformations MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  a small strain, followed by a rotation, in the sense that

d y i = δ ik + w ik δ kj + ε kj d x j d x i + ε ij + w ij d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpdaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaam4A aaqabaGccqGHRaWkcaWG3bWaaSbaaSqaaiaadMgacaWGRbaabeaaaO GaayjkaiaawMcaamaabmaabaGaeqiTdq2aaSbaaSqaaiaadUgacaWG QbaabeaakiabgUcaRiabew7aLnaaBaaaleaacaWGRbGaamOAaaqaba aakiaawIcacaGLPaaacaWGKbGaamiEamaaBaaaleaacaWGQbaabeaa kiabgIKi7kaadsgacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaS YaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4k aSIaam4DamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPa aacaWGKbGaamiEamaaBaaaleaacaWGQbaabeaaaaa@5CE3@

first stretches the infinitesimal line element, then rotates it.

 

 

 

2.2.14 Principal values and directions of the infinitesimal strain tensor

 

The three principal values e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaBaaaleaacaWGPbaabeaaaa a@32E4@  and directions n (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@344B@  of the infinitesimal strain tensor satisfy

ε n (i) = e i n (i) or   ε kl n l (i) = e i n k (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWH1oGaaCOBamaaCaaaleqaba GaaiikaiaadMgacaGGPaaaaOGaeyypa0JaamyzamaaBaaaleaacaWG Pbaabeaakiaah6gadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaki aaykW7caaMc8UaaGPaVlaaykW7aeaacaqGVbGaaeOCaiaabccacaqG GaGaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabeaakiaad6gadaqhaa WcbaGaamiBaaqaaiaacIcacaWGPbGaaiykaaaakiabg2da9iaadwga daWgaaWcbaGaamyAaaqabaGccaWGUbWaa0baaSqaaiaadUgaaeaaca GGOaGaamyAaiaacMcaaaaaaaa@550B@

Clearly, e i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaBaaaleaacaWGPbaabeaaaa a@32E4@  and n (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@344B@  are the eigenvalues and eigenvectors of ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdaaa@3221@ .  There are three principal strains and three principal directions, which are always mutually perpendicular. 


Their significance can be visualized as follows.

 

1. Note that the decomposition

u i x j = ε ij + w ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaGccqGH9aqpcqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSIaam4DamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@40A3@

 can be visualized as a small strain, followed by a small rigid rotation, as shown in the figure.

 

2. The formula ε n (i) = e i n (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdiaah6gadaahaaWcbeqaaiaacI cacaWGPbGaaiykaaaakiabg2da9iaadwgadaWgaaWcbaGaamyAaaqa baGccaWHUbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaaaa@3C15@  indicates that a vector n is mapped to another, parallel vector by the strain.

 

3. Thus, if you draw a small cube with its faces perpendicular to n (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@344B@  on the undeformed solid, this cube will be stretched perpendicular to each face, with a fractional increase in length e i =δ l i / l 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaBaaaleaacaWGPbaabeaaki abg2da9iabes7aKjaadYgadaWgaaWcbaGaamyAaaqabaGccaGGVaGa amiBamaaBaaaleaacaaIWaaabeaaaaa@3A38@ .  The faces remain perpendicular to n (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@344B@  after deformation.

 

4. Finally, w rotates the small cube through a small angle onto its configuration in the deformed solid.

 

 

 

2.2.15  Strain Equations of Compatibility for infinitesimal strains

 

It is sometimes necessary to invert the relations between strain and displacement MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  that is to say, given the strain field, to compute the displacements. In this section, we outline how this is done, for the special case of infinitesimal deformations.

 

For infinitesimal motions the relation between strain and displacement is

ε ij = 1 2 u i x j + u j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@47C9@

Given the six strain components ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3490@  (six rather than nine, since ε ij = ε ji MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabew7aLnaaBaaaleaacaWGQbGaamyAaaqabaaa aa@3950@  ) we wish to determine the three displacement components u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@ . First, note that you can never completely recover the displacement field that gives rise to a particular strain field.  Any rigid motion produces no strain, so the displacements can only be completely determined if there is some additional information (besides the strain) that will tell you how much the solid has rotated and translated.  However, integrating the strain field can tell you the displacement field to within an arbitrary rigid motion.

 

Second, we need to be sure that the strain-displacement relations can be integrated at all. The strain is a symmetric second order tensor field, but not all symmetric second order tensor fields can be strain fields. The strain-displacement relations amount to a system of six scalar differential equations for the three displacement components u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@ .

 

To be integrable, the strains must satisfy the compatibility conditions, which may be expressed as

ipm jqn 2 ε mn x p x q =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGWb GaamyBaaqabaGccqGHiiIZdaWgaaWcbaGaamOAaiaadghacaWGUbaa beaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu 2aaSbaaSqaaiaad2gacaWGUbaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaamiCaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadghaae qaaaaakiabg2da9iaaicdaaaa@4908@

Or, equivalently

2 ε ij x k x l + 2 ε kl x i x j 2 ε il x j x k 2 ε jk x i x l =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhada WgaaWcbaGaamiBaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcbaGaam4AaiaadYgaae qaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaakiabgkGi 2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaeyOeI0YaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcbaGaamyA aiaadYgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabe aakiabgkGi2kaadIhadaWgaaWcbaGaam4AaaqabaaaaOGaeyOeI0Ya aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaa WcbaGaamOAaiaadUgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaaaO Gaeyypa0JaaGimaaaa@6A33@

Or, once more equivalently

2 ε 11 x 2 2 + 2 ε 22 x 1 2 2 2 ε 12 x 1 x 2 =0 2 ε 11 x 3 2 + 2 ε 33 x 1 2 2 2 ε 13 x 1 x 3 =0 2 ε 22 x 3 2 + 2 ε 33 x 2 2 2 2 ε 23 x 2 x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaa keaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaaki abgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyT du2aaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiabgkGi2kaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaeyOeI0IaaGOmamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaai aaigdacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGym aaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabg2 da9iaaicdaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaa kiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqGHciITca WG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaai aaiodacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaaaaOGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaigdacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGccqGHci ITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaeaa daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaaBa aaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaa0baaSqa aiaaiodaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaiodacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaa aaaOGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaeqyTdu2aaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHciITcaWG4bWaaSba aSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaaaa@9DE0@       2 ε 11 x 2 x 3 x 1 ε 23 x 1 + ε 31 x 2 + ε 12 x 3 =0 2 ε 22 x 3 x 1 x 2 ε 31 x 2 + ε 12 x 3 + ε 23 x 1 =0 2 ε 33 x 1 x 2 x 3 ε 12 x 3 + ε 23 x 1 + ε 31 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaa keaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaaaaGccqGHciITca WG4bWaa0baaSqaaiaaiodaaeaaaaaaaOGaeyOeI0YaaSaaaeaacqGH ciITcaaMc8UaaGPaVdqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaaaOWaaeWaaeaacqGHsisldaWcaaqaaiabgkGi2kabew7aLnaa BaaaleaacaaIYaGaaG4maaqabaaakeaacqGHciITcaWG4bWaa0baaS qaaiaaigdaaeaaaaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaH1oqz daWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaDa aaleaacaaIYaaabaaaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeqyT du2aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiabgkGi2kaadIhada qhaaWcbaGaaG4maaqaaaaaaaaakiaawIcacaGLPaaacqGH9aqpcaaI WaaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH1o qzdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaa DaaaleaacaaIZaaabaaaaOGaeyOaIyRaamiEamaaDaaaleaacaaIXa aabaaaaaaakiabgkHiTmaalaaabaGaeyOaIyRaaGPaVlaaykW7aeaa cqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakmaabmaabaGaey OeI0YaaSaaaeaacqGHciITcqaH1oqzdaWgaaWcbaGaaG4maiaaigda aeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaaaaaaaki abgUcaRmaalaaabaGaeyOaIyRaeqyTdu2aaSbaaSqaaiaaigdacaaI YaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaG4maaqaaaaaaa GccqGHRaWkdaWcaaqaaiabgkGi2kabew7aLnaaBaaaleaacaaIYaGa aG4maaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaaaa aaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaqaamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaiodaca aIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaaaa kiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaaaaaaGccqGHsislda WcaaqaaiabgkGi2kaaykW7caaMc8oabaGaeyOaIyRaamiEamaaBaaa leaacaaIZaaabeaaaaGcdaqadaqaaiabgkHiTmaalaaabaGaeyOaIy RaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiabgkGi2kaa dIhadaqhaaWcbaGaaG4maaqaaaaaaaGccqGHRaWkdaWcaaqaaiabgk Gi2kabew7aLnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacqGHciIT caWG4bWaa0baaSqaaiaaigdaaeaaaaaaaOGaey4kaSYaaSaaaeaacq GHciITcqaH1oqzdaWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaeyOa IyRaamiEamaaDaaaleaacaaIYaaabaaaaaaaaOGaayjkaiaawMcaai abg2da9iaaicdaaaaa@CBA6@

 

It is easy to show that all strain fields must satisfy these conditions - you simply need to substitute for the strains in terms of displacements and show that the appropriate equation is satisfied.  For example,

2 ε 11 x 2 2 + 2 ε 22 x 1 2 2 2 ε 12 x 1 x 2 = 3 u 1 x 1 x 2 2 + 3 u 2 x 2 x 1 2 2 2 x 1 x 2 1 2 u 1 x 2 + u 2 x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGa eyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccqGHRa WkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaa BaaaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaaaakiabgkHiTiaaikdadaWcaaqaaiab gkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXa GaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpda WcaaqaaiabgkGi2oaaCaaaleqabaGaaG4maaaakiaadwhadaWgaaWc baGaaGymaaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaae aaaaGccqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaa kiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIZaaaaOGaam yDamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWc baGaaGOmaaqaaaaakiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaai aaikdaaaaaaOGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabe aakiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaaaeaa caaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaeyOaIyRaamyDam aaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa aGOmaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaa beaaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@8AA7@

and similarly for the other expressions.

 

Not that for planar problems for which ε 13 = ε 23 =0 and d ε ij /d x 3 =0, MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIZa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaG4maaqabaGc cqGH9aqpcaaIWaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaWGKb GaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaac+cacaWGKbGa amiEamaaBaaaleaacaaIZaaabeaakiabg2da9iaaicdacaGGSaaaaa@48F2@  all of these compatibility equations are satisfied trivially, with the exception of the first:

2 ε 11 x 2 2 + 2 ε 22 x 1 2 2 2 ε 12 x 1 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGa eyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccqGHRa WkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaa BaaaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaaaakiabgkHiTiaaikdadaWcaaqaaiab gkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXa GaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpca aIWaaaaa@552D@

 

It can be shown that

 

(i) If the strains do not satisfy the equations of compatibility, then a displacement vector can not be integrated from the strains.

 

(ii) If the strains satisfy the compatibility equations, and the solid simply connected (i.e. it contains no holes that go all the way through its thickness), then a displacement vector can be integrated from the strains.

 

(iii)  If the solid is not simply connected, a displacement vector can be calculated, but it may not be single valued MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  i.e. you may get different solutions depending on how the path of integration encircles the holes.

 

Now, let us return to the question posed at the beginning of this section.  Given the strains, how do we compute the displacements?


2D strain fields: For 2D (plane stress or plane strain) the procedure is quite simple and is best illustrated by working through a specific case.

 

As a representative example, we will use the strain field in a 2D (plane stress) cantilever beam with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  loaded at one end by a force P, as shown in the figure. The beam has a rectangular cross-section with height 2a and out-of-plane width b.  We will show later that the strain field in the beam is

ε 11 =2C x 1 x 2 ε 22 =2νC x 1 x 2 ε 12 = 1+ν C a 2 x 2 2 C= 3P 4E a 3 b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaikdacaWGdbGaamiEamaaBaaaleaacaaIXaaa beaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqaH1oqzdaWgaaWcbaGaaGOmaiaaikda aeqaaOGaeyypa0JaeyOeI0IaaGOmaiabe27aUjaadoeacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq yTdu2aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9maabmaabaGa aGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaiaadoeadaqadaqaai aadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaa0baaSqa aiaaikdaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaam4qaiabg2da9maalaaabaGaaG4maiaadcfaaeaaca aI0aGaamyraiaadggadaahaaWcbeqaaiaaiodaaaGccaWGIbaaaaaa @87CC@

 

We first check that the strain is compatible.  For 2D problems this requires

2 ε 11 x 2 2 + 2 ε 22 x 1 2 2 2 ε 12 x 1 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGa eyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccqGHRa WkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaa BaaaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaaaakiabgkHiTiaaikdadaWcaaqaaiab gkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXa GaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpca aIWaaaaa@552D@

which is clearly satisfied in this case.

 

For a 2D problem we only need to determine u 1 ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaaaaa@38B1@  and u 2 ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaaaaa@38B2@  such that

u 1 x 1 = ε 11 , u 2 x 2 = ε 22 and  u 1 x 2 + u 2 x 1 =2 ε 12   MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaa baaaaaaakiabg2da9iabew7aLnaaBaaaleaacaaIXaGaaGymaaqaba GccaGGSaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaaaaaaakiabg2 da9iabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGccaaMc8UaaGPa VlaabggacaqGUbGaaeizaiaabccadaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaa ikdaaeaaaaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaa baaaaaaakiabg2da9iaaikdacqaH1oqzdaWgaaWcbaGaaGymaiaaik daaeqaaOGaaeiiaaaa@6230@ .

The first two of these give

ε 11 = u 1 x 1 =2C x 1 x 2 ε 22 = u 2 x 2 =2νC x 1 x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9maalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaI XaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaO Gaeyypa0JaaGOmaiaadoeacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa amiEamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLnaaBaaaleaa caaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaa ikdaaeqaaaaakiabg2da9iabgkHiTiaaikdacqaH9oGBcaWGdbGaam iEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqa baaaaa@644B@

We can integrate the first equation with respect to x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  and the second equation with respect to x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@  to get

u 1 =C x 1 2 x 2 + f 1 ( x 2 ) u 2 =νC x 1 x 2 2 + f 2 ( x 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaadoeacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGa amiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadAgadaWgaaWcba GaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOe I0IaeqyVd4Maam4qaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4b Waa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaamOzamaaBaaa leaacaaIYaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaO Gaaiykaaaa@5E1A@

where f 1 ( x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3604@  and f 2 ( x 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaaIYaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@3604@  are two functions of x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@  and x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@ , respectively, which are yet to be determined.  We can find these functions by substituting the formulas for u 1 ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaaaaa@38B1@  and u 2 ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaaaaa@38B2@  into the expression for shear strain

ε 12 = 1 2 u 1 x 2 + u 2 x 1 = 1+ν C a 2 x 2 2 1 2 C x 1 2 νC x 2 2 + d f 1 d x 2 + d f 2 d x 1 = 1+ν C a 2 x 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaMc8UaeqyTdu2aaSbaaSqaai aaigdacaaIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGymaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiab gUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGa ayzkaaGaeyypa0ZaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOa GaayzkaaGaam4qamaabmaabaGaamyyamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawI cacaGLPaaaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGa am4qaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHsislcq aH9oGBcaWGdbGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaakiab gUcaRmaalaaabaGaamizaiaadAgadaWgaaWcbaGaaGymaaqabaaake aacaWGKbGaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWc aaqaaiaadsgacaWGMbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizai aadIhadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaam 4qamaabmaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa dIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaaaa aa@7D31@

We can re-write this as

d f 2 d x 1 +C x 1 2 + d f 1 d x 2 νC x 2 2 2 1+ν C a 2 x 2 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiaadsgacaWGMb WaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGa aGymaaqabaaaaOGaey4kaSIaam4qaiaadIhadaqhaaWcbaGaaGymaa qaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaamaalaaa baGaamizaiaadAgadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaam iEamaaBaaaleaacaaIYaaabeaaaaGccqGHsislcqaH9oGBcaWGdbGa amiEamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgkHiTiaaikdada qadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGdbWa aeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiEam aaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaayjk aiaawMcaaiabg2da9iaaicdaaaa@5AA5@

The two terms in parentheses are functions of x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  and x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@ , respectively.  Since the left hand side must vanish for all values of  x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  and x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@ , this means that

d f 2 d x 1 +C x 1 2 =ω d f 1 d x 2 νC x 2 2 2 1+ν C a 2 x 2 2 =ω MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaqadaqaamaalaaabaGaamizai aadAgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiEamaaBaaa leaacaaIXaaabeaaaaGccqGHRaWkcaWGdbGaamiEamaaDaaaleaaca aIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeM8a3bqa amaabmaabaWaaSaaaeaacaWGKbGaamOzamaaBaaaleaacaaIXaaabe aaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgkHi Tiabe27aUjaadoeacaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaO GaeyOeI0IaaGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjk aiaawMcaaiaadoeadaqadaqaaiaadggadaahaaWcbeqaaiaaikdaaa GccqGHsislcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGccaGL OaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaeqyYdChaaa a@5E9D@

where ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  is an arbitrary constant.  We can now integrate these expressions to see that

f 1 = 2(1+ν)C a 2 ω x 2 C 3 (2+ν) x 2 3 +c f 2 =ω x 1 C 3 x 1 3 +d MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGMbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaeWaaeaacaaIYaGaaiikaiaaigdacqGHRaWkcqaH 9oGBcaGGPaGaam4qaiaadggadaahaaqcKfaWaeqajeaybaGaaGOmaa aakiabgkHiTiabeM8a3bGaayjkaiaawMcaaiaadIhadaWgaaWcbaGa aGOmaaqabaGccqGHsisldaWcaaqaaiaadoeaaeaacaaIZaaaaiaacI cacaaIYaGaey4kaSIaeqyVd4MaaiykaiaadIhadaqhaaWcbaGaaGOm aaqaaiaaiodaaaGccqGHRaWkcaWGJbaabaGaamOzamaaBaaaleaaca aIYaaabeaakiabg2da9iabeM8a3jaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsisldaWcaaqaaiaadoeaaeaacaaIZaaaaiaadIhadaqhaa WcbaGaaGymaaqaaiaaiodaaaGccqGHRaWkcaWGKbaaaaa@5CD1@

where c and d are two more arbitrary constants. Finally, the displacement field follows as

u 1 =C x 1 2 x 2 C 3 (2+ν) x 2 3 +2(1+ν)C a 2 x 2 ω x 2 +c u 2 =νC x 1 x 2 2 C 3 x 1 3 +ω x 1 +d MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Jaam4qaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikda aaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaaca WGdbaabaGaaG4maaaacaGGOaGaaGOmaiabgUcaRiabe27aUjaacMca caWG4bWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaey4kaSIaaGOmai aacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaadoeacaWGHbWaaWba aSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgk HiTiabeM8a3jaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG JbaabaGaaGPaVlaadwhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcq GHsislcqaH9oGBcaWGdbGaamiEamaaBaaaleaacaaIXaaabeaakiaa dIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHsisldaWcaaqaai aadoeaaeaacaaIZaaaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaioda aaGccqGHRaWkcqaHjpWDcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamizaaaaaa@6C80@

The three arbitrary constants ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@ , c and d can be seen to represent a small rigid rotation through angle ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  about the x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  axis, together with a displacement (c,d) parallel to ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@36C6@  axes, respectively.

 

 

3D strain fields:  For a general, three dimensional field a more formal procedure is required. Since the strains are the derivatives of the displacement field, so you might guess that we compute the displacements by integrating the strains.  This is more or less correct.  The general procedure is outlined below.

 

We first pick a point x 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaBaaaleaacaaIWaaabeaaaa a@32C6@  in the solid, and arbitrarily say that the displacement at x 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaBaaaleaacaaIWaaabeaaaa a@32C6@  is zero, and also take the rotation of the solid at  x 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaBaaaleaacaaIWaaabeaaaa a@32C6@  to be zero. Then, we can compute the displacements at any other point x in the solid, by integrating the strains along any convenient path, as shown in the figure.  In a simply connected solid, it doesn’t matter what path you pick.

 

Actually, you don’t exactly integrate the strains MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  instead, you must evaluate the following integral

u i (x)= x0 x U ij (x,ξ)d ξ j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWH4bGaaiykaiabg2da9maapehabaGaamyvamaaBaaaleaa caWGPbGaamOAaaqabaGccaGGOaGaaCiEaiaacYcacqqI+oaEcaGGPa GaaGPaVlaadsgacqaH+oaEdaWgaaWcbaGaamOAaaqabaaabaGaaCiE aiaaicdaaeaacaWH4baaniabgUIiYdGccaaMc8oaaa@4A1D@

where

U ij (x,ξ)= ε ij (ξ)+( x k ξ k ) ε ij (ξ) ξ k ε kj (ξ) ξ i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGPbGaamOAaa qabaGccaGGOaGaaCiEaiaacYcacqqI+oaEcaGGPaGaeyypa0JaeqyT du2aaSbaaSqaaiaadMgacaWGQbaabeaakiaacIcacqqI+oaEcaGGPa Gaey4kaSIaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHsisl cqaH+oaEdaWgaaWcbaGaam4AaaqabaGccaGGPaWaamWaaeaadaWcaa qaaiabgkGi2kabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccaGG OaGaeKOVdGNaaiykaaqaaiabgkGi2kabe67a4naaBaaaleaacaWGRb aabeaaaaGccqGHsisldaWcaaqaaiabgkGi2kabew7aLnaaBaaaleaa caWGRbGaamOAaaqabaGccaGGOaGaeKOVdGNaaiykaaqaaiabgkGi2k abe67a4naaBaaaleaacaWGPbaabeaaaaaakiaawUfacaGLDbaaaaa@64D2@

Here, x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGRbaabeaaaa a@32F8@  are the components of the position vector at the point where we are computing the displacements, and ξ j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaadQgaaeqaaa aa@33BD@  are the components of the position vector ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeKOVdGhaaa@32A7@  of a point somewhere along the path of integration. The fact that the integral is path-independent (in a simply connected solid) is guaranteed by the compatibility condition.  Evaluating this integral in practice can be quite painful, but fortunately almost all cases where we need to integrate strains to get displacement turn out to be two-dimensional.

 

 

 

2.2.16 Cauchy-Green Deformation Tensors

 

There are two Cauchy-Green deformation tensors MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  defined through

· The Right Cauchy Green Deformation Tensor   C= F T F C ij = F ki F kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9iaahAeadaahaaWcbe qaaiaadsfaaaGccaWHgbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadoeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey ypa0JaamOramaaBaaaleaacaWGRbGaamyAaaqabaGccaWGgbWaaSba aSqaaiaadUgacaWGQbaabeaaaaa@49C2@

· The Left Cauchy Green Deformation Tensor     B=F F T B ij = F ik F jk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iaahAeacaWHgbWaaW baaSqabeaacaWGubaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey ypa0JaamOramaaBaaaleaacaWGPbGaam4AaaqabaGccaWGgbWaaSba aSqaaiaadQgacaWGRbaabeaaaaa@49C0@

They are called `left’ and `right’ tensors because of their relation to the `left’ and ‘right’ stretch tensors defined below.  They can be regarded as quantifying the squared length of infinitesimal fibers in the deformed configuration, by noting that if a material fiber dx= l 0 m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahIhacqGH9aqpcaWGSbWaaS baaSqaaiaaicdaaeqaaOGaaCyBaaaa@36A7@  in the undeformed solid is stretched and rotated to dy=ln MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpcaWGSbGaaC OBaaaa@35B9@  in the deformed solid, then

l 2 l 0 2 =mCm l 0 2 l 2 =n B 1 n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGSbWaaWbaaSqabeaaca aIYaaaaaGcbaGaamiBamaaDaaaleaacaaIWaaabaGaaGOmaaaaaaGc cqGH9aqpcaWHTbGaeyyXICTaaC4qaiaah2gacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaa qaaiaadYgadaqhaaWcbaGaaGimaaqaaiaaikdaaaaakeaacaWGSbWa aWbaaSqabeaacaaIYaaaaaaakiabg2da9iaah6gacqGHflY1caWHcb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCOBaaaa@63BA@

 

 

 

2.2.17 Rotation tensor, and Left and Right Stretch Tensors

 

The definitions of these quantities are

· The Right Stretch Tensor U= C 1/2 = F T F 1/2 U ij = C ij 1/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvaiabg2da9iaahoeadaahaaWcbe qaaiaaigdacaGGVaGaaGOmaaaakiabg2da9maabmaabaGaaCOramaa CaaaleqabaGaamivaaaakiaahAeaaiaawIcacaGLPaaadaahaaWcbe qaaiaaigdacaGGVaGaaGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGvbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaadoeadaqhaaWcbaGaamyA aiaadQgaaeaacaaIXaGaai4laiaaikdaaaaaaa@55EC@

· The Left Stretch Tensor   V= B 1/2 V ij = B ij 1/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOvaiabg2da9iaahkeadaahaaWcbe qaaiaaigdacaGGVaGaaGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGwbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9iaadkeadaqhaaWcbaGaamyA aiaadQgaaeaacaaIXaGaai4laiaaikdaaaaaaa@4E4E@

· The Rotation Tensor         R=F U 1 = V 1 F R ij = F ik U kj 1 = V ik 1 F kj MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabg2da9iaahAeacaWHvbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaaCOvamaaCaaaleqa baGaeyOeI0IaaGymaaaakiaahAeacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGsbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiabg2da9iaadAeadaWgaaWcbaGaamyAaiaadU gaaeqaaOGaamyvamaaDaaaleaacaWGRbGaamOAaaqaaiabgkHiTiaa igdaaaGccqGH9aqpcaWGwbWaa0baaSqaaiaadMgacaWGRbaabaGaey OeI0IaaGymaaaakiaadAeadaWgaaWcbaGaam4AaiaadQgaaeqaaaaa @5C9E@

 

To calculate these quantities you need to remember how to calculate the square root of a matrix.  For example, to calculate the square root of C, you must

 

1. Calculate the eigenvalues of C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  we will call these λ n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIYaaaaaaa@3470@ , with n=1,2,3.  Since C and B are both symmetric and positive definite, the eigenvalues λ n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIYaaaaaaa@3470@  are all positive real numbers, and therefore their square roots λ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaa aa@33B3@  are also positive real numbers.

 

2. Calculate the eigenvectors of C and normalize them so they have unit magnitude.  We will denote the eigenvectors by c (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yamaaCaaaleqabaGaaiikaiaad6 gacaGGPaaaaaaa@3445@ .  They must be normalized to satisfy c (n) c (n) =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yamaaCaaaleqabaGaaiikaiaad6 gacaGGPaaaaOGaeyyXICTaaC4yamaaCaaaleqabaGaaiikaiaad6ga caGGPaaaaOGaeyypa0JaaGymaaaa@3BC9@

 

3. Finally, calculate C 1/2 = n=1 3 λ n c (n) c (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qamaaCaaaleqabaGaaGymaiaac+ cacaaIYaaaaOGaeyypa0ZaaabmaeaacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaWHJbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccq GHxkcXcaWHJbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaabaGa amOBaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@4635@ , where c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4yaaaa@31CC@  denotes a dyadic product (See Appendix B). In components, this can be written C ij 1/2 = n=1 3 λ n c i (n) c j (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaWGPbGaamOAaa qaaiaaigdacaGGVaGaaGOmaaaakiabg2da9maaqadabaGaeq4UdW2a aSbaaSqaaiaad6gaaeqaaOGaam4yamaaDaaaleaacaWGPbaabaGaai ikaiaad6gacaGGPaaaaOGaam4yamaaDaaaleaacaWGQbaabaGaaiik aiaad6gacaGGPaaaaaqaaiaad6gacqGH9aqpcaaIXaaabaGaaG4maa qdcqGHris5aaaa@47DA@

 

4. As an additional bonus, you can quickly compute the inverse square root (which is needed to find R) as

C 1/2 = n=1 3 1 λ n c (n) c (n) or   C ij 1/2 = n=1 3 1 λ n c i (n) c j (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qamaaCaaaleqabaGaeyOeI0IaaG ymaiaac+cacaaIYaaaaOGaeyypa0ZaaabmaeaadaWcaaqaaiaaigda aeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaaC4yamaaCaaale qabaGaaiikaiaad6gacaGGPaaaaOGaey4LIqSaaC4yamaaCaaaleqa baGaaiikaiaad6gacaGGPaaaaaqaaiaad6gacqGH9aqpcaaIXaaaba GaaG4maaqdcqGHris5aOGaaGPaVlaaykW7caaMc8UaaGPaVlaab+ga caqGYbGaaeiiaiaabccacaWGdbWaa0baaSqaaiaadMgacaWGQbaaba GaeyOeI0IaaGymaiaac+cacaaIYaaaaOGaeyypa0ZaaabmaeaadaWc aaqaaiaaigdaaeaacqaH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaam 4yamaaDaaaleaacaWGPbaabaGaaiikaiaad6gacaGGPaaaaOGaam4y amaaDaaaleaacaWGQbaabaGaaiikaiaad6gacaGGPaaaaaqaaiaad6 gacqGH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaaa@6A02@

 

To see the physical significance of these tensors, observe that

 

1. The definition of the rotation tensor shows that

R=F U 1 F=RU R= V 1 FF=VR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHsbGaeyypa0JaaCOraiaahw fadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHuhY2caWHgbGaeyyp a0JaaCOuaiaahwfaaeaacaWHsbGaeyypa0JaaCOvamaaCaaaleqaba GaeyOeI0IaaGymaaaakiaahAeacaaMc8Uaeyi1HSTaaCOraiabg2da 9iaahAfacaWHsbaaaaa@4922@

 

2. The multiplicative decomposition of a constant tensor F=RU MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHvbaaaa@346E@  can be regarded as a sequence of two homogeneous deformations MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  U, followed by R.  Similarly, F=VR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahAfacaWHsbaaaa@346F@  is R followed by V.

 

3. R is proper orthogonal (it satisfies R R T = R T R=I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiaahkfadaahaaWcbeqaaiaads faaaGccqGH9aqpcaWHsbWaaWbaaSqabeaacaWGubaaaOGaaCOuaiab g2da9iaahMeaaaa@394A@  and det(R)=1), and therefore represents a rotation.  To see this, note that U is symmetric, and therefore satisfies U T = U 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvamaaCaaaleqabaGaeyOeI0Iaam ivaaaakiabg2da9iaahwfadaahaaWcbeqaaiabgkHiTiaaigdaaaaa aa@3774@ , so that

R T R= F U 1 T F U 1 = U T F T F U 1 = U 1 U 2 U 1 =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuamaaCaaaleqabaGaamivaaaaki aahkfacqGH9aqpdaqadaqaaiaahAeacaWHvbWaaWbaaSqabeaacqGH sislcaaIXaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaO WaaeWaaeaacaWHgbGaaCyvamaaCaaaleqabaGaeyOeI0IaaGymaaaa aOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlabg2da9iaahwfada ahaaWcbeqaaiabgkHiTiaadsfaaaGccaWHgbWaaWbaaSqabeaacaWG ubaaaOGaaCOraiaahwfadaahaaWcbeqaaiabgkHiTiaaigdaaaGcca aMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaCyvamaaCaaaleqabaGa eyOeI0IaaGymaaaakiaahwfadaahaaWcbeqaaiaaikdaaaGccaWHvb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaaCysaaaa@5E28@

and det(R)=det(F)det(U-1)=1

 

4. U can be expressed in the form

U= λ 1 u (1) u (1) + λ 2 u (2) u (2) + λ 3 u (3) u (3) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyvaiabg2da9iabeU7aSnaaBaaale aacaaIXaaabeaakiaahwhadaahaaWcbeqaaiaacIcacaaIXaGaaiyk aaaakiabgEPielaahwhadaahaaWcbeqaaiaacIcacaaIXaGaaiykaa aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaahwhadaah aaWcbeqaaiaacIcacaaIYaGaaiykaaaakiabgEPielaahwhadaahaa WcbeqaaiaacIcacaaIYaGaaiykaaaakiabgUcaRiabeU7aSnaaBaaa leaacaaIZaaabeaakiaahwhadaahaaWcbeqaaiaacIcacaaIZaGaai ykaaaakiabgEPielaahwhadaahaaWcbeqaaiaacIcacaaIZaGaaiyk aaaaaaa@5647@

where u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  are the three (mutually perpendicular) eigenvectors of U. (By construction, these are identical to the eigenvectors of C).  If we interpret u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  as basis vectors, we see that U is diagonal in this basis, and so corresponds to stretching parallel to each basis vector, as shown in the figure.


The decompositions F=RU MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHvbaaaa@346E@  and F=VR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahAfacaWHsbaaaa@346F@  are known as the right and left polar decomposition of F. (The right and left refer to the positions of U and V).  They show that every homogeneous deformation can be decomposed into a stretch followed by a rigid rotation, or equivalently into a rigid rotation followed by a stretch. The decomposition is discussed in more detail in the next section.

 

 

 

2.2.18 Principal stretches

 

The principal stretches can be calculated from any one of the following (they all give the same answer)

 

1. The eigenvalues of the right stretch tensor U

2. The eigenvalues of the left stretch tensor V

3. The square root of the eigenvalues of the right Cauchy-Green tensor C

4. The square root of the eigenvalues of the left Cauchy-Green tensor B

 

The principal stretches are also related to the eigenvalues of the Lagrange and Eulerian strains.  The details are left as an exercise.

 

There are two sets of principal stretch directions, associated with the undeformed and deformed solids.

 

1. The principal stretch directions in the undeformed solid are the (normalized) eigenvectors of U or C.  Denote these by u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@ .

 

2. The principal stretch directions in the deformed solid are the (normalized) eigenvectors of V or B. Denote these by v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@ .


To visualize the physical significance of principal stretches and their directions, note that a deformation can be decomposed as F=RU MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHvbaaaa@346E@  into a sequence of a stretch followed by a rotation. 

 

Note also that

1. The principal directions u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  are mutually perpendicular.  You could draw a little cube on the undeformed solid with faces perpendicular to these directions, as shown in the figure.

 

2. The stretch U will stretch the cube by an amount λ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaa aa@33AE@  parallel to each u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@ .  The faces of the stretched cube remain perpendicular to u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@ .

 

3. The rotation R will rotate the stretched cube so that the directions u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  rotate to line up with v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@ .

 

4. The faces of the deformed cube are perpendicular to v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@

 

The decomposition F=VR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahAfacaWHsbaaaa@346F@  can be visualized in much the same way.  In this case, the directions u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  are first rotated to coincide with v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@ .  The cube is then stretched parallel to each v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@  to produce the same shape change.


We could compare the undeformed and deformed cubes by placing them side by side, with the vectors v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@  and u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  parallel, as shown in the figure.

 

 

 

2.2.19 Generalized strain measures

 

The polar decompositions F=RU MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHvbaaaa@346E@  and F=VR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahAfacaWHsbaaaa@346F@  provide a way to define additional strain measures.  Let λ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaa aa@33AE@  denote the principal stretches, and let u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3452@  and v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@3453@  denote the normalized eigenvectors of U and V.  Then one could define strain tensors through

Lagrangian Nominal strain:                  i=1 3 ( λ i 1) u (i) u (i) Lagrangian Logarithmic strain:             i=1 3 log( λ i ) u (i) u (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaqGmbGaaeyyaiaabEgacaqGYb Gaaeyyaiaab6gacaqGNbGaaeyAaiaabggacaqGUbGaaeiiaiaab6ea caqGVbGaaeyBaiaabMgacaqGUbGaaeyyaiaabYgacaqGGaGaae4Cai aabshacaqGYbGaaeyyaiaabMgacaqGUbGaaeOoaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaWaaabCaeaa caGGOaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymai aacMcacaWH1bWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccqGH xkcXcaWH1bWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaabaGaae yAaiaab2dacaqGXaaabaGaae4maaqdcqGHris5aaGcbaGaaeitaiaa bggacaqGNbGaaeOCaiaabggacaqGUbGaae4zaiaabMgacaqGHbGaae OBaiaabccacaqGmbGaae4BaiaabEgacaqGHbGaaeOCaiaabMgacaqG 0bGaaeiAaiaab2gacaqGPbGaae4yaiaabccacaqGZbGaaeiDaiaabk hacaqGHbGaaeyAaiaab6gacaqG6aGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa WaaabCaeaaciGGSbGaai4BaiaacEgacaGGOaGaeq4UdW2aaSbaaSqa aiaadMgaaeqaaOGaaiykaiaahwhadaahaaWcbeqaaiaacIcacaWGPb GaaiykaaaakiabgEPielaahwhadaahaaWcbeqaaiaacIcacaWGPbGa aiykaaaaaeaacaqGPbGaaeypaiaabgdaaeaacaqGZaaaniabggHiLd aaaaa@9EB1@

The correspoinding Eulerian strain measures are

Eulerian Nominal strain:                  i=1 3 ( λ i 1) v (i) v (i) Eulerian Logarithmic strain:             i=1 3 log( λ i ) v (i) v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaqGfbGaaeyDaiaabYgacaqGLb GaaeOCaiaabMgacaqGHbGaaeOBaiaabccacaqGobGaae4Baiaab2ga caqGPbGaaeOBaiaabggacaqGSbGaaeiiaiaabohacaqG0bGaaeOCai aabggacaqGPbGaaeOBaiaabQdacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiamaaqahabaGaaiikaiabeU7a SnaaBaaaleaacaWGPbaabeaakiabgkHiTiaaigdacaGGPaGaaCODam aaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaey4LIqSaaCODamaa CaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaabMgacaqG9aGaae ymaaqaaiaabodaa0GaeyyeIuoaaOqaaiaabweacaqG1bGaaeiBaiaa bwgacaqGYbGaaeyAaiaabggacaqGUbGaaeiiaiaabYeacaqGVbGaae 4zaiaabggacaqGYbGaaeyAaiaabshacaqGObGaaeyBaiaabMgacaqG JbGaaeiiaiaabohacaqG0bGaaeOCaiaabggacaqGPbGaaeOBaiaabQ dacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccadaaeWbqaaiGacYgacaGGVbGaai 4zaiaacIcacqaH7oaBdaWgaaWcbaGaamyAaaqabaGccaGGPaGaaCOD amaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaey4LIqSaaCODam aaCaaaleqabaGaaiikaiaadMgacaGGPaaaaaqaaiaabMgacaqG9aGa aeymaaqaaiaabodaa0GaeyyeIuoaaaaa@9B2B@

Another strain measure can be defined as

Green's strain:            E G i=1 3 1 2 ( λ i 2 1) v (i) v (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaae4raiaabkhacaqGLbGaaeyzaiaab6 gacaqGNaGaae4CaiaabccacaqGZbGaaeiDaiaabkhacaqGHbGaaeyA aiaab6gacaqG6aGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaWHfbWaaSbaaSqaaiaa dEeaaeqaaOGaaeypaiaabccadaaeWbqaamaalaaabaGaaGymaaqaai aaikdaaaGaaiikaiabeU7aSnaaDaaaleaacaWGPbaabaGaaGOmaaaa kiabgkHiTiaaigdacaGGPaGaaCODamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaOGaey4LIqSaaCODamaaCaaaleqabaGaaiikaiaadMga caGGPaaaaaqaaiaabMgacaqG9aGaaeymaaqaaiaabodaa0GaeyyeIu oaaaa@5E9A@

This can be computed directly from the deformation gradient as

E G 1 2 F F T I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyramaaBaaaleaacaWGhbaabeaaki aab2dacaqGGaWaaSaaaeaacaqGXaaabaGaaeOmaaaadaqadaqaaiaa hAeacaWHgbWaaWbaaSqabeaacaWGubaaaOGaeyOeI0IaaCysaaGaay jkaiaawMcaaaaa@3B82@

and is very similar to the Lagrangean strain tensor, except that its principal directions are rotated through the rigid rotation R.

 

 

 

2.2.20 Measures of rate of deformation: The velocity gradient

 

We now list several measures of the rate of deformation. The velocity gradient is the basic measure of deformation rate, and is defined as

L=v y L ij = v i y j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCitaiabg2da9iaahAhacqGHhis0da WgaaWcbaGaaCyEaaqabaGccqGHHjIUcaWGmbWaaSbaaSqaaiaadMga caWGQbaabeaakiabg2da9maalaaabaGaeyOaIyRaamODamaaBaaale aacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqa baaaaaaa@433F@

It quantifies the relative velocities of two material particles at positions y and y+dy in the deformed solid, in the sense that

d v i = v i (y+dy) v i (y)= v i y j d y j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaa hMhacqGHRaWkcaWGKbGaaCyEaiaacMcacqGHsislcaWG2bWaaSbaaS qaaiaadMgaaeqaaOGaaiikaiaahMhacaGGPaGaeyypa0ZaaSaaaeaa cqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaam yEamaaBaaaleaacaWGQbaabeaaaaGccaWGKbGaamyEamaaBaaaleaa caWGQbaabeaaaaa@4CC2@

The velocity gradient can be expressed in terms of the deformation gradient and its time derivative as

v y = F ˙ F 1 v i y j = F ˙ ik F kj 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabgEGirpaaBaaaleaacaWH5b aabeaakiabg2da9iqahAeagaGaaiaahAeadaahaaWcbeqaaiabgkHi TiaaigdaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaamOD amaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcba GaamOAaaqabaaaaOGaeyypa0JabmOrayaacaWaaSbaaSqaaiaadMga caWGRbaabeaakiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaacqGHsi slcaaIXaaaaaaa@59AD@

To see this, note that

d v i = d dt d y i = d dt F ij d x j = F ˙ ij d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaacaWG KbGaamyEamaaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGaam izaaqaaiaadsgacaWG0baaamaabmaabaGaamOramaaBaaaleaacaWG PbGaamOAaaqabaGccaWGKbGaamiEamaaBaaaleaacaWGQbaabeaaaO GaayjkaiaawMcaaiabg2da9iqadAeagaGaamaaBaaaleaacaWGPbGa amOAaaqabaGccaWGKbGaamiEamaaBaaaleaacaWGQbaabeaaaaa@4D15@

and recall that d y j = F ji d x i d x j = F jk 1 d y k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamOAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyO0H4TaamizaiaadI hadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWGgbWaa0baaSqaaiaa dQgacaWGRbaabaGaeyOeI0IaaGymaaaakiaadsgacaWG5bWaaSbaaS qaaiaadUgaaeqaaaaa@48D4@ , so that

d v i = F ˙ ij F jk 1 d y k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpceWGgbGbaiaadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaamOramaaDaaaleaacaWGQbGaam4AaaqaaiabgkHiTiaaigdaaa GccaWGKbGaamyEamaaBaaaleaacaWGRbaabeaaaaa@3F61@

 

 

 

2.2.21 Stretch rate and spin tensors, the vorticity vector

 

The stretch rate tensor is defined as D= L+ L T /2 D ij = L ij + L ji /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiraiabg2da9maabmaabaGaaCitai abgUcaRiaahYeadaahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaa caGGVaGaaGOmaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGebWaaSbaaSqaaiaadMgacaWG Qbaabeaakiabg2da9maabmaabaGaamitamaaBaaaleaacaWGPbGaam OAaaqabaGccqGHRaWkcaWGmbWaaSbaaSqaaiaadQgacaWGPbaabeaa aOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@5639@

The spin tensor is defined as W= L L T /2 W ij = L ij L ji /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vaiabg2da9maabmaabaGaaCitai abgkHiTiaahYeadaahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaa caGGVaGaaGOmaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGxbWaaSbaaSqaaiaadMgacaWG Qbaabeaakiabg2da9maabmaabaGaamitamaaBaaaleaacaWGPbGaam OAaaqabaGccqGHsislcaWGmbWaaSbaaSqaaiaadQgacaWGPbaabeaa aOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@5675@

 

A general velocity gradient can be decomposed into the sum of stretch rate and spin, as

L=D+W L ij = D ij + W ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCitaiabg2da9iaahseacqGHRaWkca WHxbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dYeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamiramaaBa aaleaacaWGPbGaamOAaaqabaGccqGHRaWkcaWGxbWaaSbaaSqaaiaa dMgacaWGQbaabeaaaaa@4AA4@

The stretch rate quantifies the rate of stretching of material of a material fiber in the deformed solid, in the sense that

1 l dl dt =nDn= n i D ij n j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaamiBaaaada WcaaqaaiaadsgacaWGSbaabaGaamizaiaadshaaaGaeyypa0JaaCOB aiabgwSixlaahseacaWHUbGaeyypa0JaamOBamaaBaaaleaacaWGPb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaa BaaaleaacaWGQbaabeaaaaa@447A@

is the rate of stretching of a material fiber with length l and orientation n in the deformed solid, as shown in the figure.

 

 To see this, let dy=ln MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahMhacqGH9aqpcaWGSbGaaC OBaaaa@35B9@ , so that

d dt dy= dl dt n+l dn dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaGaamizaiaahMhacqGH9aqpdaWcaaqaaiaadsgacaWGSbaabaGa amizaiaadshaaaGaaCOBaiabgUcaRiaadYgadaWcaaqaaiaadsgaca WHUbaabaGaamizaiaadshaaaaaaa@4114@

By definition,

d dt dy= d dt Fdx = F ˙ dx= F ˙ F 1 dy = F ˙ F 1 dy=Ldy=(D+W)ln MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaGaamizaiaahMhacqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGa amiDaaaadaqadaqaaiaahAeacaWGKbGaaCiEaaGaayjkaiaawMcaai abg2da9iqahAeagaGaaiaadsgacaWH4bGaeyypa0JabCOrayaacaWa aeWaaeaacaWHgbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamizai aahMhaaiaawIcacaGLPaaacqGH9aqpceWHgbGbaiaacaWHgbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaamizaiaahMhacqGH9aqpcaWHmb GaamizaiaahMhacqGH9aqpcaGGOaGaaCiraiabgUcaRiaahEfacaGG PaGaamiBaiaah6gaaaa@5AA4@

Hence

(D+W)ln= dl dt n+l dn dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaahseacqGHRaWkcaWHxbGaai ykaiaadYgacaWHUbGaeyypa0ZaaSaaaeaacaWGKbGaamiBaaqaaiaa dsgacaWG0baaaiaah6gacqGHRaWkcaWGSbWaaSaaaeaacaWGKbGaaC OBaaqaaiaadsgacaWG0baaaaaa@421E@

Finally, take the dot product of both sides with n, note that since n is a unit vector dn/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah6gacaGGVaGaamizaiaads haaaa@3555@  must be perpendicular to n and therefore ndn/dt=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabgwSixlaadsgacaWHUbGaai 4laiaadsgacaWG0bGaeyypa0JaaGimaaaa@3A56@ .  Note also that n Wn =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabgwSixpaabmaabaGaaC4vai aah6gaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3941@ , since W is skew-symmetric.  It is easiest to show this using index notation: n i W ij n j = n i ( L ij L ji ) n j /2=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki aadEfadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaaBaaaleaa caWGQbaabeaakiabg2da9iaad6gadaWgaaWcbaGaamyAaaqabaGcca GGOaGaamitamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcaWG mbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaacMcacaWGUbWaaSbaaS qaaiaadQgaaeqaaOGaai4laiaaikdacqGH9aqpcaaIWaaaaa@4870@ .  Therefore

n (D+W)ln = dl dt nn+ln dn dt n Dln = dl dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabgwSixpaacmaabaGaaiikai aahseacqGHRaWkcaWHxbGaaiykaiaadYgacaWHUbaacaGL7bGaayzF aaGaeyypa0ZaaSaaaeaacaWGKbGaamiBaaqaaiaadsgacaWG0baaai aah6gacqGHflY1caWHUbGaey4kaSIaamiBaiaah6gacqGHflY1daWc aaqaaiaadsgacaWHUbaabaGaamizaiaadshaaaGaeyO0H4TaaCOBai abgwSixpaabmaabaGaaCiraiaadYgacaWHUbaacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaacaWGKbGaamiBaaqaaiaadsgacaWG0baaaaaa@5CC0@

The spin tensor W can be shown to provide a measure of the average angular velocity of all material fibers passing through a material point. 

 

The vorticity vector is another measure of the angular velocity.  It is defined as

ω=curl(v) ω i = ijk v k y j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iaadogacaWG1bGaam OCaiaadYgacaGGOaGaaCODaiaacMcacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaeqyYdC3aaSbaaSqaaiaadMgaaeqaaOGaeyypa0Jaeyic I48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGcdaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaam4AaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaadQgaaeqaaaaaaaa@5CFF@

 

It is related to the spin tensor as

ω=2dual(W) ω i = ijk W jk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iaaikdacaWGKbGaam yDaiaadggacaWGSbGaaiikaiaahEfacaGGPaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqaHjpWDdaWgaaWcbaGaamyAaaqabaGc cqGH9aqpcqGHsislcqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRb aabeaakiaadEfadaWgaaWcbaGaamOAaiaadUgaaeqaaaaa@5BD6@

where dual (W) denotes the dual vector of the skew tensor W.

 

The vorticity vector has the property that, for any vector g, Wg= 1 2 ω×g W ji g i = 1 2 jki ω k g i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vaiaahEgacqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaaiaahM8acqGHxdaTcaWHNbGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaadEfadaWgaaWcbaGaamOAaiaadMgaaeqa aOGaam4zamaaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGaaG ymaaqaaiaaikdaaaGaeyicI48aaSbaaSqaaiaadQgacaWGRbGaamyA aaqabaGccqaHjpWDdaWgaaWcbaGaam4AaaqabaGccaWGNbWaaSbaaS qaaiaadMgaaeqaaaaa@5EB4@ .

 

A motion satisfying W=curl(v)= 0 is said to be irrotational MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbiqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326E@  such motions are of interest in fluid mechanics.

 

 

 

2.2.22 Spatial (Eulerian) description of acceleration

 

The acceleration of a material particle is, by definition

a= v t x=const MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9maaeiaabaWaaSaaae aacqGHciITcaWH2baabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaa leaacaWH4bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4Caiaadshaae qaaaaa@402D@

 

In fluid mechanics, and applications such as models of extrusion or machining, it is often convenient to use a spatial description of velocity and acceleration MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  that is to say the velocity field is expressed as a function of position y in the deformed solid as v(y,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWH5bGaaiilaiaads hacaGGPaaaaa@35E3@ .   The acceleration of the material particle with instantaneous position y in the deformed solid can be expressed as

a i = v i y k y k t + v i t y i =const = L ik v k + v i t y i =const = D ik + W ik v k + v i t y i =const MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaki abg2da9maalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadMhadaWgaaWcbaGaam4AaaqabaaaaOWaaSaaae aacqGHciITcaWG5bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOaIyRa amiDaaaacqGHRaWkdaabcaqaamaalaaabaGaeyOaIyRaamODamaaBa aaleaacaWGPbaabeaaaOqaaiabgkGi2kaadshaaaaacaGLiWoadaWg aaWcbaGaamyEamaaBaaameaacaWGPbaabeaaliabg2da9iaadogaca WGVbGaamOBaiaadohacaWG0baabeaakiabg2da9iaadYeadaWgaaWc baGaamyAaiaadUgaaeqaaOGaamODamaaBaaaleaacaWGRbaabeaaki abgUcaRmaaeiaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dMgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaaca WG5bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0Jaam4yaiaad+gacaWG UbGaam4CaiaadshaaeqaaOGaeyypa0ZaaeWaaeaacaWGebWaaSbaaS qaaiaadMgacaWGRbaabeaakiabgUcaRiaadEfadaWgaaWcbaGaamyA aiaadUgaaeqaaaGccaGLOaGaayzkaaGaamODamaaBaaaleaacaWGRb aabeaakiabgUcaRmaaeiaabaWaaSaaaeaacqGHciITcaWG2bWaaSba aSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawIa7amaaBa aaleaacaWG5bWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0Jaam4yaiaa d+gacaWGUbGaam4Caiaadshaaeqaaaaa@840D@

 

 

 

2.2.23 Acceleration - spin MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326D@  vorticity relations

 

In fluid mechanics, equations relating the acceleration to the spatial velocity field are useful.  In particular, it can be shown that

·    a i = v i t x k =const = v i t y k =const + 1 2 y i ( v k v k )+2 W ik v k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaki abg2da9maaeiaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dMgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaaca WG4bWaaSbaaWqaaiaadUgaaeqaaSGaeyypa0Jaam4yaiaad+gacaWG UbGaam4CaiaadshaaeqaaOGaeyypa0ZaaqGaaeaadaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG0baa aaGaayjcSdWaaSbaaSqaaiaadMhadaWgaaadbaGaam4AaaqabaWccq GH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqabaGccqGHRaWk daWcaaqaaiaaigdaaeaacaaIYaaaamaalaaabaGaeyOaIylabaGaey OaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaGccaGGOaGaamODamaa BaaaleaacaWGRbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGcca GGPaGaey4kaSIaaGOmaiaadEfadaWgaaWcbaGaamyAaiaadUgaaeqa aOGaamODamaaBaaaleaacaWGRbaabeaaaaa@67F4@

· a i = v i t x k =const = v i t y k =const + 1 2 y i ( v k v k )+ ijk ω j v k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaki abg2da9maaeiaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dMgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaaca WG4bWaaSbaaWqaaiaadUgaaeqaaSGaeyypa0Jaam4yaiaad+gacaWG UbGaam4CaiaadshaaeqaaOGaeyypa0ZaaqGaaeaadaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG0baa aaGaayjcSdWaaSbaaSqaaiaadMhadaWgaaadbaGaam4AaaqabaWccq GH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqabaGccqGHRaWk daWcaaqaaiaaigdaaeaacaaIYaaaamaalaaabaGaeyOaIylabaGaey OaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaGccaGGOaGaamODamaa BaaaleaacaWGRbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGcca GGPaGaey4kaSIaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4Aaaqa baGccqaHjpWDdaWgaaWcbaGaamOAaaqabaGccaWG2bWaaSbaaSqaai aadUgaaeqaaaaa@6BC1@

· ijk a k y j = ω i t x=const D ij ω j + v k y k ω i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadggadaWgaaWcbaGaam4A aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaaki abg2da9maaeiaabaWaaSaaaeaacqGHciITcqaHjpWDdaWgaaWcbaGa amyAaaqabaaakeaacqGHciITcaWG0baaaaGaayjcSdWaaSbaaSqaai aahIhacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqabaGc cqGHsislcaWGebWaaSbaaSqaaiaadMgacaWGQbaabeaakiabeM8a3n aaBaaaleaacaWGQbaabeaakiabgUcaRmaalaaabaGaeyOaIyRaamOD amaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcba Gaam4AaaqabaaaaOGaeqyYdC3aaSbaaSqaaiaadMgaaeqaaaaa@5E76@

 

Deriving these relations is left as an exercise.

 

 

 

2.2.24 Rate of change of volume

 

We have seen that

J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaaaa@37A8@

quantifies the volume change associated with a deformation, in that the volumes of infinitesimal elements before and after deformation  are related by

JdV=d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaadsgacaWGwbGaeyypa0Jaam izaiaadAfadaWgaaWcbaGaaGimaaqabaaaaa@3723@

 

In rate form:

dJ dt = dJ d F ij d F ij dt =J F ji 1 F ˙ ij =J L ii =J v i y i =J D ii MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamOsaaqaaiaads gacaWG0baaaiabg2da9maalaaabaGaamizaiaadQeaaeaacaWGKbGa amOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOWaaSaaaeaacaWGKb GaamOramaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGKbGaamiD aaaacqGH9aqpcaWGkbGaamOramaaDaaaleaacaWGQbGaamyAaaqaai abgkHiTiaaigdaaaGcceWGgbGbaiaadaWgaaWcbaGaamyAaiaadQga aeqaaOGaeyypa0JaamOsaiaadYeadaWgaaWcbaGaamyAaiaadMgaae qaaOGaeyypa0JaamOsamaalaaabaGaeyOaIyRaamODamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamyAaaqaba aaaOGaeyypa0JaamOsaiaadseadaWgaaWcbaGaamyAaiaadMgaaeqa aaaa@5C6B@ .

 

The trace of D, trace of L or the trace of v y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabgEGirpaaBaaaleaacaWH5b aabeaaaaa@3493@   are therefore measures of rate of change of volume.

 

 

 

2.2.25 Infinitesimal strain rate and rotation rate

 

For small strains the rate of deformation tensor can be approximated by the infinitesimal strain rate, while the spin can be approximated by the time derivative of the infinitesimal rotation tensor

d dt ε= d dt 1 2 u+ u T Dor      ε ˙ ij D ij d dt w= d dt 1 2 u u T Wor      w ˙ ij W ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgaaeaacaWGKb GaamiDaaaacaWH1oGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaa dshaaaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaahwhacq GHhis0cqGHRaWkdaqadaqaaiaahwhacqGHhis0aiaawIcacaGLPaaa daahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaacaaMc8UaaGPaVl aaykW7cqGHijYUcaWHebGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaab+gacaqGYbGaaeiiaiaabccacaqGGaGaaeiiai aabccacuaH1oqzgaGaamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH ijYUcaWGebWaaSbaaSqaaiaadMgacaWGQbaabeaaaOqaamaalaaaba GaamizaaqaaiaadsgacaWG0baaaiaahEhacqGH9aqpdaWcaaqaaiaa dsgaaeaacaWGKbGaamiDaaaadaWcaaqaaiaaigdaaeaacaaIYaaaam aabmaabaGaaCyDaiabgEGirlabgkHiTmaabmaabaGaaCyDaiabgEGi rdGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaaOGaayjkaiaawM caaiabgIKi7kaahEfacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaae4BaiaabkhacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiqadEhagaGaamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHijYU caWGxbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaaa@9144@

Similarly, you can show that

                                                    d dt u i x j = F ˙ ij = ε ˙ ij + w ˙ ij L ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaaGc baGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGH9aqpce WGgbGbaiaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JafqyT duMbaiaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIabm4Day aacaWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgIKi7kaadYeadaWg aaWcbaGaamyAaiaadQgaaeqaaaaa@4C11@

 

 

 

2.2.26 Other deformation rate measures

 

The rate of deformation tensor can be related to time derivatives of other strain measures.  For example the time derivative of the Lagrange strain tensor can be shown to be

dE dt = F T DF E ˙ ij = F ki D kl F lj MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyraaqaaiaads gacaWG0baaaiabg2da9iaahAeadaahaaWcbeqaaiaadsfaaaGccaWH ebGaaCOraiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlqadweagaGaamaaBaaaleaacaWGPbGaamOAaaqa baGccqGH9aqpcaWGgbWaaSbaaSqaaiaadUgacaWGPbaabeaakiaads eadaWgaaWcbaGaam4AaiaadYgaaeqaaOGaamOramaaBaaaleaacaWG SbGaamOAaaqabaaaaa@536F@

Other useful results are

· For a pure rotation R ˙ R T +R R ˙ T =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOuayaacaGaaCOuamaaCaaaleqaba GaamivaaaakiabgUcaRiaahkfaceWHsbGbaiaadaahaaWcbeqaaiaa dsfaaaGccqGH9aqpcaWHWaaaaa@391F@ , or equivalently R ˙ R T = R ˙ R T T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOuayaacaGaaCOuamaaCaaaleqaba Gaamivaaaakiabg2da9iabgkHiTmaabmaabaGabCOuayaacaGaaCOu amaaCaaaleqabaGaamivaaaaaOGaayjkaiaawMcaamaaCaaaleqaba Gaamivaaaaaaa@3B00@ .  To see this, recall that R R T =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiaahkfadaahaaWcbeqaaiaads faaaGccqGH9aqpcaWHjbaaaa@357E@  and evaluate the time derivative. 

 

· If the deformation gradient is decomposed into a stretch followed by a rotation as F=RU MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahkfacaWHvbaaaa@346E@  then

D=R U ˙ U 1 + U 1 U ˙ R T /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiraiabg2da9iaahkfadaqadaqaai qahwfagaGaaiaahwfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH RaWkcaWHvbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGabCyvayaaca aacaGLOaGaayzkaaGaaCOuamaaCaaaleqabaGaamivaaaakiaac+ca caaIYaaaaa@409B@  and W= R ˙ R T +R U ˙ U 1 U 1 U ˙ R T /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vaiabg2da9iqahkfagaGaaiaahk fadaahaaWcbeqaaiaadsfaaaGccqGHRaWkcaWHsbWaaeWaaeaaceWH vbGbaiaacaWHvbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyOeI0 IaaCyvamaaCaaaleqabaGaeyOeI0IaaGymaaaakiqahwfagaGaaaGa ayjkaiaawMcaaiaahkfadaahaaWcbeqaaiaadsfaaaGccaGGVaGaaG Omaaaa@4469@

 

· The trace of D is a measure of rate of change of volume. To see this, note that

dJ dt = dJ d F ij d F ij dt =J F ji 1 F ˙ ij =J L ii =J D ii MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamOsaaqaaiaads gacaWG0baaaiabg2da9maalaaabaGaamizaiaadQeaaeaacaWGKbGa amOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOWaaSaaaeaacaWGKb GaamOramaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGKbGaamiD aaaacqGH9aqpcaWGkbGaamOramaaDaaaleaacaWGQbGaamyAaaqaai abgkHiTiaaigdaaaGcceWGgbGbaiaadaWgaaWcbaGaamyAaiaadQga aeqaaOGaeyypa0JaamOsaiaadYeadaWgaaWcbaGaamyAaiaadMgaae qaaOGaeyypa0JaamOsaiaadseadaWgaaWcbaGaamyAaiaadMgaaeqa aaaa@5379@ .

 

For small strains the rate of change of Lagrangian strain E  is approximately equal to the rate of change of infinitesimal strain ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeKyTdugaaa@328C@ :

dE dt d dt ε E ˙ ij d dt ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyraaqaaiaads gacaWG0baaaiabgIKi7oaalaaabaGaamizaaqaaiaadsgacaWG0baa aiaahw7acaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7ceWGfbGbaiaadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaeyisIS7aaSaaaeaacaWGKbaabaGaamizaiaadshaaaGaeqyTdu 2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@535B@

 

 

 

2.2.27 Reynolds Transport Relation

 

The Reynolds transport theorem is a useful way to calculate the rate of change of a quantity inside a volume that deforms with a solid (e.g. the total mass of a volume).  Let ϕ(y,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaahMhacaGGSaGaam iDaiaacMcaaaa@36AC@  be any scalar valued property of a material particle at position y in the deformed solid, and let v(y) denote the velocity field.  Consider a volume V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa a@32A1@  with surface S 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIWaaabeaaaa a@329E@  in the undeformed solid, which changes its shape to a volume V MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaaaa@31BB@  with surface S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaaaa@31B8@  after deformation, as shown in the figure. The Reynolds transport relation states that rate of change of the total value of this property within V (with can be calculated as

d dt V ϕdV = V ϕ t x=const +ϕ v i y i dV= V ϕ t x=const +ϕ D kk dV= V ϕ t y=const dV+ S ϕ v k n k dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacqaHvpGzcaWGKbGaamOvaaWcbaGaamOvaaqab0Ga ey4kIipakiabg2da9maapefabaWaaeWaaeaadaabcaqaamaalaaaba GaeyOaIyRaeqy1dygabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaa leaacaWH4bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4Caiaadshaae qaaOGaey4kaSIaeqy1dy2aaSaaaeaacqGHciITcaWG2bWaaSbaaSqa aiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabe aaaaaakiaawIcacaGLPaaaaSqaaiaadAfaaeqaniabgUIiYdGccaWG KbGaamOvaiabg2da9maapefabaWaaeWaaeaadaabcaqaamaalaaaba GaeyOaIyRaeqy1dygabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaa leaacaWH4bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4Caiaadshaae qaaOGaey4kaSIaeqy1dyMaamiramaaBaaaleaacaWGRbGaam4Aaaqa baaakiaawIcacaGLPaaaaSqaaiaadAfaaeqaniabgUIiYdGccaWGKb GaamOvaiabg2da9maapefabaWaaeWaaeaadaabcaqaamaalaaabaGa eyOaIyRaeqy1dygabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaale aacaWH5bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4Caiaadshaaeqa aaGccaGLOaGaayzkaaaaleaacaWGwbaabeqdcqGHRiI8aOGaamizai aadAfacqGHRaWkdaWdrbqaamaabmaabaGaeqy1dyMaamODamaaBaaa leaacaWGRbaabeaakiaad6gadaWgaaWcbaGaam4AaaqabaaakiaawI cacaGLPaaaaSqaaiaadofaaeqaniabgUIiYdGccaWGKbGaamyqaaaa @9825@

 

Note that the material volume V and surface S convect with the deforming solid MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they are not control volumes.


To see this,

 

(i) Note first that we can’t take the time derivative inside the integral because the volume changes with time as the solid deforms.   But we can map the integral back to the reference configuration, which is time independent MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the derivative can then be taken inside the integral.

d dt V ϕdV = d dt V 0 ϕJdV = V 0 J ϕ t x=const +ϕ J t dV= V 0 ϕ t x=const +ϕ D kk JdV = V ϕ t x=const +ϕ D kk dV= V ϕ t x=const +ϕ v k y k dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgaaeaacaWGKb GaamiDaaaadaWdrbqaaiabew9aMjaadsgacaWGwbaaleaacaWGwbaa beqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacqaHvpGzcaWGkbGaamizaiaadAfaaSqaaiaadAfa daWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdGccqGH9aqpdaWdrb qaamaabmaabaWaaqGaaeaacaWGkbWaaSaaaeaacqGHciITcqaHvpGz aeaacqGHciITcaWG0baaaaGaayjcSdWaaSbaaSqaaiaahIhacqGH9a qpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqabaGccqGHRaWkcqaH vpGzdaWcaaqaaiabgkGi2kaadQeaaeaacqGHciITcaWG0baaaaGaay jkaiaawMcaaaWcbaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Ga ey4kIipakiaadsgacaWGwbGaeyypa0Zaa8quaeaadaqadaqaamaaei aabaWaaSaaaeaacqGHciITcqaHvpGzaeaacqGHciITcaWG0baaaaGa ayjcSdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6gaca WGZbGaamiDaaqabaGccqGHRaWkcqaHvpGzcaWGebWaaSbaaSqaaiaa dUgacaWGRbaabeaaaOGaayjkaiaawMcaaaWcbaGaamOvamaaBaaame aacaaIWaaabeaaaSqab0Gaey4kIipakiaadQeacaWGKbGaamOvaaqa aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabg2da9maapefabaWaaeWaaeaadaabcaqaamaalaaabaGa eyOaIyRaeqy1dygabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaale aacaWH4bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4Caiaadshaaeqa aOGaey4kaSIaeqy1dyMaamiramaaBaaaleaacaWGRbGaam4Aaaqaba aakiaawIcacaGLPaaaaSqaaiaadAfaaeqaniabgUIiYdGccaWGKbGa amOvaiabg2da9maapefabaWaaeWaaeaadaabcaqaamaalaaabaGaey OaIyRaeqy1dygabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaa caWH4bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshaaeqaaO Gaey4kaSIaeqy1dy2aaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaa dUgaaeqaaaGcbaGaamyEamaaBaaaleaacaWGRbaabeaaaaaakiaawI cacaGLPaaaaSqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamOvaaaa aa@C9CB@

 

(ii) Next, recall that that

ϕ t x=const = ϕ t y=const + ϕ y i v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqGaaeaadaWcaaqaaiabgkGi2kabew 9aMbqaaiabgkGi2kaadshaaaaacaGLiWoadaWgaaWcbaGaaCiEaiab g2da9iaadogacaWGVbGaamOBaiaadohacaWG0baabeaakiabg2da9m aaeiaabaWaaSaaaeaacqGHciITcqaHvpGzaeaacqGHciITcaWG0baa aaGaayjcSdWaaSbaaSqaaiaahMhacqGH9aqpcaWGJbGaam4Baiaad6 gacaWGZbGaamiDaaqabaGccqGHRaWkdaWcaaqaaiabgkGi2kabew9a MbqaaiabgkGi2kaadMhadaWgaaWcbaGaamyAaaqabaaaaOGaamODam aaBaaaleaacaWGPbaabeaaaaa@5804@ .

 

(iii)  Finally, observe that

ϕ y i v i +ϕ v i y i = (ϕ v i ) y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHvpGzaeaacq GHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhadaWgaaWc baGaamyAaaqabaGccqGHRaWkcqaHvpGzdaWcaaqaaiabgkGi2kaadA hadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqa aiaadMgaaeqaaaaakiabg2da9maalaaabaGaeyOaIyRaaiikaiabew 9aMjaadAhadaWgaaWcbaGaamyAaaqabaGccaGGPaaabaGaeyOaIyRa amyEamaaBaaaleaacaWGPbaabeaaaaaaaa@4EC6@  

and apply the divergence theorem to this term to obtain the last identity.

 

 

 

2.2.28 Transport Relations for material curves and surfaces

 

Similar transport relations can be derived for material curves and surfaces which convect with a deformable solid or fluid.

 

Let C be a material curve in a deformable solid; and let S be an interior surface with normal vector n.  Let ϕ(y,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaahMhacaGGSaGaam iDaiaacMcaaaa@36AC@  be any scalar valued property of a material particle at position y in the deformed solid.   Then

1.   d dt C ϕ τ i ds = C δ ij ϕ t x=const +ϕ v i y j τ j ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacqaHvpGzcqaHepaDdaWgaaWcbaGaamyAaaqabaGc caWGKbGaam4CaaWcbaGaam4qaaqab0Gaey4kIipakiabg2da9maape fabaWaaeWaaeaadaabcaqaaiabes7aKnaaBaaaleaacaWGPbGaamOA aaqabaGcdaWcaaqaaiabgkGi2kabew9aMbqaaiabgkGi2kaadshaaa aacaGLiWoadaWgaaWcbaGaaCiEaiabg2da9iaadogacaWGVbGaamOB aiaadohacaWG0baabeaakiabgUcaRiabew9aMnaalaaabaGaeyOaIy RaamODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaamOAaaqabaaaaaGccaGLOaGaayzkaaGaeqiXdq3aaSbaaS qaaiaadQgaaeqaaaqaaiaadoeaaeqaniabgUIiYdGccaWGKbGaam4C aaaa@637A@

2. d dt S ϕ n i dA = S δ ij ϕ t x=const + δ ij ϕ v k y k ϕ v j y i n j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacqaHvpGzcaWGUbWaaSbaaSqaaiaadMgaaeqaaOGa amizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGH9aqpdaWdrb qaamaabmaabaWaaqGaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadQga aeqaaOWaaSaaaeaacqGHciITcqaHvpGzaeaacqGHciITcaWG0baaaa GaayjcSdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6ga caWGZbGaamiDaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeqy1dy2aaSaaaeaacqGHciITcaWG2bWaaSbaaSqa aiaadUgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGRbaabe aaaaGccqGHsislcqaHvpGzdaWcaaqaaiabgkGi2kaadAhadaWgaaWc baGaamOAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaae qaaaaaaOGaayjkaiaawMcaaiaad6gadaWgaaWcbaGaamOAaaqabaaa baGaam4uaaqab0Gaey4kIipakiaadsgacaWGbbaaaa@6F20@

 

To show the first result, start by mapping the integral to the reference configuration, then take the time derivative, and map back to the current configuration, as follows

d dt C ϕ τ i ds = d dt C 0 ϕ F ij τ j 0 d s 0 = C 0 dϕ dt x F ij +ϕ d F ij dt τ j 0 d s 0 = C dϕ dt x δ ik +ϕ d F ij dt F jk 1 τ k ds = C δ ij ϕ t x +ϕ v i y j τ j ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgaaeaacaWGKb GaamiDaaaadaWdrbqaaiabew9aMjabes8a0naaBaaaleaacaWGPbaa beaakiaadsgacaWGZbaaleaacaWGdbaabeqdcqGHRiI8aOGaeyypa0 ZaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaa8quaeaacqaHvpGz caWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabes8a0naaDaaale aacaWGQbaabaGaaGimaaaakiaadsgacaWGZbWaaSbaaSqaaiaaicda aeqaaaqaaiaadoeadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYd GccqGH9aqpdaWdrbqaamaabmaabaWaaqGaaeaadaWcaaqaaiaadsga cqaHvpGzaeaacaWGKbGaamiDaaaaaiaawIa7amaaBaaaleaacaWH4b aabeaakiaadAeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIa eqy1dy2aaSaaaeaacaWGKbGaamOramaaBaaaleaacaWGPbGaamOAaa qabaaakeaacaWGKbGaamiDaaaaaiaawIcacaGLPaaacqaHepaDdaqh aaWcbaGaamOAaaqaaiaaicdaaaGccaWGKbGaam4CamaaBaaaleaaca aIWaaabeaaaeaacaWGdbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGH RiI8aaGcbaGaeyypa0Zaa8quaeaadaqadaqaamaaeiaabaWaaSaaae aacaWGKbGaeqy1dygabaGaamizaiaadshaaaaacaGLiWoadaWgaaWc baGaaCiEaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaO Gaey4kaSIaeqy1dy2aaSaaaeaacaWGKbGaamOramaaBaaaleaacaWG PbGaamOAaaqabaaakeaacaWGKbGaamiDaaaacaWGgbWaa0baaSqaai aadQgacaWGRbaabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiab es8a0naaBaaaleaacaWGRbaabeaakiaadsgacaWGZbaaleaacaWGdb aabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaadaqadaqaamaaeiaabaGa eqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakmaalaaabaGaeyOaIy Raeqy1dygabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaacaWH 4baabeaakiabgUcaRiabew9aMnaalaaabaGaeyOaIyRaamODamaaBa aaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOA aaqabaaaaaGccaGLOaGaayzkaaGaeqiXdq3aaSbaaSqaaiaadQgaae qaaaqaaiaadoeaaeqaniabgUIiYdGccaWGKbGaam4Caaaaaa@B2EC@

To show the second, apply the same process to the surface integral.  The details are left as an exercise…

 

 

 

2.2.29 Circulation and the circulation transport relation

 

The circulation of a velocity field v around a closed curve C is defined as

I C = C vτds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaWGdbaabeaaki abg2da9maapefabaGaaCODaiabgwSixlaahs8acaWGKbGaam4CaaWc baGaam4qaaqab0Gaey4kIipaaaa@3D3E@ ,

where τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@  is a unit vector tangent to the curve, as shown in the figure   Its main applications are in fluid mechanics, but it is occasionally useful to quantify deformation in plastically deforming solids as well.  The circulation can also be calculated by integrating the vorticity vector ω=curl(v) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyYdiabg2da9iaadogacaWG1bGaam OCaiaadYgacaGGOaGaaCODaiaacMcaaaa@395D@  (defined in Sect 2.2.21) over the area S enclosed by the curve as

I C = C vτds = S ωmdA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaWGdbaabeaaki abg2da9maapefabaGaaCODaiabgwSixlaahs8acaWGKbGaam4CaaWc baGaam4qaaqab0Gaey4kIipakiabg2da9maapefabaGaaCyYdiabgw Sixlaah2gacaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@47B4@

where  m is a unit vector normal to S, chosen so that C encircles m with right hand screw convention. The formula works for any choice of S bounded by C.  This is just a statement of Stokes’ theorem, of course.

 

The circulation transport relation states that, for any material curve (i.e. a curve that convects with material particles within a body), the rate of change of circulation can be computed using the expression

I C t x=const = C v t x=const τds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqGaaeaadaWcaaqaaiabgkGi2kaadM eadaWgaaWcbaGaam4qaaqabaaakeaacqGHciITcaWG0baaaaGaayjc SdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZb GaamiDaaqabaGccqGH9aqpdaWdrbqaamaaeiaabaWaaSaaaeaacqGH ciITcaWH2baabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaaca WH4bGaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshaaeqaaOGa eyyXICTaaCiXdiaadsgacaWGZbaaleaacaWGdbaabeqdcqGHRiI8aa aa@560E@

To see this

 

(i) Recall the transport relation for a material curve (stated in Sect 2.2.28), and set ϕ= v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaamODamaaBaaale aacaWGPbaabeaaaaa@35C3@

d dt C v i τ i ds = C v j t x=const + v i v i y j τ j ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaeqiXdq3a aSbaaSqaaiaadMgaaeqaaOGaamizaiaadohaaSqaaiaadoeaaeqani abgUIiYdGccqGH9aqpdaWdrbqaamaabmaabaWaaqGaaeaadaWcaaqa aiabgkGi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITca WG0baaaaGaayjcSdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4B aiaad6gacaWGZbGaamiDaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaai aadMgaaeqaaOWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMga aeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaaaki aawIcacaGLPaaacqaHepaDdaWgaaWcbaGaamOAaaqabaaabaGaam4q aaqab0Gaey4kIipakiaadsgacaWGZbaaaa@60C8@

 

(ii) We next need to show that the second term in the integrand is zero.  To this end, note that

v i v i y j = 1 2 ( v i v i ) y j ( v i v i ) y j τ j = d( v i v i ) ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaakm aalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaaaOqaaiab gkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0ZaaSaaae aacaaIXaaabaGaaGOmaaaadaWcaaqaaiabgkGi2kaacIcacaWG2bWa aSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaaki aacMcaaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSaaaeaacqGHciITcaGGOaGaamODamaaBaaaleaacaWGPbaabe aakiaadAhadaWgaaWcbaGaamyAaaqabaGccaGGPaaabaGaeyOaIyRa amyEamaaBaaaleaacaWGQbaabeaaaaGccqaHepaDdaWgaaWcbaGaam OAaaqabaGccqGH9aqpdaWcaaqaaiaadsgacaGGOaGaamODamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaGGPa aabaGaamizaiaadohaaaaaaa@7872@

and hence

C v i v i y j τ j ds= C d( v i v i ) ds ds=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaqadaqaaiaadAhadaWgaa WcbaGaamyAaaqabaGcdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGa amyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaa aaaOGaayjkaiaawMcaaiabes8a0naaBaaaleaacaWGQbaabeaaaeaa caWGdbaabeqdcqGHRiI8aOGaamizaiaadohacqGH9aqpdaWdrbqaam aalaaabaGaamizaiaacIcacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGa amODamaaBaaaleaacaWGPbaabeaakiaacMcaaeaacaWGKbGaam4Caa aaaSqaaiaadoeaaeqaniabgUIiYdGccaWGKbGaam4Caiabg2da9iaa icdaaaa@53AC@

because C is a closed curve (i.e. v i v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki aadAhadaWgaaWcbaGaamyAaaqabaaaaa@3514@  has the same value at the lower and upper limits of the integral).

 

Kelvin’s circulation theorem is a direct consequence of this result.   The theorem states that if the acceleration field in a deforming solid or fluid is the gradient of a potential, then the circulation around any closed material curve remains constant.   To see this, let ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@  be a scalar potential, and calculate the acceleration by taking its gradient

v i t x=const = ψ y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqGaaeaadaWcaaqaaiabgkGi2kaadA hadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG0baaaaGaayjc SdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZb GaamiDaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabeI8a5bqaaiab gkGi2kaadMhadaWgaaWcbaGaamyAaaqabaaaaaaa@472F@

 

Then the rate of change of circulation can be expressed in terms of ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@

I c t x=const = C ψ y i τ i ds = C ψ s ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqGaaeaadaWcaaqaaiabgkGi2kaadM eadaWgaaWcbaGaam4yaaqabaaakeaacqGHciITcaWG0baaaaGaayjc SdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZb GaamiDaaqabaGccqGH9aqpdaWdrbqaamaalaaabaGaeyOaIyRaeqiY dKhabaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaGccqaHep aDdaWgaaWcbaGaamyAaaqabaGccaWGKbGaam4CaaWcbaGaam4qaaqa b0Gaey4kIipakiabg2da9maapefabaWaaSaaaeaacqGHciITcqaHip qEaeaacqGHciITcaWGZbaaaiaadsgacaWGZbaaleaacaWGdbaabeqd cqGHRiI8aOGaeyypa0JaaGimaaaa@5C51@