2.3 Mathematical description of internal forces in solids

 

Our next objective is to outline the mathematical formulas that describe internal and external forces acting on a solid.  Just as there are many different strain measures, there are several different definitions of internal force.  We shall see that internal forces can be described as a second order tensor, which must be symmetric.  Thus, internal forces can always be quantified by a set of six numbers, and the various different definitions are all equivalent.

 

 

 

2.3.1 Surface traction and internal body force

 

Forces can be applied to a solid body in two ways, as illustrated in the figure 

 

1. A force can be applied to its boundary: examples include fluid pressure, wind loading, or forces arising from contact with another solid. 

 

2. The solid can be subjected to body forces, which act on the interior of the solid.  Examples include gravitational loading, or electromagnetic forces.

 

These forces are quantified using the surface traction vector, and the body force vector, respectively.   These are defined as follows:

The surface traction vector t at a point on the surface represents the force acting on the surface per unit area of the deformed solid. Formally, let dA be an element of area on a surface.  Suppose that dA is subjected to a force dP MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfaaaa@32A1@ , as shown in the figure.  Then

t= lim dA0 dP dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9maaxababaGaciiBai aacMgacaGGTbaaleaacaWGKbGaamyqaiabgkziUkaaicdaaeqaaOWa aSaaaeaacaWGKbGaaCiuaaqaaiaadsgacaWGbbaaaaaa@3DCC@

 

The resultant force acting on any portion S of the surface of the deformed solid is

                                                                 P= S tdA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9maapefabaGaaCiDai aaykW7caWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@3A17@

Surface traction, like `true stress,’ should be thought of as acting on the deformed solid.

 

The traction vector is often resolved into  which are components acting normal and tangential to a surface, as shown in the figure. The normal component is referred to as the normal traction, and the tangential component is known as the shear traction.

 

Formally, let n denote a unit vector normal to the surface.  Then

t n = tn n t t =t t n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaBaaaleaacaWHUbaabeaaki abg2da9maabmaabaGaaCiDaiabgwSixlaah6gaaiaawIcacaGLPaaa caWHUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaahshadaWgaaWcbaGaaCiDaaqabaGccqGH9aqpcaWH0bGaey OeI0IaaCiDamaaBaaaleaacaWHUbaabeaaaaa@5ABD@

 

The body force vector denotes the external force acting on the interior of a solid, per unit mass. Formally, let dV denote an infinitesimal volume element within the deformed solid, and let ρ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@329F@  denote the mass density (mass per unit deformed volume).  Suppose that the element is subjected to a force dP MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfaaaa@32A1@ , as shown in the figure.  Then

b= 1 ρ lim dV0 dP dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9maalaaabaGaaGymaa qaaiabeg8aYbaadaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiz aiaadAfacqGHsgIRcaaIWaaabeaakmaalaaabaGaamizaiaahcfaae aacaWGKbGaamOvaaaaaaa@406F@

The resultant body force acting on any volume V  within the deformed solid is

                                                               P= V ρbdV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9maapefabaGaeqyWdi NaaGPaVlaahkgacaaMc8UaamizaiaadAfaaSqaaiaadAfaaeqaniab gUIiYdaaaa@3D68@

 

 

 

2.3.2 Traction acting on planes within a solid

 

Every plane in the interior of a solid is subjected to a distribution of traction.  To see this, consider a loaded, solid, body in static equilibrium.  Imagine cutting the solid in two, as illustrated in the figure. The two parts of the solid must each be in static equilibrium.  This is possible only if forces act on the planes that were created by the cut.  We quantify these forces by means of the internal traction vector T(n), which represents the force per unit area acting on an internal plane of a solid. The notation T(n) shows that the internal traction depends on the normal to the internal plane, denoted by n.

 

Formally, let dA be an element of area in the interior of the solid, with normal n.  Suppose that the material on the underside of dA is subjected to a force d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWHUbGaaiykaaaaaaa@351E@  across the plane dA, as shown in the figure. Then

T(n)= lim dA0 d P (n) dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHUbGaaiykaiabg2 da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWGKbGaamyqaiab gkziUkaaicdaaeqaaOWaaSaaaeaacaWGKbGaaCiuamaaCaaaleqaba Gaaiikaiaah6gacaGGPaaaaaGcbaGaamizaiaadgeaaaaaaa@4283@

Note that internal traction is the force per unit area of the deformed solid, like `true stress.’  The traction vector has the following properties 

 

· The resultant force acting on any internal volume V with boundary surface A  within a deformed solid is

                                                       P= A T(n)dA+ V ρbdV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiabg2da9maapefabaGaaCivai aacIcacaWHUbGaaiykaiaadsgacaWGbbGaey4kaScaleaacaWGbbaa beqdcqGHRiI8aOWaa8quaeaacqaHbpGCcaaMc8UaaCOyaiaaykW7ca WGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@4640@

The first term is the resultant force acting on the internal surface A, the second term is the resultant body force acting on the interior V.

 

 

· Newton’s third law (every action has an equal and opposite reaction) requires that

T(n)=T(n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacqGHsislcaWHUbGaai ykaiabg2da9iabgkHiTiaahsfacaGGOaGaaCOBaiaacMcaaaa@3A19@

To see this, note that the forces acting on planes separating two adjacent volume elements in a solid must be equal and opposite, as shown in the figure.

 

 

· Traction acting on different planes passing through the same point are related, in order to satisfy Newton’s second law (F=ma).  Specifically, let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis.  Let T i ( e 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@3614@ , T i ( e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3615@ , T i ( e 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3616@  denote the components of traction acting on planes with normal vectors in the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@ , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@ , and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B6@  directions, respectively.  Then, the traction components T i (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHUbGaaiykaaaa@352C@  acting on a surface with normal n are given by

T i (n)= T i ( e 1 ) n 1 + T i ( e 2 ) n 2 + T i ( e 3 ) n 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHUbGaaiykaiabg2da9iaadsfadaWgaaWcbaGaamyAaaqa baGccaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaakiaacMcacaWGUb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaWG PbaabeaakiaacIcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykai aad6gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGubWaaSbaaSqa aiaadMgaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaG4maaqabaGcca GGPaGaamOBamaaBaaaleaacaaIZaaabeaaaaa@4D3D@

where n i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaaa a@32EC@  are the components of n.

 

To see this, consider the forces acting on the infinitessimal tetrahedron shown in the figure.  The base and sides of the tetrahedron have normals in the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaaIYa aabeaaaaa@33A2@ , e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaaIXa aabeaaaaa@33A1@  and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaaIZa aabeaaaaa@33A3@  directions.  The fourth face has normal n.  Suppose the volume of the tetrahedron is dV, and let d A 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGymaa qabaaaaa@3375@ d A 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGOmaa qabaaaaa@3376@ d A 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaG4maa qabaaaaa@3377@ d A (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaaaaa@3507@  denote the areas of the faces.  Assume that the material within the tetrahedron has mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@329F@  and is subjected to a body force b. Let a denote the acceleration of the center of mass of the tetrahedron. Then, F=ma for the tetrahedron requires that

                        T(n)d A (n) +T( e 1 )d A 1 +T( e 2 )d A 2 +T( e 3 )d A 3 +ρbdV=ρdVa MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHUbGaaiykaiaads gacaWGbbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGHRaWk caWHubGaaiikaiabgkHiTiaahwgadaWgaaWcbaGaaGymaaqabaGcca GGPaGaamizaiaadgeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWH ubGaaiikaiabgkHiTiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPa GaamizaiaadgeadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWHubGa aiikaiabgkHiTiaahwgadaWgaaWcbaGaaG4maaqabaGccaGGPaGaam izaiaadgeadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcqaHbpGCcaWH IbGaamizaiaadAfacqGH9aqpcqaHbpGCcaWGKbGaamOvaiaahggaaa a@5C95@

Recall that T( e i )=T( e i ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacqGHsislcaWHLbWaaS baaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iabgkHiTiaahsfacaGG OaGaaCyzamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@3C4F@  and divide through by d A (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaaaaa@3507@ :

                     T(n)T( e 1 ) d A 1 d A (n) T( e 2 ) d A 2 d A (n) T( e 3 ) d A 3 d A (n) +ρb dV d A (n) =ρ dV d A (n) a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHUbGaaiykaiabgk HiTiaahsfacaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaakiaacMca daWcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam izaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaGccqGH sislcaWHubGaaiikaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPa WaaSaaaeaacaWGKbGaamyqamaaBaaaleaacaaIYaaabeaaaOqaaiaa dsgacaWGbbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaOGaey OeI0IaaCivaiaacIcacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaaiyk amaalaaabaGaamizaiaadgeadaWgaaWcbaGaaG4maaqabaaakeaaca WGKbGaamyqamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaakiab gUcaRiabeg8aYjaahkgadaWcaaqaaiaadsgacaWGwbaabaGaamizai aadgeadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaGccqGH9aqp cqaHbpGCdaWcaaqaaiaadsgacaWGwbaabaGaamizaiaadgeadaahaa WcbeqaaiaacIcacaWGUbGaaiykaaaaaaGccaWHHbaaaa@6B07@

Finally, let d A (n) 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaakiabgkziUkaaicdaaaa@37B8@ .  We can show (see Appendix E) that

                            d A 1 d A (n) = n 1 d A 2 d A (n) = n 2 d A 3 d A (n) = n 3 lim d A (n) 0 dV d A (n) =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamyqamaaBaaale aacaaIXaaabeaaaOqaaiaadsgacaWGbbWaaWbaaSqabeaacaGGOaGa amOBaiaacMcaaaaaaOGaeyypa0JaamOBamaaBaaaleaacaaIXaaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWGbbWaaSbaaSqaaiaaik daaeqaaaGcbaGaamizaiaadgeadaahaaWcbeqaaiaacIcacaWGUbGa aiykaaaaaaGccqGH9aqpcaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSaaaeaacaWGKbGaamyqamaaBaaaleaacaaIZaaabeaaaOqaai aadsgacaWGbbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaaaaOGa eyypa0JaamOBamaaBaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaaxababaGa ciiBaiaacMgacaGGTbaaleaacaWGKbGaamyqamaaCaaameqabaGaai ikaiaad6gacaGGPaaaaSGaeyOKH4QaaGimaaqabaGcdaWcaaqaaiaa dsgacaWGwbaabaGaamizaiaadgeadaahaaWcbeqaaiaacIcacaWGUb GaaiykaaaaaaGccqGH9aqpcaaIWaaaaa@8B31@

So

                                              T(n)=T( e 1 ) n 1 +T( e 2 ) n 2 +T( e 3 ) n 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHUbGaaiykaiabg2 da9iaahsfacaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaakiaacMca caWGUbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaCivaiaacIcaca WHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaad6gadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWHubGaaiikaiaahwgadaWgaaWcbaGaaG 4maaqabaGccaGGPaGaamOBamaaBaaaleaacaaIZaaabeaaaaa@48BD@

or, using index notation

                                              T i (n)= T i ( e 1 ) n 1 + T i ( e 2 ) n 2 + T i ( e 3 ) n 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHUbGaaiykaiabg2da9iaadsfadaWgaaWcbaGaamyAaaqa baGccaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaakiaacMcacaWGUb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaWG PbaabeaakiaacIcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykai aad6gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGubWaaSbaaSqa aiaadMgaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaG4maaqabaGcca GGPaGaamOBamaaBaaaleaacaaIZaaabeaaaaa@4D3D@

The significance of this result is that the tractions acting on planes with normals in the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@ , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@ , and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B6@  directions completely characterize the internal forces that act at a point.  Given these tractions, we can deduce the tractions acting on any other plane.  This leads directly to the definition of the Cauchy stress tensor in the next section.

 

 

 

2.3.3 The Cauchy (true) stress tensor

 

Consider a solid which deforms under external loading. Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A10@  be a Cartesian basis.  Let T i ( e 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@3614@ , T i ( e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3615@ , T i ( e 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3616@  denote the components of traction acting on planes with normals in the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@ , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B5@ , and e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B6@  directions, respectively, as outlined in the preceding section. 

 

Define the components of the Cauchy stress tensor σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  by

                                    σ ij = T j ( e i ) σ 11 = T 1 ( e 1 ) σ 12 = T 2 ( e 1 ) σ 13 = T 3 ( e 1 ) σ 21 = T 1 ( e 2 ) σ 22 = T 2 ( e 2 ) σ 23 = T 3 ( e 2 ) σ 31 = T 1 ( e 3 ) σ 32 = T 2 ( e 3 ) σ 33 = T 3 ( e 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaamivamaaBaaaleaacaWGQbaabeaakiaa cIcacaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaqaaiabggMi6o aaceaaeaqabeaacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGa eyypa0JaamivamaaBaaaleaacaaIXaaabeaakiaacIcacaWHLbWaaS baaSqaaiaaigdaaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm 3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaadsfadaWgaaWc baGaaGOmaaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaaG ymaiaaiodaaeqaaOGaeyypa0JaamivamaaBaaaleaacaaIZaaabeaa kiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiabeo 8aZnaaBaaaleaacaaIYaGaaGymaaqabaGccqGH9aqpcaWGubWaaSba aSqaaiaaigdaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaGOmaaqaba GccaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0JaamivamaaBaaaleaacaaIYaaabeaakiaa cIcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaGccq GH9aqpcaWGubWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaahwgadaWg aaWcbaGaaGOmaaqabaGccaGGPaaabaGaeq4Wdm3aaSbaaSqaaiaaio dacaaIXaaabeaakiabg2da9iaadsfadaWgaaWcbaGaaGymaaqabaGc caGGOaGaaCyzamaaBaaaleaacaaIZaaabeaakiaacMcacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabeo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaGccqGH9a qpcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaahwgadaWgaaWc baGaaG4maaqabaGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4W dm3aaSbaaSqaaiaaiodacaaIZaaabeaakiabg2da9iaadsfadaWgaa WcbaGaaG4maaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIZaaabeaa kiaacMcaaaGaay5Eaaaaaaa@FDE1@

Then, the traction  T i (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHUbGaaiykaaaa@352C@  acting on any plane with normal n follows as

                                                T(n)=nσor      T i (n)= n j σ ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHUbGaaiykaiabg2 da9iaah6gacaWHdpGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+ gacaqGYbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaWGubWaaSba aSqaaiaadMgaaeqaaOGaaiikaiaah6gacaGGPaGaeyypa0JaamOBam aaBaaaleaacaWGQbaabeaakiabeo8aZnaaBaaaleaacaWGQbGaamyA aaqabaaaaa@5BB4@

 

To see this, recall the last result from the preceding section

                                              T i (n)= T i ( e 1 ) n 1 + T i ( e 2 ) n 2 + T i ( e 3 ) n 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHUbGaaiykaiabg2da9iaadsfadaWgaaWcbaGaamyAaaqa baGccaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaakiaacMcacaWGUb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamivamaaBaaaleaacaWG PbaabeaakiaacIcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykai aad6gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGubWaaSbaaSqa aiaadMgaaeqaaOGaaiikaiaahwgadaWgaaWcbaGaaG4maaqabaGcca GGPaGaamOBamaaBaaaleaacaaIZaaabeaaaaa@4D3D@

and substitute for T i ( e j ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHLbWaaSbaaSqaaiaadQgaaeqaaOGaaiykaaaa@3648@  in terms of the components of the Cauchy stress tensor

                                              T i (n)= σ 1i n 1 + σ 2i n 2 + σ 3i n 3 = n j σ ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaki aacIcacaWHUbGaaiykaiabg2da9iabeo8aZnaaBaaaleaacaaIXaGa amyAaaqabaGccaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq 4Wdm3aaSbaaSqaaiaaikdacaWGPbaabeaakiaad6gadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaadMgaae qaaOGaamOBamaaBaaaleaacaaIZaaabeaakiabg2da9iaad6gadaWg aaWcbaGaamOAaaqabaGccqaHdpWCdaWgaaWcbaGaamOAaiaadMgaae qaaaaa@4F78@

 

 

The Cauchy stress tensor completely characterizes the internal forces acting in a deformed solid.  The physical significance of the components of the stress tensor is illustrated in the figure. σ ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaaaaa@34AB@  represents the ith component of traction acting on a plane with normal in the e j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGQbaabeaaaa a@32E8@  direction.

 

 

Note that Cauchy stress represents force per unit area of the deformed solid.  In elementary strength of materials courses it is called `true stress,’ for this reason.

 

 

HEALTH WARNING: Some texts define stress as the transpose of the definition used here, so that T(n)=σnor      T i (n)= σ ij n j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiaacIcacaWHUbGaaiykaiabg2 da9iaaho8acaWHUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+ gacaqGYbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaWGubWaaSba aSqaaiaadMgaaeqaaOGaaiikaiaah6gacaGGPaGaeyypa0Jaeq4Wdm 3aaSbaaSqaaiaadMgacaWGQbaabeaakiaad6gadaWgaaWcbaGaamOA aaqabaaaaa@5BB4@ .  In this case the first index for each stress component denotes the direction of traction, while the second denotes the normal to the plane.  We will see later that Cauchy stress is always symmetric, so there is no confusion if you use the wrong definition.  But some stress measures are not symmetric (see below) and in this case you need to be careful to check which convention the author has chosen.

 

 

 

2.3.4 Other stress measures MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326D@  Kirchhoff, Nominal and Material stress tensors

 

Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  (the actual force per unit area acting on an actual, deformed solid) is the most physical measure of internal force.  Other definitions of stress often appear in constitutive equations, however. 

 

The other stress measures regard forces as acting on the undeformed solid.  Consequently, to define them we must know not only what the deformed solid looks like, but also what it looked like before deformation.  The deformation is described by a displacement vector u(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWH4bGaaiykaaaa@3438@  and the associated deformation gradient

                                                  F=I+u F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaahMeacqGHRaWkca WH1bGaey4bIeTaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaaBaaale aacaWGPbGaamOAaaqabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyA aiaadQgaaeqaaOGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaaaaa@5901@

as outlined in Section 2.2. In addition, let J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaaaa@37A8@ .

 

We then define the following stress measures

 

· Kirchhoff stress  τ=Jσ τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaCiXdOGaeyypa0JaamOsaKaaal aaho8acaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes8a0PWaaSba aSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@482A@

 

· Nominal (First Piola-Kirchhoff) stress   S=J F 1 σ S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaKaaalaaho8acaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofakmaaBaaale aacaWGPbGaamOAaaqabaGccqGH9aqpcaWGkbGaamOramaaDaaaleaa caWGPbGaam4AaaqaaiabgkHiTiaaigdaaaGccqaHdpWCdaWgaaWcba Gaam4AaiaadQgaaeqaaaaa@51C4@

 

· Material (Second Piola-Kirchhoff) stress   Σ=J F 1 σ F T Σ ij =J F ik 1 σ kl F jl 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaKaaalaaho8akiaahAeadaahaaWc beqaaiabgkHiTiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8Uaeu 4Odm1aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacaWG gbWaa0baaSqaaiaadMgacaWGRbaabaGaeyOeI0IaaGymaaaakiabeo 8aZnaaBaaaleaacaWGRbGaamiBaaqabaGccaWGgbWaa0baaSqaaiaa dQgacaWGSbaabaGaeyOeI0IaaGymaaaaaaa@53EF@

 

The inverse relations are also useful MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the one for Kirchhoff stress is obvious MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the others are

                     σ= 1 J FS σ ij = 1 J F ik S kj σ= 1 J FΣ F T σ ij = 1 J F ik Σ kl F jl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4Wdiabg2da9OWaaSaaaeaaca aIXaaabaGaamOsaaaacaWHgbGaaC4uaKaaalaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7kiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpjaaWcaaMc8UcdaWcaaqaaiaaigdaaeaa caWGkbaaaKaaalaadAeakmaaBaaaleaacaWGPbGaam4Aaaqabaqcaa Saam4uaOWaaSbaaSqaaiaadUgacaWGQbaabeaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ecaa SaaC4Wdiabg2da9OWaaSaaaeaacaaIXaaabaGaamOsaaaacaWHgbGa aC4OdiaahAeadaahaaWcbeqaaiaadsfaaaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaa caWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGkb aaaiaadAeadaqhaaWcbaGaamyAaiaadUgaaeaaaaGccqqHJoWudaWg aaWcbaGaam4AaiaadYgaaeqaaOGaamOramaaDaaaleaacaWGQbGaam iBaaqaaaaaaaa@A006@

 

The Kirchhoff stress has no obvious physical significance, but the quantity τ ij D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@378A@  (where D is the stretch rate tensor) represents the rate of work done by stress per unit undeformed volume, which is why the Kirchhoff stress is useful. 


The nominal stress tensor can be regarded as the internal force per unit undeformed area acting within a solid, as follows

 

1. Visualize an element of area dA in the deformed solid, with normal n, which is subjected to a force d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaaaaa@351B@  by the internal traction in the solid;

 

2. Suppose that the element of area dA has started out as an element of area d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaGimaa qabaaaaa@3375@  with normal n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaBaaaleaacaaIWaaabeaaaa a@32BD@  in the undeformed solid, as shown in the figure.

 

3. Then, the force d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaaaaa@351B@  is related to the nominal stress by d P j (n) =d A 0 n i 0 S ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadcfadaqhaaWcbaGaamOAaa qaaiaacIcacaWHUbGaaiykaaaakiabg2da9iaadsgacaWGbbWaaSba aSqaaiaaicdaaeqaaOGaamOBamaaDaaaleaacaWGPbaabaGaaGimaa aakiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3F6B@

 

To see this, note that one can show (see Appendix E) that

                                         dAn=J F T d A 0 n 0 dA n i =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWHUbGaeyypa0Jaam OsaiaahAeadaahaaWcbeqaaiabgkHiTiaadsfaaaGccaWGKbGaamyq amaaBaaaleaacaaIWaaabeaakiaah6gadaWgaaWcbaGaaGimaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamizaiaadgeacaWGUb Waa0baaSqaaiaadMgaaeaaaaGccqGH9aqpcaWGkbGaamOramaaDaaa leaacaWGRbGaamyAaaqaaiabgkHiTiaaigdaaaGccaWGUbWaa0baaS qaaiaadUgaaeaacaaIWaaaaOGaamizaiaadgeadaWgaaWcbaGaaGim aaqabaaaaa@6048@

Recall that the Cauchy stress is defined so that

                                                            d P i (n) =dA n j σ ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadcfadaqhaaWcbaGaamyAaa qaaiaacIcacaWHUbGaaiykaaaakiabg2da9iaadsgacaWGbbGaamOB amaaBaaaleaacaWGQbaabeaakiabeo8aZnaaBaaaleaacaWGQbGaam yAaaqabaaaaa@3EAB@

Substituting for dA n j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaaSbaaSqaai aadQgaaeqaaaaa@349D@  and rearranging shows that

                                              d P i (n) =Jd A 0 n k 0 F kj 1 σ ji =d A 0 n k 0 S ki MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadcfadaqhaaWcbaGaamyAaa qaaiaacIcacaWHUbGaaiykaaaakiabg2da9iaadQeacaWGKbGaamyq amaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGaam4Aaaqaai aaicdaaaGcdaqadaqaaiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaa cqGHsislcaaIXaaaaOGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabe aaaOGaayjkaiaawMcaaiabg2da9iaadsgacaWGbbWaaSbaaSqaaiaa icdaaeqaaOGaamOBamaaDaaaleaacaWGRbaabaGaaGimaaaakiaado fadaWgaaWcbaGaam4AaiaadMgaaeqaaaaa@509D@

 

 

The material stress tensor can also be visualized as force per unit undeformed area, except that the forces are regarded as acting within the undeformed solid, rather than on the deformed solid.  Specifically

 

1. The infinitesimal force d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWHUbGaaiykaaaaaaa@351F@  is assumed to behave like an infinitesimal material fiber in the solid, in the sense that it is stretched and rotated just like an small vector dx in the solid;

 

2. This means that we can define a (fictitious) force in the reference configuration d P (n0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWHUbGaaGimaiaacMcaaaaaaa@35D9@  that is related to d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWHUbGaaiykaaaaaaa@351F@  by Fd P (n0) =d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiaadsgacaWHqbWaaWbaaSqabe aacaGGOaGaaCOBaiaaicdacaGGPaaaaOGaeyypa0Jaamizaiaahcfa daahaaWcbeqaaiaacIcacaWHUbGaaiykaaaaaaa@3BF7@  or F ij d P j (n0) =d P i (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccaWGKbGaamiuamaaBaaaleaacaWGQbaabeaakmaaCaaaleqa baGaaiikaiaah6gacaaIWaGaaiykaaaakiabg2da9iaadsgacaWGqb WaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGOaGaaCOBaiaa cMcaaaaaaa@4047@ ;

 

3. This fictitious force is related to material stress by  d P i (n0) =d A 0 n j 0 Σ ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadcfadaqhaaWcbaGaamyAaa qaaiaacIcacaWHUbGaaGimaiaacMcaaaGccqGH9aqpcaWGKbGaamyq amaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGaamOAaaqaai aaicdaaaGccqqHJoWudaWgaaWcbaGaamOAaiaadMgaaeqaaaaa@40D1@ .

 

To see this, substitute into the expression relating d P (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahcfadaahaaWcbeqaaiaacI cacaWGUbGaaiykaaaaaaa@351B@  to nominal stress to see that

                                                         F ik d P k (n0) =d A 0 n j 0 S ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaam4Aaa qabaGccaWGKbGaamiuamaaDaaaleaacaWGRbaabaGaaiikaiaah6ga caaIWaGaaiykaaaakiabg2da9iaadsgacaWGbbWaaSbaaSqaaiaaic daaeqaaOGaamOBamaaDaaaleaacaWGQbaabaGaaGimaaaakiaadofa daWgaaWcbaGaamOAaiaadMgaaeqaaaaa@4306@

Finally multiply through by F li 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGSbGaamyAaa qaaiabgkHiTiaaigdaaaaaaa@355F@ , note F li 1 F ik = δ lk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGSbGaamyAaa qaaiabgkHiTiaaigdaaaGccaWGgbWaaSbaaSqaaiaadMgacaWGRbaa beaakiabg2da9iabes7aKnaaBaaaleaacaWGSbGaam4Aaaqabaaaaa@3D00@ , and rearrange to see that

                                                d P l (n0) =d A 0 n j 0 S ji F li 1 =d A 0 n j 0 Σ jl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadcfadaqhaaWcbaGaamiBaa qaaiaacIcacaWHUbGaaGimaiaacMcaaaGccqGH9aqpcaWGKbGaamyq amaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGaamOAaaqaai aaicdaaaGccaWGtbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaadAea daqhaaWcbaGaamiBaiaadMgaaeaacqGHsislcaaIXaaaaOGaeyypa0 JaamizaiaadgeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaa0baaSqa aiaadQgaaeaacaaIWaaaaOGaeu4Odm1aaSbaaSqaaiaadQgacaWGSb aabeaaaaa@4EC3@

where we have noted that Σ jl = S ji F li 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadQgacaWGSb aabeaakiabg2da9iaadofadaWgaaWcbaGaamOAaiaadMgaaeqaaOGa amOramaaDaaaleaacaWGSbGaamyAaaqaaiabgkHiTiaaigdaaaaaaa@3CE9@

 

In practice, it is best not to try to attach too much physical significance to these stress measures.  Cauchy stress is the best physical measure of internal force MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  it is the force per unit area acting inside the deformed solid.  The other stress measures are best regarded as generalized forces (in the sense of Lagrangian mechanics), which are work-conjugate to particular strain measures.  This means that the stress measure multiplied by the time derivative of the strain measure tells you the rate of work done by the forces.  When setting up any mechanics problem, we always work with conjugate measures of motion and forces.

 

Specifically, we shall show later that the rate of work W ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaacaaaaa@31C5@  done by stresses acting on a small material element with volume d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfadaWgaaWcbaGaaGimaa qabaaaaa@338A@  in the undeformed solid (and volume dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfaaaa@32A4@  in the deformed solid) can be computed as

                                    W ˙ = D ij σ ij dV= D ij τ ji d V 0 = F ˙ ij S ji d V 0 = E ˙ ij Σ ji d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaacaGaeyypa0JaamiramaaBa aaleaacaWGPbGaamOAaaqabaGccqaHdpWCdaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaamizaiaadAfacqGH9aqpcaWGebWaaSbaaSqaaiaadM gacaWGQbaabeaakiabes8a0naaBaaaleaacaWGQbGaamyAaaqabaGc caWGKbGaamOvamaaBaaaleaacaaIWaaabeaakiabg2da9iqadAeaga GaamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaa dQgacaWGPbaabeaakiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JabmyrayaacaWaaSbaaSqaaiaadMgacaWGQbaabeaakiab fo6atnaaBaaaleaacaWGQbGaamyAaaqabaGccaWGKbGaamOvamaaBa aaleaacaaIWaaabeaaaaa@5968@

where D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B2@  is the stretch rate tensor, F ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOrayaacaWaaSbaaSqaaiaadMgaca WGQbaabeaaaaa@33BD@  is the rate of change of deformation gradient, and E ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyrayaacaWaaSbaaSqaaiaadMgaca WGQbaabeaaaaa@33BC@  is the rate of change of Lagrange strain tensor.  Note that Cauchy stress (and also Kirchhoff stress) is not conjugate to any convenient strain measure MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  this is the main reason that nominal and material stresses need to be defined.  The nominal stress is conjugate to the deformation gradient, while the material stress is conjugate to the Lagrange strain tensor. 

 

 

 

2.3.5 Stress measures for infinitesimal deformations

 

For a problem involving infinitesimal deformation (where shape changes are characterized by the infinitesimal strain tensor and rotation tensor) all the stress measures defined in the preceding section are approximately equal

                                                           σ ij τ ij S ij Σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabgIKi7kabes8a0naaBaaaleaacaWGPbGaamOAaaqabaGc cqGHijYUcaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgIKi7k abfo6atnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@4419@

 

To see this, write the deformation gradient as F ij = δ ij + u i / x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaakiaac+cacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa@4113@ ; recall that J=det(F)1+ u k / x k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaiabgIKi7kaaigdacqGHRaWkcqGHciIT caWG1bWaaSbaaSqaaiaadUgaaeqaaOGaai4laiabgkGi2kaadIhada WgaaWcbaGaam4Aaaqabaaaaa@42AE@ , and finally assume that for infinitesimal motions u i / x j <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGa eyipaWJaeyipaWJaaGymaaaa@3B62@ .  Substituting into the formulas relating Cauchy stress, Nominal stress and Material stress, we see that

                            σ ij = 1 J F ik S kj 1 1+ u p / x p δ ip + u i x p S pj = S pj +... S pj MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGccaWGtbWaaSbaaSqaaiaadUgaca WGQbaabeaakiabgIKi7oaalaaabaGaaGymaaqaaiaaigdacqGHRaWk cqGHciITcaWG1bWaaSbaaSqaaiaadchaaeqaaOGaai4laiabgkGi2k aadIhadaWgaaWcbaGaamiCaaqabaaaaOWaaeWaaeaacqaH0oazdaWg aaWcbaGaamyAaiaadchaaeqaaOGaey4kaSYaaSaaaeaacqGHciITca WG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaWGWbaabeaaaaaakiaawIcacaGLPaaacaWGtbWaaSbaaSqaai aadchacaWGQbaabeaakiabg2da9iaadofadaWgaaWcbaGaamiCaiaa dQgaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaGaeyisISRaam4uam aaBaaaleaacaWGWbGaamOAaaqabaaaaa@64CD@

The same procedure will show that material stress and Cauchy stress are approximately equal, to within a term of order u i / x j <<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGa eyipaWJaeyipaWJaaGymaaaa@3B62@

 

 

 

 

2.3.6 Principal Stresses and directions

 

For any stress measure, the principal stresses σ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaa aa@33BD@  and their directions n (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaaaa@344B@ , with i=1..3 are defined such that

                                  n (i) σ= σ i n (i) or     n j (i) σ jk = σ i n k (i) (no sum on i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiikaiaadM gacaGGPaaaaKaaGkaaho8akiabg2da9iabeo8aZnaaBaaaleaacaWG Pbaabeaakiaah6gadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGVbGa aeOCaiaabccacaqGGaGaaeiiaiaabccacaWGUbWaa0baaSqaaiaadQ gaaeaacaGGOaGaamyAaiaacMcaaaGccqaHdpWCdaWgaaWcbaGaamOA aiaadUgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaO GaamOBamaaDaaaleaacaWGRbaabaGaaiikaiaadMgacaGGPaaaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaacIcaca qGUbGaae4BaiaabccacaqGZbGaaeyDaiaab2gacaqGGaGaae4Baiaa b6gacaqGGaGaamyAaiaacMcaaaa@7316@

 

Clearly,

  1. The principal stresses are the left eigenvalues of the stress tensor
  2. The principal stress directions are the left eigenvectors of the stress tensor

 

The term `left’ eigenvector and eigenvalue indicates that the vector multiplies the tensor on the left. We will see later that Cauchy stress and material stress are both symmetric.  For a symmetric tensor the left and right eigenvalues and vectors are the same.

 

Note that the eigenvectors of a symmetric tensor are orthogonal.  Consequently, the principal Cauchy or material stresses can be visualized as tractions acting normal to the faces of a cube, as show in the figure. The principal directions specify the orientation of this special cube.

 

One can also show that if σ 1 > σ 2 > σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO GaeyOpa4Jaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyOpa4Jaeq4W dm3aaSbaaSqaaiaaiodaaeqaaaaa@3B05@ , then σ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaa aa@338A@  is the largest normal traction acting on any plane passing through the point of interest, while σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaa aa@338C@  is the lowest.  This is helpful in defining damage criteria for brittle materials, which fail when the stress acting normal to a material plane reaches a critical magnitude.

 

In the same vein, it can be shown that the largest shear stress acts on the plane with unit normal vector m shear =( m 1 + m 3 )/ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaqGZbGaaeiAai aabwgacaqGHbGaaeOCaaqabaGccqGH9aqpcqGHsislcaGGOaGaaCyB amaaBaaaleaacaaIXaaabeaakiabgUcaRiaah2gadaWgaaWcbaGaaG 4maaqabaGccaGGPaGaai4lamaakaaabaGaaGOmaaWcbeaaaaa@4036@  (at 45o to the m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  and m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaaaa a@32BF@  axes as shown in the figure, and has magnitude τ max =( σ 1 σ 3 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaab2gacaqGHb GaaeiEaaqabaGccqGH9aqpcaGGOaGaeq4Wdm3aaSbaaSqaaiaaigda aeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaaiykai aac+cacaaIYaaaaa@3FCF@ .  This observation is useful for defining yield criteria for metal polycrystals, which begin to deform plastically when the shear stress acting on a material plane reaches a critical value.

 

 

 

2.3.7 Hydrostatic and Deviatoric Stress; von Mises effective stress

 

Given the Cauchy stress tensor σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeK4Wdmhaaa@32A8@ , the following may be defined:

 

· The Hydrostatic stress is defined as σ h =trace(σ)/3 σ kk /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadIgaaeqaaO Gaeyypa0JaaeiDaiaabkhacaqGHbGaae4yaiaabwgacaqGOaGaaC4W diaacMcacaGGVaGaaG4maiabggMi6kabeo8aZnaaBaaaleaacaWGRb Gaam4AaaqabaGccaGGVaGaaG4maaaa@4493@

 

· The Deviatoric stress tensor is defined as σ ij = σ ij σ h δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbauaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiabeo8aZnaaBaaaleaacaWGObaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaaaaa@411F@

 

· The Von-Mises effective stress is defined as σ e = 3 2 σ ij σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaiqbeo8a ZzaafaWaaSbaaSqaaiaadMgacaWGQbaabeaakiqbeo8aZzaafaWaaS baaSqaaiaadMgacaWGQbaabeaaaeqaaaaa@3E1C@

 

The hydrostatic stress is a measure of the pressure exerted by a state of stress.  Pressure acts so as to change the volume of a material element.

 

The deviatoric stress is a measure of the shearing exerted by a state of stress. Shear stress tends to distort a solid, without changing its volume.

 

The Von-Mises effective stress can be regarded as a uniaxial equivalent of a multi-axial stress state.  It is used in many failure or yield criteria.  Thus, if a material is known to fail in a uniaxial tensile test (with σ 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaaaaa@3445@  the only nonzero stress component) when σ 11 = σ crit MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGJbGaamOCaiaadMga caWG0baabeaaaaa@3B0A@ , it will fail when σ e = σ crit MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadogacaWGYbGaamyAaiaadsha aeqaaaaa@3A7E@  under multi-axial loading (with several σ ij 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabgcMi5kaaicdaaaa@3737@  )

 

The hydrostatic stress and von Mises stress can also be expressed in terms of principal stresses as

                                     σ h = σ 1 + σ 2 + σ 3 /3 σ e = 1 2 σ 1 σ 2 2 + σ 1 σ 3 2 + σ 2 σ 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamiAaa qabaGccqGH9aqpdaqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaa kiabgUcaRiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeo 8aZnaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiaac+cacaaI ZaaabaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaOGaeyypa0ZaaOaaae aadaWcaaqaaiaaigdaaeaacaaIYaaaamaacmaabaWaaeWaaeaacqaH dpWCdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkdaqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgk HiTiabeo8aZnaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaeq4Wdm3aaSbaaS qaaiaaikdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaiodaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL7bGaay zFaaaaleqaaaaaaa@65A8@

 

The hydrostatic and von Mises stresses are invariants of the stress tensor MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they have the same value regardless of the basis chosen to define the stress components.

 

 

 

2.3.8 Stresses near an external surface or edge MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326D@  boundary conditions on stresses

 

Note that at an external surface at which tractions are prescribed, some components of stress are known.  Specifically, let n denote a unit vector normal to the surface, and let t denote the traction (force per unit area) acting on the surface.  Then the Cauchy stress at the surface must satisfy

                                                                  n i σ ij = t j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaaaa@39E7@

 

For example, suppose that a surface with normal in the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  direction is subjected to no loading, as shown in the figure.  Then (noting that n i = δ i2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abg2da9iabes7aKnaaBaaaleaacaWGPbGaaGOmaaqabaaaaa@3778@  ) it follows that σ 2i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaWGPb aabeaakiabg2da9iaaicdaaaa@3643@ . In addition, two of the principal stress directions must be parallel to the surface; the third (with zero stress) must be perpendicular to the surface.

 

The stress state at an edge is even simpler.  Suppose that surfaces with normals in the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  and e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  are traction free.  Then σ 1i = σ 2i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaWGPb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaamyAaaqabaGc cqGH9aqpcaaIWaaaaa@3AEB@ , so that 6 stress components are known to be zero.