2.4 Equations of motion and equilibrium for deformable solids

 

In this section, we generalize the laws of mass conservation, conservation of linear and angular momentum) to a deformable solid.


 

2.4.1 Mass Conservation

 

The total mass of any subregion V (as shown in the figure) within a deformable solid must be conserved.  We can write express this condition as a constraint in several different ways.  The rate of change of total mass within V must be zero, so that

d dt V ρ(y,t)dV =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacqaHbpGCcaGGOaGaaCyEaiaacYcacaWG0bGaaiyk aiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Jaae imaaaa@402A@

where ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  is the mass density in the deformed solid.  Or, (using Reynolds transport relation, proved in Section 2.2.27) we can write a local mass conservation equation, which relates the rate of change of mass density to the velocity gradient

V ρ t x=const +ρ v i y i dV=0 ρ t x=const +ρ v i y i =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaqadaqaamaaeiaabaWaaS aaaeaacqGHciITcqaHbpGCaeaacqGHciITcaWG0baaaaGaayjcSdWa aSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaam iDaaqabaGccqGHRaWkcqaHbpGCdaWcaaqaaiabgkGi2kaadAhadaWg aaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadM gaaeqaaaaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Gaey4kIipa kiaadsgacaWGwbGaeyypa0JaaGimaiabgkDiEpaaeiaabaWaaSaaae aacqGHciITcqaHbpGCaeaacqGHciITcaWG0baaaaGaayjcSdWaaSba aSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaa qabaGccqGHRaWkcqaHbpGCdaWcaaqaaiabgkGi2kaadAhadaWgaaWc baGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaae qaaaaakiabg2da9iaaicdaaaa@6D06@

 

 

The Eulerian version of the mass conservation equation is more common in fluid mechanics

ρ t y=const + ρ v i y i =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqGaaeaadaWcaaqaaiabgkGi2kabeg 8aYbqaaiabgkGi2kaadshaaaaacaGLiWoadaWgaaWcbaGaaCyEaiab g2da9iaadogacaWGVbGaamOBaiaadohacaWG0baabeaakiabgUcaRm aalaaabaGaeyOaIyRaeqyWdiNaamODamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadMhadaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0 JaaGimaaaa@4A87@

 

 

 

 

 

 


 

2.4.2 Linear momentum balance in terms of Cauchy stress

 

Consider a solid that is deformed by external forces, as shown in the figure. Let σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  denote the Cauchy stress distribution within a deformed solid.  Assume that the solid is subjected to a body force b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E0@ , and let u i , v i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacaaMc8UaaGPaVlaadAhadaWgaaWcbaGaamyAaaqabaaaaa@38D8@  and a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaa a@32DF@  denote the displacement, velocity and acceleration of a material particle at position y i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaaa a@32F7@   in the deformed solid.

 

Newton’s third law of motion (F=ma) can be expressed as

y σ+ρb=ρa     or          σ ij y i +ρ b j =ρ a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIe9aaSbaaSqaaiaahMhaaeqaaO GaeyyXICTaaC4WdiabgUcaRiabeg8aYjaahkgacqGH9aqpcqaHbpGC caWHHbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGVbGaaeOCai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaOqaaiabgkGi2kaaykW7caWG5bWaaSbaaSqaaiaadMgaaeqa aaaakiabgUcaRiabeg8aYjaaykW7caWGIbWaaSbaaSqaaiaadQgaae qaaOGaeyypa0JaeqyWdiNaaGPaVlaadggadaWgaaWcbaGaamOAaaqa baaaaa@602E@

Written out in full

σ 11 y 1 + σ 21 y 2 + σ 31 y 3 +ρ b 1 =ρ a 1 σ 12 y 1 + σ 22 y 2 + σ 32 y 3 +ρ b 2 =ρ a 2 σ 13 y 1 + σ 23 y 2 + σ 33 y 3 +ρ b 3 =ρ a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqGHciITcaWG5bWaaSba aSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaikdacaaIXaaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaaIZaaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeqyWdiNaamyyamaaBaaaleaacaaI XaaabeaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaig dacaaIYaaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaGymaaqa baaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaG OmaiaaikdaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaaIYaaa beaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaaca aIZaGaaGOmaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaaioda aeqaaaaakiabgUcaRiabeg8aYjaadkgadaWgaaWcbaGaaGOmaaqaba GccqGH9aqpcqaHbpGCcaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaWa aSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaa GcbaGaeyOaIyRaamyEamaaBaaaleaacaaIXaaabeaaaaGccqGHRaWk daWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaaIYaGaaG4maaqaba aakeaacqGHciITcaWG5bWaaSbaaSqaaiaaikdaaeqaaaaakiabgUca RmaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabe aaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaG4maaqabaaaaOGaey4k aSIaeqyWdiNaamOyamaaBaaaleaacaaIZaaabeaakiabg2da9iabeg 8aYjaadggadaWgaaWcbaGaaG4maaqabaaaaaa@9B9A@

Note that the derivative is taken with respect to position in the actual, deformed solid. For the special (but rather common) case of a solid in static equilibrium in the absence of body forces

σ ij y i =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGPbaabeaaaaGccqGH9aqpcaaIWaaaaa@3B73@

 

Derivation: Recall that the resultant force acting on an arbitrary volume of material V within a solid is

P i = A T i (n)dA+ V ρ b i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaki abg2da9maapefabaGaamivamaaBaaaleaacaWGPbaabeaakiaacIca caWHUbGaaiykaiaadsgacaWGbbGaey4kaScaleaacaWGbbaabeqdcq GHRiI8aOWaa8quaeaacqaHbpGCcaaMc8UaamOyamaaBaaaleaacaWG PbaabeaakiaaykW7caWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIi paaaa@49A0@

where T(n) is the internal traction acting on the surface A with normal n that bounds V.

 

The linear momentum of the volume V is

Λ i = V ρ v i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4MdW0aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0Zaa8quaeaacqaHbpGCcaaMc8UaamODamaaBaaaleaacaWG PbaabeaaaeaacaWGwbaabeqdcqGHRiI8aOGaamizaiaadAfaaaa@3EC6@

where v is the velocity vector of a material particle in the deformed solid. Express T in terms of σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  and set P i =d Λ i /dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaki abg2da9iaadsgacqqHBoatdaWgaaWcbaGaamyAaaqabaGccaGGVaGa amizaiaadshaaaa@39F5@ . Then

A σ ji n j dA+ V ρ b i dV = d dt V ρ v i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam OAaiaadMgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiaadsga caWGbbGaey4kaScaleaacaWGbbaabeqdcqGHRiI8aOWaa8quaeaacq aHbpGCcaaMc8UaamOyamaaBaaaleaacaWGPbaabeaakiaaykW7caWG KbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maalaaaba GaamizaaqaaiaadsgacaWG0baaamaacmaabaWaa8quaeaacqaHbpGC caaMc8UaamODamaaBaaaleaacaWGPbaabeaaaeaacaWGwbaabeqdcq GHRiI8aOGaamizaiaadAfaaiaawUhacaGL9baaaaa@58A6@

Apply the divergence theorem to convert the first integral into a volume integral, and note that one can show (see Appendix E) that

d dt V ρ v i dV = V ρ a i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaiWaaeaadaWdrbqaaiabeg8aYjaaykW7caWG2bWaaSbaaSqa aiaadMgaaeqaaaqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamOvaa Gaay5Eaiaaw2haaiabg2da9maapefabaGaeqyWdiNaamyyamaaBaaa leaacaWGPbaabeaaaeaacaWGwbaabeqdcqGHRiI8aOGaamizaiaadA faaaa@49E1@

So

V σ ji y j dV+ V ρ b i dV = V ρ a i dV V σ ji y j +ρ b i ρ a i dV=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaWGQbGaamyAaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbGaey4kaScaleaaca WGwbaabeqdcqGHRiI8aOWaa8quaeaacqaHbpGCcaaMc8UaamOyamaa BaaaleaacaWGPbaabeaakiaaykW7caWGKbGaamOvaaWcbaGaamOvaa qab0Gaey4kIipakiabg2da9maapefabaGaeqyWdiNaamyyamaaBaaa leaacaWGPbaabeaaaeaacaWGwbaabeqdcqGHRiI8aOGaamizaiaadA facqGHshI3daWdrbqaamaabmaabaWaaSaaaeaacqGHciITcqaHdpWC daWgaaWcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBa aaleaacaWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaaMc8UaamOyamaa BaaaleaacaWGPbaabeaakiabgkHiTiabeg8aYjaaykW7caWGHbWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGwbaabeqd cqGHRiI8aOGaaGPaVlaaykW7caWGKbGaamOvaiabg2da9iaaicdaaa a@7809@

Since this must hold for every volume of material within a solid, it follows that

σ ji y j +ρ b i =ρ a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaeqyWdiNaamyyamaaBaaaleaacaWGPbaabeaa aaa@4327@

as stated.

 

 

 

2.4.3 Angular momentum balance in terms of Cauchy stress

 

Conservation of angular momentum for a continuum requires that the Cauchy stress satisfy

σ ji = σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaa aa@3987@

i.e. the stress tensor must be symmetric.

 

Derivation: write down the equation for balance of angular momentum for the region V within the  deformed solid

A y×TdA + V y×ρbdV = d dt V y×ρvdV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWH5bGaey41aqRaaCivai aaykW7caWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipakiabgUca RmaapefabaGaaCyEaiabgEna0kabeg8aYjaaykW7caWHIbGaamizai aadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaaiaa dsgaaeaacaWGKbGaamiDaaaadaGadaqaamaapefabaGaaCyEaiabgE na0kabeg8aYjaaykW7caWH2bGaamizaiaadAfaaSqaaiaadAfaaeqa niabgUIiYdaakiaawUhacaGL9baaaaa@5AB5@

Here, the left hand side is the resultant moment (about the origin) exerted by tractions and body forces acting on a general region within a solid.  The right hand side is the total angular momentum of the solid about the origin.

 

We can write the same expression using index notation

A ijk y j T k dA + V ijk y j b k ρdV = d dt V ijk y j v k ρdV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqGHiiIZdaWgaaWcbaGaam yAaiaadQgacaWGRbaabeaakiaadMhadaWgaaWcbaGaamOAaaqabaGc caWGubWaaSbaaSqaaiaadUgaaeqaaOGaamizaiaadgeaaSqaaiaadg eaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiabgIGiopaaBaaaleaa caWGPbGaamOAaiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGQbaabe aakiaadkgadaWgaaWcbaGaam4AaaqabaGccqaHbpGCcaaMc8Uaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaai aadsgaaeaacaWGKbGaamiDaaaadaGadaqaamaapefabaGaeyicI48a aSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaWG5bWaaSbaaSqaai aadQgaaeqaaOGaamODamaaBaaaleaacaWGRbaabeaakiabeg8aYjaa ykW7caWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaOGaay5Eai aaw2haaaaa@6743@

Express T in terms of σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  and re-write the first integral as a volume integral using the divergence theorem

A ijk y j T k dA = A ijk y j σ mk n m dA = V x m ijk y j σ mk dV = V ijk δ jm σ mk + y j σ mk x m dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabgIGiopaaBaaale aacaWGPbGaamOAaiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGQbaa beaakiaadsfadaWgaaWcbaGaam4AaaqabaGccaWGKbGaamyqaaWcba Gaamyqaaqab0Gaey4kIipakiabg2da9maapefabaGaeyicI48aaSba aSqaaiaadMgacaWGQbGaam4AaaqabaGccaWG5bWaaSbaaSqaaiaadQ gaaeqaaOGaeq4Wdm3aaSbaaSqaaiaad2gacaWGRbaabeaakiaad6ga daWgaaWcbaGaamyBaaqabaGccaWGKbGaamyqaaWcbaGaamyqaaqab0 Gaey4kIipakiabg2da9maapefabaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4bWaaSbaaSqaaiaad2gaaeqaaaaakmaabmaabaGaeyicI4 8aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaWG5bWaaSbaaSqa aiaadQgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaad2gacaWGRbaabeaaaO GaayjkaiaawMcaaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8 aaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqGH9aqpdaWdrbqaaiabgIGiopaaBaaaleaacaWGPbGaamOAaiaadU gaaeqaaOWaaeWaaeaacqaH0oazdaWgaaWcbaGaamOAaiaad2gaaeqa aOGaeq4Wdm3aaSbaaSqaaiaad2gacaWGRbaabeaakiabgUcaRiaadM hadaWgaaWcbaGaamOAaaqabaGcdaWcaaqaaiabgkGi2kabeo8aZnaa BaaaleaacaWGTbGaam4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaad2gaaeqaaaaaaOGaayjkaiaawMcaaiaadsgacaWGwbaaleaa caWGwbaabeqdcqGHRiI8aaaaaa@02B6@

We may also show (see Appendix E) that

d dt V ijk y j v k ρdV = V ijk y j a k ρdV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaiWaaeaadaWdrbqaaiabgIGiopaaBaaaleaacaWGPbGaamOA aiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGQbaabeaakiaadAhada WgaaWcbaGaam4AaaqabaGccqaHbpGCcaaMc8UaamizaiaadAfaaSqa aiaadAfaaeqaniabgUIiYdaakiaawUhacaGL9baacqGH9aqpdaWdrb qaaiabgIGiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaamyE amaaBaaaleaacaWGQbaabeaakiaadggadaWgaaWcbaGaam4Aaaqaba GccqaHbpGCcaaMc8UaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIi Ydaaaa@58E4@

Substitute the last two results into the angular momentum balance equation to see that

V ijk δ jm σ mk + y j σ mk x m dV + V ijk y j b k ρdV = V ijk y j a k ρdV V ijk δ jm σ mk = V ijk y j σ mk y m +ρ b k ρ a k dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabgIGiopaaBaaale aacaWGPbGaamOAaiaadUgaaeqaaOWaaeWaaeaacqaH0oazdaWgaaWc baGaamOAaiaad2gaaeqaaOGaeq4Wdm3aaSbaaSqaaiaad2gacaWGRb aabeaakiabgUcaRiaadMhadaWgaaWcbaGaamOAaaqabaGcdaWcaaqa aiabgkGi2kabeo8aZnaaBaaaleaacaWGTbGaam4Aaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaad2gaaeqaaaaaaOGaayjkaiaawMca aiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaey4kaSYaa8 quaeaacqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiaa dMhadaWgaaWcbaGaamOAaaqabaGccaWGIbWaaSbaaSqaaiaadUgaae qaaOGaeqyWdiNaaGPaVlaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aOGaeyypa0Zaa8quaeaacqGHiiIZdaWgaaWcbaGaamyAaiaadQ gacaWGRbaabeaakiaadMhadaWgaaWcbaGaamOAaaqabaGccaWGHbWa aSbaaSqaaiaadUgaaeqaaOGaeqyWdiNaaGPaVlaadsgacaWGwbaale aacaWGwbaabeqdcqGHRiI8aaGcbaGaeyO0H49aa8quaeaacqGHiiIZ daWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiabes7aKnaaBaaale aacaWGQbGaamyBaaqabaGccqaHdpWCdaWgaaWcbaGaamyBaiaadUga aeqaaOGaeyypa0JaeyOeI0caleaacaWGwbaabeqdcqGHRiI8aOWaa8 quaeaacqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiaa dMhadaWgaaWcbaGaamOAaaqabaGcdaqadaqaamaalaaabaGaeyOaIy Raeq4Wdm3aaSbaaSqaaiaad2gacaWGRbaabeaaaOqaaiabgkGi2kaa dMhadaWgaaWcbaGaamyBaaqabaaaaOGaey4kaSIaeqyWdiNaamOyam aaBaaaleaacaWGRbaabeaakiabgkHiTiabeg8aYjaadggadaWgaaWc baGaam4AaaqabaaakiaawIcacaGLPaaacaWGKbGaamOvaaWcbaGaam Ovaaqab0Gaey4kIipaaaaa@A630@

The integral on the right hand side of this expression is zero, because the stresses must satisfy the linear momentum balance equation.  Since this holds for any volume V, we conclude that

ijk δ jm σ mk = ijk σ jk =0 imn ijk σ jk =0 δ jm δ kn δ mk δ nj σ jk =0 σ mn σ nm =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHiiIZdaWgaaWcbaGaamyAai aadQgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGQbGaamyBaaqa baGccqaHdpWCdaWgaaWcbaGaamyBaiaadUgaaeqaaOGaeyypa0Jaey icI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccqaHdpWCdaWg aaWcbaGaamOAaiaadUgaaeqaaOGaeyypa0JaaGimaaqaaiabgkDiEl abgIGiopaaBaaaleaacaWGPbGaamyBaiaad6gaaeqaaOGaeyicI48a aSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccqaHdpWCdaWgaaWcba GaamOAaiaadUgaaeqaaOGaeyypa0JaaGimaaqaaiabgkDiEpaabmaa baGaeqiTdq2aaSbaaSqaaiaadQgacaWGTbaabeaakiabes7aKnaaBa aaleaacaWGRbGaamOBaaqabaGccqGHsislcqaH0oazdaWgaaWcbaGa amyBaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaad6gacaWGQbaabe aaaOGaayjkaiaawMcaaiabeo8aZnaaBaaaleaacaWGQbGaam4Aaaqa baGccqGH9aqpcaaIWaaabaGaeyO0H4Taeq4Wdm3aaSbaaSqaaiaad2 gacaWGUbaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGUbGaamyB aaqabaGccqGH9aqpcaaIWaaaaaa@7F59@

which is the result we wanted.

 

 

 

2.4.4 Equations of motion in terms of other stress measures

 

In terms of nominal and material stress the balance of linear momentum is

S+ ρ 0 b= ρ 0 a S ij x i + ρ 0 b j = ρ 0 a j Σ F T + ρ 0 b= ρ 0 a Σ ik F jk x i + ρ 0 b j = ρ 0 a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHhis0cqGHflY1caWHtbGaey 4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaCOyaiabg2da9iab eg8aYnaaBaaaleaacaaIWaaabeaakiaahggacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiab gkGi2kaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaWGPbaabeaaaaGccqGHRaWkcqaHbpGCdaWg aaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaey ypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamyyamaaBaaaleaa caWGQbaabeaaaOqaaiabgEGirlabgwSixpaadmaabaGaaC4OdiaahA eadaahaaWcbeqaaiaadsfaaaaakiaawUfacaGLDbaacqGHRaWkcqaH bpGCdaWgaaWcbaGaaGimaaqabaacbeGccaWFIbGaeyypa0JaeqyWdi 3aaSbaaSqaaiaaicdaaeqaaOGaaCyyaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaai abgkGi2oaabmaabaGaeu4Odm1aaSbaaSqaaiaadMgacaWGRbaabeaa kiaadAeadaWgaaWcbaGaamOAaiaadUgaaeqaaaGccaGLOaGaayzkaa aabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccqGHRaWk cqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaadQ gaaeqaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamyy amaaBaaaleaacaWGQbaabeaaaaaa@9989@

Note that the derivatives are taken with respect to position in the undeformed solid.

 

The angular momentum balance equation is FS= FS T Σ= Σ Τ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiaahofacqGH9aqpdaWadaqaai aahAeacaWHtbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHJoGaeyypa0Ja aC4OdmaaCaaaleqabaacceGae8hPdqfaaaaa@52F3@

 

 

To derive these results, you can start with the integral form of the linear momentum balance in terms of Cauchy stress

A σ ji n j dA+ V ρ b i dV = d dt V ρ v i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam OAaiaadMgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiaadsga caWGbbGaey4kaScaleaacaWGbbaabeqdcqGHRiI8aOWaa8quaeaacq aHbpGCcaaMc8UaamOyamaaBaaaleaacaWGPbaabeaakiaaykW7caWG KbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maalaaaba GaamizaaqaaiaadsgacaWG0baaamaacmaabaWaa8quaeaacqaHbpGC caaMc8UaamODamaaBaaaleaacaWGPbaabeaaaeaacaWGwbaabeqdcq GHRiI8aOGaamizaiaadAfaaiaawUhacaGL9baaaaa@58A6@

Recall (or see Appendix E for a reminder) that area elements in the deformed and undeformed solids are related through

dA n i =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeacaWGUbWaa0baaSqaai aadMgaaeaaaaGccqGH9aqpcaWGkbGaamOramaaDaaaleaacaWGRbGa amyAaaqaaiabgkHiTiaaigdaaaGccaWGUbWaa0baaSqaaiaadUgaae aacaaIWaaaaOGaamizaiaadgeadaWgaaWcbaGaaGimaaqabaaaaa@406C@

In addition, volume elements are related by dV=Jd V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfacqGH9aqpcaWGkbGaam izaiaadAfadaWgaaWcbaGaaGimaaqabaaaaa@3723@ .  We can use these results to re-write the integrals as integrals over a volume in the undeformed solid as

A 0 σ ji J F kj 1 n k 0 d A 0 + V 0 ρ b i Jd V 0 = d dt V 0 ρ v i Jd V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam OAaiaadMgaaeqaaOGaamOsaiaadAeadaqhaaWcbaGaam4AaiaadQga aeaacqGHsislcaaIXaaaaOGaamOBamaaDaaaleaacaWGRbaabaGaaG imaaaakiaadsgacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSca leaacaWGbbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aOWaa8 quaeaacqaHbpGCcaaMc8UaamOyamaaBaaaleaacaWGPbaabeaakiaa ykW7caWGkbGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaaabaGaam OvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipakiabg2da9maa laaabaGaamizaaqaaiaadsgacaWG0baaamaacmaabaWaa8quaeaacq aHbpGCcaaMc8UaamODamaaBaaaleaacaWGPbaabeaaaeaacaWGwbWa aSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aOGaamOsaiaadsgaca WGwbWaaSbaaSqaaiaaicdaaeqaaaGccaGL7bGaayzFaaaaaa@65E9@

Finally, recall that S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaam4uaOWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWG RbaabaGaeyOeI0IaaGymaaaakiabeo8aZnaaBaaaleaacaWGRbGaam OAaaqabaaaaa@3EC8@  and that Jρ= ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabeg8aYjabg2da9iabeg8aYn aaBaaaleaacaaIWaaabeaaaaa@371B@  to see that

A 0 S ki n k 0 d A 0 + V 0 ρ 0 b i d V 0 = d dt V 0 ρ 0 v i d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGtbGaaCjaVpaaBaaale aacaWGRbGaamyAaaqabaGccaWGUbWaa0baaSqaaiaadUgaaeaacaaI WaaaaOGaamizaiaadgeadaWgaaWcbaGaaGimaaqabaGccqGHRaWkaS qaaiaadgeadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdGcdaWd rbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcba GaamyAaaqabaGccaaMc8UaamizaiaadAfadaWgaaWcbaGaaGimaaqa baaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipaki abg2da9maalaaabaGaamizaaqaaiaadsgacaWG0baaamaacmaabaWa a8quaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWG2bWaaSbaaS qaaiaadMgaaeqaaaqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleqa niabgUIiYdGccaWGKbGaamOvamaaBaaaleaacaaIWaaabeaaaOGaay 5Eaiaaw2haaaaa@5E5B@

Apply the divergence theorem to the first term and rearrange

V 0 S ji x j + ρ 0 b i ρ 0 d v i dt d V 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaqadaqaamaalaaabaGaey OaIyRaam4uamaaBaaaleaacaWGQbGaamyAaaqabaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRiabeg8aYnaaBa aaleaacaaIWaaabeaakiaaykW7caWGIbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaGPaVpaala aabaGaamizaiaadAhadaWgaaWcbaGaamyAaaqabaaakeaacaWGKbGa amiDaaaaaiaawIcacaGLPaaaaSqaaiaadAfadaWgaaadbaGaaGimaa qabaaaleqaniabgUIiYdGccaaMc8UaaGPaVlaadsgacaWGwbWaaSba aSqaaiaaicdaaeqaaOGaeyypa0JaaGimaaaa@5746@

Once again, since this must hold for any material volume, we conclude that

S ij x i + ρ 0 b j = ρ 0 a j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaamOyamaaBaaaleaacaWGQbaabeaakiabg2da9iabeg8aYnaaBaaa leaacaaIWaaabeaakiaadggadaWgaaWcbaGaamOAaaqabaaaaa@441C@

The linear momentum balance equation in terms of material stress follows directly, by substituting into this equation for S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C1@  in terms of Σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@346D@

 

The angular momentum balance equation can be derived simply by substituting into the momentum balance equation in terms of Cauchy stress σ ij = σ ji MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGQbGaamyAaaqabaaa aa@3988@