Chapter 3
Constitutive Models: Relations between Stress and Strain

 

 

 

 

The equations listed in Chapter 2 are universal MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they apply to all deformable solids.  They can’t be solved, however, unless the deformation measure can be related to the internal forces.

 

The constitutive model for a material is a set of equations relating stress to strain (and possibly strain history, strain rate, and other field quantities).  Unlike the governing equations in the previous chapter, these equations cannot generally be calculated using fundamental physical laws (although people are trying to do these calculations).  Instead, constitutive models are fit to experimental measurements.

 

Before discussing specific constitutive models, it is helpful to review the basic assumptions that we take for granted in developing stress-strain laws.  They are listed below.

 

· A very small sample that is extracted from the solid has uniform properties;

 

· When the solid is deformed, initially straight lines in the solid are deformed into smooth curves (with continuous slope), as shown in the figure.

 

· This means that very short line segments (much shorter than the radius of curvature of the curves) are just stretched and rotated by the deformation.   Consequently, the change in shape of a sufficiently small volume element can be characterized by the deformation gradient;

 

· The stress at a point in the solid depends only on the change in shape of a vanishingly small volume element surrounding the point.  It must therefore be a function of the deformation gradient or a strain measure that is derived from it.  This is called the ‘principle of local action’

 

If we accept the preceding assumptions, it means that we can measure the relationship between stress and strain by doing an experiment that induces a uniform strain in a suitable sample of the material.  According to our assumptions, the stress should also be uniform, and can be calculated from the forces acting on the specimen.

 

These are clearly approximations.  Materials are not really uniform at small scales, whether you choose to look at the atomic scale, or the microstructural scale.  However, these features are usually much smaller than the solid part or component, and the material can be regarded as statistically uniform, in the sense that if you cut two specimens with similar size out of the material they will behave in the same way.  A continuum model then describes the average stress and deformation in a region of the material that is larger than microstructural features, but small compared with the dimensions of the part.

 

 

 

3.1 General requirements for constitutive equations

 

You may be called upon to develop a stress-strain law for a new material at some point of your career.  If so, it is essential to make sure that the stress-strain law satisfies two conditions:

 

(i) It must obey the laws of thermodynamics.

 

(ii) It must satisfy the condition of objectivity, or material frame indifference.  

 

In addition, it is a good idea to ensure that the material satisfies the Drucker stability criterion discussed in more detail below.  Of course, your proposed law must conform to experimental measurements, and if possible, should be based on some understanding of the physical processes that govern the response of the solid.

 

 

 

3.1.1 Thermodynamic restrictions

 

Constitutive laws usually start by expressing the specific internal or free energy, specific entropy, and heat flux of a material in terms of the temperature θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ , deformation measures characterizing shape changes, and any internal state variables (such as yield stress) that characterize the material state.  These have the general form

 

Internal energy: ε(θ,deformation measures,state variables) Entropy: s(θ,deformation measures,state variables) Helmholtz free energy: ψ(θ,deformation measures,state variables) = εθs Heat flux response function: q(θ,deformation measures,state variables) Stress Response Function (giving Cauchy stress):  σ(θ,deformation measures,state variables) Evolution equations for state variables (these may be functions of temperature, kinematics, and state vars) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaqGjbGaaeOBaiaabshacaqGLb GaaeOCaiaab6gacaqGHbGaaeiBaiaabccacaqGLbGaaeOBaiaabwga caqGYbGaae4zaiaabMhacaqG6aGaaeiiaiabew7aLjaacIcacqaH4o qCcaGGSaGaaeizaiaabwgacaqGMbGaae4BaiaabkhacaqGTbGaaeyy aiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyBaiaabwgacaqGHb Gaae4CaiaabwhacaqGYbGaaeyzaiaabohacaqGSaGaae4Caiaabsha caqGHbGaaeiDaiaabwgacaqGGaGaaeODaiaabggacaqGYbGaaeyAai aabggacaqGIbGaaeiBaiaabwgacaqGZbGaaeykaaqaaiaabweacaqG UbGaaeiDaiaabkhacaqGVbGaaeiCaiaabMhacaqG6aGaaeiiaiaado hacaGGOaGaeqiUdeNaaiilaiaabsgacaqGLbGaaeOzaiaab+gacaqG YbGaaeyBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab2 gacaqGLbGaaeyyaiaabohacaqG1bGaaeOCaiaabwgacaqGZbGaaeil aiaabohacaqG0bGaaeyyaiaabshacaqGLbGaaeiiaiaabAhacaqGHb GaaeOCaiaabMgacaqGHbGaaeOyaiaabYgacaqGLbGaae4CaiaabMca aeaacaqGibGaaeyzaiaabYgacaqGTbGaaeiAaiaab+gacaqGSbGaae iDaiaabQhacaqGGaGaaeOzaiaabkhacaqGLbGaaeyzaiaabccacaqG LbGaaeOBaiaabwgacaqGYbGaae4zaiaabMhacaqG6aGaaeiiaiabeI 8a5jaacIcacqaH4oqCcaGGSaGaaeizaiaabwgacaqGMbGaae4Baiaa bkhacaqGTbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae yBaiaabwgacaqGHbGaae4CaiaabwhacaqGYbGaaeyzaiaabohacaqG SaGaae4CaiaabshacaqGHbGaaeiDaiaabwgacaqGGaGaaeODaiaabg gacaqGYbGaaeyAaiaabggacaqGIbGaaeiBaiaabwgacaqGZbGaaeyk aiaabccacaqG9aGaaeiiaiabew7aLjabgkHiTiabeI7aXjaadohaae aacaqGibGaaeyzaiaabggacaqG0bGaaeiiaiaabAgacaqGSbGaaeyD aiaabIhacaqGGaGaaeOCaiaabwgacaqGZbGaaeiCaiaab+gacaqGUb Gaae4CaiaabwgacaqGGaGaaeOzaiaabwhacaqGUbGaae4yaiaabsha caqGPbGaae4Baiaab6gacaqG6aGaaeiiaiaahghacaGGOaGaeqiUde NaaiilaiaabsgacaqGLbGaaeOzaiaab+gacaqGYbGaaeyBaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab2gacaqGLbGaaeyyai aabohacaqG1bGaaeOCaiaabwgacaqGZbGaaeilaiaabohacaqG0bGa aeyyaiaabshacaqGLbGaaeiiaiaabAhacaqGHbGaaeOCaiaabMgaca qGHbGaaeOyaiaabYgacaqGLbGaae4CaiaabMcaaeaacaqGtbGaaeiD aiaabkhacaqGLbGaae4CaiaabohacaqGGaGaaeOuaiaabwgacaqGZb GaaeiCaiaab+gacaqGUbGaae4CaiaabwgacaqGGaGaaeOraiaabwha caqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeikai aabEgacaqGPbGaaeODaiaabMgacaqGUbGaae4zaiaabccacaqGdbGa aeyyaiaabwhacaqGJbGaaeiAaiaabMhacaqGGaGaae4Caiaabshaca qGYbGaaeyzaiaabohacaqGZbGaaeykaiaabQdacaqGGaGaaeiiaiaa ho8acaGGOaGaeqiUdeNaaiilaiaabsgacaqGLbGaaeOzaiaab+gaca qGYbGaaeyBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b2gacaqGLbGaaeyyaiaabohacaqG1bGaaeOCaiaabwgacaqGZbGaae ilaiaabohacaqG0bGaaeyyaiaabshacaqGLbGaaeiiaiaabAhacaqG HbGaaeOCaiaabMgacaqGHbGaaeOyaiaabYgacaqGLbGaae4CaiaabM caaeaacaqGfbGaaeODaiaab+gacaqGSbGaaeyDaiaabshacaqGPbGa ae4Baiaab6gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshaca qGPbGaae4Baiaab6gacaqGZbGaaeiiaiaabAgacaqGVbGaaeOCaiaa bccacaqGZbGaaeiDaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaae yyaiaabkhacaqGPbGaaeyyaiaabkgacaqGSbGaaeyzaiaabohacaqG GaGaaeikaiaabshacaqGObGaaeyzaiaabohacaqGLbGaaeiiaiaab2 gacaqGHbGaaeyEaiaabccacaqGIbGaaeyzaiaabccacaqGMbGaaeyD aiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohacaqGGa Gaae4BaiaabAgacaqGGaGaaeiDaiaabwgacaqGTbGaaeiCaiaabwga caqGYbGaaeyyaiaabshacaqG1bGaaeOCaiaabwgacaqGSaGaaeiiai aabUgacaqGPbGaaeOBaiaabwgacaqGTbGaaeyyaiaabshacaqGPbGa ae4yaiaabohacaqGSaGaaeiiaiaabggacaqGUbGaaeizaiaabccaca qGZbGaaeiDaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaaeyyaiaa bkhacaqGZbGaaeykaaaaaa@C410@

 

For a solid with mass density (in the deformed configuration) ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  experiencing a stretch rate D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B2@  and Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@ , the first and second laws of thermodynamics then require that

ρ ε t x=const = σ ij D ij q i y i +q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaqGaaeaadaWcaaqaaiabgk Gi2kabew7aLbqaaiabgkGi2kaadshaaaaacaGLiWoadaWgaaWcbaGa aCiEaiabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0baabeaaki abg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWa aSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaabaGaeyOaIy RaamyCamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaamyAaaqabaaaaOGaey4kaSIaamyCaaaa@5244@

σ ij D ij 1 θ q i θ y i ρ ψ t +s θ t 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Ya aSaaaeaacaaIXaaabaGaeqiUdehaaiaadghadaWgaaWcbaGaamyAaa qabaGcdaWcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi2kaadMhadaWg aaWcbaGaamyAaaqabaaaaOGaeyOeI0IaeqyWdi3aaeWaaeaadaWcaa qaaiabgkGi2kabeI8a5bqaaiabgkGi2kaadshaaaGaey4kaSIaam4C amaalaaabaGaeyOaIyRaeqiUdehabaGaeyOaIyRaamiDaaaaaiaawI cacaGLPaaacqGHLjYScaaIWaaaaa@578C@

for all possible processes.  The second condition is called the “free energy imbalance.”  It is often convenient to express the condition in terms of other deformation and stress measures. To this end, define:

 

· Mass per unit reference volume ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  

 

· Deformation gradient, right Cauchy-Green deformation tensor and Lagrange strain

F,C= F T F,E=(CI)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiaacYcacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaC4qaiabg2da9iaahAeadaah aaWcbeqaaiaadsfaaaGccaWHgbGaaiilaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyraiabg2da9iaacIca caWHdbGaeyOeI0IaaCysaiaacMcacaGGVaGaaGOmaaaa@55DB@

 

· Nominal and material stress S=J F 1 σΣ=J F 1 σ F T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaKaaalaaho8acaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVRGaaC4Odiabg2da9iaadQeacaWHgbWaaWbaaSqabeaacqGHsisl caaIXaaaaKaaalaaho8akiaahAeadaahaaWcbeqaaiabgkHiTiaads faaaaaaa@53DB@

 

· Referential heat flux Q=J F 1 q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaaCyCaaaa@3737@  

 

With these definitions, the free energy imbalance condition can be re-written as

S ij d F ji dt 1 θ Q i θ x i ρ 0 ψ t +s θ t 0 1 2 Σ ij d C ij dt 1 θ Q i θ x i ρ 0 ψ t +s θ t 0 Σ ij d E ij dt 1 θ Q i θ x i ρ 0 ψ t +s θ t 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaadMgaca WGQbaabeaakmaalaaabaGaamizaiaadAeadaWgaaWcbaGaamOAaiaa dMgaaeqaaaGcbaGaamizaiaadshaaaGaeyOeI0YaaSaaaeaacaaIXa aabaGaeqiUdehaaiaadgfadaWgaaWcbaGaamyAaaqabaGcdaWcaaqa aiabgkGi2kabeI7aXbqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaa qabaaaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWa aeaadaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaadshaaaGaey 4kaSIaam4CamaalaaabaGaeyOaIyRaeqiUdehabaGaeyOaIyRaamiD aaaaaiaawIcacaGLPaaacqGHLjYScaaIWaaabaWaaSaaaeaacaaIXa aabaGaaGOmaaaacqqHJoWudaWgaaWcbaGaamyAaiaadQgaaeqaaOWa aSaaaeaacaWGKbGaam4qamaaBaaaleaacaWGPbGaamOAaaqabaaake aacaWGKbGaamiDaaaacqGHsisldaWcaaqaaiaaigdaaeaacqaH4oqC aaGaamyuamaaBaaaleaacaWGPbaabeaakmaalaaabaGaeyOaIyRaeq iUdehabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccqGH sislcqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaqadaqaamaalaaaba GaeyOaIyRaeqiYdKhabaGaeyOaIyRaamiDaaaacqGHRaWkcaWGZbWa aSaaaeaacqGHciITcqaH4oqCaeaacqGHciITcaWG0baaaaGaayjkai aawMcaaiabgwMiZkaaicdaaeaacqqHJoWudaWgaaWcbaGaamyAaiaa dQgaaeqaaOWaaSaaaeaacaWGKbGaamyramaaBaaaleaacaWGPbGaam OAaaqabaaakeaacaWGKbGaamiDaaaacqGHsisldaWcaaqaaiaaigda aeaacqaH4oqCaaGaamyuamaaBaaaleaacaWGPbaabeaakmaalaaaba GaeyOaIyRaeqiUdehabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaa beaaaaGccqGHsislcqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaqada qaamaalaaabaGaeyOaIyRaeqiYdKhabaGaeyOaIyRaamiDaaaacqGH RaWkcaWGZbWaaSaaaeaacqGHciITcqaH4oqCaeaacqGHciITcaWG0b aaaaGaayjkaiaawMcaaiabgwMiZkaaicdaaaaa@B00A@

You can try deriving these as an exercise.

 

In practice, we usually use only the free energy imbalance law when developing constitutive equations.  The first law can always be satisfied by some appropriate heat flux q. Furthermore, for the majority of problems in solid mechanics, we do not need to model deformation and heat conduction simultaneously (there are exceptions of course, such as high strain rate deformation; thermoelasticity, and so on).   We can assume that the solid is in equilibrium with a surrounding heat bath with constant temperature, and heat flow through a solid is sufficiently rapid to ensure that the temperature remains approximately uniform.  Under these conditions the free energy imbalance condition reduces to

σ ij D ij ρ ψ t 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Ia eqyWdi3aaSaaaeaacqGHciITcqaHipqEaeaacqGHciITcaWG0baaai abgwMiZkaaicdaaaa@4262@

This expression can be re-written in terms of other stress and deformation measures if need be.  Physically, it states that the rate of work done by stresses must always equal or exceed the rate of change of free energy of the solid. 

 

As a specific example, suppose that we are interested in developing constitutive equations for an elastic solid that is subjected to large deformations (these are called ‘hyperelastic’ materials).  Examples of equations used in practice are listed in Section 3.5.   One way to do this would be to find a scalar function that quantifies the Helmholtz free energy ψ(C,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKNaaiikaiaahoeacaGGSaGaeq iUdeNaaiykaaaa@3739@  of our material as a function of the right Cauchy-Green strain tensor C and temperature θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ .    The general free energy imbalance condition then requires that

1 2 Σ ij d C ij dt 1 θ Q i θ x i ρ 0 ψ t +s θ t 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaacq qHJoWudaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacaWGKbGa am4qamaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGKbGaamiDaa aacqGHsisldaWcaaqaaiaaigdaaeaacqaH4oqCaaGaamyuamaaBaaa leaacaWGPbaabeaakmaalaaabaGaeyOaIyRaeqiUdehabaGaeyOaIy RaamiEamaaBaaaleaacaWGPbaabeaaaaGccqGHsislcqaHbpGCdaWg aaWcbaGaaGimaaqabaGcdaqadaqaamaalaaabaGaeyOaIyRaeqiYdK habaGaeyOaIyRaamiDaaaacqGHRaWkcaWGZbWaaSaaaeaacqGHciIT cqaH4oqCaeaacqGHciITcaWG0baaaaGaayjkaiaawMcaaiabgwMiZk aaicdaaaa@5C7D@

for all possible variations of C and θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ .   Taking the time derivative of the free energy and substituting into the free energy imbalance condition gives

1 2 Σ ij ρ 0 ψ C ij d C ij dt 1 θ Q i θ x i ρ 0 ψ θ +s θ t 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiaaigdaaeaaca aIYaaaaiabfo6atnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisl cqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaWcaaqaaiabgkGi2kabeI 8a5bqaaiabgkGi2kaadoeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa aOGaayjkaiaawMcaamaalaaabaGaamizaiaadoeadaWgaaWcbaGaam yAaiaadQgaaeqaaaGcbaGaamizaiaadshaaaGaeyOeI0YaaSaaaeaa caaIXaaabaGaeqiUdehaaiaadgfadaWgaaWcbaGaamyAaaqabaGcda WcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO WaaeWaaeaadaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kabeI7a XbaacqGHRaWkcaWGZbaacaGLOaGaayzkaaWaaSaaaeaacqGHciITcq aH4oqCaeaacqGHciITcaWG0baaaiabgwMiZkaaicdaaaa@69E5@

Since this must hold for all C ij /t,θ/ x i ,θ/t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaam4qamaaBaaaleaacaWGPb GaamOAaaqabaGccaGGVaGaeyOaIyRaamiDaiaacYcacaaMc8UaaGPa VlaaykW7caaMc8UaeyOaIyRaeqiUdeNaai4laiabgkGi2kaadIhada WgaaWcbaGaamyAaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaeyOa IyRaeqiUdeNaai4laiabgkGi2kaadshaaaa@51E4@  (with θ>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyOpa4JaaGimaaaa@3458@  ) we conclude that the material stress and entropy must be related to our free energy function by

Σ ij =2 ρ 0 ψ C ij s= ψ θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaikdacqaHbpGCdaWgaaWcbaGaaGimaaqabaGc daWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaadoeadaWgaaWcba GaamyAaiaadQgaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaado hacqGH9aqpcqGHsisldaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi 2kabeI7aXbaaaaa@5C3D@

while the heat conduction law must satisfy

Q i θ x i 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbaabeaakm aalaaabaGaeyOaIyRaeqiUdehabaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaaaaGccqGHKjYOcaaIWaaaaa@3BFC@

In Section 3.5, constant temperature versions of this type of constitutive equation are developed by choosing specific functions for the strain energy density W= ρ 0 ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9iabeg8aYnaaBaaale aacaaIWaaabeaakiabeI8a5baa@3740@  that can be fit to experiment.  The stress-strain law then follows from the free energy imbalance condition.

 

 

 

3.1.2 Material Frame Indifference (Objectivity):

 

The principle of material frame indifference is two simple ideas: (i) the stress (or strictly speaking the change in stress) in a solid is determined only by the way it changes its shape, and nothing else; and (ii) the constitutive model should predict the correct stress for any mathematical way we choose to describe its motion and deformation.   We can regard the first idea as a consequence of the principle of local action, and it appears to be a reasonable assumption about the way solids behave.   The second is self evident.  Unfortunately, the way we actually test whether a constitutive model satisfies frame indifference involves a rather confusing thought experiment and some complicated mathematics.  As a result, the principle has been questioned and there is a substantial and often confusing literature on the subject (Frewer, 2009, has a nice review). 

 

To test for frame indifference, we need to check that the constitutive law ‘works for any possible mathematical way we choose to describe its motion and deformation.’    In all the constitutive laws discussed in this book, the change in a shape and orientation of a material element is described by the deformation gradient or some other strain measure that can be expressed in terms of this quantity.   So, we need to check that the model works for any conceivable way we might calculate the deformation gradient.   Recall that we calculate the deformation gradient as follows (i) Choose a ‘reference configuration’ for the solid, which assigns each particle in the material a coordinate X.  (ii) Write down the position of each particle after deformation as a function of time y(X,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiaacIcacaWHybGaaiilaiaads hacaGGPaaaaa@35C5@ , and then (iii) Calculate the deformation gradient as F=y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iabgEGirlaahMhaaa a@353D@  - or if we choose a coordinate system, we can say F ij = y i / X j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaOGa ai4laiabgkGi2kaadIfadaWgaaWcbaGaamOAaaqabaaaaa@3C5D@ .

 

We normally use the initial physical region occupied by the specimen to choose X MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  so for example if we wanted to calculate the change in length of a vertical tensile bar we would compare it to its initial length MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  i.e. using a vertical tensile bar as the reference configuration.    But there is no reason why we have to do this.   We could equally well compare its length to that of an undeformed horizontal tensile bar.   This amounts to rotating the ‘reference configuration’ for the bar from a vertical to a horizontal orientation.   In fact, if we are rather strange (e.g. mathematicians), we might even calculate the change in length by comparing it to the initial length of an imaginary undeformed tensile bar that is spinning around in space.   This means we are using a rotating reference configuration.    But as long as we do the calculations correctly, we can still calculate the change in length of the specimen.

 

This is essentially the test we use to check that a constitutive law satisfies the principle of material frame indifference MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the goal is to make sure that the constitutive model works for any possible choice of reference configuration that preserves the shape of the solid, including one that rotates in space.   However, since we have to describe more than just a length change the mathematics is a bit more complicated.  


The thought experiment we use for this purpose is illustrated in the figure.  We suppose that the deformation of a solid is observed (and modeled mathematically) by two observers.   The first observer is a normal person, who describes shape changes using the initial configuration of the solid as the reference configuration MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  this is how we have treated deformation in the rest of this book, to give the deformation mapping a simple physical interpretation.   The second observer is a crazy mathematician, who chooses to use an imaginary reference configuration that has the same shape as the actual initial configuration of the solid, but which rotates and translates through space.  Furthermore, the crazy mathematician chooses to model everything using a coordinate system that rotates and translates with this imaginary reference configuration (this is necessary because the reference configuration has to be time independent).  This might seem a bit disturbing, because this coordinate system is not an inertial frame, but that doesn’t matter MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  we can use any coordinate system to analyze motion in the actual inertial frame, as long as we transform the vectors in physical space to the rotating frame correctly.  In fact, we do this without thinking when we analyze particle motion using cylindrical polar coordinates: since the polar basis vectors e r , e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGYbaabeaaki aacYcacaWHLbWaaSbaaSqaaiabeI7aXbqabaaaaa@367B@  rotate with respect to the inertial frame, we use a modified definition of acceleration in the rotating basis, but the formula for acceleration in polar coordinates still describes the acceleration in the inertial frame.   The views of the world with respect to these two observers is shown in the figure: both see a stationary reference configuration with an identical shape.  The rotating observer sees exactly the same deformed solid as the stationary observer, but the whole world appears to be spinning and moving with respect to his or her coordinate system.

 

We discussed how the vectors and tensors that we use to describe motion and deformation of a solid are transformed from the inertial frame (used by the sane observer) to the rotating frame (used by the crazy observer) in Section 2.7. Recall that vectors specifying a particular point in space transform between these frames as

r * = r 0 * (t)+Q(t)(r r 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahkhadaqhaaWcbaGaaGimaaqaaiaacQcaaaGccaGGOaGa amiDaiaacMcacqGHRaWkcaWHrbGaaiikaiaadshacaGGPaGaaiikai aahkhacqGHsislcaWHYbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa @41EC@

where r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaaaa@31DB@  are three real numbers specifying a point in the inertial frame; r * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaCaaaleqabaGaaiOkaaaaaa a@32B6@  are the new coordinates of the same point in the rotating frame (these are now three time dependent numbers, reflecting the fact that a fixed point in the inertial frame appears to move in the rotating frame), r 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaBaaaleaacaaIWaaabeaaaa a@32C1@  is an arbitrary point in the inertial frame, r 0 * (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaDaaaleaacaaIWaaabaGaai OkaaaakiaacIcacaWG0bGaaiykaaaa@35CC@  is an arbitrary vector valued function of time t and Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaaaa@31BA@  is a time dependent proper orthogonal tensor ( Q Q T =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiaahgfadaahaaWcbeqaaiaads faaaGccqGH9aqpcaWHjbaaaa@357C@  and det(Q)=1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaahg facaGGPaGaeyypa0JaaGymaaaa@379F@  ).  The coordinates of points in the reference configuration transform as X * =X MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiwamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahIfaaaa@348D@  (because both observers see an identical reference configuration, and we have chosen to put their reference configurations in the same place in their two coordinate systems). 

 

We showed that the coordinates of vectors and tensors we use in continuum mechanics must transform in a predictable way from the inertial frame to the rotating frame as a result of this transformation.  There is a list in Section 2.7.   For example, we found that Cauchy stress tensors and the stretch rate tensors must transform as

σ * =Qσ Q T D * =QD Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHdpGaaCyuamaaCaaaleqabaGaamivaaaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaCiramaaCaaaleqabaGaaiOkaaaakiabg2da 9iaahgfacaWHebGaaCyuamaaCaaaleqabaGaamivaaaaaaa@4F65@

(tensors of this kind are called ‘frame indifferent’ or ‘objective’).  Here, σ * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdmaaCaaaleqabaGaaiOkaaaaaa a@330A@  are the numbers that the rotating observer would use to characterize Cauchy stress, while σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdaaa@322F@  are the corresponding numbers used by the observer in the inertial frame.  Although they are different, both sets of numbers quantify the force per unit area acting on the same physical element of surface in the solid.  The numbers representing deformation gradient, material stress and Lagrange strain transform as

F * =QF Σ * =Σ E * =E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOramaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHgbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHJoWaaWbaaS qabeaacaGGQaaaaOGaeyypa0JaaC4OdiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaCyramaaCaaaleqabaGaaiOkaaaakiabg2da 9iaahweaaaa@63A6@

 

Constitutive equations are functions that relates some tensor valued deformation measure(s) to some other tensor valued stress measure.   They are tensor valued functions of one or more tensor valued variable.    There are infinitely many such functions MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  but the principle of material frame indifference requires that the tensor valued quantity these functions claim to predict must transform correctly under our change of coordinate system and reference configuration.   It is a way to ensure that the material model will predict the same behavior for all possible mathematical descriptions of how the solid changes its shape MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  even a very strange description in which we use a rotating reference configuration and a rotating coordinate system.

 

So for example a simple linear viscous constitutive law defined (in the inertial frame) by the equation

σ=ηD+K det(F)1 I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iabeE7aOjaahseacq GHRaWkcaaMb8Uaam4samaabmaabaGaciizaiaacwgacaGG0bGaaiik aiaahAeacaGGPaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaahMeaaa a@41E0@

(where η MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGgaaa@328C@  and K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saaaa@31B0@  are constants) is material frame indifferent, because if we use coordinates in the rotated frame it predicts correctly that they are related by

σ * =η D * +K det( F * )1 I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdmaaCaaaleqabaGaaiOkaaaaki abg2da9iabeE7aOjaahseadaahaaWcbeqaaiaacQcaaaGccqGHRaWk caaMb8Uaam4samaabmaabaGaciizaiaacwgacaGG0bGaaiikaiaahA eadaahaaWcbeqaaiaacQcaaaGccaGGPaGaeyOeI0IaaGymaaGaayjk aiaawMcaaiaahMeaaaa@448F@

To see this, note that D * =QD Q T ,det( F * )=det(F),I=QI Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHebGaaCyuamaaCaaaleqabaGaamivaaaakiaa cYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlGacsgacaGGLbGaai iDaiaacIcacaWHgbWaaWbaaSqabeaacaGGQaaaaOGaaiykaiaaygW7 cqGH9aqpciGGKbGaaiyzaiaacshacaGGOaGaaCOraiaacMcacaGGSa GaaGPaVlaaykW7caaMc8UaaGPaVlaahMeacqGH9aqpcaWHrbGaaCys aiaahgfadaahaaWcbeqaaiaadsfaaaaaaa@592B@ , so that substituting and factoring:

η D * +K det( F * )1 I=Q ηD+K det(F)1 I Q T =Qσ Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGMaaCiramaaCaaaleqabaGaai OkaaaakiabgUcaRiaadUeadaqadaqaaiGacsgacaGGLbGaaiiDaiaa cIcacaWHgbWaaWbaaSqabeaacaGGQaaaaOGaaiykaiabgkHiTiaaig daaiaawIcacaGLPaaacaWHjbGaeyypa0JaaCyuamaacmaabaGaeq4T dGMaaCiraiabgUcaRiaadUeadaqadaqaaiGacsgacaGGLbGaaiiDai aacIcacaWHgbGaaiykaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWH jbaacaGL7bGaayzFaaGaaCyuamaaCaaaleqabaGaamivaaaakiabg2 da9iaahgfacaWHdpGaaCyuamaaCaaaleqabaGaamivaaaaaaa@57F6@

which is consistent with the required transformation of Cauchy stress σ * =Qσ Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHdpGaaCyuamaaCaaaleqabaGaamivaaaaaaa@3823@  . But a constitutive equation of the form σ=ηL+(Kdet(F)1)I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iabeE7aOjaahYeacq GHRaWkcaGGOaGaam4saiGacsgacaGGLbGaaiiDaiaacIcacaWHgbGa aiykaiabgkHiTiaaigdacaGGPaGaaCysaaaa@402E@  where L denotes the velocity gradient is not material frame indifferent because L * QL Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCitamaaCaaaleqabaGaaiOkaaaaki abgcMi5kaahgfacaWHmbGaaCyuamaaCaaaleqabaGaamivaaaaaaa@37F0@  (see section 2.7).  Of course, this constitutive equation makes no sense in any case, because σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdaaa@322F@  is symmetric and L is not!

 

This does not mean that constitutive equations can only be expressed in terms of frame indifferent tensors, however.   A (rather simple minded) elastic constitutive law that relates material stress to Lagrange strain by the equation

Σ =cE MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4OdmaaCaaaleqabaaaaOGaeyypa0 Jaam4yaiaahweaaaa@3502@

satisfies the principle of material frame indifference, because both material stress and Lagrange strain are invariant under our change of reference frame.

 

Most modern constitutive equations try to describe the underlying microscopic processes that govern its response, and if this is done properly, the law will be frame indifferent.   But some constitutive laws are just curve-fits MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  some mathematical relationship between a deformation measure and a force measure MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  and not all possible relationships will transform correctly.  

 

Problems arise most commonly in trying to develop rate forms of constitutive equations, which are intended to relate some measure of strain rate to stress rate.   For example we might try to express a rather dumb elastic constitutive law in rate form as

dσ dt =cD MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaC4Wdaqaaiaads gacaWG0baaaiabg2da9iaadogacaWHebaaaa@37C5@

 This constitutive equation is not material frame indifferent, because we showed in Section 2.7 that D is a frame indifferent tensor but dσ/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaaho8acaGGVaGaamizaiaads haaaa@35AD@  is not.  It is not hard to see the cause of this problem MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  if we consider a stretched tensile specimen that rotates in space, the stresses would clearly change with time, because the principal directions of stress rotate. But the solid is not changing its shape, so the constitutive law says the stress rate should be zero.   The test for ‘frame indifference’ warns us of this inconsistency.

 

There are various fixes for this MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the constitutive law can be written in terms of invariant quantities (eg by relating the rate of change of material stress to Lagrange strain rate); they can be derived from physical principles, in which case frame indifferent measures usually emerge naturally from the treatment; or frame indifferent measures of time derivatives can be specially constructed.

 

As a specific example, one way to construct a frame indifferent stress rate is to use the rate of change of stress components with respect to a basis that rotates with the solid (this is what an observer rotating with the material would actually see).  This sounds easy MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  we just choose some basis vectors { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  with each basis vector parallel to a particular material fiber.  But this doesn’t quite work, because of course the basis vectors won’t generally remain orthogonal under an arbitrary deformation.   So rather than attach { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah2gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyBamaaBaaaleaacaaIYaaabeaakiaacYcacaWH TbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39F8@  to particular material fibers, we simply suppose that they rotate with the average angular velocity of all material fibers passing through a particular point.  This means that

d m i dt =W m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCyBamaaBaaale aacaWGPbaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iaahEfacaWH TbWaaSbaaSqaaiaadMgaaeqaaaaa@39CB@

where W is the spin tensor.  Now, the time derivative of stress can be written as

dσ dt = d dt ( σ ij m i m j )= d σ ij dt m i m j + σ ij W m i m j + σ ij m i W m j = σ +WσσW MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaC4Wdaqaaiaads gacaWG0baaaiabg2da9maalaaabaGaamizaaqaaiaadsgacaWG0baa aiaacIcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaCyBam aaBaaaleaacaWGPbaabeaakiabgEPielaah2gadaWgaaWcbaGaamOA aaqabaGccaGGPaGaeyypa0ZaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiaadsgacaWG0baaaiaah2gadaWg aaWcbaGaamyAaaqabaGccqGHxkcXcaWHTbWaaSbaaSqaaiaadQgaae qaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaa hEfacaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaCyBamaaBa aaleaacaWGQbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGPbGa amOAaaqabaGccaWHTbWaaSbaaSqaaiaadMgaaeqaaOGaey4LIqSaaC 4vaiaah2gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpdaWfGaqaaiaa ho8aaSqabeaacqGHhis0aaGccqGHRaWkcaWHxbGaaC4WdiabgkHiTi aaho8acaWHxbaaaa@7454@

Here, the first term on the right hand side can be interpreted as the stress rate seen by an observer who rotates with the material; while the second and third are the additional rate of change of stress caused by the rotation of the material.  The first term on the right hand side is called the Jaumann stress rateIt is defined as

σ = dσ dt Wσ+σW MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWHdpaaleqabaGaey4bIe naaOGaeyypa0ZaaSaaaeaacaWGKbGaaC4WdaqaaiaadsgacaWG0baa aiabgkHiTiaahEfacaWHdpGaey4kaSIaaC4WdiaahEfaaaa@3F65@

 We showed in Section 2.7 that σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWHdpaaleqabaGaey4bIe naaaaa@33FE@  is frame indifferent. Many constitutive equations assume that material stretch rate is proportional to this special stress rate.  For example, we could write

σ = C ˜ D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWHdpaaleqabaGaey4bIe naaOGaeyypa0JabC4qayaaiaGaaCiraaaa@36B6@

Provided that C ˜ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4qayaaiaaaaa@31BB@  is a frame indifferent fourth-order tensor, this constitutive equation would be frame indifferent.

 

Hopefully this discussion has convinced you that the principle of material frame indifference is a mathematical consequence of the way we describe stresses and shape changes in a solid, and is necessary to ensure that solid mechanics is self-consistent. The various objections to the principle that can be found in the literature arise because there is a more restrictive (and hence controversial) version of the principle that asserts that a material in a rotating frame (e.g. when tested in a centrifuge) must have the same stress-strain behavior as a stationary specimen.   This happens to be true for virtually all constitutive equations that are in common use, but it is better to regard this as a prediction resulting from the principle of material frame indifference and the particular choice of strain measures in these models, rather than a general assumption about the way materials must behave.   It is perfectly possible to construct continuum theories of solids in which a change in orientation or a nonzero angular velocity will influence the stresses in the material, while satisfying the version of frame indifference described in this book.    These theories need to make use of frame indifferent measures of the angular velocity of the solid (which would depend on the spin Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdaaa@3215@  of the observer relative to the inertial frame). They may also need to use more elaborate descriptions of deformation and internal forces than the constitutive equations discussed in this chapter (e.g. strain measures involving higher order derivatives of the deformation mapping, or force measures quantifying internal moments). 

 

 In closing, however, it is worth pointing out that the solid mechanicians concept of a ‘shape change’ (which leads to the concept of a reference configuration and hence frame indifference) cannot be applied to all materials. For example, suppose we try to apply the conventional view of a solid to model a 2-phase gas that contains atoms of species A and B.    At any instant, we can certainly define a ‘material element’ in the sense of solid mechanics by choosing a reasonably large tetrahedron connecting some suitable subset of 4 atoms in the gas.  We can then define quantities such as ‘density,’  ‘concentration,’  ‘internal material surface’ and so on, and describe the behavior of this volume using the ideas in this book.  We can use this approach to model sound wave propagation through the gas, for example. But this view of a gas becomes problematic if we recall that we also use some separate laws to describe how A and B mix.   For example, if we start with a container in which A and B have a non-uniform concentration, the concentration will gradually evolve to become uniform (assuming the atoms have the same mass or the container is in zero gravity!).  We think of this process as ‘diffusion’ and model it with Fick’s law. But if atoms can diffuse, it becomes difficult to define a ‘material element’ in the sense of solid mechanics, because atoms would slowly cross any imaginary surfaces we place inside the gas. In reality there is no easy way to distinguish between ‘diffusion’ and ‘deformation’ at the atomic scale.   Both are just motion of atoms as a result of interactions with their neighbors MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they just occur at different time scales.  Of course, we would not idealize a gas as a solid in most calculations.  Many theories of gas flow do not use concepts such as a ‘material volume’ and ‘material surface;’ they also do not attempt to describe the undeformed ‘shape’ of a gas.   Instead, they quantify stresses by tractions acting on fixed spatial surfaces, and use stress measures that include contributions from the momentum transport through these surfaces. They also use concepts such as ‘partial stresses’ to quantify the stresses associated with different phases in the gas.   These theories have to be ‘frame indifferent’ in some sense, but the solid mechanics version of frame indifference does not apply.  This may sound appealing to those who question the principle of material frame indifference, but theories that describe gas or fluid flow are difficult to apply to solids, because they cannot easily describe the tendency of a solid to return to a preferred shape when it is unloaded. They do not even have a clear description of how external forces act on a physical element of material.  Perhaps in future a unified continuum theory will emerge that does not distinguish between gases, fluids and solids.   In the meantime, we have to remember that all our models are approximations, and apply them only when these approximations are valid.

 

 

 

3.1.3 Drucker Stability 

 

For most practical applications, the constitutive equation must satisfy a condition known as the Drucker stability criterion, which can be expressed as follows.  Consider a deformable solid, subjected to boundary tractions t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F2@ , which induce some displacement field u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@ , as shown in the figure. Suppose that the tractions are increased to t i +Δ t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaki abgUcaRiabfs5aejaadshadaWgaaWcbaGaamyAaaqabaaaaa@3757@ , resulting in an additional displacement Δ u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaaaaa@345A@ . The material is said to be stable in the sense of Drucker if the work done by the tractions Δ t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDamaaBaaaleaacaWGPb aabeaaaaa@3458@  through the displacements Δ u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaaaaa@3459@  is positive or zero for all Δ t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDamaaBaaaleaacaWGPb aabeaaaaa@3458@ :

ΔW= A Δ t i dΔ u i dt dt0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaam4vaiabg2da9maapeaaba WaaiWaaeaadaWdrbqaaiabfs5aejaadshadaWgaaWcbaGaamyAaaqa baGcdaWcaaqaaiaadsgacqqHuoarcaWG1bWaaSbaaSqaaiaadMgaae qaaaGcbaGaamizaiaadshaaaaaleaacaWGbbaabeqdcqGHRiI8aaGc caGL7bGaayzFaaaaleqabeqdcqGHRiI8aOGaamizaiaadshacqGHLj YScaaIWaaaaa@49BB@

You can show that this condition is satisfied as long as the stress-strain relation obeys

Δ τ ij Δ ε ij 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqiXdq3aaSbaaSqaaiaadM gacaWGQbaabeaakiabfs5aejabew7aLnaaBaaaleaacaWGPbGaamOA aaqabaGccqGHLjYScaaIWaaaaa@3DBE@

where Δ τ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqiXdq3aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@3614@  is the change in Kirchhoff stress, and Δ ε ij =(Δ u i / x j +Δ u j / x i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9iaacIcacqGHciITcqqHuoarcaWG1bWa aSbaaSqaaiaadMgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcba GaamOAaaqabaGccqGHRaWkcqGHciITcqqHuoarcaWG1bWaaSbaaSqa aiaadQgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamyAaa qabaGccaGGPaaaaa@4B8B@  is an increment in strain resulting from an infinitesimal change in displacement Δ u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaaaaa@345A@ .

 

This is not a thermodynamic law (the work done by the change in tractions is not a physically meaningful quantity), and there is nothing to say that real materials have to satisfy Drucker stability. In fact, many materials show clear signs that they are not stable in the sense of Drucker.   However, if you try to solve a boundary value problem for a material that violates the Drucker stability criterion, you are likely to run into trouble.  The problem will probably not have a unique solution, and in addition you are likely to find that smooth curves on the undeformed solid develop kinks (and may not even be continuous) after the solid is deformed.  This kind of deformation violates one of the fundamental assumptions underlying continuum constitutive equations. 

 

A simple example of a stress-strain curve for material that is not stable in the sense of Drucker is shown in the figure. The stability criterion is violated wherever the stress decreases with strain in tension, or increases with strain in compression. For the former we see that Δ σ 11 <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeq4Wdm3aaSbaaSqaaiaaig dacaaIXaaabeaakiabgYda8iaaicdaaaa@3773@ , while Δ ε 11 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaaig dacaaIXaaabeaakiabg6da+iaaicdaaaa@375B@ ; for the latter Δ σ 11 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeq4Wdm3aaSbaaSqaaiaaig dacaaIXaaabeaakiabg6da+iaaicdaaaa@3777@ , while Δ ε 11 <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaaig dacaaIXaaabeaakiabgYda8iaaicdaaaa@3757@ .

 

In the following chapter, we outline constitutive laws that were developed to approximate the behavior of a wide range of materials, including polycrystalline metals and non-metals; elastomers; polymers; biological tissue; soils; and metal single crystals.  A few additional material models, which account for material failure, are described in Chapter 9.