3.12 Constitutive models for metal single crystals

 

Plastic flow in a single crystal is anisotropic, and so cannot be modeled using the simple constitutive equations described in Section 3.7.  Instead, a more complicated constitutive law is used, which considers the slip activity in the crystal directly. The main application of the constitutive equation is to model the rotations of individual grains in a polycrystal, and hence to predict the evolution of texture, and to account for the effects of texture on the development of anisotropy in the solid.

 

 

 

3.12.1 Review of some important concepts from crystallography

 

Common crystal structures

 

Most metal crystals of practical interest have either face centered cubic, body centered cubic, or hexagonal crystal structures.  These are illustrated below.  Crystal plasticity models exist for all three crystal structures, but fcc materials are the most extensively studied.


 

 

 

Miller index notation for crystallographic planes and directions

 

Planes and directions in a single crystal are referred to as follows.   For a cubic crystal, we choose basis vectors { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  perpendicular to the faces of the basic cubic unit cell, as illustrated in the picture.  Then

 

1. The symbol [l,m,n], where l,m,n are positive integers, denotes a direction parallel to a unit vector with components l e 1 +m e 2 +n e 3 / l 2 + m 2 + n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyzamaaBaaale aacaaIXaaabeaakiabgUcaRiaad2gacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaahwgadaWgaaWcbaGaaG4maaqabaaaki aawIcacaGLPaaacaGGVaWaaOaaaeaacaWGSbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyBamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aad6gadaahaaWcbeqaaiaaikdaaaaabeaaaaa@44CF@

 

2. The symbol [l, m ¯ ,n] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadYgacaGGSaGabmyBayaara Gaaiilaiaad6gacaGGDbaaaa@36EE@  denotes a direction parallel to the unit vector with components l e 1 m e 2 +n e 3 / l 2 + m 2 + n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyzamaaBaaale aacaaIXaaabeaakiabgkHiTiaad2gacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaahwgadaWgaaWcbaGaaG4maaqabaaaki aawIcacaGLPaaacaGGVaWaaOaaaeaacaWGSbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyBamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aad6gadaahaaWcbeqaaiaaikdaaaaabeaaaaa@44DA@

 

 

3. The symbol <l,m,n> denotes the family of [l,m,n] directions that are identical due to the symmetry of the crystal.  For example <111> MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyipaWJaaGymaiaaigdacaaIXaGaey Opa4daaa@351D@  in a cubic crystal includes all of

[111],[ 1 ¯ 11],[1 1 ¯ 1],[11 1 ¯ ],[ 1 ¯ 1 ¯ 1],[ 1 ¯ 1 1 ¯ ],[1 1 ¯ 1 ¯ ],[ 1 ¯ 1 ¯ 1 ¯ ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaaigdacaaIXaGaaGymaiaac2 facaGGSaGaai4waiqaigdagaqeaiaaigdacaaIXaGaaiyxaiaacYca caGGBbGaaGymaiqaigdagaqeaiaaigdacaGGDbGaaiilaiaacUfaca aIXaGaaGymaiqaigdagaqeaiaac2facaGGSaGaai4waiqaigdagaqe aiqaigdagaqeaiaaigdacaGGDbGaaiilaiaacUfaceaIXaGbaebaca aIXaGabGymayaaraGaaiyxaiaacYcacaGGBbGaaGymaiqaigdagaqe aiqaigdagaqeaiaac2facaGGSaGaai4waiqaigdagaqeaiqaigdaga qeaiqaigdagaqeaiaac2faaaa@5658@ .

 

4. The symbol (l,m,n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadYgacaGGSaGaamyBaiaacY cacaWGUbGaaiykaaaa@366F@  denotes a plane that is perpendicular to a unit vector with components l e 1 +m e 2 +n e 3 / l 2 + m 2 + n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyzamaaBaaale aacaaIXaaabeaakiabgUcaRiaad2gacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaahwgadaWgaaWcbaGaaG4maaqabaaaki aawIcacaGLPaaacaGGVaWaaOaaaeaacaWGSbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyBamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aad6gadaahaaWcbeqaaiaaikdaaaaabeaaaaa@44CF@

 

5. The symbol (l, m ¯ ,n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadYgacaGGSaGabmyBayaara Gaaiilaiaad6gacaGGPaaaaa@3687@  denotes a plane that is perpendicular to a unit vector with components l e 1 m e 2 +n e 3 / l 2 + m 2 + n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyzamaaBaaale aacaaIXaaabeaakiabgkHiTiaad2gacaWHLbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaahwgadaWgaaWcbaGaaG4maaqabaaaki aawIcacaGLPaaacaGGVaWaaOaaaeaacaWGSbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamyBamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aad6gadaahaaWcbeqaaiaaikdaaaaabeaaaaa@44DA@

 

6. The symbol {l,m,n} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaadYgacaGGSaGaamyBaiaacY cacaWGUbGaaiyFaaaa@3716@  denotes the family of (l,m,n) planes that are crystallographically identical by symmetry.

 

For a hexagonal crystal, planes and directions are defined by introducing four auxiliary unit vectors m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaWGPbaabeaaaa a@32F0@ , i=1...4 as shown in the figure above.  The first three unit vectors lie in the basal plane and are oriented parallel to the three shortest distances between neighboring atoms.  The fourth vector is perpendicular to the basal plane.  These vectors are related to a Cartesian basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  by

m 1 = e 1 m 2 = e 1 + 3 e 2 /2 m 3 = e 1 3 e 2 /2 m 4 = e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaki abg2da9iaahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWHTbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaeWa aeaacqGHsislcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaO aaaeaacaaIZaaaleqaaOGaaCyzamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaiaac+cacaaIYaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaG4maaqaba GccqGH9aqpdaqadaqaaiabgkHiTiaahwgadaWgaaWcbaGaaGymaaqa baGccqGHsisldaGcaaqaaiaaiodaaSqabaGccaWHLbWaaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWHTbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaaCyzamaaBaaale aacaaIZaaabeaaaaa@9A25@

Then

 

1. The symbol [l,m,n,p], where l,m,n,p are positive integers, denotes a direction parallel to a unit vector   l m 1 +m m 2 +n m 3 +p m 4 / l 2 + m 2 + n 2 lmlnmn+ p 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyBamaaBaaale aacaaIXaaabeaakiabgUcaRiaad2gacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GHRaWkcaWGWbGaaCyBamaaBaaaleaacaaI0aaabeaaaOGaayjkaiaa wMcaaiaac+cadaGcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOBamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaadYgacaWGTbGaeyOeI0Iaam iBaiaad6gacqGHsislcaWGTbGaamOBaiabgUcaRiaadchadaahaaWc beqaaiaaikdaaaaabeaaaaa@53E5@

 

2. A bar over one of the indices [ l ¯ ,m,n,p] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiqadYgagaqeaiaacYcacaWGTb Gaaiilaiaad6gacaGGSaGaamiCaiaac2faaaa@3893@  changes the sign of the index, exactly as for cubic crystals;

 

3. The symbol <l,m,n,p> denotes the family of [l,m,n,p] directions that are crystallographically identical by symmetry. 

 

4. The symbol (l,m,n,p) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadYgacaGGSaGaamyBaiaacY cacaWGUbGaaiilaiaadchacaGGPaaaaa@3814@  denotes a plane that is perpendicular to a unit vector with components l m 1 +m m 2 +n m 3 +p m 4 / l 2 + m 2 + n 2 lmlnmn+ p 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyBamaaBaaale aacaaIXaaabeaakiabgUcaRiaad2gacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GHRaWkcaWGWbGaaCyBamaaBaaaleaacaaI0aaabeaaaOGaayjkaiaa wMcaaiaac+cadaGcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOBamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaadYgacaWGTbGaeyOeI0Iaam iBaiaad6gacqGHsislcaWGTbGaamOBaiabgUcaRiaadchadaahaaWc beqaaiaaikdaaaaabeaaaaa@53E5@

 

5. The symbol (l, m ¯ ,n,p) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadYgacaGGSaGabmyBayaara Gaaiilaiaad6gacaGGSaGaamiCaiaacMcaaaa@382C@  denotes a plane that is perpendicular to a unit vector with components l m 1 m m 2 +n m 3 +p m 4 / l 2 + m 2 + n 2 lmlnmn+ p 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGSbGaaCyBamaaBaaale aacaaIXaaabeaakiabgkHiTiaad2gacaWHTbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaamOBaiaah2gadaWgaaWcbaGaaG4maaqabaGccq GHRaWkcaWGWbGaaCyBamaaBaaaleaacaaI0aaabeaaaOGaayjkaiaa wMcaaiaac+cadaGcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOBamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaadYgacaWGTbGaeyOeI0Iaam iBaiaad6gacqGHsislcaWGTbGaamOBaiabgUcaRiaadchadaahaaWc beqaaiaaikdaaaaabeaaaaa@53F0@

 

6. The symbol {l,m,n,p} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaadYgacaGGSaGaamyBaiaacY cacaWGUbGaaiilaiaadchacaGG9baaaa@38BB@  denotes the family of (l,m,n,p) planes that are crystallographically identical by symmetry.

 

 

Representing crystallographic directions and orientations using stereographic projections

 

Stereographic projection is a way to represent 3D orientations on a 2D plane.  The figure shows one way to interpret the projection:

 

1. The specimen is placed in the center of an imaginary sphere with unit radius, with some convenient material directions aligned with the {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis. 

 

2. A direction of interest is represented by a unit vector m=xi+yj+zk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBaiabg2da9iaadIhacaWHPbGaey 4kaSIaamyEaiaahQgacqGHRaWkcaWG6bGaaC4Aaaaa@3A73@ , which intersects the sphere at some point P on its surface.  

 

3. A line is then drawn from P to the point where the k axis intersects the sphere at Q.

 

4. The line PQ cuts through the equatorial plane of the sphere at some point R

 

5. The vector OR ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8HaaeaacaWGpbGaamOuaaGaay51Ga GaeyyyIORaaCyWdaaa@3755@  is the stereographic projection of the orientation m.

 

6. The general conversion between the 2D projection and the 3D unit vector is easily shown to be

ρ= m(mk)k 1+mk m= 2ρ+k 1ρρ 1+ρρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyWdiabg2da9maalaaabaGaaCyBai abgkHiTiaacIcacaWHTbGaeyyXICTaaC4AaiaacMcacaWHRbaabaGa aGymaiabgUcaRiaah2gacqGHflY1caWHRbaaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaCyBaiabg2da9maalaaabaGaaGOmaiaahg8acqGHRaWkcaWHRb WaaeWaaeaacaaIXaGaeyOeI0IaaCyWdiabgwSixlaahg8aaiaawIca caGLPaaaaeaacaaIXaGaey4kaSIaaCyWdiabgwSixlaahg8aaaaaaa@66F2@

 

7. The symmetry of the crystal makes the ±m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyySaeRaaCyBaaaa@33C4@  directions equivalent.  For this reason, projections usually only show vectors with a positive k component (the projection of a vector with a negative k component lies outside the sphere)

 

 

Pole figures and inverse pole figures

 

In crystal plasticity, the projection is used in two ways. In one approach, specific crystallographic directions are chosen to be aligned with the {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  directions, and other directions of interest (which could be other crystallographic directions, or the direction of the loading axis in a tensile test, for example) are projected. This is known as an inverse pole figure.

 


 

For example, the figure above shows the standard projection for a cubic crystal. To interpret the figure, note that

 

1. The [100],[010] and [001] directions are parallel to i, j, k, respectively. HEALTH WARNING: this is not the only choice of crystal orientation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  you will often see the inverse pole figure with [100] parallel to k, for example.

 

2. The points mark the projections of the specified crystallographic directions.

 

3. The lines mark the traces of the planes specified: that is to say, the projection of the line where the plane intersects the surface of the unit sphere. 

 

4. The figure also shows the standard triangle for a cubic crystal.  Notice that the traces of the planes divide the plane into a set of 24 curvilinear triangles, each of which has  <100>, <110> and <111> directions at its corners.  These triangles are indistinguishable because of the symmetry of the crystal MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  you could interchange any two triangles by applying an appropriate rigid rotation to the crystal, without influencing the arrangement of atoms.   This has important consequences: for example, when testing the response of a cubic crystal to uniaxial tension, you only need to run tests with the loading direction inside the standard triangle.  For this reason, inverse pole figures often only display the standard triangle. 

 

 

A second application of the stereographic projection in crystal plasticity is to display pole figures.  In this approach, specific physical directions are chosen to be aligned with the {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis, and the orientations of crystallographic directions of interest are displayed on the projection. 

 

For example, when a pole figure is plotted for a rolled sheet specimen, the rolling direction (denoted RD) is often chosen to be parallel to j, the direction transverse to the rolling direction in the plane of the sheet (denoted TD) is chosen to be parallel to i, and the direction perpendicular to the sheet (denoted ND) is chosen to be parallel to k.  The sheet generally contains many grains, and each grain is a single crystal.  The orientations the grains are displayed on a pole figure by choosing some convenient crystallographic direction (<100> or <111> are common) and plotting the stereographic projection for each member of this family of crystallographic directions.  In a cubic crystal, each grain contributes four points to the projection (there are 8 <100> directions but only 4 of them have positive k component).  A typical <100> pole figure for a rolled aluminum sheet after a 40% reduction is shown in the figure.    The pole figure shows that grain orientations tend to cluster together, indicating that the sheet has developed a texture.

 

 

 

 

3.12.2 Features of plastic flow in single crystals

 

Plastic flow in a crystal is most often measured by conducting a tensile test with the loading axis parallel to a chosen crystallographic direction.  The main results of these experiments are:

 


 

1. For most orientations of the loading axis, the plastic flow initially consists of shearing parallel to one member of a family crystallographic planes in the crystal, in the direction of a vector s lying in that plane, as illustrated in the picture above.  The crystallographic plane on which shear occurs is called a slip plane.  The shearing direction is known as the slip Direction.  Slip planes and directions for common crystals are listed in the table below.

 


 

2. Crystals contain a large number of candidate slip systems.  For example, an fcc crystal contains 12 possible slip systems.  These are conventionally designated as listed in the table below.

 


 

3. The slip systems in the undeformed crystal are identified by unit vectors m α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaCaaaleqabaGaeqySdegaaa aa@33A2@  normal to the slip plane, together with unit vectors s α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4CamaaCaaaleqabaGaeqySdegaaa aa@33A8@  parallel to the slip direction. Here α=1...N MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0JaaGymaiaac6caca GGUaGaaiOlaiaad6eaaaa@3729@  and N denotes the total number of slip systems (eg N=12 for an fcc crystal).  The crystal can rotate during deformation.  In the deformed solid the slip plane normals and slip directions are denoted m *α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaCaaaleqabaGaaiOkaiabeg 7aHbaaaaa@3450@ , s *α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4CamaaCaaaleqabaGaaiOkaiabeg 7aHbaaaaa@3456@ .

 

4. In a tensile test on an annealed fcc single crystal, shearing occurs on the slip system that is subjected to the largest resolved shear stress.  The resolved shear stress on the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  th system can be computed from the Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  acting on the solid as

τ α =J σ ij m i *α s j *α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaWbaaSqabeaacqaHXoqyaa GccqGH9aqpcaWGkbGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaa kiaad2gadaqhaaWcbaGaamyAaaqaaiaacQcacqaHXoqyaaGccaWGZb Waa0baaSqaaiaadQgaaeaacaGGQaGaeqySdegaaaaa@42EB@

where J=dV/d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iaadsgacaWGwbGaai 4laiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaa@37D6@  is the ratio of deformed to undeformed volume of the specimen ( J1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabgIKi7kaaigdaaaa@341B@  ). For example, the inverse pole figure in Fig. 3.65 <Figure 3.65 near here>  shows the active slip system for all possible orientations of the tensile axis with respect to an fcc crystal (a bar over a slip system indicates a negative resolved shear stress).  In materials with other crystal structures, some slip systems may be inherently stronger than others.  In this case slip occurs on the system with highest value of τ α / g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaWbaaSqabeaacqaHXoqyaa GccaGGVaGaam4zamaaCaaaleqabaGaeqySdegaaaaa@37E6@ , where g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaeqySdegaaa aa@3398@  denotes the strengths of the slip systems

 

5. Slip on the critical system initiates when the resolved shear stress exceeds a critical magnitude (the strength of the slip system) τ α > g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaWbaaSqabeaacqaHXoqyaa GccqGH+aGpcaWGNbWaaWbaaSqabeaacqaHXoqyaaaaaa@383B@ .  The strength of the slip systems increases with plastic straining: this behavior will be discussed in more detail later.

 

6. For special orientations of the tensile axis, more than one slip system may be activated.  For example, if an fcc crystal is loaded parallel to a <100> direction, 8 slip systems are subjected to the same resolved shear stress, and so are active at the same time (the inverse pole figure below  shows the active systems)

 

 


 

7. The deformation gradient resulting from a shear strain γ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaWbaaSqabeaacqaHXoqyaa aaaa@3453@  on the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  th system is

F ij = R ik δ kj + γ α s k α m j α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGsbWaaSbaaSqaaiaadMgacaWGRbaabeaakmaa bmaabaGaeqiTdq2aaSbaaSqaaiaadUgacaWGQbaabeaakiabgUcaRi abeo7aNnaaCaaaleqabaGaeqySdegaaOGaam4CamaaDaaaleaacaWG RbaabaGaeqySdegaaOGaamyBamaaDaaaleaacaWGQbaabaGaeqySde gaaaGccaGLOaGaayzkaaaaaa@48C6@

where R ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C0@  is a proper orthogonal tensor (i.e. det(R)=1, R ik R jk = δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaWGPbGaam4Aaa qabaGccaWGsbWaaSbaaSqaaiaadQgacaWGRbaabeaakiabg2da9iab es7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3B6B@  ), representing a rigid rotation.  The rotation is determined by the way the solid is loaded.   For example, in a tensile test, R ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C0@  is often calculated from the condition that the material fiber parallel to the loading axis (specified by a unit vector p) does not rotate during deformation, as shown in the figure below.

 


 

This gives

R ij = δ ij cosθ+(1cosθ) n i n j +sinθ ikj n k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaaiikaiaaigdacqGHsi slciGGJbGaai4BaiaacohacqaH4oqCcaGGPaGaamOBamaaBaaaleaa caWGPbaabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGHRaWkci GGZbGaaiyAaiaac6gacqaH4oqCcqGHiiIZdaWgaaWcbaGaamyAaiaa dUgacaWGQbaabeaakiaad6gadaWgaaWcbaGaam4Aaaqabaaaaa@55B2@

where

n i = ijk s j p k / 1 ( p i s i α ) 2 cosθ=(1+ γ α p i s i α p k m k α )/C sinθ= γ α ( p i m i α ) 1 ( p i s i α ) 2 /C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGUbWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4Aaaqa baGccaWGZbWaaSbaaSqaaiaadQgaaeqaaOGaamiCamaaBaaaleaaca WGRbaabeaakiaac+cadaGcaaqaamaabmaabaGaaGymaiabgkHiTiaa cIcacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaam4CamaaDaaaleaaca WGPbaabaGaeqySdegaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaWcbeaaaOqaaiGacogacaGGVbGaai4CaiabeI7aXj abg2da9iaacIcacaaIXaGaey4kaSIaeq4SdC2aaWbaaSqabeaacqaH XoqyaaGccaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaam4CamaaDaaale aacaWGPbaabaGaeqySdegaaOGaamiCamaaBaaaleaacaWGRbaabeaa kiaad2gadaqhaaWcbaGaam4Aaaqaaiabeg7aHbaakiaacMcacaGGVa Gaam4qaaqaaiGacohacaGGPbGaaiOBaiabeI7aXjabg2da9iabeo7a NnaaCaaaleqabaGaeqySdegaaOGaaiikaiaadchadaWgaaWcbaGaam yAaaqabaGccaWGTbWaa0baaSqaaiaadMgaaeaacqaHXoqyaaGccaGG PaWaaOaaaeaadaqadaqaaiaaigdacqGHsislcaGGOaGaamiCamaaBa aaleaacaWGPbaabeaakiaadohadaqhaaWcbaGaamyAaaqaaiabeg7a HbaakiaacMcadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaS qabaGccaGGVaGaam4qaaaaaa@7F3E@

and

C= 1+ γ α2 ( p i m i α ) 2 +2 γ α p i s i α p k m k α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiabg2da9maakaaabaGaaGymai abgUcaRiabeo7aNnaaCaaaleqabaGaeqySdeMaaGOmaaaakiaacIca caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaamyBamaaDaaaleaacaWGPb aabaGaeqySdegaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUca RiaaikdacqaHZoWzdaahaaWcbeqaaiabeg7aHbaakiaadchadaWgaa WcbaGaamyAaaqabaGccaWGZbWaa0baaSqaaiaadMgaaeaacqaHXoqy aaGccaWGWbWaaSbaaSqaaiaadUgaaeqaaOGaamyBamaaDaaaleaaca WGRbaabaGaeqySdegaaaqabaaaaa@5167@

  Other assumptions are also used to calculate R.

 

8. The crystal lattice is rotated by R, so that after deformation s i * = R ij s j m i * = R ij m j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaDaaaleaacaWGPbaabaGaai Okaaaakiabg2da9iaadkfadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa am4CamaaBaaaleaacaWGQbaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaad2gadaqhaaWcbaGaamyAaaqaaiaacQcaaaGc cqGH9aqpcaWGsbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaad2gada WgaaWcbaGaamOAaaqabaaaaa@4BBC@  for all the slip systems.

 

9. The rate of deformation resulting from a shearing rate γ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaiaadaahaaWcbeqaaiabeg 7aHbaaaaa@345C@  on the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  th system is

L ij = F ˙ ip F pj 1 = R ˙ ik R jk + R ik γ ˙ α s k α m p α R jp = R ˙ ik R jk + γ ˙ α s i *α m j *α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpceWGgbGbaiaadaWgaaWcbaGaamyAaiaadchaaeqa aOGaamOramaaDaaaleaacaWGWbGaamOAaaqaaiabgkHiTiaaigdaaa GccqGH9aqpceWGsbGbaiaadaWgaaWcbaGaamyAaiaadUgaaeqaaOGa amOuamaaBaaaleaacaWGQbGaam4AaaqabaGccqGHRaWkcaWGsbWaaS baaSqaaiaadMgacaWGRbaabeaakiqbeo7aNzaacaWaaWbaaSqabeaa cqaHXoqyaaGccaWGZbWaa0baaSqaaiaadUgaaeaacqaHXoqyaaGcca WGTbWaa0baaSqaaiaadchaaeaacqaHXoqyaaGccaWGsbWaaSbaaSqa aiaadQgacaWGWbaabeaakiabg2da9iqadkfagaGaamaaBaaaleaaca WGPbGaam4AaaqabaGccaWGsbWaaSbaaSqaaiaadQgacaWGRbaabeaa kiabgUcaRiqbeo7aNzaacaWaaWbaaSqabeaacqaHXoqyaaGccaWGZb Waa0baaSqaaiaadMgaaeaacaGGQaGaeqySdegaaOGaamyBamaaDaaa leaacaWGQbaabaGaaiOkaiabeg7aHbaaaaa@68FD@

This can be decomposed into a symmetric part, representing a stretching, together with a skew part, representing a spin, as

L ij = D ij + W ij W ij = R ˙ ik R jk + γ ˙ α ( s i *α m j *α s j *α m i *α )/2 D ij = γ ˙ α ( s i *α m j *α + s j *α m i *α )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGmbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaadseadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaey4kaSIaam4vamaaBaaaleaacaWGPbGaamOAaaqabaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVdqaaiaadEfadaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaeyypa0JabmOuayaacaWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa dkfadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaey4kaSIafq4SdCMbai aadaahaaWcbeqaaiabeg7aHbaakiaacIcacaWGZbWaa0baaSqaaiaa dMgaaeaacaGGQaGaeqySdegaaOGaamyBamaaDaaaleaacaWGQbaaba GaaiOkaiabeg7aHbaakiabgkHiTiaadohadaqhaaWcbaGaamOAaaqa aiaacQcacqaHXoqyaaGccaWGTbWaa0baaSqaaiaadMgaaeaacaGGQa GaeqySdegaaOGaaiykaiaac+cacaaIYaGaaGPaVlaaykW7aeaacaWG ebWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iqbeo7aNzaaca WaaWbaaSqabeaacqaHXoqyaaGccaGGOaGaam4CamaaDaaaleaacaWG PbaabaGaaiOkaiabeg7aHbaakiaad2gadaqhaaWcbaGaamOAaaqaai aacQcacqaHXoqyaaGccqGHRaWkcaWGZbWaa0baaSqaaiaadQgaaeaa caGGQaGaeqySdegaaOGaamyBamaaDaaaleaacaWGPbaabaGaaiOkai abeg7aHbaakiaacMcacaGGVaGaaGOmaaaaaa@8FCE@

Here, the first term in W ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C5@  represents the rotation of the lattice, while the second term is the spin due to lattice shearing.

 

10. In a tensile test oriented for single slip, the crystal rotates so as to align the slip direction with the loading axis.  This rotation is illustrated for an fcc crystal on the inverse pole figure shown.    Eventually, the crystal rotates far enough to activate a second slip system.  The exact point where this occurs depends on how the crystal hardens; it usually occurs shortly before the loading axis moves out of the standard triangle.  The rotation direction changes after the second slip system becomes active: eventually, the loading axis aligns with the [112] direction. This is a stable orientation, and the crystal continues to deform in double slip without further rotation.

 

11. The resistance of each slip plane to shearing increases with plastic strain, due to strain hardening.   A typical stress-strain curve for a single crystal that is initially oriented for single slip is illustrated in the figure.  The curve is divided into three characteristic regions. Stage I corresponds to the period while a single slip system is active, and has a low hardening rate (resulting from self hardening); Stage II begins when a second slip system activates, and has a higher hardening rate (resulting from both self and latent hardening); while Stage III occurs at large strains, and the hardening rate decreases due to dynamic recovery.  The hardening rates in Stages I and II are insensitive to temperature; but the Stage III hardening rate decreases with temperature.

 

12. Shearing on the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  th system increases its own strength g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaeqySdegaaa aa@3398@ : this is known as self-hardening.  Shearing on the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  th system also increases the strength of all the other slip systems g β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaeqOSdigaaa aa@339A@ , βα MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyiyIKRaeqySdegaaa@35E7@ : this is known as latent hardening.  Self-hardening can be measured using single-slip tests.  Latent hardening is often measured by first deforming the material in single slip, then re-loading the specimen to activate a second slip system.   Latent hardening is often quantified by the Latent Hardening Ratio, which specifies the ratio of the strength of the second system to that of the first q αβ = g β / g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaCaaaleqabaGaeqySdeMaeq OSdigaaOGaeyypa0Jaam4zamaaCaaaleqabaGaeqOSdigaaOGaai4l aiaadEgadaahaaWcbeqaaiabeg7aHbaaaaa@3C82@ .  The details of the hardening behavior of single crystals are very complex, and at present there is no consensus on how best to measure or characterize hardening.

 

13. Lattice rotation during a tensile test gives rise to a phenomenon known as `geometric softening,’ which plays an important role in shear localization in single crystals.  The term `geometric softening’ refers to the fact that the crystal may rotate so as to increase the resolved shear stress on its active slip system, and therefore lead to a decrease in the tensile flow stress of the crystal.

 

 

 

3.12.3 Kinematic descriptions used in constitutive models of single crystals

 

Let x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  be the position of a material particle in the undeformed crystal. Suppose that the solid is subjected to a displacement field u i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaa@367A@ , so that the point at x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  moves to y i = x i + u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadMgaaeqaaaaa@391F@ , as shown below.

 


 

 

Define

 

· The deformation gradient and its jacobian

F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@4070@        J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaaaa@37A8@

 

· The velocity gradient

L ij = u ˙ i y j = F ˙ ik F kj 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2kqadwhagaGaamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqaba aaaOGaeyypa0JabmOrayaacaWaaSbaaSqaaiaadMgacaWGRbaabeaa kiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaacqGHsislcaaIXaaaaa aa@445D@

 

· The stretch rate and spin

D ij =( L ij + L ji )/2 W ij =( L ij L ji )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaGGOaGaamitamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHRaWkcaWGmbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaacM cacaGGVaGaaGOmaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadEfadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey ypa0JaaiikaiaadYeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOe I0IaamitamaaBaaaleaacaWGQbGaamyAaaqabaGccaGGPaGaai4lai aaikdaaaa@70AE@

 

· Recall that F ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B4@  relates infinitesimal material fibers d y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaaaaa@33E1@  and d x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIhadaWgaaWcbaGaamyAaa qabaaaaa@33E0@  in the deformed and undeformed solid, respectively, as

d y i = F ij d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa@3AD0@

 

· To decompose the deformation gradient into elastic and plastic parts, we assume that deformation takes place in two stages.  The plastic strain is assumed to shear the lattice, without stretching or rotating it.  The elastic deformation rotates and stretches the lattice. We think of these two events occurring in sequence, with the plastic deformation first, and the stretch and rotation second, giving

d y i = F ij d x j = F ik e F kj p d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaamOramaaDa aaleaacaWGPbGaam4AaaqaaiaadwgaaaGccaWGgbWaa0baaSqaaiaa dUgacaWGQbaabaGaamiCaaaakiaadsgacaWG4bWaaSbaaSqaaiaadQ gaaeqaaaaa@4681@

 

· To decompose the velocity gradient into elastic and plastic parts, note that

L ij = F ˙ ik F kj 1 = F ˙ ik e F kl p + F ik e F ˙ kl p F lm p1 F mj e1 = F ˙ ik e F kj e1 + F ik e F ˙ kl p F lm p1 F mj e1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpceWGgbGbaiaadaWgaaWcbaGaamyAaiaadUgaaeqa aOGaamOramaaDaaaleaacaWGRbGaamOAaaqaaiabgkHiTiaaigdaaa GccqGH9aqpdaqadaqaaiqadAeagaGaamaaDaaaleaacaWGPbGaam4A aaqaaiaadwgaaaGccaWGgbWaa0baaSqaaiaadUgacaWGSbaabaGaam iCaaaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaiaadUgaaeaacaWG LbaaaOGabmOrayaacaWaa0baaSqaaiaadUgacaWGSbaabaGaamiCaa aaaOGaayjkaiaawMcaamaabmaabaGaamOramaaDaaaleaacaWGSbGa amyBaaqaaiaadchacqGHsislcaaIXaaaaOGaamOramaaDaaaleaaca WGTbGaamOAaaqaaiaadwgacqGHsislcaaIXaaaaaGccaGLOaGaayzk aaGaeyypa0JabmOrayaacaWaa0baaSqaaiaadMgacaWGRbaabaGaam yzaaaakiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaacaWGLbGaeyOe I0IaaGymaaaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaiaadUgaae aacaWGLbaaaOGabmOrayaacaWaa0baaSqaaiaadUgacaWGSbaabaGa amiCaaaakiaadAeadaqhaaWcbaGaamiBaiaad2gaaeaacaWGWbGaey OeI0IaaGymaaaakiaadAeadaqhaaWcbaGaamyBaiaadQgaaeaacaWG LbGaeyOeI0IaaGymaaaaaaa@7948@

Thus the velocity gradient contains two terms, one of which involves only measures of elastic deformation, while the other contains measures of plastic deformation.  We use this to decompose L into elastic and plastic parts

L ij = L ij e + L ij p L ij e = F ˙ ik e F kj e1 L ij p = F ik e F ˙ kl p F lm p1 F mj e1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGmbWaa0baaSqaaiaadMgacaWGQbaabaGaamyz aaaakiabgUcaRiaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWb aaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGmbWaa0baaSqaaiaadMgacaWGQb aabaGaamyzaaaakiabg2da9iqadAeagaGaamaaDaaaleaacaWGPbGa am4AaaqaaiaadwgaaaGccaWGgbWaa0baaSqaaiaadUgacaWGQbaaba GaamyzaiabgkHiTiaaigdaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaa aOGaeyypa0JaamOramaaDaaaleaacaWGPbGaam4Aaaqaaiaadwgaaa GcceWGgbGbaiaadaqhaaWcbaGaam4AaiaadYgaaeaacaWGWbaaaOGa amOramaaDaaaleaacaWGSbGaamyBaaqaaiaadchacqGHsislcaaIXa aaaOGaamOramaaDaaaleaacaWGTbGaamOAaaqaaiaadwgacqGHsisl caaIXaaaaaaa@897B@

 

· Plastic flow in the crystal occurs by shearing a set of N slip systems.  The slip systems are characterized by unit vectors parallel to slip directions s i α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaDaaaleaacaWGPbaabaGaeq ySdegaaaaa@3492@  and slip plane normals m i α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaDaaaleaacaWGPbaabaGaeq ySdegaaaaa@348C@  in the undeformed solid.  The rate of shear on the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  th system is denoted by γ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaiaadaahaaWcbeqaaiabeg 7aHbaaaaa@345C@ .  The velocity gradient due to this shearing is

F ˙ ik p F kj p1 = α=1 N γ ˙ α s i α m j α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOrayaacaWaa0baaSqaaiaadMgaca WGRbaabaGaamiCaaaakiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaa caWGWbGaeyOeI0IaaGymaaaakiabg2da9maaqahabaGafq4SdCMbai aadaahaaWcbeqaaiabeg7aHbaakiaadohadaqhaaWcbaGaamyAaaqa aiabeg7aHbaakiaad2gadaqhaaWcbaGaamOAaaqaaiabeg7aHbaaae aacqaHXoqycqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaaa@4C9B@

 

· It is convenient to define vectors that describe plastic shearing in the current configuration, as 

s i *α = F ik e s k α m i *α = m k α F ki e1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaDaaaleaacaWGPbaabaGaai Okaiabeg7aHbaakiabg2da9iaadAeadaqhaaWcbaGaamyAaiaadUga aeaacaWGLbaaaOGaam4CamaaDaaaleaacaWGRbaabaGaeqySdegaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aad2gadaqhaaWcbaGaamyAaaqaaiaacQcacqaHXoqyaaGccqGH9aqp caWGTbWaa0baaSqaaiaadUgaaeaacqaHXoqyaaGccaWGgbWaa0baaS qaaiaadUgacaWGPbaabaGaamyzaiabgkHiTiaaigdaaaaaaa@6512@

The former can be interpreted as the slip direction in the deformed solid (note that it is not a unit vector, however), while m i *α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaDaaaleaacaWGPbaabaGaai Okaiabeg7aHbaaaaa@353A@  can be interpreted as the slip plane normal in the deformed solid. 

 

· The plastic part of the velocity gradient can then be expressed in terms of the shearing rates as

L ij p = α=1 N γ ˙ α s i *α m j *α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaGccqGH9aqpdaaeWbqaaiqbeo7aNzaacaWaaWbaaSqa beaacqaHXoqyaaGccaWGZbWaa0baaSqaaiaadMgaaeaacaGGQaGaeq ySdegaaOGaamyBamaaDaaaleaacaWGQbaabaGaaiOkaiabeg7aHbaa aeaacqaHXoqycqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aaaa@4875@

 

· The elastic and plastic parts of the velocity gradient can be decomposed in to symmetric and skew symmetric parts, representing stretching and spin, respectively as

D ij e =( L ij e + L ji e )/2 W ij e =( L ij e L ji e )/2 D ij p =( L ij p + L ji p )/2 W ij p =( L ij p L ji p )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGebWaa0baaSqaaiaadMgaca WGQbaabaGaamyzaaaakiabg2da9iaacIcacaWGmbWaa0baaSqaaiaa dMgacaWGQbaabaGaamyzaaaakiabgUcaRiaadYeadaqhaaWcbaGaam OAaiaadMgaaeaacaWGLbaaaOGaaiykaiaac+cacaaIYaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4vamaaDa aaleaacaWGPbGaamOAaaqaaiaadwgaaaGccqGH9aqpcaGGOaGaamit amaaDaaaleaacaWGPbGaamOAaaqaaiaadwgaaaGccqGHsislcaWGmb Waa0baaSqaaiaadQgacaWGPbaabaGaamyzaaaakiaacMcacaGGVaGa aGOmaaqaaiaadseadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaO Gaeyypa0JaaiikaiaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaey4kaSIaamitamaaDaaaleaacaWGQbGaamyAaaqaaiaadc haaaGccaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGxbWaa0baaSqaaiaadMgacaWGQb aabaGaamiCaaaakiabg2da9iaacIcacaWGmbWaa0baaSqaaiaadMga caWGQbaabaGaamiCaaaakiabgkHiTiaadYeadaqhaaWcbaGaamOAai aadMgaaeaacaWGWbaaaOGaaiykaiaac+cacaaIYaaaaaa@BBC8@

 

· The plastic stretching and spin can be expressed in terms of the lattice shearing as

D ij p = α=1 N γ ˙ α ( s i *α m j *α + s j *α m i *α )/2 W ij p = α=1 N γ ˙ α ( s i *α m j *α s j *α m i *α )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaGccqGH9aqpdaaeWbqaaiqbeo7aNzaacaWaaWbaaSqa beaacqaHXoqyaaGccaGGOaGaam4CamaaDaaaleaacaWGPbaabaGaai Okaiabeg7aHbaakiaad2gadaqhaaWcbaGaamOAaaqaaiaacQcacqaH XoqyaaaabaGaeqySdeMaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIu oakiabgUcaRiaadohadaqhaaWcbaGaamOAaaqaaiaacQcacqaHXoqy aaGccaWGTbWaa0baaSqaaiaadMgaaeaacaGGQaGaeqySdegaaOGaai ykaiaac+cacaaIYaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGxbWaa0baaSqaai aadMgacaWGQbaabaGaamiCaaaakiabg2da9maaqahabaGafq4SdCMb aiaadaahaaWcbeqaaiabeg7aHbaakiaacIcacaWGZbWaa0baaSqaai aadMgaaeaacaGGQaGaeqySdegaaOGaamyBamaaDaaaleaacaWGQbaa baGaaiOkaiabeg7aHbaaaeaacqaHXoqycqGH9aqpcaaIXaaabaGaam OtaaqdcqGHris5aOGaeyOeI0Iaam4CamaaDaaaleaacaWGQbaabaGa aiOkaiabeg7aHbaakiaad2gadaqhaaWcbaGaamyAaaqaaiaacQcacq aHXoqyaaGccaGGPaGaai4laiaaikdaaaa@8A16@

 

 

 

3.12.4 Stress measures used crystal plasticity

 

Stress measures that appear in descriptions of crystal plasticity are summarized below:

 

· The Cauchy (“true”) stress represents the force per unit deformed area in the solid and is defined by

n i σ ij = Lim dA0 d P j (n) dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWfqaqa aiaadYeacaWGPbGaamyBaaWcbaGaamizaiaadgeacqGHsgIRcaaIWa aabeaakmaalaaabaGaamizaiaadcfadaqhaaWcbaGaamOAaaqaaiaa cIcacaWHUbGaaiykaaaaaOqaaiaadsgacaWGbbaaaaaa@4610@

 

· Kirchhoff stress  τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaGPaVlabes8a0PWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaaaa@3CB7@

 

· Material stress for the intermediate configuration   Σ ij =J F ik e1 σ kl F jl e1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWGRbaa baGaamyzaiabgkHiTiaaigdaaaGccqaHdpWCdaWgaaWcbaGaam4Aai aadYgaaeqaaOGaamOramaaDaaaleaacaWGQbGaamiBaaqaaiaadwga cqGHsislcaaIXaaaaaaa@4501@

 

 

· Resolved shear stress on a slip system   τ α =J m i *α σ ij s j *α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaWbaaSqabeaacqaHXoqyaa GccqGH9aqpcaWGkbGaamyBamaaDaaaleaacaWGPbaabaGaaiOkaiab eg7aHbaakiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGZb Waa0baaSqaaiaadQgaaeaacaGGQaGaeqySdegaaaaa@42EA@

 

· Lattice Jaumann rate of Kirchoff stress   τ ij e = d τ ij dt W ik e τ kj + τ ik W kj e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaOGaeyypa0ZaaSaa aeaacaWGKbGaeqiXdq3aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaai aadsgacaWG0baaaiabgkHiTiaadEfadaqhaaWcbaGaamyAaiaadUga aeaacaWGLbaaaOGaeqiXdq3aaSbaaSqaaiaadUgacaWGQbaabeaaki abgUcaRiabes8a0naaBaaaleaacaWGPbGaam4AaaqabaGccaWGxbWa a0baaSqaaiaadUgacaWGQbaabaGaamyzaaaaaaa@504E@

 

 

 

Note that the material stress should be interpreted as the force per unit area acting on the intermediate configuration, as shown in the figure, rather than on the undeformed configuration.  See section 3.9 for further details.

 

The constitutive equations must specify relationships between these stress measures, and the deformation measures outlined in the preceding section.  In particular, the constitutive equations must relate:

 

1. The elastic part of the deformation gradient to stress;

 

2. The rate of shearing on each slip system to the resolved shear stress.

 

 

 

3.12.5 Elastic stress-strain relation used in crystal plasticity

 

The relations between stress and the elastic part of the deformation gradient follow the procedure developed for finite strain plasticity in Section 3.9.3.  Only the final results will be repeated here

 

1. Define the Lagrangean elastic strain as E ij =( F ki e F kj e δ ij )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaGGOaGaamOramaaDaaaleaacaWGRbGaamyAaaqa aiaadwgaaaGccaWGgbWaa0baaSqaaiaadUgacaWGQbaabaGaamyzaa aakiabgkHiTiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccaGG PaGaai4laiaaikdaaaa@43C5@

 

2. Assume that the material stress is proportional to Lagrange strain, as Σ ij = C ijkl E kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccaWGfbWaaSbaaSqaaiaadUgacaWGSbaabeaaaaa@3D10@ , where C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  are the components of the elastic stiffness tensor (as defined and tabulated in Section 3.2), for the material with orientation in the undeformed configuration.

 

3. The elastic stress-strain law is often expressed in rate form, as follows

τ ij e C ijkl e D kl e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaOGaeyisISRaam4q amaaDaaaleaacaWGPbGaamOAaiaadUgacaWGSbaabaGaamyzaaaaki aadseadaqhaaWcbaGaam4AaiaadYgaaeaacaWGLbaaaaaa@427F@

where τ ij e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaaaa@375C@  is the Jaumann rate of Kirchhoff stress with respect to axes that rotate with the crystal lattice; C ijkl e = F in e F jm e C nmpq F kp e F lq e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaWGPbGaamOAai aadUgacaWGSbaabaGaamyzaaaakiabg2da9iaadAeadaqhaaWcbaGa amyAaiaad6gaaeaacaWGLbaaaOGaamOramaaDaaaleaacaWGQbGaam yBaaqaaiaadwgaaaGccaWGdbWaaSbaaSqaaiaad6gacaWGTbGaamiC aiaadghaaeqaaOGaamOramaaDaaaleaacaWGRbGaamiCaaqaaiaadw gaaaGccaWGgbWaa0baaSqaaiaadYgacaWGXbaabaGaamyzaaaaaaa@4B8F@  can be thought of as the components of the elastic compliance tensor for material with orientation in the deformed configuration, and D ij e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaaaaa@349D@  is the elastic stretch rate.

 

 

 

3.12.6 Plastic stress-strain relation used in crystal plasticity

 

The plastic constitutive equations specify the relationship between the stress on the crystal and slip rates γ ˙ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaiaadaahaaWcbeqaaiabeg 7aHbaaaaa@345C@  on each slip system.   Here, we outline a simple and widely used approach to doing this, based on the work of Pierce, Asaro and Needleman (1983).  This model is not the best fit to experimental observations, however MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  in particular more sophisticated equations are required to accurately describe latent hardening behavior.

 

Flow Rule: There are many advantages to using a viscoplastic flow rule to predict the slip rates in a single crystal: this avoids having to use an iterative procedure to identify active slip systems, and also helps to stabilize material behavior.  The simplest such flow rule is

γ ˙ α = γ ˙ 0 sign( τ α ) τ α g α m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaiaadaahaaWcbeqaaiabeg 7aHbaakiabg2da9iqbeo7aNzaacaWaaSbaaSqaaiaaicdaaeqaaOGa am4CaiaadMgacaWGNbGaamOBaiaacIcacqaHepaDdaahaaWcbeqaai abeg7aHbaakiaacMcadaqadaqaamaalaaabaWaaqWaaeaacqaHepaD daahaaWcbeqaaiabeg7aHbaaaOGaay5bSlaawIa7aaqaaiaadEgada ahaaWcbeqaaiabeg7aHbaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaad2gaaaaaaa@4CFC@

where τ α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaWbaaSqabeaacqaHXoqyaa aaaa@3471@  is the resolved shear stress on the slip system, g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaeqySdegaaa aa@3398@  is its current strength (which evolves with plastic straining), and γ ˙ 0 ,m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaiaadaWgaaWcbaGaaGimaa qabaGccaGGSaGaamyBaaaa@3522@  are material properties.

 

Hardening rule: The hardening rule must specify the relationship between the slip system strengths g α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaeqySdegaaa aa@3398@  and the plastic strain.  At time t=0 each slip system has the same initial strength g 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaBaaaleaacaaIWaaabeaaaa a@32B2@ .  Thereafter, the slip systems increase in strength as a result of the plastic shearing according to

g ˙ α = β=1 N h αβ γ ˙ β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4zayaacaWaaWbaaSqabeaacqaHXo qyaaGccqGH9aqpdaaeWbqaaiaadIgadaWgaaWcbaGaeqySdeMaeqOS digabeaakmaaemaabaGafq4SdCMbaiaadaahaaWcbeqaaiabek7aIb aaaOGaay5bSlaawIa7aaWcbaGaeqOSdiMaeyypa0JaaGymaaqaaiaa d6eaa0GaeyyeIuoaaaa@4635@

where h αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3539@  are strain dependent hardening rates.  The hardening rate is approximated as

h αβ = q αβ h( γ ¯ ) h( γ ¯ )= h s +( h 0 h s ) sech 2 h 0 h s g s g 0 γ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGObWaaSbaaSqaaiabeg7aHj abek7aIbqabaGccqGH9aqpcaWGXbWaaSbaaSqaaiabeg7aHjabek7a IbqabaGccaWGObGaaiikaiqbeo7aNzaaraGaaiykaaqaaiaadIgaca GGOaGafq4SdCMbaebacaGGPaGaeyypa0JaamiAamaaBaaaleaacaWG ZbaabeaakiabgUcaRiaacIcacaWGObWaaSbaaSqaaiaaicdaaeqaaO GaeyOeI0IaamiAamaaBaaaleaacaWGZbaabeaakiaacMcacaqGZbGa aeyzaiaabogacaqGObWaaWbaaSqabeaacaqGYaaaaOWaaiWaaeaada qadaqaamaalaaabaGaamiAamaaBaaaleaacaaIWaaabeaakiabgkHi TiaadIgadaWgaaWcbaGaam4CaaqabaaakeaacaWGNbWaaSbaaSqaai aadohaaeqaaOGaeyOeI0Iaam4zamaaBaaaleaacaaIWaaabeaaaaaa kiaawIcacaGLPaaacuaHZoWzgaqeaaGaay5Eaiaaw2haaaaaaa@60F3@

where h s , h 0 , g s , q αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAamaaBaaaleaacaWGZbaabeaaki aacYcacaWGObWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaadEgadaWg aaWcbaGaam4CaaqabaGccaGGSaGaamyCamaaBaaaleaacqaHXoqycq aHYoGyaeqaaaaa@3D64@  are material properties, and γ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaebaaaa@329F@  is the total accumulated slip on all slip systems

γ ¯ = 0 t α=1 N γ ˙ α dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4SdCMbaebacqGH9aqpdaWdXbqaam aaqahabaWaaqWaaeaacuaHZoWzgaGaamaaCaaaleqabaGaeqySdega aaGccaGLhWUaayjcSdaaleaacqaHXoqycqGH9aqpcaaIXaaabaGaam OtaaqdcqGHris5aaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaa dsgacaWG0baaaa@46CA@

The matrix q αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3542@  controls the latent hardening rate: for an fcc crystal, it is usually taken to have the form

q αβ = 1α,β coplanar qotherwise MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGaaGymaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeg7aHjaabYca cqaHYoGycaqGGaGaae4yaiaab+gacaqGWbGaaeiBaiaabggacaqGUb GaaeyyaiaabkhaaeaacaWGXbGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caqGVbGaaeiDaiaabIgacaqG LbGaaeOCaiaabEhacaqGPbGaae4CaiaabwgacaaMc8UaaGPaVlaayk W7caaMc8oaaaGaay5Eaaaaaa@8525@

where q is a material property. The slip systems for an fcc crystal are listed in Section 3.12.2: for example, slip systems a 1 , a 2 , a 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaki aacYcacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadggadaWg aaWcbaGaaG4maaqabaaaaa@37BE@  are coplanar, while a 1 , b 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaki aacYcacaWGIbWaaSbaaSqaaiaaigdaaeqaaaaa@3535@  non-coplanar.

 

 

 

3.12.7 Representative values for plastic properties of single crystals

 

Elastic properties of single crystals are listed in Sections 3.2.15 and 3.2.16. The plastic properties of single crystals are strongly sensitive to the material’s crystal structure and composition.  For accurate predictions you will need to test the actual material you plan to use.  As a rough guide, representative parameters for a copper single crystal (taken from Wu, Neale and Van der Giessen, Int J plasticity, 12, p.1199, 1996) are listed in the table below.