Chapter 3

 

Constitutive Models MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqzaiaeaa aaaaaaa8qacaWFtacaaa@3788@  Relations between Stress and Strain

 

 

 

3.13 Constitutive models for contacting surfaces and interfaces in solids

 

Many practical problems involve two contacting surfaces that roll or slide against one another: examples include machine elements such as gears and bearings; machining and metal forming processes; or slip along a geological fault.  In addition, models of deformation and failure in materials must often account for the nucleation and growth of cracks in the solid.   In these applications, constitutive equations must be used to specify the forces transmitted across the interface or contacting surface as a function of their relative motion. 

 

The simplest and most familiar such constitutive law is Coulomb friction, which relates the normal and tangential tractions acting across a contacting surface.  More complex constitutive laws are also available, which can model very complex interactions between surfaces.   In this section, we outline two general classes of interface law: (i) Cohesive zone models, which are used to model interfaces in materials or adhesion between very clean (often nanoscale) surfaces; and (ii) Models that are intended to model contact and friction between two sliding surfaces.

 

3.13.1 Cohesive zone models of interfaces

 

Cohesive zone models are usually used to model the nucleation and propagation of cracks along an interface between two solids, and to model adhesion between two contacting surfaces.  The figure illustrates the problem to be solved.  We assume that

  Two solids meet at a surface S

 In the undeformed configuration, the interface is free of traction, and there is no overlap or separation between the solids along S

 When the solid is loaded, forces are transmitted across the interface, while the two solids may separate, slide, or overlap at the interface.  The notion that two solids may interpenetrate can be disturbing at first sight.  However, the surface S where the solids meet does not represent a plane of atoms MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  it merely characterizes the equilibrium separation between the two solids when the interface is stress free.  If the two solids overlap, this means that the atomic or material planes just adjacent to the interface move closer together.

 We shall assume that the relative displacement of the two solids across S is small compared with any characteristic dimension of the solid; and also that the two contacting solids themselves experience small shape changes.

 

A “cohesive zone law” relates the relative motion of the two solids adjacent to S to the tractions transmitted across S.  A large number of such constitutive equations have been developed, but there are two general classes: (i) reversible force-displacement laws, in which the traction is simply a function of the relative distance between the two surfaces, and independent of the history of loading.  These are often used to model nucleation and growth of a crack on an interface that is subjected to monotonically increasing loading, where irreversibility plays no role; and are also used to model interaction between surfaces of nanoscale structures, whose dimension can be comparable to the distance of action of long-range interatomic forces.  (ii) Irreversible force-displacement laws, which model failure processes that lead to the creation of new free surface in the solid.   These could include separation of atomic planes due to cleavage, or more complex processes such as rupture by void nucleation and coalescence, or fatigue.

 

  Kinematics:  The relative motion of the two solids is characterized as follows:

1.      Let n denote a unit vector normal to the interface.  The sense of n is arbitrary (i.e. it can point up or down, as you prefer).  Once n has been chosen, however, we designate the two material surfaces adjacent to S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofaaaa@3140@  by S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ , with n the outward normal to S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ .

2.      Introduce two mutually perpendicular unit vectors e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3321@  that are tangent to the interface.   

3.      Let u + (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhadaahaaWcbeqaaiabgUcaRaaaki aacIcacaWH4bGaaiykaaaa@34D9@  and u (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhadaahaaWcbeqaaiabgkHiTaaaki aacIcacaWH4bGaaiykaaaa@34E4@  denote the displacement of two material points that are just adjacent to a point x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahIhaaaa@3169@  on S  in the undeformed solid.

4.      Let Δ= u + u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs5acqGH9aqpcaWH1bWaaWbaaSqabe aacqGHRaWkaaGccqGHsislcaWH1bWaaWbaaSqabeaacqGHsislaaaa aa@37AA@  denote the relative displacement of two initially coincident points. To specify constitutive equations, it is convenient to characterize the relative displacement using the three scalar Cartesian components ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqqHuoardaWgaaWcbaGaamOBaa qabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGaaiilaiab fs5aenaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3A5F@  of Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs5aaaa@3188@  in the basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHUbGaaiilaiaahwgadaWgaa WcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaa kiaac2haaaa@387E@ .  If the interface is isotropic (i.e. its response is independent of the direction of the relative tangential displacement between the surfaces), the behavior of the interface depends only on Δ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaaa a@32ED@  and Δ t = Δ 1 2 + Δ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWG0baabeaaki abg2da9maakaaabaGaeuiLdq0aa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaeuiLdq0aa0baaSqaaiaaikdaaeaacaaIYaaaaaqaba aaaa@3B14@ .

 

  Kinetics: The forces acting between the two surfaces are characterized as follows:

1.      Two points that are initially coincident in the undeformed interface are assumed to exert equal and opposite tractions on one another.  Since the relative displacements of S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  are assumed to be small, and both solids are assumed to experience small shape changes, there is no need to distinguish between forces acting on the deformed and undeformed solids.  Let t (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgkHiTaaaki aacIcacaWH4bGaaiykaaaa@34E3@  and t + (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgUcaRaaaki aacIcacaWH4bGaaiykaaaa@34D8@  denote the force per unit area acting on S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  and S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@ , respectively.

2.      Since t + (x)= t (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgUcaRaaaki aacIcacaWH4bGaaiykaiabg2da9iabgkHiTiaahshadaahaaWcbeqa aiabgkHiTaaakiaacIcacaWH4bGaaiykaaaa@3B46@ , the tractions can be characterized by the three scalar components ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaae qaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiv amaaBaaaleaacaaIYaaabeaakiaacMcaaaa@38B8@  of t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgkHiTaaaaa a@327F@  in the basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHUbGaaiilaiaahwgadaWgaa WcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaa kiaac2haaaa@387E@ .

 

The constitutive equations for the interface must relate ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaae qaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiv amaaBaaaleaacaaIYaaabeaakiaacMcaaaa@38B8@  to ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqqHuoardaWgaaWcbaGaamOBaa qabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGaaiilaiab fs5aenaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3A5F@

 

  Constitutive equations representing reversible separation between interfaces are the simplest cohesive zone laws.  For these models, the tractions are a function only of the relative displacement of the material planes adjacent to the interface, and are independent of the history or rate of loading. This means that the traction-displacement relation for the interface is reversible.  The interface will heal if the two surfaces are brought back into contact after separation.

The constitutive equations relating ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaae qaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiv amaaBaaaleaacaaIYaaabeaakiaacMcaaaa@38B8@  to ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqqHuoardaWgaaWcbaGaamOBaa qabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGaaiilaiab fs5aenaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3A5F@  for a reversible interface are constructed as follows:

1.      The traction-displacement relation is most conveniently characterized by a scalar inter-planar potential Φ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjaacIcacqqHuoardaWgaaWcba GaamOBaaqabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGa aiilaiabfs5aenaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BD9@  by setting

T n = Φ Δ n T 1 = Φ Δ 1 T 2 = Φ Δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpdaWcaaqaaiabgkGi2kabfA6agbqaaiabgkGi2kabfs5aenaa BaaaleaacaWGUbaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamivamaaBaaaleaa caaIXaaabeaakiabg2da9maalaaabaGaeyOaIyRaeuOPdyeabaGaey OaIyRaeuiLdq0aaSbaaSqaaiaaigdaaeqaaaaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGubWaaSbaaSqa aiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacq GHciITcqqHuoardaWgaaWcbaGaaGOmaaqabaaaaaaa@7565@

 The value of Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agbaa@31E2@  represents  the work done per unit area in separating the interface by Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs5aaaa@3188@ .

2.      A number of different functions are used to approximate Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agbaa@31E2@ .  Here, we will just give one example (a simplified version of a potential suggested by Xu and Needleman, (1995), J Mech. Phys. Solids 42 p. 1397)

Φ( Δ n , Δ t )= ϕ n ϕ n ( 1+ Δ n δ n )exp( Δ n δ n )exp( β 2 Δ t 2 δ n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjaacIcacqqHuoardaWgaaWcba GaamOBaaqabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaOGa aiykaiabg2da9iabew9aMnaaBaaaleaacaWGUbaabeaakiabgkHiTi abew9aMnaaBaaaleaacaWGUbaabeaakmaabmaabaGaaGymaiabgUca RmaalaaabaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaaGcbaGaeqiTdq 2aaSbaaSqaaiaad6gaaeqaaaaaaOGaayjkaiaawMcaaiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqqHuoardaWgaaWcba GaamOBaaqabaaakeaacqaH0oazdaWgaaWcbaGaamOBaaqabaaaaaGc caGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislda Wcaaqaaiabek7aInaaCaaaleqabaGaaGOmaaaakiabfs5aenaaDaaa leaacaWG0baabaGaaGOmaaaaaOqaaiabes7aKnaaDaaaleaacaWGUb aabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@6307@

Here, Δ t 2 = Δ 1 2 + Δ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaDaaaleaacaWG0baabaGaaG Omaaaakiabg2da9iabfs5aenaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgUcaRiabfs5aenaaDaaaleaacaaIYaaabaGaaGOmaaaaaaa@3BC1@ , while ϕ n , δ n ,β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaWGUbaabeaaki aacYcacqaH0oazdaWgaaWcbaGaamOBaaqabaGccaGGSaGaeqOSdiga aa@3928@  are material properties. Their physical significance is discussed below.

3.      Formulas relating ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaae qaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiv amaaBaaaleaacaaIYaaabeaakiaacMcaaaa@38B8@  to ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqqHuoardaWgaaWcbaGaamOBaa qabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGaaiilaiab fs5aenaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3A5F@  can be calculated by differentiating the potential.  The result is

T n = σ max Δ n δ n exp( 1 Δ n δ n ) T α =2 σ max ( β 2 Δ α δ n )( 1+ Δ n δ n )exp( 1 Δ n δ n )exp( β 2 Δ t 2 δ n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamivamaaBaaaleaacaWGUbaabe aakiabg2da9iabeo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqa aOWaaSaaaeaacqqHuoardaWgaaWcbaGaamOBaaqabaaakeaacqaH0o azdaWgaaWcbaGaamOBaaqabaaaaOGaciyzaiaacIhacaGGWbWaaeWa aeaacaaIXaGaeyOeI0YaaSaaaeaacqqHuoardaWgaaWcbaGaamOBaa qabaaakeaacqaH0oazdaWgaaWcbaGaamOBaaqabaaaaaGccaGLOaGa ayzkaaaabaGaamivamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaaG Omaiabeo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOWaaeWa aeaadaWcaaqaaiabek7aInaaCaaaleqabaGaaGOmaaaakiabfs5aen aaBaaaleaacqaHXoqyaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaad6ga aeqaaaaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRmaala aabaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaaGcbaGaeqiTdq2aaSba aSqaaiaad6gaaeqaaaaaaOGaayjkaiaawMcaaiGacwgacaGG4bGaai iCamaabmaabaGaaGymaiabgkHiTmaalaaabaGaeuiLdq0aaSbaaSqa aiaad6gaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaaaaaO GaayjkaiaawMcaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0Ya aSaaaeaacqaHYoGydaahaaWcbeqaaiaaikdaaaGccqqHuoardaqhaa WcbaGaamiDaaqaaiaaikdaaaaakeaacqaH0oazdaqhaaWcbaGaamOB aaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaaa@7F7A@

where σ max = ϕ n / δ n exp(1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaOGaeyypa0Jaeqy1dy2aaSbaaSqaaiaad6gaaeqaaOGa ai4laiabes7aKnaaBaaaleaacaWGUbaabeaakiGacwgacaGG4bGaai iCaiaacIcacaaIXaGaaiykaaaa@419C@ .  The traction-displacement relations are plotted in the figure.  Under purely normal tensile loading, the interface has work of separation ϕ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaWGUbaabeaaaa a@334F@ , and the noremal traction reaches a value of σ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaaaa@352B@  at an interface separation Δ n = δ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abg2da9iabes7aKnaaBaaaleaacaWGUbaabeaaaaa@36C1@ .  Under purely shear loading, the tangential traction has a maximum value τ max =β ϕ n 2 /( δ n exp(1) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0naaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaOGaeyypa0JaeqOSdiMaeqy1dy2aaSbaaSqaaiaad6ga aeqaaOWaaOaaaeaacaaIYaaaleqaaOGaai4laiaacIcacqaH0oazda WgaaWcbaGaamOBaaqabaGcdaGcaaqaaiGacwgacaGG4bGaaiiCaiaa cIcacaaIXaGaaiykaaWcbeaakiaacMcaaaa@459E@  at a tangential shear displacement Δ t = δ n / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWG0baabeaaki abg2da9iabes7aKnaaBaaaleaacaWGUbaabeaakiaac+cadaGcaaqa aiaaikdaaSqabaaaaa@385B@ .

 

  Constitutive equations modeling irreversible separation between interfaces. Most interfaces do not heal when brought back into contact after separation.   In applications where interfaces are subjected to cyclic loading, more complicated constitutive equations must be used to account for this irreversible behavior.   Again, a very large number of such constitutive equations have been developed: we will  illustrate their general features using a model adapted from Ortiz and Pandolfi, Int J. Numerical Methods in Engineering, 44 1276 (1999) as a representative example.

 

The behavior of the interface can be illustrated using its response to a purely normal tensile traction, shown in the traction-separation law on the right.   The interface initially responds elastically, with a constant stiffness k 0 = σ max / d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaaGimaaqabaGccq GH9aqpcqaHdpWCdaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiaa c+cacaWGKbWaaSbaaSqaaiaaigdaaeqaaaaa@3A9E@ , so that T n = k 0 Δ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaeuiLdq0aaSbaaSqa aiaad6gaaeqaaaaa@37D5@ .   As long as Δ n d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abgsMiJkaadsgadaWgaaWcbaGaaGymaaqabaaaaa@367C@  the interface is reversible and undamaged.   If the displacement exceeds  Δ n = d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abg2da9iaadsgadaWgaaWcbaGaaGymaaqabaaaaa@35CD@ , the interface begins to accumulate irreversible damage, which causes the stress to drop.  At the same time, the damage reduces the stiffness of the interface, so that during unloading the traction-displacement relation remains linear, but with a reduced slope. Note that the total work of separation for the interface under tensile loading is ϕ 0 = σ max ( d 1 + d 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaki abg2da9iabeo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGa aiikaiaadsgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGKbWaaS baaSqaaiaaikdaaeqaaOGaaiykaiaac+cacaaIYaaaaa@4052@ . The constitutive equation is constructed as follows:

  1. The material surfaces S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  are completely prevented from overlapping, by enforcing the constraint Δ n 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abgwMiZkaaicdaaaa@3577@
  2. The magnitude of the relative displacement between S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  is quantified by a scalar parameter λ= Δ n 2 + β 2 ( Δ 1 2 + Δ 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSjabg2da9maakaaabaGaeuiLdq 0aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaey4kaSIaeqOSdi2aaWba aSqabeaacaaIYaaaaOGaaiikaiabfs5aenaaDaaaleaacaaIXaaaba GaaGOmaaaakiabgUcaRiabfs5aenaaDaaaleaacaaIYaaabaGaaGOm aaaakiaacMcaaSqabaaaaa@4263@ , where β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIbaa@3209@  is a material property, which controls the relative stiffness and strength of the interface to normal and shear loading.
  3. Similarly, the magnitude of the traction can be quantified by an effective stress τ= T n 2 +( T 1 2 + T 2 2 )/ β 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0jabg2da9maakaaabaGaamivam aaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRiaacIcacaWGubWa a0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamivamaaDaaale aacaaIYaaabaGaaGOmaaaakiaacMcacaGGVaGaeqOSdi2aaWbaaSqa beaacaaIYaaaaaqabaaaaa@416B@
  4. The tractions acting between S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  are related to the relative displacement by an elastic potential  Φ( Δ n , Δ 1 , Δ 2 ,D) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjaacIcacqqHuoardaWgaaWcba GaamOBaaqabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGa aiilaiabfs5aenaaBaaaleaacaaIYaaabeaakiaacYcacaWGebGaai ykaaaa@3D52@  by setting

T n = Φ Δ n T 1 = Φ Δ 1 T 2 = Φ Δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpdaWcaaqaaiabgkGi2kabfA6agbqaaiabgkGi2kabfs5aenaa BaaaleaacaWGUbaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamivamaaBaaaleaa caaIXaaabeaakiabg2da9maalaaabaGaeyOaIyRaeuOPdyeabaGaey OaIyRaeuiLdq0aaSbaaSqaaiaaigdaaeqaaaaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGubWaaSbaaSqa aiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacq GHciITcqqHuoardaWgaaWcbaGaaGOmaaqabaaaaaaa@7565@

Here, 0D1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaicdacqGHKjYOcaWGebGaeyizImQaaG ymaaaa@3610@  is a scalar parameter that quantifies the irreversible damage accumulated by the interface. 

  1. A linear traction-displacement relation is constructed by making Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agbaa@31E2@  a quadratic function of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSbaa@321C@ , as follows

Φ= k 0 (1D) λ 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjabg2da9iaadUgadaWgaaWcba GaaGimaaqabaGccaGGOaGaaGymaiabgkHiTiaadseacaGGPaGaeq4U dW2aaWbaaSqabeaacaaIYaaaaOGaai4laiaaikdaaaa@3CA8@

Here, k 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaaGimaaqabaaaaa@323E@  is a material property that corresponds to the slope of the traction-displacement relation for the undamaged interface.  It follows that the tractions are related to the displacements by

T n = k 0 (1D) Δ n T 1 = β 2 k 0 (1D) Δ 1 T 2 = β 2 k 0 (1D) Δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaaigdacqGH sislcaWGebGaaiykaiabfs5aenaaBaaaleaacaWGUbaabeaakiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGubWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeqOSdi 2aaWbaaSqabeaacaaIYaaaaOGaam4AamaaBaaaleaacaaIWaaabeaa kiaacIcacaaIXaGaeyOeI0IaamiraiaacMcacqqHuoardaWgaaWcba GaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamivamaaBaaaleaacaaIYaaabeaakiabg2da9iab ek7aInaaCaaaleqabaGaaGOmaaaakiaadUgadaWgaaWcbaGaaGimaa qabaGccaGGOaGaaGymaiabgkHiTiaadseacaGGPaGaeuiLdq0aaSba aSqaaiaaikdaaeqaaaaa@7E89@

  1. The constitutive law is completed by devising an appropriate equation governing the evolution of D.   D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadseaaaa@3131@  remains constant if the traction on the interface is less than its current strength; if the interface is unloaded, or if D reaches 1.  Otherwise, D must evolve so that the strength of the interface decreases linearly from its initial value σ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaaaa@352B@  to zero as the effective displacement λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSbaa@321C@  increases from λ= d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSjabg2da9iaadsgadaWgaaWcba GaaGymaaqabaaaaa@34F2@  to λ= d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeU7aSjabg2da9iaadsgadaWgaaWcba GaaGOmaaqabaaaaa@34F3@ . This requires

dD dt ={ 0τ< (1D)(1+ d 1 / d 2 ) σ max 1D+ d 1 / d 2 or dλ/dt<0orD=1 ( (1D)+ d 1 d 2 ) 1 λ dλ dt Otherwise MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaadseaaeaacaWGKb GaamiDaaaacqGH9aqpdaGabaqaauaabeqaceaaaeaacaaIWaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqaHepaDcqGH8aapdaWcaaqaaiaacIcacaaIXaGaeyOeI0Iaamirai aacMcacaGGOaGaaGymaiabgUcaRiaadsgadaWgaaWcbaGaaGymaaqa baGccaGGVaGaamizamaaBaaaleaacaaIYaaabeaakiaacMcacqaHdp WCdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiaaigdacqGH sislcaWGebGaey4kaSIaamizamaaBaaaleaacaaIXaaabeaakiaac+ cacaWGKbWaaSbaaSqaaiaaikdaaeqaaaaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaae4BaiaabkhacaqGGaGaaGPaVlaaykW7caaMc8 UaamizaiabeU7aSjaac+cacaWGKbGaamiDaiabgYda8iaaicdacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caqGVbGaaeOCaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaamiraiabg2da9iaaigdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7aeaadaqadaqaaiaacIcacaaIXaGaeyOeI0IaamiraiaacM cacqGHRaWkdaWcaaqaaiaadsgadaWgaaWcbaGaaGymaaqabaaakeaa caWGKbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaala aabaGaaGymaaqaaiabeU7aSbaadaWcaaqaaiaadsgacqaH7oaBaeaa caWGKbGaamiDaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaab+eacaqG0bGaaeiAaiaabwgacaqGYbGaae 4DaiaabMgacaqGZbGaaeyzaaaaaiaawUhaaaaa@3061@

 

  Representative values for properties of cohesive zones.

 

The two constitutive laws contain the following parameters:

  1. The reversible interface can be conveniently characterized by its strength, σ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaaaa@352B@ ; the total work of tensile separation ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@ , and the parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIbaa@3209@  that controls the ratio of shear to normal strength. 
  2. The irreversible interface can be characterized by its strength, σ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaaaa@352B@ ; the total work of tensile separation ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@ , the parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIbaa@3209@  and the displacement d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgadaWgaaWcbaGaaGymaaqabaaaaa@3238@  at the instant of maximum stress.

 

It is difficult to give precise values for these material properties.  This is partly because the constitutive equations are used to model a variety of physical processes that lead to failure, and partly because there is no simple way to measure the values of the parameters.   The following guidelines are usually followed:

  1. If the cohesive zone is used to model atomic-scale cleavage in a brittle elastic material, or adhesion between two elastic solids, then ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@  is set equal to the fracture toughness of the interface (typically ϕ 0 1 Jm -2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaki abgIKi7kaaigdacaaMc8UaaGPaVlaabQeacaqGTbWaaWbaaSqabeaa caqGTaGaaeOmaaaaaaa@3BF1@  ), and the peak strength of the material σ max E/100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaOGaeyisISRaamyraiaac+cacaaIXaGaaGimaiaaicda aaa@3A92@  where E is the Young’s modulus.  Available data suggests that interfaces are stronger in shear than in tension so β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIbaa@3209@  is usually taken to be slightly less than 1 ( β0.7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIjabgIKi7kaaicdacaGGUaGaaG 4naaaa@35E7@  ).   Computations are usually not strongly sensitive to the shape of the cohesive zone, so d 1 / d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgadaWgaaWcbaGaaGymaaqabaGcca GGVaGaamizamaaBaaaleaacaaIYaaabeaaaaa@34C6@  can be taken to be approximately 1 in the irreversible model.
  2. If the cohesive zone is intended to model both the plastic zone and the failure process at the tip of a crack in an otherwise elastic solid, then ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@  is set equal to the fracture toughness of the solid (fracture toughness values are tabulated in Section 9.3.6), while σ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaaaa@352B@  is taken to be roughly three times the yield stress of the solid in uniaxial tension (yield stress values are tabulated in Section 3.6.9).  Again, β0.7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIjabgIKi7kaaicdacaGGUaGaaG 4naaaa@35E7@ , while d 1 / d 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgadaWgaaWcbaGaaGymaaqabaGcca GGVaGaamizamaaBaaaleaacaaIYaaabeaakiabgIKi7kaaigdaaaa@373C@  in the irreversible model.
  3. Cohesive zones are sometimes used to model material separation at the tip of a crack in a plastic solid, together with an elastic-plastic constitutive equation for the two solids adjacent to the cohesive interface.   In this case it is not usually clear what process the cohesive zone represents.  Experience shows that if the strength σ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaaciGGTbGaaiyyai aacIhaaeqaaaaa@352B@  of the cohesive zone is taken to be too high (greater than approximately three times the yield stress of the plastic material) the crack will never propagate.  If the strength of the cohesive zone is less than the yield stress, there is no plasticity.  Consequently 3Y< σ max <Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiodacaWGzbGaeyipaWJaeq4Wdm3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccqGH8aapcaWGzbaaaa@39B6@ .  It is difficult to interpret the meaning of ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@  in these models, but fortunately simulations tend to be relatively insensitive to ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@ .  A value for ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaaa a@3316@  is usually estimated by choosing a sensible characteristic length (between 1μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaMc8UaaGPaVlabeY7aTjaab2 gaaaa@36DF@  and  10μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIWaGaaGPaVlaaykW7cqaH8o qBcaqGTbaaaa@3799@  ) for δ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaa a@332C@  or d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgadaWgaaWcbaGaaGymaaqabaaaaa@3238@  and setting ϕ n = σ max δ n exp(1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaWGUbaabeaaki abg2da9iabeo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGa eqiTdq2aaSbaaSqaaiaad6gaaeqaaOGaciyzaiaacIhacaGGWbGaai ikaiaaigdacaGGPaaaaa@40E9@  for the reversible model; or ϕ 0 = σ max ( d 1 + d 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMnaaBaaaleaacaaIWaaabeaaki abg2da9iabeo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGa aiikaiaadsgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGKbWaaS baaSqaaiaaikdaaeqaaOGaaiykaiaac+cacaaIYaaaaa@4052@  for the irreversible version.

 

 

 

 

3.13.2 Models of contact and friction between surfaces

 

  Experimental observations of friction between contacting surfaces

 

A friction experiment is conceptually very simple: two surfaces are pressed into contact by a controlled normal pressure p, and the specimens are loaded so as to induce a state of uniform shear traction T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfaaaa@3141@  acting between the contacting surfaces.   The experiment seeks to answer the following questions:

1.      What is the critical combination of normal and tangential forces cause the surfaces to start to slide?

2.      If the two surfaces do start to slip, what tangential force is required to keep them sliding? 

3.      If the surfaces are slipping, how does the tangential force vary with sliding velocity and normal pressure, and how does the surface respond to changes in sliding velocity and pressure?

4.      How does friction depend on the contact area, the properties of the two contacting surfaces; surface roughness; environment; lubricant films, etc?

The results of these experiments show that, for most engineering surfaces which make contact over a nominal area exceeding 100μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIWaGaaGimaiabeY7aTjaab2 gadaahaaWcbeqaaiaabkdaaaaaaa@361F@  or so:

 

* The critical tangential traction required to initiate sliding between two surfaces is proportional to the normal pressure.  If the normal force is zero, the contact can’t support any tangential force.  Doubling the normal force will double the critical tangential force that initiates slip.

 

* Surface roughness has a very modest effect on friction.  Doubling the surface roughness might change the friction force by a few percent.

 

* Contaminants or lubricant on the two surfaces has a big effect on friction.  Even a little moisture on the surfaces can reduce friction by 20-30%.  If there is a thin layer of grease on the surfaces it can cut friction by a factor of 10.  If the contaminants are removed,  friction forces can be huge, and the two surfaces can seize together completely. 

 

* Friction forces depend quite strongly on what the two surfaces are made from.  Some materials like to bond with each other (metals generally bond well to other metals, for example) and so have high friction forces.  Some materials (e.g. Teflon) don’t bond well to other materials.  In this case friction forces will be smaller.

 

* If the surfaces start to slide, the tangential force often (but not always) drops slightly.  Thus, kinetic friction forces are often a little lower than static friction forces.  Otherwise, kinetic friction forces behave just like static friction MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  they are proportional to the normal force, etc.

 

* The steady-state kinetic friction force usually (but not always) decreases slightly as the sliding speed increases.  Increasing sliding speed by a factor of 10 might drop the friction force by a few percent.

 

* The transient response to changes in sliding speed has been extensively studied in geological materials, motivated by the need to understand earthquakes. In these materials, increasing the sliding speed causes an instantaneous increase in shear traction, which then gradually decays to a lower steady-state value, as illustrated in the figure.   If the sliding speed is reduced, there is an instantaneous drop in the friction force, which subsequently increases towards a steady state.  The transients occur over a sliding distance of order 10-50 microns.   This behavior has been observed in other materials (including metals) as well, but is not universal MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  for example Gearing et al In J. Plasticity 17 p. 237, (2001) observe an increase in steady state friction forces with sliding speed in sliding of Al against steel.

 

* The transient response to a change in contact pressure has not been studied as extensively as the response to changes in sliding speed.  The data of Prakash (Journal of Tribology, 120, 1998 p. 27) indicates that when the contact pressure is suddenly increased, the shear traction is initially unchanged, and subsequently asymptotes towards a value proportional to the new contact pressure as the relative distance of sliding between the two surfaces increases, as illustrated in the figure. 

 

 

 

These trends can be attributed to the effects of surface roughness.   All surfaces are rough, and when brought into contact meet only at highest points on the two surfaces.   The true area of contact between the two surfaces is much less than the nominal contact area, and increases roughly in proportion to the nominal contact pressure acting between the surfaces.   The nominal tangential traction is proportional to the product of the true contact area and the shear strength of the contacting surfaces, and is therefore approximately proportional to the nominal contact pressure.

 

There are some situations where the true area of contact approaches the nominal contact area. Examples include (i) the tip of an atomic force microscope, which has roughness comparable to atomic scale dimensions; (ii) friction between the tool and workpiece in metal forming applications.  In these situations the traction acting tangent to the surface is relatively insensitive to the contact pressure.  

 

  Kinematics:  Constitutive laws for friction must account for large relative motion between the contacting surfaces. Consequently, the contact is best characterized by the relative position and motion of the two surfaces in the deformed configuration.

1.      One of the two surfaces is arbitrarily designated the `master’ surface, and labeled S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ .  The other surface is designated the ‘slave’, and is labeled S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@ .  Note that in some friction models (e.g. the plasticity model described below) exchanging the master and slave surface will have a small influence on the behavior of the interface. 

2.      At a representative point y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhadaahaaWcbeqaaiabgkHiTaaaaa a@3284@  on S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ , we let n denote a unit vector normal to S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  and introduce two mutually perpendicular unit vectors e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3321@  that are tangent to S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ .  We take e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaaaaa@323C@  to point along a characteristic material direction in S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ , i.e. if m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaGymaaqabaaaaa@3245@  is a unit vector tangent to S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  in the undeformed slave surface, e 1 =(F m 1 )/| F m 1 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaGGOaGaaCOraiabgwSixlaah2gadaWgaaWcbaGaaGymaaqa baGccaGGPaGaai4lamaaemaabaGaaCOraiabgwSixlaah2gadaWgaa WcbaGaaGymaaqabaaakiaawEa7caGLiWoaaaa@427B@  in the deformed surface.

3.      The gap between the two surfaces is characterized by the points on the two surfaces that lie along n, i.e. y + = y + Δ n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhadaahaaWcbeqaaiabgUcaRaaaki abg2da9iaahMhadaahaaWcbeqaaiabgkHiTaaakiabgUcaRiabfs5a enaaBaaaleaacaWGUbaabeaakiaah6gaaaa@3A17@   

4.      The relative velocity of the two surfaces is defined as

v= d dt ( y + y ) Δ n dn dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAhacqGH9aqpdaWcaaqaaiaadsgaae aacaWGKbGaamiDaaaacaGGOaGaaCyEamaaCaaaleqabaGaey4kaSca aOGaeyOeI0IaaCyEamaaCaaaleqabaGaeyOeI0caaOGaaiykaiaayk W7cqGHsislcqqHuoardaWgaaWcbaGaamOBaaqabaGcdaWcaaqaaiaa dsgacaWHUbaabaGaamizaiaadshaaaaaaa@44A8@

It is convenient to separate the relative velocity into components normal and tangent to the surface v n =d Δ n /dt=vn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGKbGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaOGaai4laiaa dsgacaWG0bGaeyypa0JaaCODaiabgwSixlaah6gaaaa@3EE5@ v 1 =v e 1 v 2 =v e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWH2bGaeyyXICTaaCyzamaaBaaaleaacaaIXaaabeaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaWgaaWcba GaaGOmaaqabaGccqGH9aqpcaWH2bGaeyyXICTaaCyzamaaBaaaleaa caaIYaaabeaaaaa@49D6@ .

5.      In finite element computations it is sometimes convenient to introduce a small elastic compliance for the interface.   In this case, the relative velocity of the surfaces is divided into a reversible elastic part and an irreversible (plastic) part by defining

v= v e + v p v n = v n e + v n p v α = v α e + v α p α=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWH2bWaaWbaaSqabe aacaWGLbaaaOGaey4kaSIaaCODamaaCaaaleqabaGaamiCaaaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaWgaaWcba GaamOBaaqabaGccqGH9aqpcaWG2bWaa0baaSqaaiaad6gaaeaacaWG LbaaaOGaey4kaSIaamODamaaDaaaleaacaWGUbaabaGaamiCaaaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaWgaaWc baGaeqySdegabeaakiabg2da9iaadAhadaqhaaWcbaGaeqySdegaba GaamyzaaaakiabgUcaRiaadAhadaqhaaWcbaGaeqySdegabaGaamiC aaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeqySdeMaeyypa0JaaGymaiaacYcacaaIYaaaaa@71B0@

 

 Kinetics: The forces acting between the two surfaces are characterized as follows:

1.      The points on the two surfaces at position y + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhadaahaaWcbeqaaiabgUcaRaaaaa a@3279@  and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMhadaahaaWcbeqaaiabgkHiTaaaaa a@3284@  are assumed to exert equal and opposite tractions on one another. We let t + ( y + ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgUcaRaaaki aacIcacaWH5bWaaWbaaSqabeaacqGHRaWkaaGccaGGPaaaaa@35F2@ , t ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgkHiTaaaki aacIcacaWH5bWaaWbaaSqabeaacqGHsislaaGccaGGPaaaaa@3608@  denote the tractions on S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@ , respectively.

2.      Since t + ( y + )= t ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgUcaRaaaki aacIcacaWH5bWaaWbaaSqabeaacqGHRaWkaaGccaGGPaGaeyypa0Ja eyOeI0IaaCiDamaaCaaaleqabaGaeyOeI0caaOGaaiikaiaahMhada ahaaWcbeqaaiabgkHiTaaakiaacMcaaaa@3D85@ , the tractions can be characterized by the three scalar components ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaae qaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiv amaaBaaaleaacaaIYaaabeaakiaacMcaaaa@38B8@  of t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiabgkHiTaaaaa a@327F@  in the basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHUbGaaiilaiaahwgadaWgaa WcbaGaaGymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaa kiaac2haaaa@387E@ .

 

Constitutive equations for sliding friction must specify relationships between ( Δ n , v i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqqHuoardaWgaaWcbaGaamOBaa qabaGccaGGSaGaamODamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@371F@  and ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaae qaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiv amaaBaaaleaacaaIYaaabeaakiaacMcaaaa@38B8@ .  Various alternatives are summarized briefly below.

 

  Coulomb Friction:  This is the most familiar friction law.  For this model

 (i) The interface separates, with an indeterminate Δ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaaa a@32ED@  if T n >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH+aGpcaaIWaaaaa@342C@ ;

(ii) The surfaces are prevented from inter-penetrating Δ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abg2da9iaaicdaaaa@34B7@  if T n <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH8aapcaaIWaaaaa@3428@ ;

(iii) No slip occurs between the surfaces v i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcaaIWaaaaa@3447@  if T 1 2 + T 2 2 <μ| T n | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaakaaabaGaamivamaaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiaadsfadaqhaaWcbaGaaGOmaaqaaiaa ikdaaaaabeaakiabgYda8iabeY7aTnaaemaabaGaamivamaaBaaale aacaWGUbaabeaaaOGaay5bSlaawIa7aaaa@3E47@ , where μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTbaa@321E@  is the coefficient of friction;

(iv) The tangential traction is proportional to the normal pressure and opposes the direction of slip if the two surfaces slide T 1 =μ| T n | v 1 / v 1 2 + v 2 2 T 2 =μ| T n | v 2 / v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcqaH8oqBdaabdaqaaiaadsfadaWgaaWcbaGaamOBaaqabaaa kiaawEa7caGLiWoacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaai4lam aakaaabaGaamODamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUca RiaadAhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dsfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaH8oqBdaabdaqaai aadsfadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoacaWG2bWa aSbaaSqaaiaaikdaaeqaaOGaai4lamaakaaabaGaamODamaaDaaale aacaaIXaaabaGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaGaaGOm aaqaaiaaikdaaaaabeaaaaa@635F@ .

 

The table below (taken from `Engineering Materials’ by Ashby and Jones, Pergammon, 1980) lists rough values for friction coefficients for various material pairs.  These are rough guides only MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  friction coefficients for a given material can by highly variable (for example, friction for a steel/steel contact can vary anywhere between 0.001 to 3), and can even vary significantly with time or sliding distance during an experiment.

 

Material

Approx friction coefficient

Clean metals in air

0.8-2

Clean metals in wet air

0.5-1.5

Steel on soft metal (lead, bronze, etc)

0.1-0.5

Steel on ceramics (sapphire, diamond, ice)

0.1-0.5

Ceramics on ceramics (eg carbides on carbides)

0.05-0.5

Polymers on polymers

0.05-1.0

Metals and ceramics on polymers (PE, PTFE, PVC)

0.04-0.5

Boundary lubricated metals (thin layer of grease)

0.05-0.2

High temperature lubricants (eg graphite)

0.05-0.2

Hydrodynamically lubricated surfaces (full oil film)

0.0001-0.0005

 

 

HEALTH WARNING: Descriptions of Coulomb friction in elementary mechanics and physics texts often distinguish between kinetic and static friction coefficients.  It is not advisable to do adopt this approach when posing a boundary value problem in continuum mechanics, as it is likely to make the problem ill-posed (with either no solution, or an infinite number of solutions).  In fact, even with a single friction coefficient the Coulomb friction model can be ill-posed and should be used with caution.

 

  Coulomb Friction with a shear cutoff: In metal forming applications contacting surfaces can be subjected to extremely high pressure, with the result that the true area of contact approaches the nominal area.  Under these conditions, the shear traction is no longer proportional to the contact pressure.  Behavior at high pressure is often approximated by truncating the shear traction at a critical value (usually taken to be somewhat lower than the shear yield strength of the softer of the two contacting surfaces).  The modified friction has the following constitutive equations:

(i) The interface separates, with an indeterminate Δ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaaa a@32ED@  if T n >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH+aGpcaaIWaaaaa@342C@ ;

(ii) The surfaces are prevented from inter-penetrating Δ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abg2da9iaaicdaaaa@34B7@  if T n <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH8aapcaaIWaaaaa@3428@ ;

(iii) We introduce the shear resistance of the interface τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaaa a@3313@  defined as

τ={ μ| T n |μ| T n | τ 0 τ 0 μ| T n | τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0jabg2da9maaceaabaqbaeqabi qaaaqaaiabeY7aTnaaemaabaGaamivamaaBaaaleaacaWGUbaabeaa aOGaay5bSlaawIa7aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabeY7aTnaaemaabaGaamivamaaBaaaleaacaWGUbaabe aaaOGaay5bSlaawIa7aiabgsMiJkabes8a0naaBaaaleaacaaIWaaa beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ae aacqaHepaDdaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeY7aTnaaemaa baGaamivamaaBaaaleaacaWGUbaabeaaaOGaay5bSlaawIa7aiabgw MiZkabes8a0naaBaaaleaacaaIWaaabeaaaaaakiaawUhaaaaa@90AF@

(iii) No slip occurs between the surfaces v i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcaaIWaaaaa@3447@  if T 1 2 + T 2 2 <τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaakaaabaGaamivamaaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiaadsfadaqhaaWcbaGaaGOmaaqaaiaa ikdaaaaabeaakiabgYda8iabes8a0baa@3932@ , where μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTbaa@321E@  is the coefficient of friction;

(iv) The tangential traction is proportional to the normal pressure and opposes the direction of slip if the two surfaces slide T 1 =τ v 1 / v 1 2 + v 2 2 T 2 =τ v 2 / v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcqaHepaDcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaai4lamaa kaaabaGaamODamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRi aadAhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaads fadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaHepaDcaWG2bWaaSba aSqaaiaaikdaaeqaaOGaai4lamaakaaabaGaamODamaaDaaaleaaca aIXaaabaGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaGaaGOmaaqa aiaaikdaaaaabeaaaaa@5935@ .

 

 

  Rate and state variable models of friction: The variation of friction with sliding velocity and transient behavior following changes in contact pressure play an important role in controlling the stability of sliding on an interface.   Several friction laws have been developed to describe this behavior, and are widely used in geophysics applications.  As a representative example, we outline a constitutive law based loosely on work of Dieterich, J.H.,. J. Geophys. Res. 84, 2161 (1979), Ruina, A.L.,. J. Geophys. Res. 88, 10359 (1983) and Prakash, V., J. Tribol. 120, 97 (1998). 

 

The transient behavior of sliding friction is modeled by introducing two `state variables’ ω ± , p ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaCaaaleqabaGaeyySaelaaO GaaiilaiaadchadaahaaWcbeqaaiabgglaXcaaaaa@381A@  for each material point on S ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgglaXcaaaa a@335B@ .  The state variables evolve according to

dω dt =( v s ω )( v s L v + 1 t v ) dp dt =( T n +p )( v s L p + 1 t p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiabeM8a3bqaaiaads gacaWG0baaaiabg2da9maabmaabaGaamODamaaBaaaleaacaWGZbaa beaakiabgkHiTiabeM8a3bGaayjkaiaawMcaamaabmaabaWaaSaaae aacaWG2bWaaSbaaSqaaiaadohaaeqaaaGcbaGaamitamaaBaaaleaa caWG2baabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWG0bWaaS baaSqaaiaadAhaaeqaaaaaaOGaayjkaiaawMcaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGKbGaamiCaa qaaiaadsgacaWG0baaaiabg2da9iabgkHiTmaabmaabaGaamivamaa BaaaleaacaWGUbaabeaakiabgUcaRiaadchaaiaawIcacaGLPaaada qadaqaamaalaaabaGaamODamaaBaaaleaacaWGZbaabeaaaOqaaiaa dYeadaWgaaWcbaGaamiCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXa aabaGaamiDamaaBaaaleaacaWGWbaabeaaaaaakiaawIcacaGLPaaa aaa@7E4E@

where v s = ( v 1 p ) 2 + ( v 2 p ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaam4CaaqabaGccq GH9aqpdaGcaaqaamaabmaabaGaamODamaaDaaaleaacaaIXaaabaGa amiCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgU caRmaabmaabaGaamODamaaDaaaleaacaaIYaaabaGaamiCaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqaaaaa@3F3C@ , ( L v , L p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGmbWaaSbaaSqaaiaadAhaae qaaOGaaiilaiaadYeadaWgaaWcbaGaamiCaaqabaGccaGGPaaaaa@366F@  are material properties with units of length, and ( t v , t p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWG0bWaaSbaaSqaaiaadAhaae qaaOGaaiilaiaadshadaWgaaWcbaGaamiCaaqabaGccaGGPaaaaa@36BF@  are material properties with units of time.  The two surfaces S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@324F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@325A@  may have different properties. To interpret these equations, note that

1.      Both ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3baa@3235@  and p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchaaaa@315D@  evolve with time and the sliding distance.

2.      If the surfaces slide at constant speed, then ω v s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3jabgkziUkaadAhadaWgaaWcba Gaam4Caaqabaaaaa@3641@  in the steady state, while if the surfaces are subjected to a time independent normal traction p T n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacqGHsgIRcqGHsislcaWGubWaaS baaSqaaiaad6gaaeqaaaaa@362F@ .

3.      The two constants  ( t v , t p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWG0bWaaSbaaSqaaiaadAhaae qaaOGaaiilaiaadshadaWgaaWcbaGaamiCaaqabaGccaGGPaaaaa@36BF@  control the time-scale associated with this evolution for a static contact; while ( L v , L p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGmbWaaSbaaSqaaiaadAhaae qaaOGaaiilaiaadYeadaWgaaWcbaGaamiCaaqabaGccaGGPaaaaa@366F@  control the distance required for ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3baa@3235@  and p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchaaaa@315D@  to reach their steady state values under a rapidly sliding contact.

 

HEALTH WARNING: Note that (i) state variables must be introduced to characterize both contacting surfaces, because coincident points on the two surfaces experience different histories of contact pressure and slip velocity.  To see this, note that as you slide your finger over the surface of a table, a point on your finger sees a constant contact pressure, while a point on the table experiences a cycle of loading.  (ii) the time derivatives of the state variables should be interpreted as the rate of change experienced by an observer traveling with a particular material particle in each surface.

 

The variation of steady-state friction coefficient with sliding velocity is modeled by introducing a friction coefficient that is a function of the state variables ω ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaCaaaleqabaGaeyySaelaaa aa@3450@

μ( ω ¯ )= μ k +( μ s μ k )exp[ ( ω ¯ / V 1 ) n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTjaacIcacuaHjpWDgaqeaiaacM cacqGH9aqpcqaH8oqBdaWgaaWcbaGaam4AaaqabaGccqGHRaWkcaGG OaGaeqiVd02aaSbaaSqaaiaadohaaeqaaOGaeyOeI0IaeqiVd02aaS baaSqaaiaadUgaaeqaaOGaaiykaiGacwgacaGG4bGaaiiCamaadmaa baGaeyOeI0IaaiikaiqbeM8a3zaaraGaai4laiaadAfadaWgaaWcba GaaGymaaqabaGccaGGPaWaaWbaaSqabeaacaWGUbaaaaGccaGLBbGa ayzxaaaaaa@4EC7@

where ω ¯ =( ω + + ω )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeM8a3zaaraGaeyypa0JaaiikaiabeM 8a3naaCaaaleqabaGaey4kaScaaOGaey4kaSIaeqyYdC3aaWbaaSqa beaacqGHsislaaGccaGGPaGaai4laiaaikdaaaa@3CD4@ , and μ k , μ s , V 1 ,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaWGRbaabeaaki aacYcacqaH8oqBdaWgaaWcbaGaam4CaaqabaGccaGGSaGaamOvamaa BaaaleaacaaIXaaabeaakiaacYcacaWGUbaaaa@3AF7@  are all material properties.  The constant μ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaWGRbaabeaaaa a@333A@  represents the limiting value of the friction coefficient as sliding velocity approaches infinity (it can be interpreted as the kinetic friction coefficient), while μ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaWGZbaabeaaaa a@3342@  is the steady-state value of friction coefficient for a static contact (and can be interpreted as the static friction coefficient).  The two constants V 1 ,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGymaaqabaGcca GGSaGaamOBaaaa@33D7@  control the rate at which the friction transitions from one value to the other.

 

The friction law can be conveniently expressed as a relationship between the tractions and the relative velocity of the contact, as follows.  For Δ n >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abg6da+iaaicdaaaa@34B9@  the surfaces are traction free T n = T 1 = T 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWGubWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaamivamaa BaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaa@39CB@ .  For Δ n 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aenaaBaaaleaacaWGUbaabeaaki abgsMiJkaaicdaaaa@3566@ ,

1.      The elastic part of the relative velocity is related to the traction components by

v n e = 1 k n d T n dt v 1 e = 1 k t d T 1 dt v 2 e = 1 k t d T 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaamOBaaqaaiaadw gaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRbWaaSbaaSqaaiaa d6gaaeqaaaaakmaalaaabaGaamizaiaadsfadaWgaaWcbaGaamOBaa qabaaakeaacaWGKbGaamiDaaaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamODamaaDaaaleaacaaIXaaabaGa amyzaaaakiabg2da9maalaaabaGaaGymaaqaaiaadUgadaWgaaWcba GaamiDaaqabaaaaOWaaSaaaeaacaWGKbGaamivamaaBaaaleaacaaI XaaabeaaaOqaaiaadsgacaWG0baaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWG2bWaa0baaSqaaiaaikdaae aacaWGLbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4AamaaBaaa leaacaWG0baabeaaaaGcdaWcaaqaaiaadsgacaWGubWaaSbaaSqaai aaikdaaeqaaaGcbaGaamizaiaadshaaaaaaa@8478@

where k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaaaaa@3277@  and k t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamiDaaqabaaaaa@327D@  are two elastic stiffnesses.  Note that these equations assume that the elastic distorsion of the interface occurs on the slave surface (the time derivatives correspond to the traction rate experienced by an observer fixed to the slave surface).

2.      The irreversible part of the normal component of velocity v n p =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaamOBaaqaaiaadc haaaGccqGH9aqpcaaIWaaaaa@3542@

3.      The irreversible part of the tangential component of velocity is calculated from

v α p ={ V 0 [ ( ω ¯ V 0 +1 ) ( T t μ p ¯ ) m 1 ] T α T t T t μ p ¯ 0 T t <μ p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaeqySdegabaGaam iCaaaakiabg2da9maaceaabaqbaeqabiqaaaqaaiaadAfadaWgaaWc baGaaGimaaqabaGcdaWadaqaamaabmaabaWaaSaaaeaacuaHjpWDga qeaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaaaOGaey4kaSIaaGym aaGaayjkaiaawMcaamaabmaabaWaaSaaaeaacaWGubWaaSbaaSqaai aadshaaeqaaaGcbaGaeqiVd0MabmiCayaaraaaaaGaayjkaiaawMca amaaCaaaleqabaGaamyBaaaakiabgkHiTiaaigdaaiaawUfacaGLDb aadaWcaaqaaiaadsfadaWgaaWcbaGaeqySdegabeaaaOqaaiaadsfa daWgaaWcbaGaamiDaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadsfadaWgaaWcbaGaamiDaaqabaGccqGHLjYScqaH 8oqBceWGWbGbaebaaeaacaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamivam aaBaaaleaacaWG0baabeaakiabgYda8iabeY7aTjqadchagaqeaaaa aiaawUhaaaaa@FFA1@

where T t = T 1 2 + T 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamiDaaqabaGccq GH9aqpdaGcaaqaaiaadsfadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaWGubWaa0baaSqaaiaaikdaaeaacaaIYaaaaaqabaaaaa@396D@ , ω ¯ =( ω + + ω )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeM8a3zaaraGaeyypa0JaaiikaiabeM 8a3naaCaaaleqabaGaey4kaScaaOGaey4kaSIaeqyYdC3aaWbaaSqa beaacqGHsislaaGccaGGPaGaai4laiaaikdaaaa@3CD4@ , p ¯ =( p + + p )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadchagaqeaiabg2da9iaacIcacaWGWb WaaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcaWGWbWaaWbaaSqabeaa cqGHsislaaGccaGGPaGaai4laiaaikdaaaa@3A4C@  and V 0 ,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGimaaqabaGcca GGSaGaamyBaaaa@33D5@  are two constants that control the variation of shear stress to a step change in sliding velocity.

 

To interpret this equation, suppose that the interface is subjected to a constant (i.e. time independent) pressure, and is constrained to slip at a rate v s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaam4Caaqabaaaaa@3287@ .  The magnitude of the shear traction follows as

T t =μ( ω ¯ ) p ¯ ( v s / V 0 +1 ω ¯ / V 0 +1 ) 1/m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamiDaaqabaGccq GH9aqpcqaH8oqBcqGHOaakcuaHjpWDgaqeaiaacMcaceWGWbGbaeba daqadaqaamaalaaabaGaamODamaaBaaaleaacaWGZbaabeaakiaac+ cacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaGymaaqaaiqb eM8a3zaaraGaai4laiaadAfadaWgaaWcbaGaaGimaaqabaGccqGHRa WkcaaIXaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+ca caWGTbaaaaaa@4A11@

The steady state value is T t =μ( v s ) p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamiDaaqabaGccq GH9aqpcqaH8oqBcaGGOaGaamODamaaBaaaleaacaWGZbaabeaakiaa cMcaceWGWbGbaebaaaa@39BB@ .   Following an instantaneous increase in sliding speed, the shear traction first jumps to a new, higher value, then progressively decreases to a lower steady-state value as ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeM8a3zaaraaaaa@324D@  approaches the new value of sliding speed.  Similarly, if the sliding speed is suddenly reduced, the shear stress first drops to a lower value, and subsequently increases gradually to a higher steady-state. 

 

 

 Representative values of material properties for state variable model of friction.  The subtle features of friction captured by this constitutive equation are very sensitive to the materials involved, the surface finish, and the environment.  Extensive tests are required to characterize a particular contacting pair.  As a rough guide to the orders of magnitudes of the various material parameters, the table below lists rough estimates for parameters based on a discussion by Coker, Needleman and Rosakis (J. Mech. Phys. solids, 53 p.884 (2005)) of transient friction in Homalite. 

 

Representative values of parameters for a simple state variable friction law

(the two contacting surfaces are assumed to have identical properties)

k n (GPa/m) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaGcca aMc8UaaGPaVlaacIcacaqGhbGaaeiuaiaabggacaqGVaGaaeyBaiaa bMcaaaa@3B12@

k t (GPa/m) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamiDaaqabaGcca aMc8UaaGPaVlaacIcacaqGhbGaaeiuaiaabggacaqGVaGaaeyBaiaa bMcaaaa@3B18@

μ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaWGRbaabeaaaa a@333A@

μ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaWGZbaabeaaaa a@3342@

V 1 (m/s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGymaaqabaGcca aMc8UaaGPaVlaaykW7caqGOaGaaeyBaiaab+cacaqGZbGaaeykaaaa @3AC4@

n

300

100

0.5

0.6

26

1.2

 

L p (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadYeadaWgaaWcbaGaamiCaaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaeikaiabeY7aTjaab2gacaqGPaaa aa@3C8D@

t p (s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaWgaaWcbaGaamiCaaqabaGcca aMc8UaaGPaVlaaykW7caGGOaGaam4CaiaacMcaaaa@397E@

L v (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadYeadaWgaaWcbaGaamODaaqabaGcca aMc8UaaGPaVlaaykW7caaMc8UaaeikaiabeY7aTjaab2gacaqGPaaa aa@3C93@

t v (s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaWgaaWcbaGaamODaaqabaGcca aMc8UaaGPaVlaaykW7caGGOaGaam4CaiaacMcaaaa@3984@

V 0 (m/s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGimaaqabaGcca aMc8UaaGPaVlaaykW7caqGOaGaaeyBaiaab+cacaqGZbGaaeykaaaa @3AC3@

m

20

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabg6HiLcaa@31D9@

20

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabg6HiLcaa@31D9@

100

5

 

 

 Friction laws based on plasticity theory: The general framework of viscoplasticity can easily be adapted to construct friction laws that approximate the variation of friction with sliding speed and the evolution of friction with slip.   Laws of this kind are often used in metal forming simulations.   Several such models exist and will not be described in detail here.  Instead, we will illustrate the general idea by adapting the critical state theory of plasticity outlined in Section 3.10, together with the viscoplasticity law described in Section 3.7 to construct a friction law that captures the transient behavior of a sliding interface, as follows:

1.      The normal traction must satisfy T n 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GHKjYOcaaIWaaaaa@34D9@ : if T n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaaIWaaaaa@342A@  the surfaces separate and T 1 = T 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa @36C3@

2.      The relative velocity of the two surfaces is divided into elastic and plastic parts

v n = v n e + v n p v α = v α e + v α p α=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccq GH9aqpcaWG2bWaa0baaSqaaiaad6gaaeaacaWGLbaaaOGaey4kaSIa amODamaaDaaaleaacaWGUbaabaGaamiCaaaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG 2bWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpcaWG2bWaa0baaSqaai abeg7aHbqaaiaadwgaaaGccqGHRaWkcaWG2bWaa0baaSqaaiabeg7a HbqaaiaadchaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabeg7aHjabg2da9iaaigdacaGGSaGaaGOmaaaa @6768@

3.      The elastic part of the relative velocity is related to the traction components by

v n e = 1 k n d T n dt v 1 e = 1 k t d T 1 dt v 2 e = 1 k t d T 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaamOBaaqaaiaadw gaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRbWaaSbaaSqaaiaa d6gaaeqaaaaakmaalaaabaGaamizaiaadsfadaWgaaWcbaGaamOBaa qabaaakeaacaWGKbGaamiDaaaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamODamaaDaaaleaacaaIXaaabaGa amyzaaaakiabg2da9maalaaabaGaaGymaaqaaiaadUgadaWgaaWcba GaamiDaaqabaaaaOWaaSaaaeaacaWGKbGaamivamaaBaaaleaacaaI XaaabeaaaOqaaiaadsgacaWG0baaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWG2bWaa0baaSqaaiaaikdaae aacaWGLbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4AamaaBaaa leaacaWG0baabeaaaaGcdaWcaaqaaiaadsgacaWGubWaaSbaaSqaai aaikdaaeqaaaGcbaGaamizaiaadshaaaaaaa@8478@

where k n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamOBaaqabaaaaa@3277@  and k t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUgadaWgaaWcbaGaamiDaaqabaaaaa@327D@  are two elastic stiffnesses.  Note that these equations assume that the elastic distorsion occurs on the slave surface (the time derivatives correspond to the traction rate experienced by an observer fixed to the slave surface).

4.      Three state variables p ± , ω ± , s ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaahaaWcbeqaaiabgglaXcaaki aacYcacqaHjpWDdaahaaWcbeqaaiabgglaXcaakiaacYcacaWGZbWa aWbaaSqabeaacqGHXcqSaaaaaa@3BE7@  are introduced to track the history of contact pressure, sliding speed and sliding distance on each of the two contacting surfaces.   The state variables evolve according to

dp dt =cp v n p ds dt = v s dω dt =( v s ω )( v s L v + 1 t v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaadchaaeaacaWGKb GaamiDaaaacqGH9aqpcqGHsislcaWGJbGaamiCaiaadAhadaqhaaWc baGaamOBaaqaaiaadchaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWGZbaa baGaamizaiaadshaaaGaeyypa0JaamODamaaBaaaleaacaWGZbaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWcaaqaaiaadsgacqaHjpWDaeaacaWGKbGaamiDaaaacqGH9aqp daqadaqaaiaadAhadaWgaaWcbaGaam4CaaqabaGccqGHsislcqaHjp WDaiaawIcacaGLPaaadaqadaqaamaalaaabaGaamODamaaBaaaleaa caWGZbaabeaaaOqaaiaadYeadaWgaaWcbaGaamODaaqabaaaaOGaey 4kaSYaaSaaaeaacaaIXaaabaGaamiDamaaBaaaleaacaWG2baabeaa aaaakiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVdaa@A1E9@

where v s = v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaam4CaaqabaGccq GH9aqpdaGcaaqaaiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaWG2bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaqabaaaaa@39D2@ , and c, L v , t v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogacaGGSaGaamitamaaBaaaleaaca WG2baabeaakiaacYcacaWG0bWaaSbaaSqaaiaadAhaaeqaaaaa@36D2@  are material properties.  Naturally, the two surfaces may have different values of c, L v , t v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogacaGGSaGaamitamaaBaaaleaaca WG2baabeaakiaacYcacaWG0bWaaSbaaSqaaiaadAhaaeqaaaaa@36D2@ .  The governing equations for the evolution of the state variables have been designed so that p T n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacqGHsgIRcqGHsislcaWGubWaaS baaSqaaiaad6gaaeqaaaaa@362F@  and ω v s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3jabgkziUkaadAhadaWgaaWcba Gaam4Caaqabaaaaa@3641@  under conditions of steady sliding.

5.      The variation of relative velocity between the surfaces with traction is approximated using a slip potential (similar to the viscoplastic potential described in 3.7), defined as

g( T n , T t )={ V 0 τ 0 m+1 [ ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 1 ] (m+1)/2 ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 10 0 ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEgacaGGOaGaamivamaaBaaaleaaca WGUbaabeaakiaacYcacaWGubWaaSbaaSqaaiaadshaaeqaaOGaaiyk aiabg2da9maaceaabaqbaeqabiqaaaqaamaalaaabaGaamOvamaaBa aaleaacaaIWaaabeaakiabes8a0naaBaaaleaacaaIWaaabeaaaOqa aiaad2gacqGHRaWkcaaIXaaaamaadmaabaWaaeWaaeaacaaIXaGaey 4kaSYaaSaaaeaacaWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabmiC ayaaraaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgU caRmaabmaabaWaaSaaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaaGc baGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaiaawUfacaGLDbaa daahaaWcbeqaaiaacIcacaWGTbGaey4kaSIaaGymaiaacMcacaGGVa GaaGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIXaGa ey4kaSYaaSaaaeaacaWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabm iCayaaraaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiab gUcaRmaabmaabaWaaSaaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaa GcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacqGHLjYScaaIWa aabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaads fadaWgaaWcbaGaamOBaaqabaaakeaaceWGWbGbaebaaaaacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaadaWcaa qaaiaadsfadaWgaaWcbaGaamiDaaqabaaakeaacqaHepaDdaWgaaWc baGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaGymaiabgsMiJkaaicdaaaaacaGL7baaaaa@4367@

where V 0 ,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGimaaqabaGcca GGSaGaamyBaaaa@33D5@  are material properties which control the response of the interface to an instantaneous change in traction, p ¯ =( p + + p )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadchagaqeaiabg2da9iaacIcacaWGWb WaaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcaWGWbWaaWbaaSqabeaa cqGHsislaaGccaGGPaGaai4laiaaikdaaaa@3A4C@ , and τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaaa a@3313@  is a representative shear strength which may be a function of one or more of the state variables, as discussed further below.   The state variable p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadchagaqeaaaa@3175@  plays the role of a in the critical state soil model outlined in Section 3.10.

6.      The plastic part of the relative velocity between the surfaces is related to g through an associated flow law

v n p = g T n v α p = g T α α=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaamOBaaqaaiaadc haaaGccqGH9aqpdaWcaaqaaiabgkGi2kaadEgaaeaacqGHciITcaWG ubWaaSbaaSqaaiaad6gaaeqaaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOD amaaDaaaleaacqaHXoqyaeaacaWGWbaaaOGaeyypa0ZaaSaaaeaacq GHciITcaWGNbaabaGaeyOaIyRaamivamaaBaaaleaacqaHXoqyaeqa aaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeqySdeMaeyypa0JaaGymaiaacYca caaIYaaaaa@6C52@

Evaluating the derivatives gives

v n p ={ V 0 τ 0 p ¯ ( 1+ T n p ¯ ) [ ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 1 ] (m1)/2 ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 10 0 ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaamOBaaqaaiaadc haaaGccqGH9aqpdaGabaqaauaabeqaceaaaeaacaWGwbWaaSbaaSqa aiaaicdaaeqaaOWaaSaaaeaacqaHepaDdaWgaaWcbaGaaGimaaqaba aakeaaceWGWbGbaebaaaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaa caWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabmiCayaaraaaaaGaay jkaiaawMcaamaadmaabaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaa caWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabmiCayaaraaaaaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWa aSaaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaaGcbaGaeqiXdq3aaS baaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabgkHiTiaaigdaaiaawUfacaGLDbaadaahaaWcbeqaai aacIcacaWGTbGaeyOeI0IaaGymaiaacMcacaGGVaGaaGOmaaaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIXaGaey4kaSYaaSaaae aacaWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabmiCayaaraaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaaba WaaSaaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaaGcbaGaeqiXdq3a aSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaaigdacqGHLjYScaaIWaaabaGaaGimaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIXaGaey4kaSYaaSaaaeaa caWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabmiCayaaraaaaaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWa aSaaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaaGcbaGaeqiXdq3aaS baaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabgkHiTiaaigdacqGHKjYOcaaIWaaaaaGaay5Eaaaaaa@61A0@

v α p ={ V 0 T α τ 0 [ ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 1 ] (m1)/2 ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 10 0 ( 1+ T n p ¯ ) 2 + ( T t τ 0 ) 2 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaqhaaWcbaGaeqySdegabaGaam iCaaaakiabg2da9maaceaabaqbaeqabiqaaaqaaiaadAfadaWgaaWc baGaaGimaaqabaGcdaWcaaqaaiaadsfadaWgaaWcbaGaeqySdegabe aaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaaaGcdaWadaqaamaa bmaabaGaaGymaiabgUcaRmaalaaabaGaamivamaaBaaaleaacaWGUb aabeaaaOqaaiqadchagaqeaaaaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGaamivamaaBaaale aacaWG0baabeaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXa aacaGLBbGaayzxaaWaaWbaaSqabeaacaGGOaGaamyBaiabgkHiTiaa igdacaGGPaGaai4laiaaikdaaaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVp aabmaabaGaaGymaiabgUcaRmaalaaabaGaamivamaaBaaaleaacaWG UbaabeaaaOqaaiqadchagaqeaaaaaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGaamivamaaBaaa leaacaWG0baabeaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI XaGaeyyzImRaaGimaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaabmaabaGaaGymaiabgUcaRmaalaaabaGa amivamaaBaaaleaacaWGUbaabeaaaOqaaiqadchagaqeaaaaaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaamaa laaabaGaamivamaaBaaaleaacaWG0baabeaaaOqaaiabes8a0naaBa aaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccqGHsislcaaIXaGaeyizImQaaGimaaaaaiaawUhaaaaa@3D41@

7.      Finally, the variation of the tangential force with contact pressure, sliding speed, and slip distance must be specified by an appropriate equation for τ 0 ( p ¯ , ω ¯ , s ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaki aacIcaceWGWbGbaebacaGGSaGafqyYdCNbaebacaGGSaGabm4Cayaa raGaaiykaaaa@39D8@ .  Any sensible function can be chosen, depending on the behavior that you would like to approximate.   For example,

 Setting τ 0 =μ p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaki abg2da9iabeY7aTjqadchagaqeaaaa@36E6@  will produce Coulomb friction like behavior, with a delayed response to changes in contact pressure.   To see this, note that the model behaves like the critical state soil model discussed in Section 3.10, with `volumetric strain’ replaced by the normal separation between the surfaces, and μM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTjabggMi6kaad2eaaaa@34B9@ .

 Setting τ 0 ={ μ k +( μ s μ k )exp[ ( ω ¯ / V 1 ) n ] } p ¯ /f( ω ¯ / V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes8a0naaBaaaleaacaaIWaaabeaaki abg2da9maacmaabaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaOGaey4k aSIaaiikaiabeY7aTnaaBaaaleaacaWGZbaabeaakiabgkHiTiabeY 7aTnaaBaaaleaacaWGRbaabeaakiaacMcaciGGLbGaaiiEaiaaccha daWadaqaaiabgkHiTiaacIcacuaHjpWDgaqeaiaac+cacaWGwbWaaS baaSqaaiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaamOBaaaaaOGa ay5waiaaw2faaaGaay5Eaiaaw2haaiqadchagaqeaiaac+cacaWGMb GaaiikaiqbeM8a3zaaraGaai4laiaadAfadaWgaaWcbaGaaGimaaqa baGccaGGPaaaaa@5720@ , where f(y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgacaGGOaGaamyEaiaacMcaaaa@33AA@  is the root of the equation y=x ( x 2 1) (m1)/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMhacqGH9aqpcaWG4bGaaiikaiaadI hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaiykamaaCaaa leqabaGaaiikaiaad2gacqGHsislcaaIXaGaaiykaiaac+cacaaIYa aaaaaa@3DE9@  will give a Coulomb-like friction law with a velocity dependent friction coefficient similar to the rate-and state-variable model outlined earlier.

 

There is very little to distinguish the rate- and state-variable model from the plasticity based model.  The plasticity model has some advantages for numerical simulations, because (a) the transition from stick to slip is gradual; (b) The plasticity model has a `soft’ relationship between the normal displacement of the surfaces and the normal pressure; (c) the plasticity model has an associated flow rule.  All these tend to stabilize numerical computations.