3.3 Hypoelasticity MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqzaiaeaa aaaaaaa8qacaWFtacaaa@3788@  elastic materials with a nonlinear stress-strain relation under small deformation

 

 

Hypoelasticity is used to model materials that exhibit nonlinear, but reversible, stress strain behavior even at small strains.  Its most common application is in the so-called `deformation theory of plasticity,’ which is a crude approximation of the behavior of metals loaded beyond the elastic limit.

 

A hypoelastic material has the following properties

 The solid has a preferred shape

 The specimen deforms reversibly:  if you remove the loads, the solid returns to its original shape.

 The strain in the specimen depends only on the stress applied to it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  it doesn’t depend on the rate of loading, or the history of loading.

 The stress is a nonlinear function of strain, even when the strains are small, as shown in the picture above.  Because the strains are small, this is true whatever stress measure we adopt (Cauchy stress or nominal stress), and is true whatever strain measure we adopt (Lagrange strain or infinitesimal strain).

 We will assume here that the material is isotropic (i.e. the response of a material is independent of its orientation with respect to the loading direction).  In principle, it would be possible to develop anisotropic hypoelastic models, but this is rarely done.

 

The stress strain law is constructed as follows:

 Strains and rotations are assumed to be small.  Consequently, deformation is characterized using the infinitesimal strain tensor ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3418@  defined in Section 2.1.7.   In addition, all stress measures are taken to be approximately equal.  We can use the Cauchy stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  as the stress measure.

 When we develop constitutive equations for nonlinear elastic materials, it is usually best to find an equation for the strain energy density of the material as a function of the strain, instead of trying to write down stress-strain laws directly.  This has several advantages: (i) we can work with a scalar function; and (ii) the existence of a strain energy density guarantees that deformations of the material are perfectly reversible.  

 If the material is isotropic, the strain energy density can only be a function strain measures that do not depend on the direction of loading with respect to the material.   One can show that this means that the strain energy can only be a function of invariants of the strain tensor MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  that is to say, combinations of strain components that have the same value in any basis (see Appendix B).  The strain tensor always has three independent invariants: these could be the three principal strains, for example.   In practice it is usually more convenient to use the three fundamental scalar invariants:

I 1 = ε kk I 2 = 1 2 ( ε ij ε ij ε kk ε pp /3 ) I 3 =det( ε )= 1 6 ijk lmn ε li ε mj ε nk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iabew7aLnaaBaaaleaacaWGRbGaam4AaaqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWc aaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeqyTdu2aaSbaaSqaai aadMgacaWGQbaabeaakiabew7aLnaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeq yTdu2aaSbaaSqaaiaadchacaWGWbaabeaakiaac+cacaaIZaaacaGL OaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaamysamaaBaaaleaacaaIZaaabeaakiabg2da 9iGacsgacaGGLbGaaiiDamaabmaajaaWbaGaaCyTdaGccaGLOaGaay zkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOnaaaacqGHiiIZdaWg aaWcbaGaamyAaiaadQgacaWGRbaabeaakiabgIGiopaaBaaaleaaca WGSbGaamyBaiaad6gaaeqaaOGaeqyTdu2aaSbaaSqaaiaadYgacaWG Pbaabeaakiabew7aLnaaBaaaleaacaWGTbGaamOAaaqabaGccqaH1o qzdaWgaaWcbaGaamOBaiaadUgaaeqaaaaa@8D5F@

Here, I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGjbWaaSbaaSqaaiaaigdaaeqaaa aa@347B@  is a measure of the volume change associated with the strain; I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGjbWaaSbaaSqaaiaaikdaaeqaaa aa@347C@  is a measure of the shearing caused by the strain, and I can’t think of a good physical interpretation for I 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaa aa@347D@ .  Fortunately, it doesn’t often appear in constitutive equations.

 

Strain energy density:

 

In principle, the strain energy density could be any sensible function U( I 1 , I 2 , I 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGvbGaaiikaiaadMeadaWgaaWcba GaaGymaaqabaGccaGGSaGaamysamaaBaaaleaacaaIYaaabeaakiaa cYcacaWGjbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3B99@ .   In most practical applications, nonlinear behavior is only observed when the material is subjected to shear deformation (characterized by I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGjbWaaSbaaSqaaiaaikdaaeqaaa aa@347C@  ); while stress varies linearly with volume changes (characterized by I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGjbWaaSbaaSqaaiaaigdaaeqaaa aa@347B@  ).   This behavior can be characterized by a strain energy density

U= 1 6 K I 1 2 + 2n σ 0 ε 0 n+1 ( I 2 ε 0 2 ) (n+1)/2n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGvbGaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOnaaaacaWGlbGaamysamaaDaaaleaacaaIXaaabaGaaGOm aaaakiabgUcaRmaalaaabaGaaGOmaiaad6gacqaHdpWCdaWgaaWcba GaaGimaaqabaGccqaH1oqzdaWgaaWcbaGaaGimaaqabaaakeaacaWG UbGaey4kaSIaaGymaaaadaqadaqaamaalaaabaGaamysamaaBaaale aacaaIYaaabeaaaOqaaiabew7aLnaaDaaaleaacaaIWaaabaGaaGOm aaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaacIcacaWGUbGaey 4kaSIaaGymaiaacMcacaGGVaGaaGOmaiaad6gaaaaaaa@511D@

where K, σ 0 , ε 0 ,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGlbGaaiilaiabeo8aZnaaBaaale aacaaIWaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGaaGimaaqabaGc caGGSaGaamOBaaaa@3BE3@  are material properties (see below for a physical interpretation).

 

Stress-strain behavior

 

For this strain energy density function, the stress follows as

σ ij = U ε ij = K 3 ε kk δ ij + σ 0 ( I 2 ε 0 2 ) (1n)/2n ( ε ij ε kk δ ij /3 ε 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWGvbaabaGaeyOaIyRa eqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqpdaWcaa qaaiaadUeaaeaacaaIZaaaaiabew7aLnaaBaaaleaacaWGRbGaam4A aaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaS Iaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaa dMeadaWgaaWcbaGaaGOmaaqabaaakeaacqaH1oqzdaqhaaWcbaGaaG imaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaGG OaGaaGymaiabgkHiTiaad6gacaGGPaGaai4laiaaikdacaWGUbaaaO WaaeWaaeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeq iTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiaac+cacaaIZaaabaGa eqyTdu2aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaaaaa@6BB5@

The strain can also be calculated in terms of stress

ε ij = 1 3K σ kk δ ij + ε 0 ( J 2 σ 0 2 ) (n1)/2 ( σ ij σ kk δ ij /3 σ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maiaadUeaaaGa eq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaale aacaWGPbGaamOAaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaaGim aaqabaGcdaqadaqaamaalaaabaGaamOsamaaBaaaleaacaaIYaaabe aaaOqaaiabeo8aZnaaDaaaleaacaaIWaaabaGaaGOmaaaaaaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaacIcacaWGUbGaeyOeI0IaaGymai aacMcacaGGVaGaaGOmaaaakmaabmaabaWaaSaaaeaacqaHdpWCdaWg aaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaai aadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqa baGccaGGVaGaaG4maaqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaa aakiaawIcacaGLPaaaaaa@635C@

where J 2 =( σ ij σ ij σ kk σ pp /3)/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGkbWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0Jaaiikaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGc cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Iaeq4Wdm 3aaSbaaSqaaiaadUgacaWGRbaabeaakiabeo8aZnaaBaaaleaacaWG WbGaamiCaaqabaGccaGGVaGaaG4maiaacMcacaGGVaGaaGOmaaaa@4A1A@  is the second invariant of the stress tensor. 

 

To interpret these results, note that

 If the solid is subjected to uniaxial tension, (with stress σ 11 =σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0Jaeq4Wdmhaaa@38FE@  and all other stress components zero); the nonzero strain components are

ε 11 = σ 3K + 2 3 ε 0 ( σ 3 σ 0 ) n ε 22 = ε 33 = σ 3K 1 3 ε 0 ( σ 3 σ 0 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0ZaaSaaaeaacqaHdpWCaeaacaaIZaGaam4saaaa cqGHRaWkdaWcaaqaaiaaikdaaeaadaGcaaqaaiaaiodaaSqabaaaaO GaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiab eo8aZbqaamaakaaabaGaaG4maaWcbeaakiabeo8aZnaaBaaaleaaca aIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyTdu 2aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabew7aLnaaBaaa leaacaaIZaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiabeo8aZbqaai aaiodacaWGlbaaaiabgkHiTmaalaaabaGaaGymaaqaamaakaaabaGa aG4maaWcbeaaaaGccqaH1oqzdaWgaaWcbaGaaGimaaqabaGcdaqada qaamaalaaabaGaeq4WdmhabaWaaOaaaeaacaaIZaaaleqaaOGaeq4W dm3aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaale qabaGaamOBaaaaaaa@6BE8@

 If the solid is subjected to hydrostatic stress (with σ 11 = σ 22 = σ 33 =σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9a qpcqaHdpWCaaa@41EE@  and all other stress components zero) the nonzero strain components are

ε 11 = ε 22 = ε 33 = σ K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iabew7aLnaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9a qpdaWcaaqaaiabeo8aZbqaaiaadUeaaaaaaa@427A@

 If the solid is subjected to pure shear stress (with σ 12 = σ 21 =τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaikdacaaIXaaabeaa kiabg2da9iabes8a0baa@3D77@  and all other stress components zero) the nonzero strains are

ε 12 = ε 21 = ε 0 ( τ σ 0 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaiaaik daaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaaikdacaaIXaaabeaa kiabg2da9iabew7aLnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaS aaaeaacqaHepaDaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaWGUbaaaaaa@4542@

Thus, the solid responds linearly to pressure loading, with a bulk modulus K.  The relationship between shear stress and shear strain is a power law, with exponent n

 

This is just an example of a hypoelastic stress-strain law MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  many other forms could be used.