3.7 Small Strain, Rate Independent Plasticity: Metals loaded beyond yield

 

For many design calculations, the elastic constitutive equations outlined in Section 3.2 are sufficient, since large plastic strains are generally undesirable and will lead to failure.  There are some applications, however, where it is of interest to predict the behavior of solids subjected to large loads, sufficient to cause permanent plastic strains.  Examples include:

 

· Modeling metal forming, machining or other manufacturing processes

 

· Designing crash resistant vehicles

 

· Plastic design of structures

 

Plasticity theory was developed to predict the behavior of metals under loads exceeding the plastic range, but the general framework of plasticity theory has since been adapted to other materials, including polymers and some types of soil (clay).  Some concepts from metal plasticity are also used in modeling concrete and other brittle materials such as polycrystalline ceramics.

 

 

 

3.7.1 Features of the inelastic response of metals.

 

We begin by reviewing the results of a typical tension/compression test on an annealed, ductile, polycrystalline metal specimen (e.g. copper or Al).  Assume that the test is conducted at moderate temperature (less than ½ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWF9caaaa@3241@  the melting point of the solid MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  e.g. room temperature) and at modest strains (less than 10%), at modest strain rates ( 10 1 10 2 s -1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdadaahaaWcbeqaaiaaig daaaGccqGHsislcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOm aaaakiaaykW7caaMc8UaaGPaVlaabohadaahaaWcbeqaaiaab2caca qGXaaaaaaa@3EB0@  ).


 

 

The results of such a test are illustrated in the figure above.

 

· For modest stresses (and strains) the solid responds elastically.  This means the stress is proportional to the strain, and the deformation is reversible.

 

· If the stress exceeds a critical magnitude, the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve ceases to be linear.  It is often difficult to identify the critical stress accurately, because the stress strain curve starts to curve rather gradually.

 

· If the critical stress is exceeded, the specimen is permanently changed in length on unloading.

 

· If the stress is removed from the specimen during a test, the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve during unloading has a slope equal to that of the elastic part of the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve.  If the specimen is re-loaded, it will initially follow the same curve, until the stress approaches its maximum value during prior loading.  At this point, the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve once again ceases to be linear, and the specimen is permanently deformed further.

 

· If the test is interrupted and the specimen is held at constant strain for a period of time, the stress will relax slowly.  If the straining is resumed, the specimen will behave as though the solid were unloaded elastically.  Similarly, if the specimen is subjected to a constant stress, it will generally continue to deform plastically, although the plastic strain increases very slowly.  This phenomenon is known as `creep.’

 

· If the specimen is deformed in compression, the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve is a mirror image of the tensile stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve (of course, this is only true for modest strains.  For large strains, geometry changes will cause differences between the tension and compression tests).

 

· If the specimen is first deformed in compression, then loaded in tension, it will generally start to deform plastically at a tensile stress that is lower than the yield stress of an annealed specimen.  This phenomenon is known as the `Bauschinger effect.’

 

· Material response to cyclic loading can be extremely complex.  One example is shown in the picture above MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  in this case, the material hardens cyclically.  Other materials may soften.

 

· The detailed shape of the plastic stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve depends on the rate of loading, and also on temperature.

 

 

We also need to characterize the multi-axial response of an inelastic solid.  This is a much more difficult experiment to do.  Some of the nicest experiments were done by G.I. Taylor and collaborators in the early part of the last century.  Their approach was to measure the response of thin-walled tubes under combined torsion, axial loading and hydrostatic pressure. 

 

The main conclusions of these tests were

 

· The shape of the uniaxial stress-strain curve is insensitive to hydrostatic pressure.  However, the ductility (strain to failure) can be increased by adding hydrostatic pressure, particularly under torsional loading.

 

· Plastic strains are volume preserving, i.e. the plastic strain rate must satisfy  ε ˙ kk =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaam4Aai aadUgaaeqaaOGaeyypa0JaaGimaaaa@3666@

 

· During plastic loading, the principal components of the plastic strain rate tensor are parallel to the components of stress acting on the solid.  This sounds obvious until you think about it…  To understand what this means, imagine that you take a cylindrical shaft and pull it until it starts to deform plastically.  Then, holding the axial stress fixed, apply a torque to the shaft.  Experiments show that the shaft will initially stretch, rather than rotate.  The plastic strain increment is parallel to the stress acting on the shaft, not the stress increment.  This is totally unlike elastic deformation.

 

· Under multi-axial loading, most annealed polycrystalline solids obey the Levy-Mises flow rule, which relates the principal components of strain rate during plastic loading to the principal stresses as follows

ε ˙ 1 ε ˙ 2 σ 1 σ 2 = ε ˙ 1 ε ˙ 3 σ 1 σ 3 = ε ˙ 2 ε ˙ 3 σ 2 σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacuaH1oqzgaGaamaaBaaale aacaaIXaaabeaakiabgkHiTiqbew7aLzaacaWaaSbaaSqaaiaaikda aeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq 4Wdm3aaSbaaSqaaiaaikdaaeqaaaaakiabg2da9maalaaabaGafqyT duMbaiaadaWgaaWcbaGaaGymaaqabaGccqGHsislcuaH1oqzgaGaam aaBaaaleaacaaIZaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaa beaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaaabeaaaaGccqGH9a qpdaWcaaqaaiqbew7aLzaacaWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IafqyTduMbaiaadaWgaaWcbaGaaG4maaqabaaakeaacqaHdpWCda WgaaWcbaGaaGOmaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaG4m aaqabaaaaaaa@58AA@

 

 

In this section, we will outline the simplest plastic constitutive equations that capture the most important features of metal plasticity.  There are many different plastic constitutive laws, which are intended to be used in different applications.   There are two broad classes:

 

1. Rate independent plasticity MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  which is used to model metals deformed at low temperatures (less than half the material’s melting point) and modest strain rates (of order 0.01-10/s).  This is the focus of this section.

 

2. Rate dependent plasticity, or viscoplasticity MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  used to model high temperature creep (steady accumulation of plastic strain at contstant stress) and also to model metals deformed at high strain rates (100/s or greater), where flow strength is sensitive to deformation rate.    Viscoplasticity will be discussed in Section 3.3.

 

There are also various different models within these two broad categories.   The models generally differ in two respects (i) the yield criterion; (ii) the strain hardening law.  There is no completely general model that describes all the features that were just listed, so in any application, you will need to decide which aspect of material behavior is most important, and then choose a model that accurately characterizes this behavior.

 

 

Key ideas in modeling metal plasticity

 

Five key concepts form the basis of almost all classical theories of plasticity.  They are

 

1. The decomposition of strain into elastic and plastic parts;

 

2. Yield criteria, which predict whether the solid responds elastically or plastically;

 

3. Strain hardening rules, which control the way in which resistance to plastic flow increases with plastic straining;

 

4. The plastic flow rule, which determines the relationship between stress and plastic strain under multi-axial loading;

 

5. The elastic unloading criterion, which models the irreversible behavior of the solid.

 

 

These concepts will be described in more detail in the sections below.

 

For simplicity, we will at this stage restrict attention to infinitesimal deformations.

 

Consequently, we adopt the infinitesimal strain tensor

ε ij = 1 2 u i x j + u j x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@47CA@

as our deformation measure.  We have no need to distinguish between the various stress measures and will use σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  to denote stress.

 

It is also important to note that the plastic strains in a solid depend on the load history.  This means that the stress-strain laws are not just simple equations relating stress to strain.  Instead, plastic strain laws must either relate the strain rate in the solid to the stress and stress rate, or else specify the relationship between a small increment of plastic strain d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaaaaa@366F@  in terms of strain, stress and stress increment d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3595@ .  In addition, plasticity problems are almost always solved using the finite element method.  Consequently, numerical methods are used to integrate the plastic stress-strain equations.

 

 

 

3.7.2. Decomposition of strain into elastic and plastic parts

 

Experiments show that under uniaxial loading, the strain at a given stress has two parts: a small recoverable elastic strain, and a large, irreversible plastic strain, as shown in the figure. In uniaxial tension, we would write

ε= ε e + ε p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0JaeqyTdu2aaWbaaS qabeaacaWGLbaaaOGaey4kaSIaeqyTdu2aaWbaaSqabeaacaWGWbaa aaaa@3A00@

Experiments suggest that the reversible part is related to the stress through the usual linear elastic equations.   Plasticity theory is concerned with characterizing the irreversible part.

 

For multiaxial loading, we generalize this by decomposing a general strain increment d ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3579@  into elastic and plastic parts, as

d ε ij =d ε ij e +d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@4288@

The elastic part of the strain is related to stress using the linear elastic equations (discussed in detail in 3.1)

C ijkl d ε kl e =d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiaadsgacqaH1oqzdaqhaaWcbaGaam4Aaiaa dYgaaeaacaWGLbaaaOGaeyypa0Jaamizaiabeo8aZnaaBaaaleaaca WGPbGaamOAaaqabaaaaa@40E9@

 

 

 

3.7.3 Yield Criteria

 

The yield criterion is used to determine the critical stress required to cause permanent deformation in a material.  There are many different yield criteria MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  here we will just list the simplest ones.  Let σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  be the stress acting on a solid, and let σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO GaaiilaiaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGa aiilaiaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIZaaabe aaaaa@420B@  denote the principal values of stress.  In addition, let Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaaaa@31BE@  denote the yield stress of the material in uniaxial tension.  Then, define

 

· Von MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ Mises yield criterion

f σ ij , ε ¯ p = 1 2 σ 1 σ 2 2 + σ 1 σ 3 2 + σ 2 σ 3 2 Y ε ¯ p =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacYcacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaaaOGaayjkaiaawMcaaiabg2da9maakaaabaWaaSaaae aacaaIXaaabaGaaGOmaaaadaWadaqaamaabmaabaGaeq4Wdm3aaSba aSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaikdaae qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHdp WCdaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGHRaWkdaqadaqaaiabeo8aZnaaBaaaleaacaaIYa aabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaaWcbe aakiabgkHiTiaadMfadaqadaqaaiqbew7aLzaaraWaaWbaaSqabeaa caWGWbaaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@63A4@

 

· Tresca yield criterion

f σ ij , ε ¯ p =max σ 1 σ 2 , σ 1 σ 3 , σ 2 σ 3 Y ε ¯ p =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacYcacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaaaOGaayjkaiaawMcaaiabg2da9iGac2gacaGGHbGaai iEamaacmaabaWaaqWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGc cqGHsislcqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawEa7caGLiW oacaGGSaWaaqWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGH sislcqaHdpWCdaWgaaWcbaGaaG4maaqabaaakiaawEa7caGLiWoaca GGSaWaaqWaaeaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHsisl cqaHdpWCdaWgaaWcbaGaaG4maaqabaaakiaawEa7caGLiWoaaiaawU hacaGL9baacqGHsislcaWGzbWaaeWaaeaacuaH1oqzgaqeamaaCaaa leqabaGaamiCaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@6699@

 

In both cases, the criteria are defined so that the material deforms elastically for f σ ij <0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgYda8iaaicda aaa@38E7@ , and plastically for f σ ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicda aaa@38E9@ .  The yield stress Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaaaa@31BE@  may increase during plastic straining, so we have shown that Y is a function of a measure of total plastic strain ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaaaaa@33C1@ , to be defined in Section 3.7.5

 

· An alternative form of Von MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ Mises criterion. For a general stress state, it is a nuisance having to compute the principal stresses in order to apply von Mises yield criterion.  Fortunately, the criterion can be expressed directly in terms of the stress tensor

f σ ij , ε ¯ p = σ e Y ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacYcacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaaaOGaayjkaiaawMcaaiabg2da9iabeo8aZnaaBaaale aacaWGLbaabeaakiabgkHiTiaadMfadaqadaqaaiqbew7aLzaaraWa aWbaaSqabeaacaWGWbaaaaGccaGLOaGaayzkaaaaaa@44EC@

where

σ e = 3 2 S ij S ij S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaiaadofa daWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaaBaaaleaacaWGPb GaamOAaaqabaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaa BaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4m aaaacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq2aaS baaSqaaiaadMgacaWGQbaabeaaaaa@6CD6@

are the components of the `von Mises effective stress’ and `deviatoric stress tensor,’ respectively.

 

 

These yield criteria are based largely on the following experimental observations:

 

1. A hydrostatic stress (all principal stresses equal) will never cause yield, no matter how large the stress;

 

2.  Most polycrystalline metals are isotropic.  Since the yield criterion depends only on the magnitudes of the principal stresses, and not their directions, the yield criteria predict isotropic behavior.

 

Tests suggest that von Mises yield criterion provides a slightly better fit to experiment than Tresca, but the difference between them is very small.   Sometimes it simplifies calculations to use Tresca’s criterion instead of von Mises.

 

 

 

3.7.4 Graphical representation of the yield surface.

 

Any arbitrary stress state can be plotted in  `principal stress space,’ with the three principal stresses as axes.

 


 

The Von MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ Mises yield criterion is plotted in this way in the figure above. The yield criterion is a cylinder, radius Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiaac+cadaGcaaqaaiaaiodaaS qabaaaaa@3348@ , with its axis parallel to the line

σ 1 = σ 2 = σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaeq4W dm3aaSbaaSqaaiaaiodaaeqaaaaa@3B00@

If the state of stress falls within the cylinder, the material is below yield and responds elastically.  If the state of stress lies on the surface of the cylinder, the material yields and deforms plastically.  If the plastic deformation causes the material to strain harden, the radius of the cylinder increases.  The stress state cannot lie outside the cylinder MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this would lead to an infinite plastic strain.

 

Because the yield criterion f( σ ij )=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iaaicdaaaa@38B9@  defines a surface in stress space, it is often referred to as a yield surface. The yield surface is often drawn as it would appear when viewed down the axis of the cylinder, as shown in the figure below.  The Tresca yield criterion can also be plotted in this way.  It looks like a cylinder with a hexagonal cross section, as shown below.

 


 

 

  

3.7.5. Strain hardening laws

 

Experiments show that if you plastically deform a solid, then unload it, and then try to re-load it so as to induce further plastic flow, its resistance to plastic flow will have increased.  This is known as strain hardening.

 

Obviously, we can model strain hardening by relating the size and shape of the yield surface to plastic strain in some appropriate way.  There are many ways to do this.  Here we describe the two simplest approaches.

 

 

Isotropic hardening

 

Rather obviously, the easiest way to model strain hardening is to make the yield surface increase in size, but remain the same shape, as a result of plastic straining, as shown in the figure.

 

This means we must devise some appropriate relationship between Y and the plastic strain.  To get a suitable scalar measure of plastic strain we define the accumulated plastic strain magnitude

ε ¯ p = 2 3 d ε ij p d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaGccqGH9aqpdaWdbaqaamaakaaabaWaaSaaaeaacaaIYaaabaGa aG4maaaacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam iCaaaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG Wbaaaaqabaaabeqab0Gaey4kIipaaaa@4382@

(the factor of 2/3 is introduced so that ε ¯ p = ε 11 p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaaGymaiaaigdaaeaacaWG Wbaaaaaa@3910@  in a uniaxial tensile test in which the specimen is stretched parallel to the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  direction.  To see this, note that plastic strains do not change volume, so that d ε 22 =d ε 33 =d ε 11 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaaIYa GaaGOmaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aaSbaaSqaaiaaioda caaIZaaabeaakiabg2da9iabgkHiTiaadsgacqaH1oqzdaWgaaWcba GaaGymaiaaigdaaeqaaOGaai4laiaaikdaaaa@4202@  and substitute into the formula.)

 

Then we make Y a function of ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaaaaa@33C1@ .  People often use power laws or piecewise linear approximations in practice. A few of the more common forms of hardening functions are

 

Perfectly plastic solid:  Y=constant MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiabg2da9iaabogacaqGVbGaae OBaiaabohacaqG0bGaaeyyaiaab6gacaqG0baaaa@3A46@

 

Linear strain hardening solid: Y ε ¯ p = Y 0 +h ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywamaabmaabaGafqyTduMbaebada ahaaWcbeqaaiaadchaaaaakiaawIcacaGLPaaacqGH9aqpcaWGzbWa aSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiAaiqbew7aLzaaraWaaW baaSqabeaacaWGWbaaaaaa@3DB5@

 

Power MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ law hardening material: Y= Y 0 +h ε ¯ p 1/m MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiabg2da9iaadMfadaWgaaWcba GaaGimaaqabaGccqGHRaWkcaWGObWaaeWaaeaacuaH1oqzgaqeamaa CaaaleqabaGaamiCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG ymaiaac+cacaWGTbaaaaaa@3D61@

 

In these formulas, Y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywamaaBaaaleaacaaIWaaabeaaaa a@32A3@ , h and m are material properties.  These functions are illustrated in the figure below.

 


 

     

Kinematic hardening

 

An isotropic hardening law is generally not useful in situations where components are subjected to cyclic loading.  It does not account for the Bauschinger effect, and so predicts that after a few cycles the solid will just harden until it responds elastically.

 

To fix this, an alternative hardening law allows the yield surface to translate, without changing its shape.  The idea is illustrated graphically in the figure.  As you deform the material in tension, you drag the yield surface in the direction of increasing stress, thus modeling strain hardening.  This softens the material in compression, however.  So, this constitutive law can model cyclic plastic deformation.  The stress-strain curves for isotropic and kinematic hardening materials are contrasted in the figure below.

 


 

To account for the fact that the center of the yield locus is at a position α ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3488@  in stress space, the Von-Mises yield criterion needs to be modified as follows

f( σ ij , α ij )= 3 2 S ij α ij S ij α ij Y=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaWGPbGa amOAaaqabaGccaGGPaGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaamaabmaabaGaam4uamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaHXoqydaWgaaWcbaGaamyAaiaadQgaaeqaaaGcca GLOaGaayzkaaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOAaaqabaaaki aawIcacaGLPaaaaSqabaGccqGHsislcaWGzbGaeyypa0JaaGimaaaa @53C1@

Here, Y is now a constant, and hardening is modeled by the motion of the yield surface. To do so, we need to relate α ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3488@  to the plastic strain history somehow.  There are many ways to do this, which can model subtle features of the plastic response of solids under cyclic and nonproportional loading. The simplest approach is to set

d α ij = 2 3 cd ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aaaaa@3E81@ .

 This hardening law predicts that the stress-plastic strain curve is a straight line with slope c.  This is known as linear kinematic hardening

 

 

A more sophisticated approach is to set

d α ij = 2 3 cd ε ij p γ α ij d ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiabgkHiTiabeo7aNjabeg7aHnaaBaaaleaacaWGPbGaamOAaaqa baGccaWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaaaaa@489B@

where c and γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3287@  are material constants.  It’s not so easy to visualize what this does MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it turns out that that this relation can model cyclic creep MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the tendency of a material to accumulate strain in the direction of mean stress under cyclic loading, as illustrated in the figure below.  It is known as the Armstrong-Frederick hardening law.

 


 

There are many other kinematic type hardening laws.  New ones are still being developed. 

 

 

 

3.7.6 The plastic flow law

 

To complete the plastic stress-strain relations, we need a way to predict the plastic strains induced by stressing the material beyond the yield point.  Specifically, given

 

1. The current stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  applied to the material

 

2. The current yield stress (characterized by Y( ε ¯ p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiaacIcacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaakiaacMcaaaa@3602@  for isotropic hardening, or α ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3488@  for kinematic hardening)

 

3. A small increase in stress d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3595@  applied to the solid

 

we must determine the small change in plastic strain d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaaaaa@366F@ .

 

The formulas are given below, for isotropic and kinematic hardening.  These are just fits to experiment (specifically, to the Levy-Mises flow rule).  The physical significance and reason for the structure of the equations will be discussed later.

 

The plastic strains are usually derived from the yield criterion f defined in 3.6.3, and so are slightly different for isotropic and kinematic hardening.  A material that has its plastic flow law derived from f is said to have an `associated’ flow law MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  i.e.the flow law is associated with f.

 

 

Isotropic Hardening (Von-Mises yield criterion)

 

d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHci ITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiabg2da9iaa dsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgacaWG QbaabeaaaOqaaiaadMfaaaaaaa@4D2C@

where

f σ ij , ε ¯ p = 3 2 S ij S ij Y ε ¯ p S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacYcacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaaaOGaayjkaiaawMcaaiabg2da9maakaaabaWaaSaaae aacaaIZaaabaGaaGOmaaaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaqabaGccqGHsi slcaWGzbWaaeWaaeaacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaa aOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0 Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaa baGaaGymaaqaaiaaiodaaaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRb aabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@7260@

denotes the Von-Mises yield criterion, and d ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqbew7aLzaaraWaaWbaaSqabe aacaWGWbaaaaaa@34AA@  is determined from the condition that the yield criterion must be satisfied at all times during plastic straining.  This shows that

f( σ ij +d σ ij , ε ¯ p +d ε ¯ p )=f( σ ij , ε ¯ p )+ f σ ij d σ ij + f ε ¯ p d ε ¯ p =0 f σ ij d σ ij Y ε ¯ p d ε ¯ p =0 d ε ¯ p = 1 h f σ ij d σ ij = 1 h 3 2 S ij d σ ij Y h= dY d ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGMbGaaiikaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGccqGHRaWkcaWGKbGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakiaacYcacuaH1oqzgaqeamaaCaaale qabaGaamiCaaaakiabgUcaRiaadsgacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaakiaacMcacqGH9aqpcaWGMbGaaiikaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGccaGGSaGafqyTduMbaebadaahaaWc beqaaiaadchaaaGccaGGPaGaey4kaSYaaSaaaeaacqGHciITcaWGMb aabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGc caWGKbGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRm aalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kqbew7aLzaaraWaaWba aSqabeaacaWGWbaaaaaakiaadsgacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaakiabg2da9iaaicdaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyO0 H49aaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaaGccaWGKbGaeq4Wdm3aaSbaaSqaaiaa dMgacaWGQbaabeaakiabgkHiTmaalaaabaGaeyOaIyRaamywaaqaai abgkGi2kqbew7aLzaaraWaaWbaaSqabeaacaWGWbaaaaaakiaadsga cuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakiabg2da9iaaicdaae aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabgkDiElaadsgacuaH1oqzgaqe amaaCaaaleqabaGaamiCaaaakiabg2da9maalaaabaGaaGymaaqaai aadIgaaaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeq4Wdm3a aSbaaSqaaiaadMgacaWGQbaabeaaaaGccaWGKbGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa dIgaaaWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaaiaadofada WgaaWcbaGaamyAaiaadQgaaeqaaOGaamizaiabeo8aZnaaBaaaleaa caWGPbGaamOAaaqabaaakeaacaWGzbaaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua amiAaiabg2da9maalaaabaGaamizaiaadMfaaeaacaWGKbGafqyTdu MbaebadaahaaWcbeqaaiaadchaaaaaaaaaaa@FCD7@

Here, h=Y/ ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiabg2da9iabgkGi2kaadMfaca GGVaGaeyOaIyRafqyTduMbaebadaahaaWcbeqaaiaadchaaaaaaa@3A11@  is the slope of the plastic stress-strain curve.   The algebra involved in differentiating f with respect to stress is outlined below.

 

 

Linear Kinematic Hardening (Von-Mises yield criterion)

d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 S ij α ij Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHci ITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiabg2da9iaa dsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaadaqadaqaaiaadofadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadMgaca WGQbaabeaaaOGaayjkaiaawMcaaaqaaiaadMfaaaaaaa@5354@

where the yield criterion is now

f σ ij , α ij = 3 2 S ij α ij S ij α ij Y S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGMbWaaeWaaeaacqaHdpWCda WgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiabeg7aHnaaBaaaleaa caWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaGcaaqaam aalaaabaGaaG4maaqaaiaaikdaaaWaaeWaaeaacaWGtbWaaSbaaSqa aiaadMgacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadofadaWgaaWc baGaamyAaiaadQgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadM gacaWGQbaabeaaaOGaayjkaiaawMcaaaWcbeaakiabgkHiTiaadMfa aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG tbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaa caaIZaaaaiabeo8aZnaaBaaaleaacaWGRbGaam4AaaqabaGccqaH0o azdaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaa@7B1F@

and as before d ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqbew7aLzaaraWaaWbaaSqabe aacaWGWbaaaaaa@34AA@  is determined from the condition that the yield criterion must be satisfied at all times during plastic straining.  This shows that

f( σ ij +d σ ij , α ij +d α ij )=f( σ ij , α ij )+ f σ ij d σ ij + f α ij d α ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaey4kaSIaamizaiabeo8aZnaaBaaaleaa caWGPbGaamOAaaqabaGccaGGSaGaeqySde2aaSbaaSqaaiaadMgaca WGQbaabeaakiabgUcaRiaadsgacqaHXoqydaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaaiykaiabg2da9iaadAgacaGGOaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacYcacqaHXoqydaWgaaWcbaGaamyA aiaadQgaaeqaaOGaaiykaiabgUcaRmaalaaabaGaeyOaIyRaamOzaa qaaiabgkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGa amizaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkda WcaaqaaiabgkGi2kaadAgaaeaacqGHciITcqaHXoqydaWgaaWcbaGa amyAaiaadQgaaeqaaaaakiaadsgacqaHXoqydaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaaGimaaaa@6DF0@

Recall that for linear kinematic hardening the hardening law is

d α ij = 2 3 cd ε ij p =cd ε ¯ p S ij α ij Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiabg2da9iaadogacaWGKbGafqyTduMbaebadaahaaWcbeqaaiaa dchaaaGcdaWcaaqaamaabmaabaGaam4uamaaBaaaleaacaWGPbGaam OAaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGaamyAaiaadQgaaeqa aaGccaGLOaGaayzkaaaabaGaamywaaaaaaa@4E4E@

Substituting into the Taylor expansion of the yield criterion and simplifying shows that

d ε ¯ p = 1 c 3 2 S ij α ij d σ ij Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqbew7aLzaaraWaaWbaaSqabe aacaWGWbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4yaaaadaWc aaqaaiaaiodaaeaacaaIYaaaamaalaaabaWaaeWaaeaacaWGtbWaaS baaSqaaiaadMgacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaa caWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGKbGaeq4Wdm3aaS baaSqaaiaadMgacaWGQbaabeaaaOqaaiaadMfaaaaaaa@47B6@

 

 

Comparison of flow law formulas with the Levy-Mises flow rule

 

The Levy-Mises flow law (based on experimental observations) states that principal values of the plastic strain increment d ε 1 ,d ε 2 ,d ε 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaaIXa aabeaakiaacYcacaWGKbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadsgacqaH1oqzdaWgaaWcbaGaaG4maaqabaaaaa@3CBC@  induced by a stress increment are related to the principal stresses σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO Gaaiilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaacYcacqaHdpWC daWgaaWcbaGaaG4maaqabaaaaa@3A55@  by

d ε 1 d ε 2 σ 1 σ 2 = d ε 1 d ε 3 σ 1 σ 3 = d ε 2 d ε 3 σ 2 σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aaSbaaS qaaiaaigdaaeqaaOGaeyOeI0Iaamizaiabew7aLnaaBaaaleaacaaI YaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgkHiTi abeo8aZnaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaa dsgacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGKbGaeq yTdu2aaSbaaSqaaiaaiodaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaa igdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaaaaki abg2da9maalaaabaGaamizaiabew7aLnaaBaaaleaacaaIYaaabeaa kiabgkHiTiaadsgacqaH1oqzdaWgaaWcbaGaaG4maaqabaaakeaacq aHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHdpWCdaWgaaWc baGaaG4maaqabaaaaaaa@5DEA@

It is straightforward to show that this observation is consistent with the predictions of the flow law formulas given in this section. To see this, suppose that the principal axes of stress are parallel to the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  directions.  In this case the only nonzero components of deviatoric stress are

S 11 = σ 1 ( σ 1 + σ 2 + σ 3 )/3 S 22 = σ 2 ( σ 1 + σ 2 + σ 3 )/3 S 33 = σ 1 ( σ 1 + σ 2 + σ 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHsisl caGGOaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm 3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaa iodaaeqaaOGaaiykaiaac+cacaaIZaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaaikda caaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaaabeaaki abgkHiTiaacIcacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWk cqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHdpWCdaWgaa WcbaGaaG4maaqabaGccaGGPaGaai4laiaaiodacaaMc8UaaGPaVlaa ykW7caaMc8Uaam4uamaaBaaaleaacaaIZaGaaG4maaqabaGccqGH9a qpcqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHsislcaGGOaGaeq4W dm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaai aaikdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGa aiykaiaac+cacaaIZaaaaa@7EF0@

The flow law

d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHci ITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiabg2da9iaa dsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgacaWG QbaabeaaaOqaaiaadMfaaaaaaa@4D2C@  

gives

d ε 1 p =d ε 11 p =d ε ¯ p 3 2 S 11 Y d ε 2 p =d ε 22 p =d ε ¯ p 3 2 S 22 Y d ε 3 p =d ε 33 p =d ε ¯ p 3 2 S 33 Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aaigdaaeaacaWGWbaaaOGaeyypa0Jaamizaiabew7aLnaaDaaaleaa caaIXaGaaGymaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbae badaahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaaiodaaeaacaaIYaaa amaalaaabaGaam4uamaaBaaaleaacaaIXaGaaGymaaqabaaakeaaca WGzbaaaaqaaiaadsgacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaadcha aaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaaikdacaaIYaaaba GaamiCaaaakiabg2da9iaadsgacuaH1oqzgaqeamaaCaaaleqabaGa amiCaaaakmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacaWGtb WaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadMfaaaGaaGPaVdqa aiaadsgacqaH1oqzdaqhaaWcbaGaaG4maaqaaiaadchaaaGccqGH9a qpcaWGKbGaeqyTdu2aa0baaSqaaiaaiodacaaIZaaabaGaamiCaaaa kiabg2da9iaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakm aalaaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqa aiaaiodacaaIZaaabeaaaOqaaiaadMfaaaaaaaa@700E@

Thus, we see that

d ε 1 p d ε 2 p =d ε ¯ p 3 2 S 11 S 22 Y =d ε ¯ p 3 2 σ 1 σ 2 Y d ε 1 p d ε 3 p =d ε ¯ p 3 2 S 11 S 33 Y =d ε ¯ p 3 2 σ 1 σ 3 Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aaigdaaeaacaWGWbaaaOGaeyOeI0Iaamizaiabew7aLnaaDaaaleaa caaIYaaabaGaamiCaaaakiabg2da9iaadsgacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaakmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaa aeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiaado fadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaamywaaaacqGH9aqp caaMc8UaaGPaVlaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaa aakmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacqaHdpWCdaWg aaWcbaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOmaa qabaaakeaacaWGzbaaaaqaaiaadsgacqaH1oqzdaqhaaWcbaGaaGym aaqaaiaadchaaaGccqGHsislcaWGKbGaeqyTdu2aa0baaSqaaiaaio daaeaacaWGWbaaaOGaeyypa0Jaamizaiqbew7aLzaaraWaaWbaaSqa beaacaWGWbaaaOWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaai aadofadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Iaam4uamaa BaaaleaacaaIZaGaaG4maaqabaaakeaacaWGzbaaaiabg2da9iaayk W7caaMc8Uaamizaiqbew7aLzaaraWaaWbaaSqabeaacaWGWbaaaOWa aSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaaiabeo8aZnaaBaaale aacaaIXaaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIZaaabeaa aOqaaiaadMfaaaaaaaa@80AD@

with similar expressions for other components.  Some trivial algebra then yields the Levy-Mises flow law.

 

 

Differentiating the yield criterion

 

Differentiating the yield criterion requires some sneaky index notation manipulations. Note that

f σ ij = 3 2 1 2 1 3 2 S kl S kl 2 S pq S pq σ ij = 3 2 1 3 2 S kl S kl S pq S pq σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaey OaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqp daWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaaGymaaqaaiaaik daaaWaaSaaaeaacaaIXaaabaWaaOaaaeaadaWcaaqaaiaaiodaaeaa caaIYaaaaiaadofadaWgaaWcbaGaam4AaiaadYgaaeqaaOGaam4uam aaBaaaleaacaWGRbGaamiBaaqabaaabeaaaaGccaaIYaGaam4uamaa BaaaleaacaWGWbGaamyCaaqabaGcdaWcaaqaaiabgkGi2kaadofada WgaaWcbaGaamiCaiaadghaaeqaaaGcbaGaeyOaIyRaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaaaaGccaaMc8Uaeyypa0ZaaSaaaeaaca aIZaaabaGaaGOmaaaadaWcaaqaaiaaigdaaeaadaGcaaqaamaalaaa baGaaG4maaqaaiaaikdaaaGaam4uamaaBaaaleaacaWGRbGaamiBaa qabaGccaWGtbWaaSbaaSqaaiaadUgacaWGSbaabeaaaeqaaaaakiaa dofadaWgaaWcbaGaamiCaiaadghaaeqaaOWaaSaaaeaacqGHciITca WGtbWaaSbaaSqaaiaadchacaWGXbaabeaaaOqaaiabgkGi2kabeo8a ZnaaBaaaleaacaWGPbGaamOAaaqabaaaaaaa@6B2A@

Now, recall that

S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqaHdpWCdaWgaaWcba Gaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaa beaaaaa@42A2@

and further that

σ ij σ kl = δ ik δ jl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqa aiaadUgacaWGSbaabeaaaaGccqGH9aqpcqaH0oazdaWgaaWcbaGaam yAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQgacaWGSbaabeaa aaa@43DB@

Hence

S pq σ ij = δ ip δ jq 1 3 δ ik δ jk δ pq MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGtbWaaSbaaS qaaiaadchacaWGXbaabeaaaOqaaiabgkGi2kabeo8aZnaaBaaaleaa caWGPbGaamOAaaqabaaaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadM gacaWGWbaabeaakiabes7aKnaaBaaaleaacaWGQbGaamyCaaqabaGc cqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaaaiabes7aKnaaBaaale aacaWGPbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaadUga aeqaaOGaeqiTdq2aaSbaaSqaaiaadchacaWGXbaabeaaaaa@50B2@

and

S pq S pq σ ij = S pq δ ip δ jq 1 3 δ ik δ jk δ pq = S ij S pp δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGWbGaamyCaa qabaGcdaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamiCaiaadgha aeqaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabe aaaaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadchacaWGXbaabeaakmaa bmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGWbaabeaakiabes7aKn aaBaaaleaacaWGQbGaamyCaaqabaGccqGHsisldaWcaaqaaiaaigda aeaacaaIZaaaaiabes7aKnaaBaaaleaacaWGPbGaam4AaaqabaGccq aH0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqa aiaadchacaWGXbaabeaaaOGaayjkaiaawMcaaiabg2da9iaadofada WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Iaam4uamaaBaaaleaa caWGWbGaamiCaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaae qaaaaa@63BB@

However, observe that

S pp = σ pp 1 3 σ kk δ pp =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGWbGaamiCaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamiCaiaadchaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqaHdpWCdaWgaaWcba Gaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadchacaWGWbaa beaakiabg2da9iaaicdaaaa@4493@

so that

S pq S pq σ ij = S ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGWbGaamyCaa qabaGcdaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamiCaiaadgha aeqaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabe aaaaGccqGH9aqpcaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@416A@

and finally

f σ ij = 3 2 S ij 3 2 S kl S kl = 3 2 S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaey OaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqp daWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaam4uamaaBaaale aacaWGPbGaamOAaaqabaaakeaadaGcaaqaamaalaaabaGaaG4maaqa aiaaikdaaaGaam4uamaaBaaaleaacaWGRbGaamiBaaqabaGccaWGtb WaaSbaaSqaaiaadUgacaWGSbaabeaaaeqaaaaakiabg2da9maalaaa baGaaG4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadM gacaWGQbaabeaaaOqaaiaadMfaaaaaaa@4BE5@

 

 

 

3.7.7 The Elastic unloading condition

 

There is one final issue to consider.  Experiments show that plastic flow is irreversible, and always dissipates energy.  If the increment in stress d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3595@  is tangent to the yield surface, or brings the stress below yield, as shown in the figure,  then there is no plastic strain.

 

For an isotropically hardening solid, this unloading condition may be expressed as

S ij d σ ij <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccaWGKbGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaaaaOGa eyipaWJaaGimaaaa@3A49@

For kinematic hardening,

S ij α ij d σ ij <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadM gacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOA aaqabaaakiaawIcacaGLPaaacaWGKbGaeq4Wdm3aa0baaSqaaiaadM gacaWGQbaabaaaaOGaeyipaWJaaGimaaaa@4071@

In both cases, the solid deforms elastically (no plastic strain) if the condition is satisfied.

 

 

 

3.7.8 Complete incremental stress-strain relations for a rate independent elastic-plastic solid

 

We conclude by summarizing the complete elastic-plastic stress strain relations for isotropic and kinematically hardening  solids with Von-Mises yield surface.

 

 

 

Isotropically hardening elastic-plastic solid

 

The solid is characterized by its elastic constants E,ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacYcacqaH9oGBaaa@3412@  and by the yield stress Y( ε ¯ p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiaacIcacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaakiaacMcaaaa@3602@  as a function of accumulated plastic strain ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaahaaWcbeqaaiaadc haaaaaaa@33C1@  and its slope h=dY/d ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiabg2da9iaadsgacaWGzbGaai 4laiaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaaaaa@3917@ , as shown in the figure below.

 


 

In this case we have that

d ε ij =d ε ij e +d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@4288@

with

d ε ij e = 1+ν E d σ ij ν 1+ν d σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWk cqaH9oGBaeaacaWGfbaaamaabmaabaGaamizaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiabe27aUbqaaiaa igdacqGHRaWkcqaH9oGBaaGaamizaiabeo8aZnaaBaaaleaacaWGRb Gaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGc caGLOaGaayzkaaaaaa@506F@

d ε ij p = 0 3 2 S ij S ij Y( ε ¯ p )<0 1 h 3 2 S kl d σ kl Y 3 2 S ij Y 3 2 S ij S ij Y( ε ¯ p )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpdaGabaqaauaabeqaceaaaeaa caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGc aaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBaaaleaaca WGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaa aeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaakiaacMcacqGH8aapcaaIWaaabaWaaSaaaeaacaaIXaaa baGaamiAaaaadaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaWaaa WaaeaacaWGtbWaaSbaaSqaaiaadUgacaWGSbaabeaakiaadsgacqaH dpWCdaWgaaWcbaGaam4AaiaadYgaaeqaaaGccaGLPmIaayPkJaaaba GaamywaaaadaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaam4u amaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGzbaaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7daGcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBa aaleaacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWG QbaabeaaaeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaakiaacMcacqGH9aqpcaaIWaaaaaGaay5Eaaaa aa@C2E0@

where x = xx0 0x0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaaWaaeaacaWG4baacaGLPmIaayPkJa Gaeyypa0ZaaiqaaeaafaqabeGabaaabaGaamiEaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacq GHLjYScaaIWaaabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacqGHKjYOcaaIWaaaaa Gaay5Eaaaaaa@5A40@

These may be combined to

d ε ij = 1+ν E d σ ij ν 1+ν d σ kk δ ij 3 2 S ij S ij Y( ε ¯ p )<0 1+ν E d σ ij ν 1+ν d σ kk δ ij +d ε ¯ p S ij Y 3 2 S ij S ij Y( ε ¯ p )=0 d ε ¯ p = 1 h 3 2 S kl d σ kl Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aadMgacaWGQbaabaaaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaWa aSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGaamyraaaadaqadaqaai aadsgacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Ya aSaaaeaacqaH9oGBaeaacaaIXaGaey4kaSIaeqyVd4gaaiaadsgacq aHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqa aiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 +aaOaaaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaiaadofadaWgaaWc baGaamyAaiaadQgaaeqaaOGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaabeaakiabgkHiTiaadMfacaGGOaGafqyTduMbaebadaahaaWc beqaaiaadchaaaGccaGGPaGaeyipaWJaaGimaaqaamaalaaabaGaaG ymaiabgUcaRiabe27aUbqaaiaadweaaaWaaeWaaeaacaWGKbGaeq4W dm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaabaGaeq yVd4gabaGaaGymaiabgUcaRiabe27aUbaacaWGKbGaeq4Wdm3aaSba aSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaam OAaaqabaaakiaawIcacaGLPaaacqGHRaWkcaWGKbGafqyTduMbaeba daahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaadofadaWgaaWcbaGaam yAaiaadQgaaeqaaaGcbaGaamywaaaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaOaaaeaada WcaaqaaiaaiodaaeaacaaIYaaaaiaadofadaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaabeaaki abgkHiTiaadMfacaGGOaGafqyTduMbaebadaahaaWcbeqaaiaadcha aaGccaGGPaGaeyypa0JaaGimaaaaaiaawUhaaaqaaiaadsgacuaH1o qzgaqeamaaCaaaleqabaGaamiCaaaakiabg2da9maalaaabaGaaGym aaqaaiaadIgaaaWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaam aaamaabaGaam4uamaaBaaaleaacaWGRbGaamiBaaqabaGccaWGKbGa eq4Wdm3aaSbaaSqaaiaadUgacaWGSbaabeaaaOGaayzkJiaawQYiaa qaaiaadMfaaaaaaaa@E8B1@

It is sometimes necessary to invert these expressions.  A straightforward but tedious series of index notation manipulations shows that

d σ ij = E 1+ν d ε ij + ν 12ν d ε kk δ ij 3 2 S ij S ij Y( ε ¯ p )<0 E 1+ν d ε ij + ν 12ν d ε kk δ ij d ε ij p 3 2 S ij S ij Y( ε ¯ p )=0 d ε ij p = 3E 3E+2(1+ν)h 3 2 S kl d ε kl Y 3 2 S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9maaceaabaqbaeqabiqaaaqaamaa laaabaGaamyraaqaaiaaigdacqGHRaWkcqaH9oGBaaWaaiWaaeaaca WGKbGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRmaa laaabaGaeqyVd4gabaGaaGymaiabgkHiTiaaikdacqaH9oGBaaGaam izaiabew7aLnaaBaaaleaacaWGRbGaam4AaaqabaGccqaH0oazdaWg aaWcbaGaamyAaiaadQgaaeqaaaGccaGL7bGaayzFaaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 daGcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBaaale aacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaaaeqaaOGaeyOeI0IaamywaiaacIcacuaH1oqzgaqeamaaCaaale qabaGaamiCaaaakiaacMcacqGH8aapcaaIWaaabaWaaSaaaeaacaWG fbaabaGaaGymaiabgUcaRiabe27aUbaadaGadaqaaiaadsgacqaH1o qzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSYaaSaaaeaacqaH 9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacaWGKbGaeqyTdu 2aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWG PbGaamOAaaqabaGccqGHsislcaWGKbGaeqyTdu2aa0baaSqaaiaadM gacaWGQbaabaGaamiCaaaaaOGaay5Eaiaaw2haaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG 4maaqaaiaaikdaaaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGc caWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeqaaOGaeyOeI0Iaam ywaiaacIcacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakiaacMca cqGH9aqpcaaIWaaaaaGaay5EaaGaaGPaVdqaaiaadsgacqaH1oqzda qhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaOGaeyypa0ZaaSaaaeaa caaIZaGaamyraaqaaiaaiodacaWGfbGaey4kaSIaaGOmaiaacIcaca aIXaGaey4kaSIaeqyVd4MaaiykaiaadIgaaaWaaSaaaeaacaaIZaaa baGaaGOmaaaadaWcaaqaamaaamaabaGaam4uamaaBaaaleaacaWGRb GaamiBaaqabaGccaWGKbGaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaa beaaaOGaayzkJiaawQYiaaqaaiaadMfaaaWaaSaaaeaacaaIZaaaba GaaGOmaaaadaWcaaqaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqa aaGcbaGaamywaaaaaaaa@E7CB@

 

This constitutive law is the most commonly used model of inelastic deformation.  It has the following properties:

 

· It will correctly predict the conditions necessary to initiate yield under multiaxial loading

 

· It will correctly predict the plastic strain rate under an arbitrary multiaxial stress state

 

· It can model accurately any uniaxial stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve

 

 

It has the following limitations:

 

· It is valid only for modest plastic strains (<10%)

 

· It will not predict creep behavior or strain rate sensitivity

 

· It does not predict behavior under cyclic loading correctly

 

· It will not predict plastic strains accurately if the principal axes of stress rotate significantly (more than about 30 degrees) during inelastic deformation

 

 

 

Linear Kinematically hardening solid

 

The solid is characterized by its elastic constants E,ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacYcacqaH9oGBaaa@3412@  and by the initial yield stress Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaaaa@31BE@  and the strain hardening rate c. Then,

d ε ij =d ε ij e +d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@4288@

with

 


where x = xx0 0x0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaaWaaeaacaWG4baacaGLPmIaayPkJa Gaeyypa0ZaaiqaaeaafaqabeGabaaabaGaamiEaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacq GHLjYScaaIWaaabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacqGHKjYOcaaIWaaaaa Gaay5Eaaaaaa@5A40@

 

Finally, the evolution equation for α ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3488@  (i.e. the hardening law) is

d α ij = 3 2 cd ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaiodaaeaacaaIYaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aaaaa@3E81@

 

This constitutive equation is used primarily to model cyclic plastic deformation, or plastic flow under nonproportional loading (where principal axes of stress rotate significantly during plastic flow). It has the following limitations:

 

· It is valid only for modest plastic strains (<10%)

 

· It will not predict creep behavior or strain rate sensitivity

 

· It does not predict the shape of the stress-strain curve accurately

 

 

 

3.7.9 Typical values for yield stress of polycrystalline metals

 

Unlike elastic constants, the plastic properties of metals are highly variable, and are also very sensitive to alloying composition and microstructure (which can be influenced by heat treatment and mechanical working).  Consequently, it is impossible to give accurate values for yield stresses or hardening rates for materials.  The table below lists rough values for yield stresses of common materials (the data are from Jones and Ashby, 2019) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  these may provide a useful guide in preliminary calculations.  If you need accurate data you will have to measure the properties of the materials you plan to use yourself.

 


 

 

 

3.7.10 Perspectives on plastic constitutive equations - The Principle of Maximum Plastic Resistance

 

The constitutive law outlined in the preceding section has an important property, known as the principle of maximum plastic resistance.

 

Statement of the principle: Let σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  be a stress state which causes plastic deformation, let d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3595@  be a small change in σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  and let d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaaaaa@366E@  be the resulting strain increment.  Now, let σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaey4fIOcaaaaa@359B@  be any other stress that can be imposed on the specimen that either does not reach yield, or else just satisfies the yield criterion, i.e. 3 S ij * S ij * /2 Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIZaGaam4uamaaDaaale aacaWGPbGaamOAaaqaaiaacQcaaaGccaWGtbWaa0baaSqaaiaadMga caWGQbaabaGaaiOkaaaakiaac+cacaaIYaaaleqaaOGaeyizImQaam ywaaaa@3CF8@  with S ij * = σ ij * σ kk * δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcaaaGccqGH9aqpcqaHdpWCdaqhaaWcbaGaamyAaiaadQga aeaacaGGQaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaadUgacaWGRb aabaGaaiOkaaaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaa aa@4328@ .

 

Then

σ ij σ ij d ε ij dt 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaadMgacaWG QbaabaGaey4fIOcaaaGccaGLOaGaayzkaaWaaSaaaeaacaWGKbGaeq yTdu2aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaadsgacaWG0baa aiabgwMiZkaaicdaaaa@4506@

 

Interpretation: The Principle of Maximum Plastic Resistance is a mathematical statement of the following ideas:

 

(i) The Mises yield surface is convex

 

(ii) The plastic strain rate is normal to the yield surface.

 

It is best to illustrate these ideas graphically. In principal stress space, the product σ ij d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG Wbaaaaaa@3A44@  is represented by the dot product of the stress and plastic strain rate vectors shown in the figures below. The statement

σ ij σ ij d ε ij p 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaadMgacaWG QbaabaGaey4fIOcaaaGccaGLOaGaayzkaaGaamizaiabew7aLnaaDa aaleaacaWGPbGaamOAaaqaaiaadchaaaGccqGHLjYScaaIWaaaaa@440A@

is equivalent to the requirement that the angle between the vectors formed by σ ij σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabgkHiTiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiab gEHiQaaaaaa@3A5E@  and d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaaaaa@366E@  must be greater than 90 degrees for all stresses and strain rates.  This is only possible if the yield stress is convex and the strain rate is normal to the yield surface.

 


 

The Principle of Maximum Plastic Resistance is important because it is the basis for a number of very important theorems concerning plastic deformation in solids.  For example, it can be shown that the stress field in a material that obeys the Principle is always unique.  In addition, the principle leads to clever techniques to estimate collapse loads for elastic-plastic solids and structures.

 

 

Proof of the principle of maximum plastic resistance

 

Our goal is to prove that σ ij d ε ij p σ ij * d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaeyyzImRaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaai OkaaaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG Wbaaaaaa@4629@ .  The simplest way to do so is to show that σ ij d ε ij p =Yd ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaeyypa0JaamywaiaadsgacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaaaaa@3FFC@ , while σ ij * d ε ij p Yd ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaaiOkaaaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQga aeaacaWGWbaaaOGaeyizImQaamywaiaadsgacuaH1oqzgaqeamaaCa aaleqabaGaamiCaaaaaaa@415A@ , where d ε ¯ p = 2d ε ij p d ε ij p /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiqbew7aLzaaraWaaWbaaSqabe aacaWGWbaaaOGaeyypa0ZaaOaaaeaacaaIYaGaamizaiabew7aLnaa DaaaleaacaWGPbGaamOAaaqaaiaadchaaaGccaWGKbGaeqyTdu2aa0 baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiaac+cacaaIZaaaleqa aaaa@4333@  is the plastic strain magnitude, and Y is the yield stress.  To this end:

 

1. Recall the plastic flow rule  d ε ij p =d ε ¯ p f σ ij =d ε ¯ p 3 2 S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHci ITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiabg2da9iaa dsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgacaWG QbaabeaaaOqaaiaadMfaaaaaaa@4D2C@

 

2. Multiply both sides by stress

σ ij d ε ij p = σ ij d ε ¯ p 3 2 S ij Y = S ij + σ kk δ ij d ε ¯ p 3 2 S ij Y =d ε ¯ p 3 2 S ij S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaki aadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGa aG4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgaca WGQbaabeaaaOqaaiaadMfaaaGaeyypa0ZaaeWaaeaacaWGtbWaaSba aSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeo8aZnaaBaaaleaaca WGRbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqa aaGccaGLOaGaayzkaaGaamizaiqbew7aLzaaraWaaWbaaSqabeaaca WGWbaaaOWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaaiaadofa daWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaamywaaaacqGH9aqpca WGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaa iodaaeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPbGaam OAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaa dMfaaaaaaa@6CAA@

where we have noted that S kk =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGRbGaam4Aaa qabaGccqGH9aqpcaaIWaaaaa@358E@ .

 

3. Recall that S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C1@  causes yield, and so must satisfy the yield condition 3 S ij S ij /2 Y=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIZaGaam4uamaaBaaale aacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaac+cacaaIYaaaleqaaOGaeyOeI0Iaamywaiabg2da9iaaic daaaa@3C92@ . This shows that σ ij d ε ij p =Yd ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaeyypa0JaamywaiaadsgacuaH1oqzgaqeamaaCaaaleqaba GaamiCaaaaaaa@3FFC@

 

4. Now consider

σ ij * d ε ij p = σ ij * d ε ¯ p 3 2 S ij Y =d ε ¯ p 3 2 S ij * S ij Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaaiOkaaaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQga aeaacaWGWbaaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaaiOkaaaakiaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiC aaaakmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaS baaSqaaiaadMgacaWGQbaabeaaaOqaaiaadMfaaaGaeyypa0Jaamiz aiqbew7aLzaaraWaaWbaaSqabeaacaWGWbaaaOWaaSaaaeaacaaIZa aabaGaaGOmaaaadaWcaaqaaiaadofadaqhaaWcbaGaamyAaiaadQga aeaacaGGQaaaaOGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaake aacaWGzbaaaaaa@5794@

 

5. Note that

3 2 ( S ij S ij * )( S ij S ij * )0 3 2 S ij S ij + S ij * S ij * 2 S ij S ij * 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIZaaabaGaaGOmaaaaca GGOaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcaWG tbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaakiaacMcacaGGOa Gaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcaWGtbWa a0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaakiaacMcacqGHLjYSca aIWaGaeyO0H49aaSaaaeaacaaIZaaabaGaaGOmaaaadaqadaqaaiaa dofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaaBaaaleaaca WGPbGaamOAaaqabaGccqGHRaWkcaWGtbWaa0baaSqaaiaadMgacaWG QbaabaGaaiOkaaaakiaadofadaqhaaWcbaGaamyAaiaadQgaaeaaca GGQaaaaOGaeyOeI0IaaGOmaiaadofadaWgaaWcbaGaamyAaiaadQga aeqaaOGaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaaaaki aawIcacaGLPaaacqGHLjYScaaIWaaaaa@6487@

 

6. Now, recall again that S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C1@  causes yield, while  S ij * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcaaaaaaa@3470@  can be at or below yield.  The yield criterion therefore requires that 3 S ij S ij /2= Y 2 3 S ij * S ij * /2 Y 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaOGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaGG VaGaaGOmaiabg2da9iaadMfadaahaaWcbeqaaiaaikdaaaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIZaGaam4uamaaDaaa leaacaWGPbGaamOAaaqaaiaacQcaaaGccaWGtbWaa0baaSqaaiaadM gacaWGQbaabaGaaiOkaaaakiaac+cacaaIYaGaeyizImQaamywamaa CaaaleqabaGaaGOmaaaakiaaykW7caaMc8oaaa@54F7@ . Substituting these inequalities into (5) shows that Y 2 3 S ij S ij * /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywamaaCaaaleqabaGaaGOmaaaaki abgwMiZkaaiodacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa dofadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGaai4laiaaik daaaa@3D27@ .  Finally, this shows

σ ij * d ε ij p =d ε ¯ p 3 2 S ij * S ij Y Yd ε ¯ p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaaiOkaaaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQga aeaacaWGWbaaaOGaeyypa0Jaamizaiqbew7aLzaaraWaaWbaaSqabe aacaWGWbaaaOWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaaiaa dofadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGaam4uamaaBa aaleaacaWGPbGaamOAaaqabaaakeaacaWGzbaaaiabgsMiJkaadMfa caWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaaaaa@4F30@

Thus σ ij d ε ij p σ ij d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaeyyzImRaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaey 4fIOcaaOGaamizaiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dchaaaaaaa@4669@ , proving the principle.

 

 

 

3.7.11 Perspectives on plastic constitutive equations - Drucker’s Postulate

 

Constitutive models of inelastic behavior are based largely on experimental observations of plastic flow in laboratory specimens.  Similar constitutive laws are used to describe very different materials, including metals, ceramics, glasses, soils and polymers.  The mechanisms of deformation in these materials are very different, so it is surprising that their response is similar. 

 

One perspective on the structure of constitutive laws for inelastic solids was developed by Drucker in the 1950s.  Drucker introduced the idea of a stable plastic material, as follows. Consider a deformable solid, subjected to boundary tractions t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F2@ , which induce some displacement field u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@ , as shown in the figure.   Suppose that the tractions are increased to t i +Δ t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaki abgUcaRiabfs5aejaadshadaWgaaWcbaGaamyAaaqabaaaaa@3757@ , resulting in an additional displacement Δ u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaaaaa@345A@ . The material is said to be stable in the sense of Drucker if the work done by the tractions Δ t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDamaaBaaaleaacaWGPb aabeaaaaa@3458@  through the displacements Δ u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaaaaa@3459@  is positive or zero for all Δ t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDamaaBaaaleaacaWGPb aabeaaaaa@3458@ :

ΔW= A Δ t i dΔ u i dt dt0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaam4vaiabg2da9maapeaaba WaaiWaaeaadaWdrbqaaiabfs5aejaadshadaWgaaWcbaGaamyAaaqa baGcdaWcaaqaaiaadsgacqqHuoarcaWG1bWaaSbaaSqaaiaadMgaae qaaaGcbaGaamizaiaadshaaaaaleaacaWGbbaabeqdcqGHRiI8aaGc caGL7bGaayzFaaaaleqabeqdcqGHRiI8aOGaamizaiaadshacqGHLj YScaaIWaaaaa@49BB@

 

It can be shown that, for a plastic material to be stable in this sense, it must satisfy the following conditions:

 

· The yield surface f σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3729@  must be convex

 

· The plastic strain rate must be normal to the yield surface d ε ij p =d ε ¯ p f σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHci ITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaaa@42E5@

 

· The rate of strain hardening must be positive or zero dY d ε ¯ p 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamywaaqaaiaads gacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaaaaGccqGHLjYScaaI Waaaaa@390A@

 

 

Furthermore, a material that is stable in the sense of Drucker must satisfy the principle of maximum plastic resistance.

 

This does not really explain why the constitutive law should have this structure, but materials that do not satisfy the Drucker stability criterion tend to be difficult to work with in calculations (they tend to predict that the deformation localizes in to shear bands with zero thickness and an infinite strain rate, which violates one of the assumptions that we made in Section 3.1), so there is a strong incentive for choosing a constitutive law that meets the condition.  It is not surprising, then, that the people developing constitutive laws ended up with a form that satisfies Drucker stability.

 

 

 

3.7.12 Microscopic Perspectives on Plastic Flow in Metals

 

It is possible to obtain some insight into the structure of the constitutive laws for metals by considering the micromechanisms responsible for plastic flow.

 

Plastic flow in metals is caused by dislocation motion.  Dislocations are line defects in crystalline solids MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  you can think of a dislocation as an extra plane of atoms inserted within a perfect crystal, as shown in the figure below.

 


When the crystal is subjected to stress, these defects move through the solid and rearrange the crystal lattice.  For example, if the model crystal shown in Fig. 3.41 is subjected to a shear stress, the atoms rearrange so that the top part of the crystal is shifted to the right relative to the bottom part, as shown below.

 


 

Because the crystal lattice is distorted near a dislocation, only a modest shear stress is required to drive the dislocation through the solid, causing permanent plastic deformation.

 

Experiments and atomistic simulations suggest that dislocation motion obeys Schmidt’s law: a dislocation moves through a crystal if the shear stress on its glide plane exceeds a critical magnitude τ c MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadogaaeqaaa aa@33B8@ .

 

It can be shown that a material which deforms by dislocation glide, and which obeys Schmidt’s law, will satisfy the principle of maximum plastic resistance.  This, in turn, implies that the yield surface for the solid must be convex and the plastic strain rate must be normal to the yield surface.

 

The notion of a yield surface and convexity for a material which deforms by dislocation glide can be illustrated with a simple double-slip model.  Consider a single crystal, which contains two dislocation glide planes oriented at 45 o MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGinaiaaiwdadaahaaWcbeqaaiaad+ gaaaaaaa@337D@  to the principal axes of stress as shown below. Assume plane stress conditions, for simplicity.

 


 

The figure shows side views of the two slip planes. As an exercise, you should verify that the shear stresses (tangential component of traction) acting on the two slip planes are

τ=± 1 2 σ 1 σ 2 τ=± 1 2 σ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHepaDcqGH9aqpcqGHXcqSda WcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeq4Wdm3aaSbaaSqa aiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaaabaGaeqiXdqNaeyypa0JaeyySae7aaSaaaeaa caaIXaaabaGaaGOmaaaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaaaa a@47F0@

The solid reaches yield if τ= τ c MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0JaeqiXdq3aaSbaaS qaaiaadogaaeqaaaaa@3683@ .  The resulting yield surface is sketched in the figure below: the planes of the yield surface have been color coded to indicate which slip plane is active.

 


 

Observe that the yield surface is convex: this is a consequence of Schmidt’s law.

 

Now, suppose that slip is activated on one of the glide planes.  Let t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F2@  denote the tangent to the slip plane, and let n i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaaa a@32EC@  denote the normal. To compute the strain produced by slip on a single slip system, consider the deformation of an infinitesimal line element dx under shear γ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3286@ , as shown in the figure below.

 


 

The deformed line element is given by

dw=dx+γ dxn t MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahEhacqGH9aqpcaWGKbGaaC iEaiabgUcaRiabeo7aNnaabmaabaGaamizaiaahIhacqGHflY1caWH UbaacaGLOaGaayzkaaGaaCiDaaaa@3FF2@

or, in index notation

d w i = δ ij +γ t i n j d x j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpdaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaamOA aaqabaGccqGHRaWkcqaHZoWzcaaMc8UaamiDamaaBaaaleaacaWGPb aabeaakiaad6gadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaa caWGKbGaamiEamaaBaaaleaacaWGQbaabeaaaaa@4579@

The deformation gradient follows as

F ij = δ ij +γ t i n j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSIaeq4SdCMaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaGcca WGUbWaaSbaaSqaaiaadQgaaeqaaaaa@40BA@

and the Lagrange strain tensor is

E ij = 1 2 F ki F jk δ ij = 1 2 γ t i n j + t j n i + 1 2 γ 2 n i n j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGa amOramaaBaaaleaacaWGRbGaamyAaaqabaGccaWGgbWaaSbaaSqaai aadQgacaWGRbaabeaakiabgkHiTiabes7aKnaaBaaaleaacaWGPbGa amOAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaae aacaaIYaaaaiabeo7aNnaabmaabaGaamiDamaaBaaaleaacaWGPbaa beaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGHRaWkcaWG0bWaaS baaSqaaiaadQgaaeqaaOGaamOBamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeq 4SdC2aaWbaaSqabeaacaaIYaaaaOGaamOBamaaBaaaleaacaWGPbaa beaakiaad6gadaWgaaWcbaGaamOAaaqabaaaaa@5A67@

For small γ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3286@ , we can approximate the Lagrange strain tensor by the infinitesimal strain tensor

ε ij = 1 2 γ t i n j + t j n i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeq4SdC2a aeWaaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaamOBamaaBaaale aacaWGQbaabeaakiabgUcaRiaadshadaWgaaWcbaGaamOAaaqabaGc caWGUbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@43A2@

Now, suppose that the stress satisfies

σ 2 σ 1 = τ c MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaO GaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeqiX dq3aaSbaaSqaaiaadogaaeqaaaaa@3B14@

as marked on the yield locus shown below. 

 


 

This activates slip as shown in the figure. The normal and tangent to the appropriate slip plane are

t= 1 2 , 1 2 ,0 n= 1 2 , 1 2 ,0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9maadmaabaWaaSaaae aacqGHsislcaaIXaaabaWaaOaaaeaacaaIYaaaleqaaaaakiaacYca daWcaaqaaiaaigdaaeaadaGcaaqaaiaaikdaaSqabaaaaOGaaiilai aaicdaaiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah6gacqGH9a qpdaWadaqaamaalaaabaGaaGymaaqaamaakaaabaGaaGOmaaWcbeaa aaGccaGGSaWaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIYaaaleqaaa aakiaacYcacaaIWaaacaGLBbGaayzxaaaaaa@558D@

The strain rate therefore follows as

d ε ij dt = 1 2 dγ dt 1 0 0 0 1 0 0 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaadaWcaaqaaiaadsgacqaH1o qzdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaamizaiaadshaaaaa caGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaada WcaaqaaiaadsgacqaHZoWzaeaacaWGKbGaamiDaaaadaWadaqaauaa beqadmaaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaaaacaGLBbGaayzxaaaaaa@49F7@

Thus, d ε 1 dt = d ε 2 dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aaSbaaS qaaiaaigdaaeqaaaGcbaGaamizaiaadshaaaGaeyypa0JaeyOeI0Ya aSaaaeaacaWGKbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaGcbaGaam izaiaadshaaaaaaa@3DB9@ , showing that the plastic strain rate is normal to the yield locus (see the figure). You could verify as an exercise that that if the stress reaches the other limiting surfaces of the yield locus, the resulting strain rate will be normal to the yield locus.