4.2 Spherically symmetric solution to quasi-static large strain elasticity problems

 

This section shows how to calculate the deformation and stresses in a thick-walled spherical shell, made from a hyperelastic material.   The results generalize the solutions in Section 4.1 by accounting for large changes in shape and the effects of a nonlinear stress-stretch relation.   To simplify calculations, the material is assumed to be incompressible (a reasonable assumption for most elastomers).

 

 

 

4.2.1 Summary of governing equations of finite elasticity in Cartesian components

 

We begin by reviewing the general equations that govern static deformation of hyperelastic solids. A representative problem is sketched in the figure below.

 


 

We are given the following information

 

1. The geometry of the solid

 

2. A constitutive law for the material (i.e. the hyperelastic strain energy potential)

 

3. The body force density b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E0@  (per unit mass) (if any)

 

4. Prescribed boundary tractions t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F2@  and/or boundary displacements u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@

 

 

To simplify the problem we will assume

 

· The solid is stress free in its undeformed configuration;

 

· Temperature changes during deformation are neglected

 

· The solid is incompressible

 

 

With these assumptions, we wish to calculate the displacement field u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@ , the left Cauchy-Green deformation tensor B ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33AF@  and the stress field σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  satisfying the following equations:

 

· Displacement MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ strain relation B ij = F ik F jk F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa dAeadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWGgbWaaSbaaSqaaiaadMgacaWGQbaabe aakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH RaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaaaaa@5FA9@        

 

· Incompressibility condition J=det(F)=1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaiabg2da9iaaigdaaaa@3969@

 

 

 

· Stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ strain relation

σ ij =2 U I 1 + I 1 U I 2 B ij I 1 U I ¯ 1 +2 I 2 U I ¯ 2 δ ij 3 U I 2 B ik B kj +p δ ij 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaikdadaWadaqaamaabmaabaWaaSaaaeaacqGH ciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIXaaabeaaaa GccqGHRaWkcaWGjbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacqGH ciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIYaaabeaaaa aakiaawIcacaGLPaaacaWGcbWaaSbaaSqaaiaadMgacaWGQbaabeaa kiabgkHiTmaabmaabaGaamysamaaBaaaleaacaaIXaaabeaakmaala aabaGaeyOaIyRaamyvaaqaaiabgkGi2kqadMeagaqeamaaBaaaleaa caaIXaaabeaaaaGccqGHRaWkcaaIYaGaamysamaaBaaaleaacaaIYa aabeaakmaalaaabaGaeyOaIyRaamyvaaqaaiabgkGi2kqadMeagaqe amaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaadaWcaaqaai abes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaaIZaaaaiab gkHiTmaalaaabaGaeyOaIyRaamyvaaqaaiabgkGi2kaadMeadaWgaa WcbaGaaGOmaaqabaaaaOGaamOqamaaBaaaleaacaWGPbGaam4Aaaqa baGccaWGcbWaaSbaaSqaaiaadUgacaWGQbaabeaaaOGaay5waiaaw2 faaiabgUcaRiaadchadaWcaaqaaiabes7aKnaaBaaaleaacaWGPbGa amOAaaqabaaakeaacaaIZaaaaaaa@7402@

 

where σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  is the Cauchy stress tensor,   U( I 1 , I 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWGjbWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@3742@  is the strain energy potential for the elastic solid, p is the hydrostatic part of the stress (which must be determined as part of the solution) and I 1 = B kk I 2 = I 1 2 B ik B ki /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iaadkeadaWgaaWcbaGaam4AaiaadUgaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWGjbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaeWa aeaacaWGjbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaeyOeI0Iaam OqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWGcbWaaSbaaSqaaiaa dUgacaWGPbaabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@5658@ .

 

·         Equilibrium Equation σ ij y i +ρ b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGPbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadQ gaaeqaaOGaeyypa0JaaGimaaaa@4021@  

 

·         Traction boundary conditions σ ij n i = t j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaaaa@39E6@  on parts of the boundary where tractions are known.

 

·         Displacement boundary conditions u i = d i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadsgadaWgaaWcbaGaamyAaaqabaaaaa@3606@  on parts of the boundary where displacements are known.

 

 

 

 

4.2.2 Simplified equations for incompressible spherically symmetric solids

 

A representative spherically symmetric problem is illustrated in the figure.  We consider a hollow, spherical solid, which is subjected to spherically symmetric loading (i.e. internal body forces, as well as tractions or displacements applied to the surface, are independent of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@ , and act in the radial direction only). 

 

The solution is most conveniently expressed using a spherical-polar coordinate system, illustrated in Fig. 4.11.  For a finite deformation problem, we need a way to characterize the position of material particles in both the undeformed and deformed solid.  To do this, we let (R,Θ,Φ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkfacaGGSaGaeuiMdeLaai ilaiabfA6agjaacMcaaaa@3761@  identify a material particle in the undeformed solid. The coordinates of the same point in the deformed solid is identified by a new set of spherical-polar co-ordinates (r,θ,ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ilaiabew9aMjaacMcaaaa@380E@ .  One way to describe the deformation would be to specify each of the deformed coordinates (r,θ,ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ilaiabew9aMjaacMcaaaa@380E@  in terms of the reference coordinates (R,Θ,Φ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkfacaGGSaGaeuiMdeLaai ilaiabfA6agjaacMcaaaa@3761@ . For a spherically symmetric deformation, points only move radially, so that

r=f(R)θ=Θϕ=Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadAgacaGGOaGaam OuaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH4oqCcqGH9aqpcq qHyoqucaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew9aMj abg2da9iaaykW7cqqHMoGraaa@681C@

 

In finite deformation problems vectors and tensors can be expressed as components in a basis e R , e Θ , e Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk faaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeuiMdefabeaakiaacYca caWHLbWaaSbaaSqaaiabfA6agbqabaaakiaawUhacaGL9baaaaa@3BA5@  associated with the position of material points in the undeformed solid, or, if more convenient, in a basis e r , e θ , e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk haaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYca caWHLbWaaSbaaSqaaiabew9aMbqabaaakiaawUhacaGL9baaaaa@3C52@  associated with material points in the deformed solid.  For spherically symmetric deformations the two bases are identical MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  consequently, we can write

 

· Position vector in the undeformed solid       x=R e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iaadkfacaWHLbWaaS baaSqaaiaadkhaaeqaaaaa@35CE@

 

· Position vector in the deformed solid       y=r e r =f(R) e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiabg2da9iaadkhacaWHLbWaaS baaSqaaiaadkhaaeqaaOGaeyypa0JaamOzaiaacIcacaWGsbGaaiyk aiaahwgadaWgaaWcbaGaamOCaaqabaaaaa@3C2B@

 

· Displacement vector u=yx=r e r R e r =(f(R)R) e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaahMhacqGHsislca WH4bGaeyypa0JaamOCaiaahwgadaWgaaWcbaGaamOCaaqabaGccqGH sislcaWGsbGaaCyzamaaBaaaleaacaWGYbaabeaakiabg2da9iaacI cacaWGMbGaaiikaiaadkfacaGGPaGaeyOeI0IaamOuaiaacMcacaWH LbWaaSbaaSqaaiaadkhaaeqaaaaa@4719@

 

 

The stress, deformation gradient and deformation tensors (written as components in { e r , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C20@  ) have the form

σ σ rr 0 0 0 σ θθ 0 0 0 σ ϕϕ F F rr 0 0 0 F θθ 0 0 0 F ϕϕ B B rr 0 0 0 B θθ 0 0 0 B ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWHdpGaeyyyIO7aamWaaeaafa qabeWadaaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaaaOqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeo8aZnaaBaaaleaacq aH4oqCcqaH4oqCaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaaaaGccaGLBb GaayzxaaGaaGPaVlaaykW7aeaacaWHgbGaeyyyIO7aamWaaeaafaqa beWadaaabaGaamOramaaBaaaleaacaWGYbGaamOCaaqabaaakeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaWGgbWaaSbaaSqaaiabeI7a XjabeI7aXbqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca WGgbWaaSbaaSqaaiabew9aMjabew9aMbqabaaaaaGccaGLBbGaayzx aaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWHcbGaeyyyIO7aamWaaeaafaqabeWa daaabaGaamOqamaaBaaaleaacaWGYbGaamOCaaqabaaakeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGcbWaaSbaaSqaaiabeI7aXjab eI7aXbqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGcb WaaSbaaSqaaiabew9aMjabew9aMbqabaaaaaGccaGLBbGaayzxaaaa aaa@870C@

and furthermore must satisfy σ θθ = σ ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaaaaa@3CCA@   F rr = F θθ B θθ = B ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGYbGaamOCaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWGcbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqp caWGcbWaaSbaaSqaaiabew9aMjabew9aMbqabaaaaa@5117@ .

 

For spherical symmetry, the governing equations reduce to

 

· Strain Displacement Relations

F rr = df dR F ϕϕ = F θθ = f(R) R B rr = df dR 2 B ϕϕ = B θθ = f(R) R 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGgbWaaSbaaSqaaiaadkhaca WGYbaabeaakiabg2da9maalaaabaGaamizaiaadAgaaeaacaWGKbGa amOuaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamOramaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0JaamOramaaBaaaleaacqaH4oqCcqaH4oqCaeqaaO Gaeyypa0ZaaSaaaeaacaWGMbGaaiikaiaadkfacaGGPaaabaGaamOu aaaacaaMc8oabaGaaGPaVlaadkeadaWgaaWcbaGaamOCaiaadkhaae qaaOGaeyypa0ZaaeWaaeaadaWcaaqaaiaadsgacaWGMbaabaGaamiz aiaadkfaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadkeadaWgaaWcbaGaeqy1dyMaeqy1dygabeaakiabg2 da9iaadkeadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9maa bmaabaWaaSaaaeaacaWGMbGaaiikaiaadkfacaGGPaaabaGaamOuaa aaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaa@8505@

 

· Incompressibility condition df dR f(R) R 2 =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiaadsgacaWGMb aabaGaamizaiaadkfaaaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqa aiaadAgacaGGOaGaamOuaiaacMcaaeaacaWGsbaaaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaigdaaaa@3E4C@

 

· Stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ Strain relations

σ rr =2 U I 1 + I 1 U I 2 B rr I 1 3 U I 1 2 I 2 3 U I 2 U I 2 B rr 2 +p σ θθ = σ ϕϕ =2 U I 1 + I 1 U I 2 B θθ I 1 3 U I 1 2 I 2 3 U I 2 U I 2 B θθ 2 +p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0JaaGOmamaadmaabaWaaeWaaeaadaWcaaqa aiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaigdaae qaaaaakiabgUcaRiaadMeadaWgaaWcbaGaaGymaaqabaGcdaWcaaqa aiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaikdaae qaaaaaaOGaayjkaiaawMcaaiaadkeadaWgaaWcbaGaamOCaiaadkha aeqaaOGaeyOeI0YaaSaaaeaacaWGjbWaaSbaaSqaaiaaigdaaeqaaa GcbaGaaG4maaaadaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITcaWG jbWaaSbaaSqaaiaaigdaaeqaaaaakiabgkHiTmaalaaabaGaaGOmai aadMeadaWgaaWcbaGaaGOmaaqabaaakeaacaaIZaaaamaalaaabaGa eyOaIyRaamyvaaqaaiabgkGi2kaadMeadaWgaaWcbaGaaGOmaaqaba aaaOGaeyOeI0YaaSaaaeaacqGHciITcaWGvbaabaGaeyOaIyRaamys amaaBaaaleaacaaIYaaabeaaaaGccaWGcbWaa0baaSqaaiaadkhaca WGYbaabaGaaGOmaaaaaOGaay5waiaaw2faaiabgUcaRiaadchaaeaa cqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9iabeo 8aZnaaBaaaleaacqaHvpGzcqaHvpGzaeqaaOGaeyypa0JaaGOmamaa dmaabaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITca WGjbWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRiaadMeadaWgaaWc baGaaGymaaqabaGcdaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITca WGjbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaadkea daWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabgkHiTmaalaaabaGaam ysamaaBaaaleaacaaIXaaabeaaaOqaaiaaiodaaaWaaSaaaeaacqGH ciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIXaaabeaaaa GccqGHsisldaWcaaqaaiaaikdacaWGjbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaaG4maaaadaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITca WGjbWaaSbaaSqaaiaaikdaaeqaaaaakiabgkHiTmaalaaabaGaeyOa IyRaamyvaaqaaiabgkGi2kaadMeadaWgaaWcbaGaaGOmaaqabaaaaO GaamOqamaaDaaaleaacqaH4oqCcqaH4oqCaeaacaaIYaaaaaGccaGL BbGaayzxaaGaey4kaSIaamiCaaaaaa@AC1E@

 

·         Equilibrium Equations

d σ rr dr + 1 r 2 σ rr σ θθ σ ϕϕ + ρ 0 b r =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgUcaRmaa laaabaGaaGymaaqaaiaadkhaaaWaaeWaaeaacaaIYaGaeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaakiabgkHiTiabeo8aZnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabew 9aMjabew9aMbqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVlabgUca Riabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaam OCaaqabaGccqGH9aqpcaaIWaaaaa@57B3@

 

·         Boundary Conditions

 

Prescribed Displacements u r (a)= g a u r (b)= g b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki aacIcacaWGHbGaaiykaiabg2da9iaadEgadaWgaaWcbaGaamyyaaqa baGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaamyDamaaBaaaleaacaWGYbaabeaakiaacIcacaWGIbGaaiykai abg2da9iaadEgadaWgaaWcbaGaamOyaaqabaaaaa@586F@

Prescribed Tractions σ rr (a)= t a σ rr (b)= t b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiaacIcacaWGHbGaaiykaiabg2da9iaadshadaWgaaWcbaGa amyyaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaaiikaiaadkgacaGGPaGaeyypa0JaamiDamaaBaaaleaacaWGIb aabeaaaaa@513C@

 

 

 

4.2.3 Pressurized hollow sphere made from an incompressible rubber

 

As an example, consider a pressurized hollow rubber shell, as shown in the figure. Assume that

 

· Before deformation, the sphere has inner radius A and outer radius B

 

· After deformation, the sphere has inner radius a and outer radius b

 

· The solid is made from an incompressible Mooney-Rivlin solid, with strain energy potential

U= μ 1 2 ( I 1 3)+ μ 2 2 ( I 2 3) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9maalaaabaGaeqiVd0 2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaGGOaGaamysamaa BaaaleaacaaIXaaabeaakiabgkHiTiaaiodacaGGPaGaey4kaSYaaS aaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaiaa cIcacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG4maiaacM caaaa@440E@

 

·         No body forces act on the sphere

 

·         The inner surface r=a is subjected to pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@

 

·         The outer surface r=b is subjected to pressure p b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGIbaabeaaaa a@32E8@

 

 

The deformed radii a,b of the inner and outer surfaces of the spherical shell are related to the pressure by

p a p b μ 1 =2 1 β 1 α + 1 2 1 β 4 1 α 4 2 μ 2 μ 1 βα + μ 2 μ 1 1 β 2 1 α 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGWbWaaSbaaSqaaiaadg gaaeqaaOGaeyOeI0IaamiCamaaBaaaleaacaWGIbaabeaaaOqaaiab eY7aTnaaBaaaleaacaaIXaaabeaaaaGccqGH9aqpcaaIYaWaaeWaae aadaWcaaqaaiaaigdaaeaacqaHYoGyaaGaeyOeI0YaaSaaaeaacaaI XaaabaGaeqySdegaaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacqaHYoGy daahaaWcbeqaaiaaisdaaaaaaOGaeyOeI0YaaSaaaeaacaaIXaaaba GaeqySde2aaWbaaSqabeaacaaI0aaaaaaaaOGaayjkaiaawMcaaiab gkHiTmaalaaabaGaaGOmaiabeY7aTnaaBaaaleaacaaIYaaabeaaaO qaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaaiabek7a IjabgkHiTiabeg7aHbGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeq iVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaa igdaaeqaaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaeqOSdi2aaW baaSqabeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiab eg7aHnaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@6985@

where α=a/A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0Jaamyyaiaac+caca WGbbaaaa@35E4@ , β=b/B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0JaamOyaiaac+caca WGcbaaaa@35E8@ , and α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@  are related by

B 3 A 3 = 1 α 3 1 β 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGcbWaaWbaaSqabeaaca aIZaaaaaGcbaGaamyqamaaCaaaleqabaGaaG4maaaaaaGccqGH9aqp daWcaaqaaiaaigdacqGHsislcqaHXoqydaahaaWcbeqaaiaaiodaaa aakeaacaaIXaGaeyOeI0IaeqOSdi2aaWbaaSqabeaacaaIZaaaaaaa aaa@3DE9@

Provided the pressure is not too large (see below), the preceding two equations can be solved for α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  and β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  given the pressure and properties of the shell (for graphing purposes, it is better to assume a value for α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@ , calculate the corresponding β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@ , and then determine the pressure).

 

The position  r of a material particle after deformation is related to its position R before deformation by

r A = R 3 A 3 + α 3 1 1/3 R A = r 3 A 3 α 3 +1 1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGYbaabaGaamyqaaaacq GH9aqpdaqadaqaamaalaaabaGaamOuamaaCaaaleqabaGaaG4maaaa aOqaaiaadgeadaahaaWcbeqaaiaaiodaaaaaaOGaey4kaSIaeqySde 2aaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMca amaaCaaaleqabaGaaGymaiaac+cacaaIZaaaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGsbaabaGaam yqaaaacqGH9aqpdaqadaqaamaalaaabaGaamOCamaaCaaaleqabaGa aG4maaaaaOqaaiaadgeadaahaaWcbeqaaiaaiodaaaaaaOGaeyOeI0 IaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaaGaayjk aiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaaIZaaaaaaa@66DB@

The deformation tensor distribution in the sphere is

B rr = (R/r) 4 B θθ = B ϕϕ = (r/R) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGYbGaamOCaa qabaGccqGH9aqpcaGGOaGaamOuaiaac+cacaWGYbGaaiykamaaCaaa leqabaGaaGinaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadkeadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9iaa dkeadaWgaaWcbaGaeqy1dyMaeqy1dygabeaakiabg2da9iaacIcaca WGYbGaai4laiaadkfacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@52A7@

The Cauchy stress in the sphere is

σ rr = μ 1 2R r + R 4 2 r 4 μ 2 2r R R 2 r 2 +C MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabeY7aTnaaBaaaleaacaaIXaaabeaakmaabmaa baWaaSaaaeaacaaIYaGaamOuaaqaaiaadkhaaaGaey4kaSYaaSaaae aacaWGsbWaaWbaaSqabeaacaaI0aaaaaGcbaGaaGOmaiaadkhadaah aaWcbeqaaiaaisdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaeqiVd0 2aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaadaWcaaqaaiaaikdacaWG YbaabaGaamOuaaaacqGHsisldaWcaaqaaiaadkfadaahaaWcbeqaai aaikdaaaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjk aiaawMcaaiabgUcaRiaadoeaaaa@500F@

σ θθ = μ 1 2R r R 4 2 r 4 + r 2 R 2 μ 2 2r R r 4 R 4 +C MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaqa daqaamaalaaabaGaaGOmaiaadkfaaeaacaWGYbaaaiabgkHiTmaala aabaGaamOuamaaCaaaleqabaGaaGinaaaaaOqaaiaaikdacaWGYbWa aWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaalaaabaGaamOCamaaCa aaleqabaGaaGOmaaaaaOqaaiaadkfadaahaaWcbeqaaiaaikdaaaaa aaGccaGLOaGaayzkaaGaeyOeI0IaeqiVd02aaSbaaSqaaiaaikdaae qaaOWaaeWaaeaadaWcaaqaaiaaikdacaWGYbaabaGaamOuaaaacqGH sisldaWcaaqaaiaadkhadaahaaWcbeqaaiaaisdaaaaakeaacaWGsb WaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkaiaawMcaaiabgUcaRiaa doeaaaa@5642@

C= μ 1 2 2 α + 1 2 α 4 + 2 β + 1 2 β 4 + μ 2 2 2α 1 α 2 +2β 1 β 2 p a + p b 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiabg2da9iabgkHiTmaalaaaba GaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaadaqadaqa amaalaaabaGaaGOmaaqaaiabeg7aHbaacqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaGaeqySde2aaWbaaSqabeaacaaI0aaaaaaakiabgUca RmaalaaabaGaaGOmaaqaaiabek7aIbaacqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaGaeqOSdi2aaWbaaSqabeaacaaI0aaaaaaaaOGaayjk aiaawMcaaiabgUcaRmaalaaabaGaeqiVd02aaSbaaSqaaiaaikdaae qaaaGcbaGaaGOmaaaadaqadaqaaiaaikdacqaHXoqycqGHsisldaWc aaqaaiaaigdaaeaacqaHXoqydaahaaWcbeqaaiaaikdaaaaaaOGaey 4kaSIaaGOmaiabek7aIjabgkHiTmaalaaabaGaaGymaaqaaiabek7a InaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHsislda WcaaqaaiaadchadaWgaaWcbaGaamyyaaqabaGccqGHRaWkcaWGWbWa aSbaaSqaaiaadkgaaeqaaaGcbaGaaGOmaaaaaaa@631A@

 

 

The variation of the internal radius of the spherical shell with applied pressure is plotted in Fig. 4.13, <Fig. 4.13 near here>  for μ 2 / μ 1 =0.04 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaO Gaai4laiabeY7aTnaaBaaaleaacaaIXaaabeaakiabg2da9iaaicda caGGUaGaaGimaiaaisdaaaa@3ACC@  (a representative value for a typical rubber).  For comparison, the linear elastic solution (obtained by setting E=3( μ 1 + μ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiabg2da9iaaiodacaGGOaGaeq iVd02aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqa aiaaikdaaeqaaOGaaiykaiaaykW7aaa@3C82@  and ν=1/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGymaiaac+caca aIYaaaaa@35C8@  in the formulas given in section 4.1.4) is also shown. 

 


 

Note that:

 

1. The small strain solution is accurate for u/A<0.05 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDaiaac+cacaWGbbGaeyipaWJaaG imaiaac6cacaaIWaGaaGynaaaa@373C@

 

2. The relationship between pressure and displacement is nonlinear in the large deformation regime.

 

3. As the internal radius of the sphere increases, the pressure reaches a maximum, and thereafter decreases (this will be familiar behavior to anyone who has inflated a balloon).  This is  because the wall thickness of the shell decreases as the sphere expands.

 

The stress distribution for various displacements in the shell is plotted in Figure 4.14,  <Fig. 4.14 near here>  for p b =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGIbaabeaaki abg2da9iaaicdaaaa@34B2@ , μ 2 / μ 1 =0.04 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaO Gaai4laiabeY7aTnaaBaaaleaacaaIXaaabeaakiabg2da9iaaicda caGGUaGaaGimaiaaisdaaaa@3ACC@  and B/A=3.  The radial stress remains close to the linear elastic solution even in the large deformation regime.  The hoop stress distribution is significantly altered as the deformation increases, however.

 


 

Derivation

 

1. Integrate the incompressibility condition from the inner radius of the sphere to some arbitrary point R

f(A) f(R) f(R) 2 df= A R R 2 dR f (R) 3 f (A) 3 = R 3 A 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaWadaqaaiaadAgacaGGOa GaamOuaiaacMcaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamOzaiabg2da9maapehabaGaamOuamaaCaaaleqabaGaaG OmaaaakiaadsgacaWGsbaaleaacaWGbbaabaGaamOuaaqdcqGHRiI8 aaWcbaGaamOzaiaacIcacaWGbbGaaiykaaqaaiaadAgacaGGOaGaam OuaiaacMcaa0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadAgacaGGOaGaamOuaiaacMcadaahaaWcbeqaaiaaiodaaaGc cqGHsislcaWGMbGaaiikaiaadgeacaGGPaWaaWbaaSqabeaacaaIZa aaaOGaeyypa0JaamOuamaaCaaaleqabaGaaG4maaaakiabgkHiTiaa dgeadaahaaWcbeqaaiaaiodaaaaaaa@6D2B@

 

2. Note that f(R)=r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWGsbGaaiykaiabg2 da9iaadkhaaaa@35F8@  by definition, and f(A)=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWGbbGaaiykaiabg2 da9iaadggaaaa@35D6@  since the point at R=A moves to r=a after deformation.  This gives the relationship between the position r of a point in the deformed solid and its position R before deformation

r=f(R)= R 3 + a 3 A 3 3 R= f 1 (r)= r 3 + A 3 a 3 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadAgacaGGOaGaam OuaiaacMcacqGH9aqpcaaMc8+aaOqaaeaacaWGsbWaaWbaaSqabeaa caaIZaaaaOGaey4kaSIaamyyamaaCaaaleqabaGaaG4maaaakiabgk HiTiaadgeadaahaaWcbeqaaiaaiodaaaaabaGaaG4maaaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGsbGaeyypa0JaamOzamaaCaaaleqabaGaeyOeI0 IaaGymaaaakiaacIcacaWGYbGaaiykaiabg2da9iaaykW7daGcbaqa aiaadkhadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGbbWaaWbaaS qabeaacaaIZaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaG4maaaa aeaacaaIZaaaaaaa@6F6E@

 

3. The components of the Cauchy-Green tensor follow as B rr = (R/r) 4 B θθ = B ϕϕ = (r/R) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGYbGaamOCaa qabaGccqGH9aqpcaGGOaGaamOuaiaac+cacaWGYbGaaiykamaaCaaa leqabaGaaGinaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadkeadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9iaa dkeadaWgaaWcbaGaeqy1dyMaeqy1dygabeaakiabg2da9iaacIcaca WGYbGaai4laiaadkfacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@52A7@

 

4. The stresses follow from the stress-strain equation as

σ rr = 2 3 μ 1 + μ 2 B θθ B rr B θθ +p σ θθ = σ ϕϕ = 1 3 μ 1 + μ 2 B θθ B θθ B rr +p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGOmaaqaaiaaiodaaaWaaeWaaeaa cqaH8oqBdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH8oqBdaWgaa WcbaGaaGOmaaqabaGccaWGcbWaaSbaaSqaaiabeI7aXjabeI7aXbqa baaakiaawIcacaGLPaaadaqadaqaaiaadkeadaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyOeI0IaamOqamaaBaaaleaacqaH4oqCcqaH4oqC aeqaaaGccaGLOaGaayzkaaGaey4kaSIaamiCaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaa BaaaleaacqaH4oqCcqaH4oqCaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaS qaaiabew9aMjabew9aMbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaa caaIZaaaamaabmaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaeqiVd02aaSbaaSqaaiaaikdaaeqaaOGaamOqamaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGcb WaaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGHsislcaWGcbWaaSba aSqaaiaadkhacaWGYbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadc haaaa@8343@

 

5. Substituting these stresses into the equilibrium equation leads to the following differential equation for σ rr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaaaaa@34BD@

d σ rr dr + 2 r μ 1 + μ 2 B θθ B rr B θθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiaaykW7caaM c8Uaey4kaSYaaSaaaeaacaaIYaaabaGaamOCaaaacaaMc8+aaeWaae aacqaH8oqBdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH8oqBdaWg aaWcbaGaaGOmaaqabaGccaWGcbWaaSbaaSqaaiabeI7aXjabeI7aXb qabaaakiaawIcacaGLPaaadaqadaqaaiaadkeadaWgaaWcbaGaamOC aiaadkhaaeqaaOGaeyOeI0IaamOqamaaBaaaleaacqaH4oqCcqaH4o qCaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@5693@

 

6. After substituting for B rr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGYbGaamOCaa qabaaaaa@33C1@  and B θθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacqaH4oqCcqaH4o qCaeqaaaaa@353F@ , and expressing R in terms of r, this equation can be integrated and simplified to see that

σ rr = μ 1 R(4 r 3 + R 3 ) 2 r 4 μ 2 (2 r 3 R 3 ) r 2 R +C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabeY7aTnaaBaaaleaacaaIXaaabeaakmaalaaa baGaamOuaiaacIcacaaI0aGaamOCamaaCaaaleqabaGaaG4maaaaki abgUcaRiaadkfadaahaaWcbeqaaiaaiodaaaGccaGGPaaabaGaaGOm aiaadkhadaahaaWcbeqaaiaaisdaaaaaaOGaeyOeI0IaeqiVd02aaS baaSqaaiaaikdaaeqaaOWaaSaaaeaacaGGOaGaaGOmaiaadkhadaah aaWcbeqaaiaaiodaaaGccqGHsislcaWGsbWaaWbaaSqabeaacaaIZa aaaOGaaiykaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGsbaa aiabgUcaRiaadoeaaaa@517A@

 

7. The boundary conditions require that σ rr = p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaaa aa@38C1@  on (r=a,R=A), while σ rr = p b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaadchadaWgaaWcbaGaamOyaaqabaaa aa@38C2@  on (r=b,R=B), which requires

p a = μ 1 2 α + 1 2 α 4 μ 2 2α 1 α 2 +C p b = μ 1 2 β + 1 2 β 4 μ 2 2β 1 β 2 +C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHsislcaWGWbWaaSbaaSqaai aadggaaeqaaOGaeyypa0JaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWa aeWaaeaadaWcaaqaaiaaikdaaeaacqaHXoqyaaGaey4kaSYaaSaaae aacaaIXaaabaGaaGOmaiabeg7aHnaaCaaaleqabaGaaGinaaaaaaaa kiaawIcacaGLPaaacqGHsislcqaH8oqBdaWgaaWcbaGaaGOmaaqaba GcdaqadaqaaiaaikdacqaHXoqycqGHsisldaWcaaqaaiaaigdaaeaa cqaHXoqydaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaey 4kaSIaam4qaaqaaiabgkHiTiaadchadaWgaaWcbaGaamOyaaqabaGc cqGH9aqpcqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaqadaqaamaala aabaGaaGOmaaqaaiabek7aIbaacqGHRaWkdaWcaaqaaiaaigdaaeaa caaIYaGaeqOSdi2aaWbaaSqabeaacaaI0aaaaaaaaOGaayjkaiaawM caaiabgkHiTiabeY7aTnaaBaaaleaacaaIYaaabeaakmaabmaabaGa aGOmaiabek7aIjabgkHiTmaalaaabaGaaGymaaqaaiabek7aInaaCa aaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGdbaa aaa@6B02@

where α=a/A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0Jaamyyaiaac+caca WGbbaaaa@35E4@  and β=b/B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0JaamOyaiaac+caca WGcbaaaa@35E8@ .  The expression that relates α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  and β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  to the pressure follows by subtracting the first equation from the second.   Adding the two equations gives the expression for C.

 

8. Finally, the hoop stress follows by noting that, from (4) σ θθ σ rr = μ 1 + μ 2 B θθ B θθ B rr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0ZaaeWaaeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaGccq GHRaWkcqaH8oqBdaWgaaWcbaGaaGOmaaqabaGccaWGcbWaaSbaaSqa aiabeI7aXjabeI7aXbqabaaakiaawIcacaGLPaaadaqadaqaaiaadk eadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabgkHiTiaadkeadaWg aaWcbaGaamOCaiaadkhaaeqaaaGccaGLOaGaayzkaaaaaa@520C@