4.3 Simple dynamic solutions for linear elastic materials

 

In this section we summarize and derive the solutions to various elementary problems in dynamic linear elasticity.

 

 

 

4.3.1: Surface subjected to time varying normal pressure

 

An isotropic, linear elastic half space with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  occupies the region x 2 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg6da+iaaicdaaaa@3491@  .  The solid is at rest and stress free at time t=0.  For t>0 it is subjected to a uniform pressure p(t) on x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348F@  as shown in the figure.

 

Solution: The displacement and stress fields in the solid (as a function of time and position) are

u 2 ( x 2 ,t)= c L E (1+ν)(12ν) (1ν) 0 t x 2 / c L p(τ)dτ x 2 <t c L 0 x 2 >t c L σ 22 = p(t x 2 / c L ) x 2 <t c L 0 x 2 >t c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaikdaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiD aiaacMcacqGH9aqpdaGabaqaauaabeqaceaaaeaadaWcaaqaaiaado gadaWgaaWcbaGaamitaaqabaaakeaacaWGfbaaamaalaaabaGaaiik aiaaigdacqGHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislca aIYaGaeqyVd4MaaiykaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Ma aiykaaaadaWdXbqaaiaadchacaGGOaGaeqiXdqNaaiykaiaadsgacq aHepaDcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWc baGaaGOmaaqabaGccqGH8aapcaWG0bGaam4yamaaBaaaleaacaWGmb aabeaaaeaacaaIWaaabaGaamiDaiabgkHiTiaadIhadaWgaaadbaGa aGOmaaqabaWccaGGVaGaam4yamaaBaaameaacaWGmbaabeaaa0Gaey 4kIipaaOqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamiEamaaBaaaleaacaaIYaaabeaakiabg6da+iaadshaca WGJbWaaSbaaSqaaiaadYeaaeqaaaaaaOGaay5EaaaabaGaeq4Wdm3a aSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9maaceaabaqbaeqabi qaaaqaaiabgkHiTiaadchacaGGOaGaamiDaiabgkHiTiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabe aakiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaa caaIYaaabeaakiabgYda8iaadshacaWGJbWaaSbaaSqaaiaadYeaae qaaaGcbaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamiEamaaBaaaleaacaaIYaaabeaakiabg6da+iaa dshacaWGJbWaaSbaaSqaaiaadYeaaeqaaaaaaOGaay5Eaaaaaaa@1847@

where c L = E(1ν)/ ρ 0 (1+ν) 12ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaDaaaleaacaWGmbaabaaaaO Gaeyypa0ZaaOaaaeaacaWGfbGaaiikaiaaigdacqGHsislcqaH9oGB caGGPaGaai4laiabeg8aYnaaBaaaleaacaaIWaaabeaakiaacIcaca aIXaGaey4kaSIaeqyVd4MaaiykamaabmaabaGaaGymaiabgkHiTiaa ikdacqaH9oGBaiaawIcacaGLPaaaaSqabaaaaa@472A@  is the speed of longitudinal wave propagation through the solid.  All other displacement and stress components are zero.  For the particular case of a constant (i.e. time independent) pressure, magnitude σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@ , applied to the surface

u 2 ( x 2 ,t)= (12ν)(1+ν) (1ν) σ 0 E ( c L t x 2 ) x 2 < c L t 0 x 2 > c L t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0ZaaiqaaeaafaqabeGabaaabaWaaSaaaeaacaGGOaGaaG ymaiabgkHiTiaaikdacqaH9oGBcaGGPaGaaiikaiaaigdacqGHRaWk cqaH9oGBcaGGPaaabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPa aaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaGcbaGaamyr aaaacaGGOaGaam4yamaaBaaaleaacaWGmbaabeaakiaadshacqGHsi slcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaale aacaaIYaaabeaakiabgYda8iaadogadaWgaaWcbaGaamitaaqabaGc caWG0baabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOpa4Jaam4yamaa BaaaleaacaWGmbaabeaakiaadshaaaaacaGL7baaaaa@C129@

σ 22 = σ 0 x 2 < c L t 0 x 2 > c L t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9maaceaabaqbaeqabiqaaaqaaiabgkHiTiabeo8a ZnaaBaaaleaacaaIWaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIYaaabeaa kiabgYda8iaadogadaWgaaWcbaGaamitaaqabaGccaWG0baabaGaaG imaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaai aaikdaaeqaaOGaeyOpa4Jaam4yamaaBaaaleaacaWGmbaabeaakiaa dshaaaaacaGL7baaaaa@66F9@

Evidently, a stress pulse equal in magnitude to the surface pressure propagates vertically through the half-space with speed c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaaa a@32C5@ .

 

Notice that the velocity of the solid is constant in the region 0< x 2 <t c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgYda8iaadIhadaWgaaWcba GaaGOmaaqabaGccqGH8aapcaWG0bGaam4yamaaBaaaleaacaWGmbaa beaaaaa@386F@ , and the velocity is related to the pressure by

v 2 = c L (12ν)(1+ν) (1ν) σ 0 E = 1 ρ 0 c L σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIYaaabeaaki abg2da9iaadogadaWgaaWcbaGaamitaaqabaGcdaWcaaqaaiaacIca caaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcacaGGOaGaaGymaiabgU caRiabe27aUjaacMcaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaa cMcaaaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaakeaaca WGfbaaaiabg2da9maalaaabaGaaGymaaqaaiabeg8aYnaaBaaaleaa caaIWaaabeaakiaadogadaWgaaWcbaGaamitaaqabaaaaOGaeq4Wdm 3aaSbaaSqaaiaaicdaaeqaaaaa@5154@

 

Derivation: The solution can be derived as follows. The governing equations are

 

· The strain-displacement relation  ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdaaaa@48F8@

 

· The elastic stress-strain equations   σ ij =E ε ij +ν ε kk δ ij /(12ν) /(1+ν) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadweadaGadaqaaiabew7aLnaaBaaaleaacaWG PbGaamOAaaqabaGccqGHRaWkcqaH9oGBcqaH1oqzdaWgaaWcbaGaam 4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaa kiaac+cacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaca GL7bGaayzFaaGaai4laiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiyk aaaa@5208@

 

· The linear momentum balance equation  σ ij / x i = ρ 0 2 u j / t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaWGQbaabeaa kiaac+cacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaa@467F@

 

 

Now:

 

1. Symmetry considerations indicate that the displacement field must have the form

u 1 = u 3 =0 u 2 =u( x 2 ,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaadwhadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyDaiaacIcacaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadshacaGGPaaaaa@4CB3@

Substituting this equation into the strain-displacement equations shows that the only nonzero component of strain is ε 22 =u/ x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iabgkGi2kaadwhacaGGVaGaeyOaIyRaamiEamaa BaaaleaacaaIYaaabeaaaaa@3B99@ .

 

2. The stress-strain law then shows that

σ 22 = E(1ν) (1+ν)(12ν) u x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9maalaaabaGaamyraiaacIcacaaIXaGaeyOeI0Ia eqyVd4MaaiykaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykai aacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaaSaaaeaa cqGHciITcaWG1baabaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabe aaaaaaaa@4AC8@

In addition, the shear stresses are all zero (because the shear strains are zero), and while σ 11 , σ 22 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiaacYcacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaaa @3866@  are nonzero, they are independent of x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  and x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@ .

 

3. The only nonzero linear momentum balance equation is therefore

σ 22 / x 2 = ρ 0 2 u/ t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaik dacaaIYaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikda aeqaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaamyDaiaac+cacqGHciITcaWG0bWa aWbaaSqabeaacaaIYaaaaaaa@44C3@

Substituting for stress from (2) yields

2 u x 2 2 = 1 c L 2 2 u t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG1baabaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaa baGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGJbWaa0 baaSqaaiaadYeaaeaacaaIYaaaaaaakmaalaaabaGaeyOaIy7aaWba aSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadshadaahaaWcbe qaaiaaikdaaaaaaaaa@437D@

where

c L 2 = E(1ν) ρ 0 (1+ν) 12ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaDaaaleaacaWGmbaabaGaaG Omaaaakiabg2da9maalaaabaGaamyraiaacIcacaaIXaGaeyOeI0Ia eqyVd4Maaiykaaqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaacI cacaaIXaGaey4kaSIaeqyVd4MaaiykamaabmaabaGaaGymaiabgkHi TiaaikdacqaH9oGBaiaawIcacaGLPaaaaaaaaa@4728@

 

4. This is a 1-D wave equation with general solution

u( x 2 ,t)=f(t x 2 / c L )+g(t+ x 2 / c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDaiaacIcacaWG4bWaaSbaaSqaai aaikdaaeqaaOGaaiilaiaadshacaGGPaGaeyypa0JaamOzaiaacIca caWG0bGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaac+caca WGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabgUcaRiaadEgacaGG OaGaamiDaiabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGVa Gaam4yamaaBaaaleaacaWGmbaabeaakiaacMcaaaa@4A1F@

where f and g are two functions that must be chosen to satisfy boundary and initial conditions.

 

5. The initial conditions are

u( x 2 ,0)=f( x 2 / c L )+g( x 2 / c L )=0 u t = f ( x 2 / c L )+ g ( x 2 / c L )=0 x 2 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiGaaeaafaqabeGabaaabaGaamyDai aacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaaicdacaGG PaGaeyypa0JaamOzaiaacIcacqGHsislcaWG4bWaaSbaaSqaaiaaik daaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqabaGccaGGPaGa ey4kaSIaam4zaiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaai 4laiaadogadaWgaaWcbaGaamitaaqabaGccaGGPaGaeyypa0JaaGim aaqaamaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaey ypa0JabmOzayaafaGaaiikaiabgkHiTiaadIhadaWgaaWcbaGaaGOm aaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiaacMcacq GHRaWkceWGNbGbauaacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaac+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabg2da9i aaicdaaaaacaGL9baacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyyz ImRaaGimaaaa@658C@

where the prime denotes differentiation with respect to its argument.  Solving these equations (differentiate the first equation and then solve for f',g' MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacEcacaGGSaGaam4zaiaacE caaaa@34BD@  and integrate) shows that

f( x 2 / c L )=g( x 2 / c L )=A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqGHsislcaWG4bWaaS baaSqaaiaaikdaaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqa baGccaGGPaGaeyypa0JaeyOeI0Iaam4zaiaacIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqabaGc caGGPaGaeyypa0Jaamyqaaaa@4337@

where A is some constant.

 

6. Observe that t+ x 2 / c L 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabgUcaRiaadIhadaWgaaWcba GaaGOmaaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiab gwMiZkaaicdaaaa@39CC@  for t>0, so that g(t+ x 2 / c L )=A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacaWG0bGaey4kaSIaam iEamaaBaaaleaacaaIYaaabeaakiaac+cacaWGJbWaaSbaaSqaaiaa dYeaaeqaaOGaaiykaiabg2da9iabgkHiTiaadgeaaaa@3C4A@ .  Substituting this result back into the solution in (4) gives u( x 2 ,t)=f(t x 2 / c L )A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDaiaacIcacaWG4bWaaSbaaSqaai aaikdaaeqaaOGaaiilaiaadshacaGGPaGaeyypa0JaamOzaiaacIca caWG0bGaeyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaac+caca WGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabgkHiTiaadgeaaaa@423F@ .

 

7.   Next, use the boundary condition σ 22 =p(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iabgkHiTiaadchacaGGOaGaamiDaiaacMcaaaa@398B@  at x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348F@  to see that

σ 22 = E(1ν) (1+ν)(12ν) u x 2 =p(t) E(1ν) (1+ν)(12ν) 1 c L f'(t)=p(t) f(t x 2 / c L )= c L E (1+ν)(12ν) (1ν) 0 t x 2 / c L p(τ)dτ +B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaaiikaiaaigdacqGH sislcqaH9oGBcaGGPaaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBca GGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4MaaiykaaaadaWc aaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaik daaeqaaaaakiabg2da9iabgkHiTiaadchacaGGOaGaamiDaiaacMca caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8oabaGaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVpaalaaabaGaamyraiaacIcacaaIXaGaeyOeI0 IaeqyVd4MaaiykaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiyk aiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaaeWaae aadaWcaaqaaiabgkHiTiaaigdaaeaacaWGJbWaaSbaaSqaaiaadYea aeqaaaaaaOGaayjkaiaawMcaaiaadAgacaGGNaGaaiikaiaadshaca GGPaGaeyypa0JaeyOeI0IaamiCaiaacIcacaWG0bGaaiykaaqaaiab gkDiElaadAgacaGGOaGaamiDaiabgkHiTiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiaacMca cqGH9aqpdaWcaaqaaiaadogadaWgaaWcbaGaamitaaqabaaakeaaca WGfbaaamaalaaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGa aiikaiaaigdacqGHsislcaaIYaGaeqyVd4MaaiykaaqaaiaacIcaca aIXaGaeyOeI0IaeqyVd4MaaiykaaaadaWdXbqaaiaadchacaGGOaGa eqiXdqNaaiykaiaadsgacqaHepaDaSqaaiaaicdaaeaacaWG0bGaey OeI0IaamiEamaaBaaameaacaaIYaaabeaaliaac+cacaWGJbWaaSba aWqaaiaadYeaaeqaaaqdcqGHRiI8aOGaey4kaSIaamOqaaaaaa@BA8E@

where B is a constant of integration.

 

8. Finally, B can be determined by setting t=0 in the result of (7) and recalling from step (5) that f( x 2 / c L )=A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqGHsislcaWG4bWaaS baaSqaaiaaikdaaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqa baGccaGGPaGaeyypa0Jaamyqaaaa@3A6E@ .  This shows that B=-A and so

u 2 ( x 2 ,t)= c L E (1+ν)(12ν) (1ν) 0 t x 2 / c L p(τ)dτ σ 22 =p(t x 2 / c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaikdaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiD aiaacMcacqGH9aqpdaWcaaqaaiaadogadaWgaaWcbaGaamitaaqaba aakeaacaWGfbaaamaalaaabaGaaiikaiaaigdacqGHRaWkcqaH9oGB caGGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maaiykaaqaai aacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaadaWdXbqaaiaadcha caGGOaGaeqiXdqNaaiykaiaadsgacqaHepaDaSqaaiaaicdaaeaaca WG0bGaeyOeI0IaamiEamaaBaaameaacaaIYaaabeaaliaac+cacaWG JbWaaSbaaWqaaiaadYeaaeqaaaqdcqGHRiI8aaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabg2da9iabgkHiTiaadchacaGG OaGaamiDaiabgkHiTiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGVa Gaam4yamaaBaaaleaacaWGmbaabeaakiaacMcaaaaa@6906@

as stated.

 

 

 

4.3.2: Surface subjected to time varying shear traction

 

An isotropic, linear elastic half space with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  occupies the region x 2 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg6da+iaaicdaaaa@3491@ , as shown in the figure.  The solid is at rest and stress free at time t=0.  For t>0 it is subjected to a uniform anti-plane shear traction p(t) on x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348F@ .  Calculate the displacement, stress and strain fields in the solid.

 

It is straightforward to show that in this case

u 3 ( x 2 ,t)= 2(1+ν) c s E 0 t x 2 / c s p(τ)dτ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0ZaaSaaaeaacaaIYaGaaiikaiaaigdacqGHRaWkcqaH9o GBcaGGPaGaam4yamaaBaaaleaacaWGZbaabeaaaOqaaiaadweaaaWa a8qCaeaacaWGWbGaaiikaiabes8a0jaacMcacaWGKbGaeqiXdqhale aacaaIWaaabaGaamiDaiabgkHiTiaadIhadaWgaaadbaGaaGOmaaqa baWccaGGVaGaam4yamaaBaaameaacaWGZbaabeaaa0Gaey4kIipaaa a@5199@

σ 32 =p(t x 2 / c s ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIYa aabeaakiabg2da9iabgkHiTiaadchacaGGOaGaamiDaiabgkHiTiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaam4yamaaBaaaleaaca WGZbaabeaakiaacMcaaaa@3F31@

where c s 2 = E 2(1+ν)ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaDaaaleaacaWGZbaabaGaaG Omaaaakiabg2da9maalaaabaGaamyraaqaaiaaikdacaGGOaGaaGym aiabgUcaRiabe27aUjaacMcacqaHbpGCaaaaaa@3CBD@  is the speed of shear waves propagating through the solid.  The details are left as an exercise.

 

 

 

4.3.3: 1-D Bar subjected to end loading

 

This solution is a cheat, because it doesn’t satisfy the full 3D equations of elasticity, but it turns out to be quite accurate.

 

A long thin rod occupies the region x 1 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg6da+iaaicdaaaa@3490@ , as shown in the figure.   It is made from a homogeneous, isotropic, linear elastic material with Young’s modulus E and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@ .  At time t<0 it is at rest and free of stress.  At time t=0 it is subjected to a pressure p(t) at one end.  Calculate the displacement and stress fields in the solid.

 

We cheat by modeling this as a 1-D problem.  We assume that σ 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaaaaa@3445@  is the only nonzero stress component, in which case the constitutive law and balance of linear momentum require that

σ 11 =E u 1 x 1 σ 11 x 1 = ρ 0 2 u 1 t 2 2 u 1 x 1 2 = 1 c B 2 2 u 1 t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0JaamyramaalaaabaGaeyOaIyRaamyDamaa BaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG ymaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8+aaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaGymaiaaigda aeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccq GH9aqpcqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqaba aakeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaaaOqaaiab gkDiEpaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDam aaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaae aacaaIXaaabaGaam4yamaaDaaaleaacaWGcbaabaGaaGOmaaaaaaGc daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGymaaqabaaakeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI Yaaaaaaaaaaa@7E9C@

where c B 2 =E/ ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaDaaaleaacaWGcbaabaGaaG Omaaaakiabg2da9iaadweacaGGVaGaeqyWdi3aaSbaaSqaaiaaicda aeqaaaaa@38AB@  is the wave speed. This equation is exact for ν=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaaaa@3458@  but cannot be correct in general, since transverse motion is neglected.  In practice waves are repeatedly reflected off the sides of the bar, which behaves as a wave-guide (see Sect 5.6.5 for more discussion of wave-guides).

 

 It is straightforward to solve the equation to see that

u 1 ( x 2 ,t)= c B E 0 t x 1 / c B p(τ)dτ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0ZaaSaaaeaacaWGJbWaaSbaaSqaaiaadkeaaeqaaaGcba GaamyraaaadaWdXbqaaiaadchacaGGOaGaeqiXdqNaaiykaiaadsga cqaHepaDaSqaaiaaicdaaeaacaWG0bGaeyOeI0IaamiEamaaBaaame aacaaIXaaabeaaliaac+cacaWGJbWaaSbaaWqaaiaadkeaaeqaaaqd cqGHRiI8aaaa@4BCA@

σ 11 =p(t x 1 / c B ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTiaadchacaGGOaGaamiDaiabgkHiTiaa dIhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaam4yamaaBaaaleaaca WGcbaabeaakiaacMcaaaa@3EFC@

 

 

 

4.3.4 Plane waves in an infinite solid

 

A plane wave that travels in direction p at speed c has a displacement field of the form

u i = a i f(ct x k p k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadggadaWgaaWcbaGaamyAaaqabaGccaWGMbGaaiikaiaa dogacaWG0bGaeyOeI0IaamiEamaaBaaaleaacaWGRbaabeaakiaadc hadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@3F5E@

where p is a unit vector.  Again, to visualize this motion, consider the special case

u= 0ct< x k p k u i = a i (ct x k p k )/cct x k p k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9maaceaabaqbaeqabi qaaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadogacaWG0bGaeyipaWJaamiEamaaBaaaleaacaWGRbaabeaa kiaadchadaWgaaWcbaGaam4AaaqabaaakeaacaWG1bWaaSbaaSqaai aadMgaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGPbaabeaakiaa cIcacaWGJbGaamiDaiabgkHiTiaadIhadaWgaaWcbaGaam4Aaaqaba GccaWGWbWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaac+cacaWGJbGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yaiaadshacq GHLjYScaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaamiCamaaBaaaleaa caWGRbaabeaaaaaakiaawUhaaaaa@A4C2@

In this solution, the wave has a planar front, with normal vector p.  The wave travels in direction p at speed c.  Ahead of the front, the solid is at rest.  Behind it, the solid has velocity a.  For ap=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgwSixlaahchacqGH9aqpca aIWaaaaa@36CD@  the particle velocity is perpendicular to the wave velocity.  For a=αp MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iabeg7aHjaahchaaa a@3568@  the particle velocity is parallel to the wave velocity.  These two cases are like the shear and longitudinal waves discussed in the preceding sections.

 

We seek plane wave solutions of the Cauchy-Navier equation of motion

C ijkl 2 u k x j x l = ρ 0 2 u i t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaamOAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaa dYgaaeqaaaaakiabg2da9iabeg8aYnaaBaaaleaacaaIWaaabeaakm aalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaa leaacaWGPbaabeaaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaik daaaaaaaaa@4CBC@

Substituting a plane wave solution for u we see that

A ik a k f(ct x j p j )=ρ a i c 2 f(ct x j p j ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbGaam4Aaa qabaGccaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamOzaiaacIcacaWG JbGaamiDaiabgkHiTiaadIhadaWgaaWcbaGaamOAaaqabaGccaWGWb WaaSbaaSqaaiaadQgaaeqaaOGaaiykaiabg2da9iabeg8aYjaadgga daWgaaWcbaGaamyAaaqabaGccaWGJbWaaWbaaSqabeaacaaIYaaaaO GaamOzaiaacIcacaWGJbGaamiDaiabgkHiTiaadIhadaWgaaWcbaGa amOAaaqabaGccaWGWbWaaSbaaSqaaiaadQgaaeqaaOGaaiykaaaa@4F0D@

where

A jk = C ijkl p i p l MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGQbGaam4Aaa qabaGccqGH9aqpcaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4Aaiaa dYgaaeqaaOGaamiCamaaBaaaleaacaWGPbaabeaakiaadchadaWgaa WcbaGaamiBaaqabaaaaa@3DA8@

is a symmetric, positive definite tensor known as the `Acoustic Tensor.’  Plane wave solutions to the Cauchy-Navier equation must therefore satisfy

( A ik ρ 0 c 2 δ ik ) a k =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadgeadaWgaaWcbaGaamyAai aadUgaaeqaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGa am4yamaaCaaaleqabaGaaGOmaaaakiabes7aKnaaBaaaleaacaWGPb Gaam4AaaqabaGccaGGPaGaamyyamaaBaaaleaacaWGRbaabeaakiab g2da9iaaicdaaaa@4210@

This requires

det( A ik ρ 0 c 2 δ ik )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaadg eadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaeyOeI0IaeqyWdi3aaSba aSqaaiaaicdaaeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaakiabes 7aKnaaBaaaleaacaWGPbGaam4AaaqabaGccaGGPaGaeyypa0JaaGim aaaa@42CF@

Evidently for any wave propagation direction, there are three wave speeds, and three corresponding displacement directions, which follow from the eigenvalues and eigenvectors of A ij / ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbGaamOAaa qabaGccaGGVaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaa@3712@   For the special case of an isotropic solid

C ijkl =μ δ il δ jk + δ ik δ jl + 2μν 12ν δ ij δ kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iabeY7aTnaabmaabaGaeqiTdq2a aSbaaSqaaiaadMgacaWGSbaabeaakiabes7aKnaaBaaaleaacaWGQb Gaam4AaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaamyAaiaadUga aeqaaOGaeqiTdq2aaSbaaSqaaiaadQgacaWGSbaabeaaaOGaayjkai aawMcaaiabgUcaRmaalaaabaGaaGOmaiabeY7aTjabe27aUbqaaiaa igdacqGHsislcaaIYaGaeqyVd4gaaiabes7aKnaaBaaaleaacaWGPb GaamOAaaqabaGccqaH0oazdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa @5A4D@

where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is the shear modulus and ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  is the Poisson’s ratio of the solid.  The acoustic tensor follows as

A ik =μ p l p l δ ik + μ 12ν p i p k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbGaam4Aaa qabaGccqGH9aqpcqaH8oqBcaWGWbWaaSbaaSqaaiaadYgaaeqaaOGa amiCamaaBaaaleaacaWGSbaabeaakiabes7aKnaaBaaaleaacaWGPb Gaam4AaaqabaGccqGHRaWkdaWcaaqaaiabeY7aTbqaaiaaigdacqGH sislcaaIYaGaeqyVd4gaaiaadchadaWgaaWcbaGaamyAaaqabaGcca WGWbWaaSbaaSqaaiaadUgaaeqaaaaa@4955@

so that

μ ρ 0 c 2 a k + μ 12ν p i a i p k =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaH8oqBcqGHsislcqaHbp GCdaWgaaWcbaGaaGimaaqabaGccaWGJbWaaWbaaSqabeaacaaIYaaa aaGccaGLOaGaayzkaaGaamyyamaaBaaaleaacaWGRbaabeaakiabgU caRmaalaaabaGaeqiVd0gabaGaaGymaiabgkHiTiaaikdacqaH9oGB aaGaamiCamaaBaaaleaacaWGPbaabeaakiaadggadaWgaaWcbaGaam yAaaqabaGccaWGWbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGim aaaa@4A65@

By inspection, there are two eigenvectors that satisfy this equation

 

1.       a i p i =0 c 2 = c 2 2 = ρ 0 /μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaki aadchadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqGHshI3caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaCaaaleqabaGaaGOmaaaa kiabg2da9iaadogadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH9a qpcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaGGVaGaeqiVd0gaaa@573B@                          (Shear wave,  or S-wave)

 

2.       a i =η p i c 2 = c L 2 =2μ(1ν)/ ρ 0 (12ν) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaki abg2da9iabeE7aOjaadchadaWgaaWcbaGaamyAaaqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabgkDiElaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaadogadaahaaWcbeqaaiaaikdaaaGccqGH 9aqpcaWGJbWaa0baaSqaaiaadYeaaeaacaaIYaaaaOGaeyypa0JaaG OmaiabeY7aTjaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiaac+ca cqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaGGOaGaaGymaiabgkHiTi aaikdacqaH9oGBcaGGPaaaaa@61A1@   (Longitudinal, or P-wave)

 

 

The two wave speeds are evidently those we found in our 1-D calculation earlier.  So there are two types of plane wave in an isotropic solid.  The S-wave travels at speed c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGZbaabeaaaa a@32EC@ , and material particles are displaced perpendicular to the direction of motion of the wave.  The P-wave travels at speed c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaaa a@32C5@ , and material particles are displaced parallel to the direction of motion of the wave.

 

 

 

4.3.5: Summary of Wave Speeds in isotropic elastic solids.

 

It is worth summarizing the three wave speeds calculated in the preceding sections.  Recall that

                                                          c L 2 = E(1ν) ρ 0 (1+ν)(12ν) = 2μ(1ν) ρ 0 (12ν) c s 2 = E 2(1+ν) ρ 0 = μ ρ 0 c B 2 = E ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGJbWaa0baaSqaaiaadYeaae aacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGfbGaaiikaiaaigdacqGH sislcqaH9oGBcaGGPaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGH sislcaaIYaGaeqyVd4MaaiykaaaacqGH9aqpdaWcaaqaaiaaikdacq aH8oqBcaGGOaGaaGymaiabgkHiTiabe27aUjaacMcaaeaacqaHbpGC daWgaaWcbaGaaGimaaqabaGccaGGOaGaaGymaiabgkHiTiaaikdacq aH9oGBcaGGPaaaaaqaaiaadogadaqhaaWcbaGaam4Caaqaaiaaikda aaGccqGH9aqpdaWcaaqaaiaadweaaeaacaaIYaGaaiikaiaaigdacq GHRaWkcqaH9oGBcaGGPaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaa kiabg2da9maalaaabaGaeqiVd0gabaGaeqyWdi3aaSbaaSqaaiaaic daaeqaaaaaaOqaaiaadogadaqhaaWcbaGaamOqaaqaaiaaikdaaaGc cqGH9aqpdaWcaaqaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaa qabaaaaaaaaa@70D6@

It is straightforward to show that, for all positive definite materials (those with positive definite strain energy density MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  a thermodynamic constraint) c L > c S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaki abg6da+iaadogadaWgaaWcbaGaam4uaaqabaaaaa@35C3@ .  For most real materials c L > c B > c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaki abg6da+iaadogadaWgaaWcbaGaamOqaaqabaGccqGH+aGpcaWGJbWa aSbaaSqaaiaadohaaeqaaaaa@38D0@ .

 

There are also special kinds of waves (called Rayleigh and Stoneley waves) that travel near the surface of a solid, or near the interface between two dissimilar solids, respectively.  These waves have their own speeds.  Rayleigh waves are discussed in more detail in Section 5.5.3.

 

 

 

4.3.6: Reflection of waves traveling normal to a free surface

 

Suppose that a longitudinal wave with stress state

u 1 ( x 1 ,t)= c L E (1+ν)(12ν) (1ν) 0 t x 2 / c L f(τ)dτ u 2 = u 3 =0 σ 11 =f(t x 1 / c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiD aiaacMcacqGH9aqpcqGHsisldaWcaaqaaiaadogadaWgaaWcbaGaam itaaqabaaakeaacaWGfbaaamaalaaabaGaaiikaiaaigdacqGHRaWk cqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maai ykaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaadaWdXbqa aiaadAgacaGGOaGaeqiXdqNaaiykaiaadsgacqaHepaDaSqaaiaaic daaeaacaWG0bGaeyOeI0IaamiEamaaBaaameaacaaIYaaabeaaliaa c+cacaWGJbWaaSbaaWqaaiaadYeaaeqaaaqdcqGHRiI8aaGcbaGaam yDamaaBaaaleaacaaIYaaabeaakiabg2da9iaadwhadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaaIWaaabaGaeq4Wdm3aaSbaaSqaaiaaig dacaaIXaaabeaakiabg2da9iaadAgacaGGOaGaamiDaiabgkHiTiaa dIhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaam4yamaaBaaaleaaca WGmbaabeaakiaacMcaaaaa@6F8D@

is incident on a free surface at x 1 =a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadggaaaa@34BA@ , as shown in the figure below.  Our objective is to calculate the state of stress in the solid as a function of time, accounting for the stress free surface.

 

To visualize the wave, imagine that it is a front, such as would be generated by applying a constant uniform pressure at x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348E@  at time t=0.  The material ahead of the front is at rest, and stress free, while behind the front material has a constant stress and velocity. 

 

At time t=a/ c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaadggacaGGVaGaam 4yamaaBaaaleaacaWGmbaabeaaaaa@365D@  the front would reach the free surface and be reflected.  Let the horizontal stress associated with the reflected wave be

σ 11 =g(t+ x 1 / c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaadEgacaGGOaGaamiDaiabgUcaRiaadIhadaWg aaWcbaGaaGymaaqabaGccaGGVaGaam4yamaaBaaaleaacaWGmbaabe aakiaacMcaaaa@3E05@

(we need a + in the argument because the wave travels to the left and has negative velocity). For the stress to vanish at the free surface, we must have

f(ta/ c L )+g(t+a/ c L )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG0bGaeyOeI0Iaam yyaiaac+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabgUca RiaadEgacaGGOaGaamiDaiabgUcaRiaadggacaGGVaGaam4yamaaBa aaleaacaWGmbaabeaakiaacMcacqGH9aqpcaaIWaaaaa@42DC@

so,

g(t+ x 1 / c L )=f(ta/ c L +( x 1 a)/ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacaWG0bGaey4kaSIaam iEamaaBaaaleaacaaIXaaabeaakiaac+cacaWGJbWaaSbaaSqaaiaa dYeaaeqaaOGaaiykaiabg2da9iabgkHiTiaadAgacaGGOaGaamiDai abgkHiTiaadggacaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiab gUcaRiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam yyaiaacMcacaGGVaGaam4yamaaBaaaleaacaWGmbaabeaakiaacMca aaa@4BD3@

and the full solution consists of both incident and reflected waves

u 1 ( x 1 ,t)= c L E (1+ν)(12ν) 1ν 0 t x 2 / c L f(τ)dτ + 0 ta/ c L +( x 2 a)/ c L f(τ)dτ u 2 = u 3 =0 σ 11 =f(t x 1 / c L )f(ta/ c L +( x 1 a)/ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiD aiaacMcacqGH9aqpcqGHsisldaWcaaqaaiaadogadaWgaaWcbaGaam itaaqabaaakeaacaWGfbaaamaalaaabaGaaiikaiaaigdacqGHRaWk cqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maai ykaaqaaiaaigdacqGHsislcqaH9oGBaaWaaiWaaeaadaWdXbqaaiaa dAgacaGGOaGaeqiXdqNaaiykaiaadsgacqaHepaDaSqaaiaaicdaae aacaWG0bGaeyOeI0IaamiEamaaBaaameaacaaIYaaabeaaliaac+ca caWGJbWaaSbaaWqaaiaadYeaaeqaaaqdcqGHRiI8aOGaey4kaSYaa8 qCaeaacaWGMbGaaiikaiabes8a0jaacMcacaWGKbGaeqiXdqhaleaa caaIWaaabaGaamiDaiabgkHiTiaadggacaGGVaGaam4yamaaBaaame aacaWGmbaabeaaliabgUcaRiaacIcacaWG4bWaaSbaaWqaaiaaikda aeqaaSGaeyOeI0IaamyyaiaacMcacaGGVaGaam4yamaaBaaameaaca WGmbaabeaaa0Gaey4kIipaaOGaay5Eaiaaw2haaaqaaiaadwhadaWg aaWcbaGaaGOmaaqabaGccqGH9aqpcaWG1bWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaaGimaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGym aaqabaGccqGH9aqpcaWGMbGaaiikaiaadshacqGHsislcaWG4bWaaS baaSqaaiaaigdaaeqaaOGaai4laiaadogadaWgaaWcbaGaamitaaqa baGccaGGPaGaeyOeI0IaamOzaiaacIcacaWG0bGaeyOeI0Iaamyyai aac+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaey4kaSIaaiikaiaa dIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbGaaiykaiaac+ cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaaaaaa@9A70@

 

As a specific example, consider a plane, constant-stress wave that is incident on a free surface. The histories of stress and velocity in the solid are illustrated below.  


 

 

 In this case:

 

1. Behind the incident stress wave, the stress is constant, with magnitude σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@ .   The velocity of the solid is constant, and related to the stress by v 1 = σ 0 /(ρ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTiabeo8aZnaaBaaaleaacaaIWaaabeaakiaac+ca caGGOaGaeqyWdiNaam4yamaaBaaaleaacaWGmbaabeaakiaacMcaaa a@3D2D@

 

2. At time t=a/ c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaadggacaGGVaGaam 4yamaaBaaaleaacaWGmbaabeaaaaa@365D@  the stress wave reaches the free surface.  At this time an equal and opposite stress pulse σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaic daaeqaaaaa@3476@  is reflected from the free surface, and propagates away from the surface.

 

3. Behind the reflected wave, the solid is stress free, and, the solid has constant velocity   v 1 =2 σ 0 /(ρ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTiaaikdacqaHdpWCdaWgaaWcbaGaaGimaaqabaGc caGGVaGaaiikaiabeg8aYjaadogadaWgaaWcbaGaamitaaqabaGcca GGPaaaaa@3DE9@

 

 

 

4.3.7: Reflection and Transmission of waves normal to an interface

 

The problem to be solved is illustrated in the figure.   The material on the left has mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  and elastic properties that give a longitudinal wave speed c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaaa a@32C5@ .  The corresponding properties for the material on the right are ρ B , c L B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadkeaaeqaaO GaaiilaiaadogadaqhaaWcbaGaamitaaqaaiaadkeaaaaaaa@36FA@ . Suppose that a longitudinal wave with displacement and stress state

u 1 ( x 1 ,t)= c L E (1+ν)(12ν) (1ν) 0 t x 2 / c L f(τ)dτ u 2 = u 3 =0 σ 11 =f(t x 1 / c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiD aiaacMcacqGH9aqpcqGHsisldaWcaaqaaiaadogadaWgaaWcbaGaam itaaqabaaakeaacaWGfbaaamaalaaabaGaaiikaiaaigdacqGHRaWk cqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maai ykaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaadaWdXbqa aiaadAgacaGGOaGaeqiXdqNaaiykaiaadsgacqaHepaDaSqaaiaaic daaeaacaWG0bGaeyOeI0IaamiEamaaBaaameaacaaIYaaabeaaliaa c+cacaWGJbWaaSbaaWqaaiaadYeaaeqaaaqdcqGHRiI8aaGcbaGaam yDamaaBaaaleaacaaIYaaabeaakiabg2da9iaadwhadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaaIWaaabaGaeq4Wdm3aaSbaaSqaaiaaig dacaaIXaaabeaakiabg2da9iaadAgacaGGOaGaamiDaiabgkHiTiaa dIhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaam4yamaaBaaaleaaca WGmbaabeaakiaacMcaaaaa@6F8D@

is incident on a bi-material interface at x 1 =a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadggaaaa@34BA@ .  Calculate the state of stress in the solid as a function of time, accounting for the interface.

 

As before, waves will be reflected at the bi-material interface.  This time, however, some of the energy will be reflected, while some will be transmitted into the adjacent solid.  Guided by the solution to the preceding problem, we assume that the stress associated with the reflected and transmitted waves have the form

σ 11 =g(ta/ c L +( x 1 a)/ c L ) σ 11 =h(ta/ c L ( x 1 a)/ c L B ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0Jaam4zaiaacIcacaWG0bGaeyOeI0Iaamyy aiaac+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaey4kaSIaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbGaaiykaiaa c+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaaqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpcaWGObGaaiikaiaa dshacqGHsislcaWGHbGaai4laiaadogadaWgaaWcbaGaamitaaqaba GccqGHsislcaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadggacaGGPaGaai4laiaadogadaqhaaWcbaGaamitaaqaaiaadk eaaaGccaGGPaaaaaa@5B47@

The functions g and h must be chosen to satisfy stress and displacement continuity at the interface.  Thes are:

 

1. Stress continuity requires that

f(ta/ c L )+g(ta/ c L )=h(ta/ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG0bGaeyOeI0Iaam yyaiaac+cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabgUca RiaadEgacaGGOaGaamiDaiabgkHiTiaadggacaGGVaGaam4yamaaBa aaleaacaWGmbaabeaakiaacMcacqGH9aqpcaWGObGaaiikaiaadsha cqGHsislcaWGHbGaai4laiaadogadaWgaaWcbaGaamitaaqabaGcca GGPaaaaa@49E1@

 

2. To satisfy displacement continuity, we make the acceleration continuous

ρ 0 2 u 1 t 2 = σ 11 x 1 f'(ta/ c L ) ρ 0 c L + g'(ta/ c L ) ρ 0 c L = h'(ta/ c L B ) ρ B c L B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHbpGCdaWgaaWcbaGaaGimaa qabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwha daWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG0bWaaWbaaSqabe aacaaIYaaaaaaakiabg2da9maalaaabaGaeyOaIyRaeq4Wdm3aaSba aSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaaGymaaqabaaaaaGcbaGaeyO0H4TaeyOeI0YaaSaaaeaacaWGMbGa ai4jaiaacIcacaWG0bGaeyOeI0Iaamyyaiaac+cacaWGJbWaaSbaaS qaaiaadYeaaeqaaOGaaiykaaqaaiabeg8aYnaaBaaaleaacaaIWaaa beaakiaadogadaWgaaWcbaGaamitaaqabaaaaOGaey4kaSYaaSaaae aacaWGNbGaai4jaiaacIcacaWG0bGaeyOeI0Iaamyyaiaac+cacaWG JbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaaqaaiabeg8aYnaaBaaale aacaaIWaaabeaakiaadogadaWgaaWcbaGaamitaaqabaaaaOGaeyyp a0JaeyOeI0YaaSaaaeaacaWGObGaai4jaiaacIcacaWG0bGaeyOeI0 Iaamyyaiaac+cacaWGJbWaa0baaSqaaiaadYeaaeaacaWGcbaaaOGa aiykaaqaaiabeg8aYnaaBaaaleaacaWGcbaabeaakiaadogadaqhaa WcbaGaamitaaqaaiaadkeaaaaaaaaaaa@7355@

which may be integrated to give

f(ta/ c L ) ρ 0 c L + g(ta/ c L ) ρ 0 c L = h(ta/ c L B ) ρ B c L B +C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0YaaSaaaeaacaWGMbGaaiikai aadshacqGHsislcaWGHbGaai4laiaadogadaWgaaWcbaGaamitaaqa baGccaGGPaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaam4yam aaBaaaleaacaWGmbaabeaaaaGccqGHRaWkdaWcaaqaaiaadEgacaGG OaGaamiDaiabgkHiTiaadggacaGGVaGaam4yamaaBaaaleaacaWGmb aabeaakiaacMcaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWG JbWaaSbaaSqaaiaadYeaaeqaaaaakiabg2da9iabgkHiTmaalaaaba GaamiAaiaacIcacaWG0bGaeyOeI0Iaamyyaiaac+cacaWGJbWaa0ba aSqaaiaadYeaaeaacaWGcbaaaOGaaiykaaqaaiabeg8aYnaaBaaale aacaWGcbaabeaakiaadogadaqhaaWcbaGaamitaaqaaiaadkeaaaaa aOGaey4kaSIaam4qaaaa@5D0F@    

where C is a constant of integration.  Setting t=0 shows that C must vanish, since f=g=h=0 at t=0.  

 

 

The two conditions (1) and (2) may now be solved for g and h to see that

 

Reflected wave     σ 11 (r) = β r f(ta/ c L +( x 1 a)/ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdacaaIXa aabaGaaiikaiaadkhacaGGPaaaaOGaeyypa0JaeqOSdi2aaSbaaSqa aiaadkhaaeqaaOGaamOzaiaacIcacaWG0bGaeyOeI0Iaamyyaiaac+ cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaey4kaSIaaiikaiaadIha daWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbGaaiykaiaac+caca WGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaaaa@4AC4@

Transmitted wave σ 11 (t) = β t f(ta/ c L ( x 1 a)/ c L B ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdacaaIXa aabaGaaiikaiaadshacaGGPaaaaOGaeyypa0JaeqOSdi2aaSbaaSqa aiaadshaaeqaaOGaamOzaiaacIcacaWG0bGaeyOeI0Iaamyyaiaac+ cacaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaeyOeI0IaaiikaiaadIha daWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbGaaiykaiaac+caca WGJbWaa0baaSqaaiaadYeaaeaacaWGcbaaaOGaaiykaaaa@4B9B@

 

where the coefficients of reflection and transmission are given by

β r = ρ B c L B ρ 0 c L ρ B c L B + ρ 0 c L β t = 2 ρ B c L B ρ B c L B + ρ 0 c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaadkhaaeqaaO Gaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWcbaGaamOqaaqabaGccaWG JbWaa0baaSqaaiaadYeaaeaacaWGcbaaaOGaeyOeI0IaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaam4yamaaBaaaleaacaWGmbaabeaaaOqa aiabeg8aYnaaBaaaleaacaWGcbaabeaakiaadogadaqhaaWcbaGaam itaaqaaiaadkeaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqa baGccaWGJbWaaSbaaSqaaiaadYeaaeqaaaaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabek7aInaaBaaaleaacaWG0baabeaakiabg2da9maala aabaGaaGOmaiabeg8aYnaaBaaaleaacaWGcbaabeaakiaadogadaqh aaWcbaGaamitaaqaaiaadkeaaaaakeaacqaHbpGCdaWgaaWcbaGaam OqaaqabaGccaWGJbWaa0baaSqaaiaadYeaaeaacaWGcbaaaOGaey4k aSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaam4yamaaBaaaleaaca WGmbaabeaaaaaaaa@723E@

Results for a shear wave approaching the interface follow immediately from the preceding calculation, by simply setting c L = c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaki abg2da9iaadogadaWgaaWcbaGaam4Caaqabaaaaa@35E1@ .

 

 

 

4.3.8: Simple example involving plane wave propagation: the plate impact experiment

 

A plate impact experiment is used to measure the plastic properties of materials at high rates of strain.  In typical experiment, a large, elastic flyer plate is fired (e.g. by a gas-gun) at a stationary target plate.   The specimen is a thin film of material, which is usually deposited on the surface of the flyer plate.   When the flyer plate impacts the target, plane pressure and shear waves begin to propagate through both plates, as shown in the figure.  The experiment is designed so that the target and flier plates remain elastic, while the thin film specimen deforms plastically.   A laser interferometer is used to monitor the velocity of the back face of the target plate: these measurements enable the history of stress and strain in the film to be reconstructed.

 

A full analysis of the plate impact experiment will not be attempted here MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  instead, we illustrate the general procedure for modeling plane wave propagation in the plate impact experiment using a simple example. Suppose that

 

· Two elastic plates with Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  are caused to collide, as shown in the figure.

 

· As a representative example, we suppose that the target has thickness h MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaaaa@31CD@ , while the projectile has thickness 2h MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaadIgaaaa@3289@ , as shown. The thickness of both flyer and target are assumed to be much smaller than any other relevant dimension (so wave reflection off lateral boundaries can be neglected).

 

· For simplicity, we assume that the faces of flyer and target are perpendicular to the direction of motion.  This means that the particle velocity in both flyer and target remains perpendicular to their surfaces throughout.

 

· Just prior to impact, the projectile has a uniform velocity v 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaaa a@32C1@ , while the target is stationary.

 

· At impact, plane pressure waves are initiated at the impact surface and propagate (in opposite directions) through both target and projectile.  Our objective is to calculate the history of stress and velocitity in both plates.

 

The resulting stress and motion in the plate is most conveniently displayed on “(x-t) diagrams” as shown below.  The graphs can be used to deduce the velocity and stress in both flyer and target at any position x and time t in both plates.  The solution consists of triangular regions (of time and position) of constant velocity and stress, separated by lines with slope equal to the longitudinal wave speed c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaaa a@32C5@  in the two plates (these lines are called “characteristics”).  Note that the stress and velocity have constant discontinuities across each characteristic.

 


      

The figure illustrates the following sequence of events:

 

1. Just after impact, plane pressure waves propagate in opposite directions through the flyer and target.  Behind the traveling wave fronts, both plates have velocity v 1 = v 0 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaki abg2da9iaadAhadaWgaaWcbaGaaGimaaqabaGccaGGVaGaaGOmaaaa @372C@  and are subjected to a stress state σ 11 = σ 22 = σ 33 = σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 JaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaaa@41DB@ , where σ 0 = v 0 ρ c L /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaamODamaaBaaaleaacaaIWaaabeaakiabeg8aYjaadoga daWgaaWcbaGaamitaaqabaGccaGGVaGaaGOmaaaa@3BA2@ .

 

2. At time t=h/ c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaadIgacaGGVaGaam 4yamaaBaaaleaacaWGmbaabeaaaaa@3664@  the wave propagating in the target plate reaches the free surfaces on the back side of the target.  The wave is reflected from the free surface.  Behind this reflected wave, the target is stress free, and has velocity v 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaaa a@32C1@ .  The target thereafter continues to travel at constant speed and remains free of stress indefinitely.

 

3. At time t=2h/ c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaikdacaWGObGaai 4laiaadogadaWgaaWcbaGaamitaaqabaaaaa@3720@  there are two simultaneous events: (i) the plane wave in the flyer is reflected off the back surface MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  behind the reflected wave the flyer is stress free and has zero velocity; (ii) the reflected wave in the target reaches the interface.  Since the interface is in compression, and the stress merely drops to zero behind the reflected wave, it passes freely through the interface without reflection.

 

4. At time t=3h/ c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaiodacaWGObGaai 4laiaadogadaWgaaWcbaGaamitaaqabaaaaa@3721@  the two reflected waves in the flyer meet at the mid-point of the flyer. Thereafter, the region between the two reflected waves in the flyer becomes tensile.  In addition, the flyer plate has speed v 0 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaki aac+cacaaIYaaaaa@343A@  between the two wavefronts.

 

5.  At time t=4h/ c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaisdacaWGObGaai 4laiaadogadaWgaaWcbaGaamitaaqabaaaaa@3722@  the reflected wave from the back surface of the flyer reaches the interface.  The stress is tensile behind this wave front, and since the interface between flyer and target cannot support tension in behaves like a free surface, and the wave is reflected off the interface back into the flyer.  At the same time, the reflected wave from the target reaches the back face of the flyer and is reflected for a second time.

 

6. Thereafter, the target continues to propagate with constant velocity v 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaaa a@32C1@ , while the flyer contains two plane waves that are repeatedly reflected from its two surfaces.  These waves effectively cause the flyer to vibrate, while traveling with average speed v 0 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaki aac+cacaaIYaaaaa@343A@ .

 

 

Derivation: The solution can be constructed using the simple 1-D solutions given in 4.3.1 and 4.3.6.  For example, to find the stress and velocity associated with the waves generated by the initial impact:

 

1. At the moment of impact, both flyer and target are subjected to a sudden pressure. Wave motion in both solids can  be analyzed using the solution given in 4.3.1.

 

2. Let Δ v f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamODamaaBaaaleaacaWGMb aabeaaaaa@3458@ ,   Δ v t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamODamaaBaaaleaacaWG0b aabeaaaaa@3466@  denote the change in velocity of the flyer and target, respectively, as a result of impact.

 

3. Let σ 11 = σ f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGMbaabeaaaaa@382F@  and σ 11 = σ t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWG0baabeaaaaa@383D@  denote the horizontal stress component behind the wavefronts in the target and flyer just after impact.

 

4. From Section 4.3.1 we know that the velocity change and stress are related by

Δ v f = σ f /(ρ c L )Δ v t = σ t /(ρ c L ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamODamaaBaaaleaacaWGMb aabeaakiabg2da9iabgkHiTiabeo8aZnaaBaaaleaacaWGMbaabeaa kiaac+cacaGGOaGaeqyWdiNaam4yamaaBaaaleaacaWGmbaabeaaki aacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqqHuoarcaWG2bWaaSbaaSqaaiaadshaaeqaaOGaey ypa0JaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadshaaeqaaOGaai4laiaa cIcacqaHbpGCcaWGJbWaaSbaaSqaaiaadYeaaeqaaOGaaiykaaaa@5B07@

 

5. The target and flyer must have the same velocity at the impact surface.  Therefore v 0 Δ v f =Δ v t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIWaaabeaaki abgkHiTiabfs5aejaadAhadaWgaaWcbaGaamOzaaqabaGccqGH9aqp cqqHuoarcaWG2bWaaSbaaSqaaiaadshaaeqaaaaa@3BC6@

 

6. The horizontal stress must be equal in both solids at the impact surface.  Therefore σ f = σ t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadAgaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadshaaeqaaaaa@37B2@ .

 

7. The four equations in steps 4-6 can be solved to yield Δ v f =Δ v t = v 0 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamODamaaBaaaleaacaWGMb aabeaakiabg2da9iabfs5aejaadAhadaWgaaWcbaGaamiDaaqabaGc cqGH9aqpcaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaai4laiaaikdaaa a@3D58@ , σ f = σ t = σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadAgaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadshaaeqaaOGaeyypa0JaeyOe I0Iaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaaa@3C58@ , with σ 0 = v 0 ρ c L /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaamODamaaBaaaleaacaaIWaaabeaakiabeg8aYjaadoga daWgaaWcbaGaamitaaqabaGccaGGVaGaaGOmaaaa@3BA2@ .

 

 

The changes in stress and velocity that occur at each reflection can then be deduced using the results at the end of Section 4.3.6.  Alternatively the (x-t) diagrams can be constructed directly, by first drawing all the characteristic lines, and then deducing the velocity and stress in each sector of the diagram by noting that (i) the change in stress and velocity across each line must be constant; (ii) the overall momentum of the solid must be conserved, and (iii) the total energy of the solid must be conserved.