Chapter 4
Solutions to simple boundary and initial
value problems
4.4 Simple dynamic solutions for linear elastic
materials
In
this section we summarize and derive the solutions to various elementary
problems in dynamic linear elasticity.
4.4.1:
Surface subjected to time varying normal pressure
|
An
isotropic, linear elastic half space with shear modulus and Poisson’s ratio and mass density occupies the region . The
solid is at rest and stress free at time t=0. For t>0 it is subjected to a
uniform pressure p(t) on as shown in the picture.
Solution: The displacement and stress fields in the solid (as a
function of time and position) are
where
is the speed of longitudinal wave propagation
through the solid. All other
displacement and stress components are zero.
For the particular case of a constant (i.e. time independent) pressure,
magnitude ,
applied to the surface
Evidently,
a stress pulse equal in magnitude to the surface pressure propagates vertically
through the half-space with speed .
Notice
that the velocity of the solid is constant in the region ,
and the velocity is related to the pressure by
Derivation: The
solution can be derived as follows. The governing equations are
The strain-displacement relation
The
elastic stress-strain equations
The linear momentum balance equation
Now:
1. Symmetry considerations indicate that the displacement
field must have the form
Substituting this equation into the
strain-displacement equations shows that the only nonzero component of strain is
.
2. The stress-strain law then shows that
In addition, the shear stresses are all zero (because
the shear strains are zero), and while are nonzero, they are independent of and .
3. The only nonzero linear momentum balance equation is
therefore
Substituting
for stress from (2) yields
where
4.
This is a 1-D
wave equation with general solution
where f and g are two functions that
must be chosen to satisfy boundary and initial conditions.
5. The initial conditions are
where the prime denotes differentiation with respect
to its argument. Solving these equations
(differentiate the first equation and then solve for and integrate) shows that
where
A is some constant.
6. Observe that for t>0, so that . Substituting this result back into the
solution in (4) gives .
7. Next, use the
boundary condition at to see that
where
B is a constant of integration.
8.
Finally, B can be determined by setting t=0 in the result of (7) and recalling
from step (5) that . This shows that B=-A and so
as
stated.
4.4.2: Surface subjected to time varying shear traction
|
An
isotropic, linear elastic half space with shear modulus and Poisson’s ratio and mass density occupies the region . The
solid is at rest and stress free at time t=0. For t>0 it is subjected to a
uniform anti-plane shear traction p(t) on . Calculate the displacement, stress and strain
fields in the solid.
It is straightforward to
show that in this case
where is the speed of shear waves propagating
through the solid. The details are left
as an exercise.
4.4.3:
1-D Bar subjected to end loading
This
solution is a cheat, because it doesn’t satisfy the full 3D equations of
elasticity, but it turns out to be quite accurate.
A
long thin rod occupying the region is made from a homogeneous, isotropic, linear
elastic material with Young’s modulus E and mass density . At time t<0 it is at rest and free
of stress. At time t=0 it is
subjected to a pressure p(t) at one end.
Calculate the displacement and stress fields in the solid.
We
cheat by modeling this as a 1-D problem.
We assume that is the only nonzero stress component, in which
case the constitutive law and balance of linear momentum require that
where
is the wave speed. This equation is exact for but cannot be correct in general, since
transverse motion is neglected. In
practice waves are repeatedly reflected off the sides of the bar, which behaves
as a wave-guide (see Sect 5.6.5 for more discussion of wave-guides).
It is straightforward to solve the equation to
see that
4.4.4
Plane waves in an infinite solid
A
plane wave that travels in direction p at speed c has a
displacement field of the form
where p is a unit
vector. Again, to visualize this motion,
consider the special case
In
this solution, the wave has a planar front, with normal vector p. The wave travels in direction p at
speed c. Ahead of the front, the solid is at
rest. Behind it, the solid has velocity a. For the particle velocity is perpendicular to
the wave velocity. For the particle velocity is parallel to the wave
velocity. These two cases are like the
shear and longitudinal waves discussed in the preceding sections.
We seek plane wave
solutions of the Cauchy-Navier equation of motion
Substituting a plane wave
solution for u we see that
where
is
a symmetric, positive definite tensor known as the `Acoustic Tensor.’ Plane wave solutions to the Cauchy-Navier
equation must therefore satisfy
This requires
Evidently
for any wave propagation direction, there are three wave speeds, and three
corresponding displacement directions, which follow from the eigenvalues and
eigenvectors of For the special case of an isotropic solid
where is the shear modulus and is the Poisson’s ratio of the solid. The acoustic tensor follows as
so that
By inspection, there are
two eigenvectors that satisfy this equation
1. (Shear wave, or S-wave)
2. (Longitudinal, or P-wave)
The
two wave speeds are evidently those we found in our 1-D calculation
earlier. So there are two types of plane
wave in an isotropic solid. The S-wave
travels at speed ,
and material particles are displaced
perpendicular to the direction of motion of the wave. The P-wave travels at speed ,
and material particles are displaced parallel to the direction of motion of the
wave.
4.4.5:
Summary of Wave Speeds in isotropic elastic solids.
It is worth summarizing the
three wave speeds calculated in the preceding sections. Recall that
It
is straightforward to show that, for all positive definite materials (those
with positive definite strain energy density a thermodynamic constraint) . For most real materials .
There
are also special kinds of waves (called Rayleigh and Stoneley waves) that
travel near the surface of a solid, or near the interface between two
dissimilar solids, respectively. These
waves have their own speeds. Rayleigh
waves are discussed in more detail in Section 5.5.3.
4.4.6:
Reflection of waves traveling normal to a free surface
Suppose that a longitudinal
wave with stress state
is
incident on a free surface at . Calculate the state of stress in the solid as
a function of time, accounting for the stress free surface.
To
visualize the wave, imagine that it is a front, such as would be generated by
applying a constant uniform pressure at at time t=0. The material ahead of the front is at rest,
and stress free, while behind the front material has a constant stress and
velocity.
At
time the front would reach the free surface and be
reflected. Let the horizontal stress
associated with the reflected wave be
(we
need a + in the argument because the wave travels to the left and has negative
velocity). For the stress to vanish at the free surface, we must have
so,
and the full solution
consists of both incident and reflected waves
As a specific example,
consider a plane, constant-stress wave that is incident on a free surface. The
histories of stress and velocity in the solid are illustrated in the figures
above. In this case:
1. Behind the incident stress wave, the stress is
constant, with magnitude . The velocity of the solid is constant, and
related to the stress by
2. At time the stress wave reaches the free surface. At this time an equal and opposite stress
pulse is reflected from the free surface, and
propagates away from the surface.
3. Behind the reflected wave, the solid is stress free,
and, the solid has constant velocity
4.4.7:
Reflection and Transmission of waves normal to an interface
|
The
material on the left has mass density and elastic properties that give a
longitudinal wave speed . The corresponding properties for the material
on the right are .
Suppose that a longitudinal wave with displacement and stress state
is
incident on a bi-material interface at . Calculate the state of stress in the solid as
a function of time, accounting for the interface.
As
before, waves will be reflected at the bi-material interface. This time, however, some of the energy will
be reflected, while some will be transmitted into the adjacent solid. Guided by the solution to the preceding
problem, we assume that the stress associated with the reflected and transmitted
waves have the form
The
functions g and h must be chosen to satisfy stress and
displacement continuity at the interface.
Stress continuity requires that
(1)
To satisfy displacement
continuity, we make the acceleration continuous
which may be integrated to
give
(2)
where
C is a constant of integration.
Setting t=0 shows that C must vanish, since f=g=h=0
at t=0. The two conditions (1)
and (2) may now be solved for g and h to see that
Reflected
wave
Transmitted
wave
Where the coefficients of
reflection and transmission are given by
Results for a shear wave
approaching the interface follow immediately from the preceding calculation, by
simply setting .
4.4.8:
Simple example involving plane wave propagation: the plate impact experiment
A plate impact experiment is used to measure the plastic
properties of materials at high rates of strain. In typical experiment, a large, elastic flyer
plate is fired (e.g. by a gas-gun) at a stationary target plate. The specimen is a thin film of material,
which is usually deposited on the surface of the flyer plate. When the flyer plate impacts the target,
plane pressure and shear waves begin to propagate through both plates. The experiment is designed so that the target
and flier plates remain elastic, while the thin film specimen deforms
plastically. A laser interferometer is
used to monitor the velocity of the back face of the target plate: these
measurements enable the history of stress and strain in the film to be reconstructed.
|
A full analysis of the plate impact experiment will not be
attempted here instead, we illustrate the general procedure
for modeling plane wave propagation in the plate impact experiment using a
simple example. Suppose that
Two elastic plates with Young’s modulus E, Poisson’s ratio and density are caused to collide, as shown in the
picture.
As a representative example, we suppose that
the target has thickness ,
while the projectile has thickness .
The thickness of both flyer and target are assumed to be much smaller than any
other relevant dimension (so wave reflection off lateral boundaries can be neglected).
For simplicity, we assume that the faces of
flyer and target are perpendicular to the direction of motion. This means that the particle velocity in both
flyer and target remains perpendicular to their surfaces throughout.
Just prior to impact, the projectile has a
uniform velocity ,
while the target is stationary.
At impact, plane pressure waves are initiated
at the impact surface and propagate (in opposite directions) through both
target and projectile. Our objective is
to calculate the history of stress and velocitity in both plates.
The resulting stress and motion in the plate is most
conveniently displayed on “(x-t)
diagrams” as shown in the figures on the next page. The graphs can be used to deduce the velocity
and stress in both flyer and target at any position x and time t in both
plates. The solution consists of
triangular regions (of time and position) of constant velocity and stress,
separated by lines with slope equal to the longitudinal wave speed in the two plates (these lines are called
“characteristics”). Note that the stress
and velocity have constant discontinuities across each characteristic.
The
figures illustrate the following sequence of events:
1. Just after impact, plane pressure
waves propagate in opposite directions through the flyer and target. Behind the traveling wave fronts, both plates
have velocity and are subjected to a stress state ,
where .
|
|
2. At time the wave propagating in the target plate
reaches the free surfaces on the back side of the target. The wave is reflected from the free
surface. Behind this reflected wave, the
target is stress free, and has velocity . The target thereafter continues to travel at
constant speed and remains free of stress indefinitely.
3. At time there are two simultaneous events: (i) the
plane wave in the flyer is reflected off the back surface behind the reflected wave the flyer is stress
free and has zero velocity; (ii) the reflected wave in the target reaches the
interface. Since the interface is in
compression, and the stress merely drops to zero behind the reflected wave, it
passes freely through the interface without reflection.
4. At time the two reflected waves in the flyer meet at
the mid-point of the flyer. Thereafter, the region between the two reflected
waves in the flyer becomes tensile. In
addition, the flyer plate has speed between the two wavefronts.
5. At time the reflected wave from the back surface of
the flyer reaches the interface. The
stress is tensile behind this wave front, and since the interface between flyer
and target cannot support tension in behaves like a free surface, and the wave
is reflected off the interface back into the flyer. At the same time, the reflected wave from the
target reaches the back face of the flyer and is reflected for a second time.
6. Thereafter, the target continues to
propagate with constant velocity ,
while the flyer contains two plane waves that are repeatedly reflected from its
two surfaces. These waves effectively
cause the flyer to vibrate, while traveling with average speed .
Derivation: The solution can be constructed using
the simple 1-D solutions given in 4.4.1 and 4.4.6. For example, to find the stress and velocity
associated with the waves generated by the initial impact:
1. At the moment of impact, both flyer
and target are subjected to a sudden pressure. Wave motion in both solids
can be analyzed using the solution given
in 4.4.1.
2. Let , denote the change in velocity of the flyer and
target, respectively, as a result of impact.
3. Let and denote the horizontal stress component behind
the wavefronts in the target and flyer just after impact.
4. From Section 4.4.1 we know that the
velocity change and stress are related by
5.
The
target and flyer must have the same velocity at the impact surface. Therefore
6.
The
horizontal stress must be equal in both solids at the impact surface. Therefore .
7.
The
four equations in steps 4-6 can be solved to yield ,
,
with .
The changes in stress and velocity that occur at each
reflection can then be deduced using the results at the end of Section
4.4.6. Alternatively the (x-t) diagrams can be constructed directly,
by first drawing all the characteristic lines, and then deducing the velocity
and stress in each sector of the diagram by noting that (i) the change in
stress and velocity across each line must be constant; (ii) the overall
momentum of the solid must be conserved, and (iii) the total energy of the
solid must be conserved.