Chapter 5
Solutions for linear elastic solids

 

 

 

In the preceding chapter, we solved some simple linear elastic boundary value problems.  The problems were trivial, however, in that the stress, strain and displacement fields were axially or spherically symmetric.  Most problems of practical interest involve fully 3D stress and displamement fields.

 

It is extremely difficult to solve general boundary value problems.  However, some of the best mathematicians over the past 200 years have turned their attention to this matter, and have developed several very elegant techniques.  None of these are completely general, but solutions derived using these techniques have provided invaluable insight into the behavior of deformable solids. 

 

Sadly, these days any fool with a PC and a finite element package can solve virtually any linear elastic boundary value problem, so you will not be able to make a living calculating exact elasticity solutions.  Nevertheless, some exact solutions are of fundamental practical importance. Examples include contact problems, solutions for cracks, stress concentrations, thermal stress problems, and problems involving defects such as dislocations in solids.  It is worth seeing how such solutions were derived.

 

In addition, there are some very powerful theorems in linear elasticity (such as the principle of minimum potential energy, and the reciprocal theorem), which can be used to calculate quantities of interest without necessarily having to solve all the governing equations.

 

In this chapter, we present a very brief survey of the field of linear elasticity.  Specifically,

 

1. We will outline some important general features of solutions to boundary and initial value problems;

 

2. We will discuss some solution techniques and present solutions to selected boundary value problems of interest;

 

3. We will discuss energy methods for solving problems involving linear elastic solids, including the principle of minimum potential energy, the reciprocal theorem, and the Rayleigh-Ritz method for estimating natural frequencies of vibrating elastic solids.

 

 

 

 

5.1 General Principles

 

This section outlines briefly (and mostly without proofs!) the general principles that apply to solutions to all boundary value problems in static linear elasticity.

 

 

 

5.1.1 Summary of the governing equations of linear elasticity

 

Static problems. We already listed the governing equations of linear elasticity in our discussion of simple axisymmetric problems. They are repeated here for convenience.  

 


 

A representative problem is sketched above. We are given:

 

1. The shape of the solid in its unloaded condition R 0 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIWaaabeaaki abgIKi7kaadkfaaaa@352F@

 

2. The initial stress field in the solid (we will take this to be zero)

 

3. The elastic constants for the solid C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  and its mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@

 

4. The thermal expansion coefficients for the solid, and temperature change from the initial configuration ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaaaa@331E@

 

5. A body force distribution b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CB@  (per unit mass) acting on the solid

 

6. Boundary conditions, specifying displacements u * (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiykaaaa@351D@  on a portion 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  or tractions t * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaaaaaa a@32B8@  on a portion 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  of the boundary of R

 

 

We then seek to calculate displacements, strains and stresses satisfying the governing equations of linear elastostatics

ε ij = 1 2 u i x j + u j x i σ ij = C ijkl ( ε kl α kl ΔT) σ ij x i + ρ 0 b j =0 u i = u i * on 1 R σ ij n i = t j * on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaa caaMc8oabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2 da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGc caGGOaGaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabeaakiabgkHiTi abeg7aHnaaBaaaleaacaWGRbGaamiBaaqabaGccqqHuoarcaWGubGa aiykaaqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadMgaca WGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaBa aaleaacaWGQbaabeaakiabg2da9iaaicdaaeaacaWG1bWaaSbaaSqa aiaadMgaaeqaaOGaeyypa0JaamyDamaaDaaaleaacaWGPbaabaGaai OkaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gacaqGUbGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqGHciITdaWgaaWcbaGaaGymaaqa baGccaWGsbaabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaki aad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWaa0baaSqa aiaadQgaaeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4B aiaab6gacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkGi2oaaBa aaleaacaaIYaaabeaakiaadkfaaaaa@BD6B@

 

 

Dynamic problems Dynamic problems are essentially identical, except that the boundary conditions must be specified as functions of time, and the initial displacement and velocity field must be specified.  In this case the governing equations are

ε ij = 1 2 u i x j + u j x i σ ij = C ijkl ( ε kl α kl ΔT) σ ij x i + ρ 0 b j = ρ 0 2 u j t 2 u i = u i * (t)on 1 R σ ij n i = t j * (t)on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaa caaMc8oabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2 da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGc caGGOaGaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabeaakiabgkHiTi abeg7aHnaaBaaaleaacaWGRbGaamiBaaqabaGccqqHuoarcaWGubGa aiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVdqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaa dMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaa qabaaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOy amaaBaaaleaacaWGQbaabeaakiabg2da9iabeg8aYnaaBaaaleaaca aIWaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadshadaahaa WcbeqaaiaaikdaaaaaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaa kiabg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaGGOa GaamiDaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGVbGaaeOBai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOaIy7aaSbaaSqaaiaa igdaaeqaaOGaamOuaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiabeo8a ZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaamiDamaaDaaaleaacaWGQbaabaGaaiOkaaaa kiaacIcacaWG0bGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqGHciITdaWgaaWcbaGaaGOmaaqabaGccaWGsbaaaaa@E304@

 

 

 

5.1.2 Alternative form of the governing equations MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328D@  the Navier equation

 

The governing equations can be simplified by eliminating stress and strain from the governing equations, and solving directly for the displacements.  In this case the linear momentum balance equation (in terms of displacement) reduces to

C ijkl x i u k x l α kl ΔT + ρ 0 b j = ρ 0 2 u j t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiE amaaBaaaleaacaWGPbaabeaaaaGcdaqadaqaamaalaaabaGaeyOaIy RaamyDamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaamiBaaqabaaaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadU gacaWGSbaabeaakiabfs5aejaadsfaaiaawIcacaGLPaaacqGHRaWk cqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaadQ gaaeqaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaai aadQgaaeqaaaGcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaa aaaaaa@5B47@

For the special case of an isotropic solid with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and Poisson ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and uniform temperature ΔT=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaiabg2da9iaaicdaaa a@34DE@  this equation reduces to

1 12ν 2 u k x k x i + 2 u i x k x k + ρ 0 b i μ = ρ 0 μ 2 u i t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaaGymaiabgk HiTiaaikdacqaH9oGBaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccaWG1bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhadaWgaaWcba Gaam4AaaqabaaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqa aOWaaSaaaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiVd0 gaaiabg2da9maalaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaGc baGaeqiVd0gaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadshadaah aaWcbeqaaiaaikdaaaaaaaaa@6288@

These are known as the Navier (or Cauchy-Navier) equations of elasticity.

 

The boundary conditions remain as given in the preceding section.

 

 

 

5.1.3 Superposition and linearity of solutions

 

The governing equations of elasticity are linear.  This has two important consequences:

 

1. The stresses, strains and displacements in a solid are directly proportional to the loads (or displacements) applied to the solid. 

 

2. If you can find two sets of displacements, strains and stresses that satisfy the governing equations, you can add them to create more solutions.

 

 

These principles can be illustrated clearly using some of the simple solutions derived in Section 4.1.  For example, examine the solution to the pressurized sphere illustrated in the figure (Sect 4.1.4).    As an example, the radial stress induced by pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@  on the interior, and zero pressure on the exterior surface is

σ rr = p a a 3 b 3 a 3 1 b 3 r 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaWaaeWaaeaacaWGWbWaaSbaaSqaaiaa dggaaeqaaOGaamyyamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawM caaaqaamaabmaabaGaamOyamaaCaaaleqabaGaaG4maaaakiabgkHi TiaadggadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaaaaWaae WaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGIbWaaWbaaSqabeaacaaI ZaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcaca GLPaaacaaMc8UaaGPaVdaa@4B98@     

The radial stress induced by pressure p b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGIbaabeaaaa a@32E8@  on the exterior surface, with zero pressure on the interior surface is

σ rr = p b b 3 b 3 a 3 1 a 3 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTmaalaaabaGaamiCamaaBaaaleaacaWG IbaabeaakiaadkgadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaai aadkgadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWbaaSqa beaacaaIZaaaaaGccaGLOaGaayzkaaaaamaabmaabaGaaGymaiabgk HiTmaalaaabaGaamyyamaaCaaaleqabaGaaG4maaaaaOqaaiaadkha daahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaGaaGPaVdaa@4973@

Note that in both cases the stress is directly proportional to the pressure.  In addition, to find the radial stress by combined pressures p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@  on the interior and p b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGIbaabeaaaa a@32E8@  on the exterior surface, you can just add these two solutions.

 

Further examples of superposition and linearity will be given in subsequent sections.

 

 

 

5.1.4 Uniqueness and existence of solutions to the linear elasticity equations

 

The following results are useful:

 

1. If only displacements are prescribed on the boundary of the solid, the governing equations of linear elasticity always have a solution, and the solution is unique.

 

2. If mixed boundary conditions are specified, a static solution exists and is unique if the displacements constrain rigid motions. A dynamic solution always exists and is unique, provided the velocity field and displacement field at time t=0 are known.

 

3. If only tractions are prescribed on the boundary, a static solution exists only if the tractions are in equilibrium.  In this case, the stresses and strains are unique, but the displacements are not.  A dynamic solution always exists and is unique, again, providing initial conditions are known.

 

 

 

 5.1.5 Saint-Venant’s principle

 

Saint-Venant’s principle is often invoked to formulate approximate solutions to boundary value problems in linear elasticity.  For example, when we solve problems involving bending or axial deformation of slender beams and rods in elementary strength of materials courses, we only specify the resultant forces acting on the ends of a rod, or the magnitudes of point forces acting on a beam, we don’t specify the distribution of traction in detail.  We rely on Saint Venant’s principle to justify this approach. In this context, the principle states the following.

 

The stresses, strains and displacements far from the ends of a rod or beam subjected to end loading depend only on the resultant forces and moments acting on its ends, and do not depend on how the tractions themselves are distributed.

 

Although SVP is widely used, it turns out to be remarkably difficult to prove mathematically.   The difficulty is partly that it is not easy to state the principle itself precisely enough to apply any mathematical machinery to it.  A rigorous statement is given by Sternberg (Q. J. Appl. Mech 11 p. 393 1954), among several other versions.  Here, we will just illustrate the most common applications of the principle through specific examples.

 

One version of SVP can be stated as follows.

 

Suppose that we calculate the stress, strain and displacement induced in a solid by two different traction distributions t (1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiikaiaaig dacaGGPaaaaaaa@341E@  and t (2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiikaiaaik dacaGGPaaaaaaa@341F@  that act on some small region of a solid with characteristic size a.  If the tractions exert the same resultant force and moment, then the stresses, strains and displacements induced by the two traction distributions at a distance r from the loaded region are identical for large r/a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiaac+cacaWGHbaaaa@3370@ . 

 

In practice ‘large’ usually means r/a>3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiaac+cacaWGHbGaeyOpa4JaaG 4maaaa@3535@ .

 

This principle can be illustrated using a simple example.

 


 

Consider a large solid with a flat surface, as shown above. It is possible to calculate formulas for the stresses and displacements induced by various pressure distributions acting on the flat surface MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  the procedure to do this will be outlined later.  For now, we will compare the stresses induced by

 

1. A uniform pressure p(r)=P/ π a 2 ra MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWGYbGaaiykaiabg2 da9iaadcfacaGGVaWaaeWaaeaacqaHapaCcaWGHbWaaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadkhacqGHKjYOcaWGHbaaaa@5373@

 

2. A parabolic pressure  p(r)= 3P 2π a 2 (1 r 2 / a 2 ) 1/2 ra MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWGYbGaaiykaiabg2 da9maalaaabaGaaG4maiaadcfaaeaacaaIYaGaeqiWdaNaaGPaRlaa dggadaahaaWcbeqaaiaaikdaaaaaaOGaaiikaiaaigdacqGHsislca WGYbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaadggadaahaaWcbeqa aiaaikdaaaGccaGGPaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaa GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadkhacqGHKjYOcaWG Hbaaaa@51C6@

 

 

You can verify for yourself that both pressure distributions exert a resultant force P acting in the vertical direction on the surface, and exert zero moment about the origin.  The variation of stress down the axis of symmetry ( r= x 1 2 + x 2 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaaabeaakiabg2da9iaaicdaaaa@3AE6@  ), expressed in cylindrical-polar coordinates, can be derived as

 

Case 1: Uniform pressure

σ zz = P π a 2 1 z 3 ( a 2 + z 2 ) 3/2 σ rr = σ θθ = P π a 2 1+2ν 2 (1+ν)z ( a 2 + z 2 ) 1/2 + z 3 2 ( a 2 + z 2 ) 3/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOEai aadQhaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGqbaabaGaeqiW daNaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiaaigdacq GHsisldaWcaaqaaiaadQhadaqhaaWcbaaabaGaaG4maaaaaOqaaiaa cIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOEamaaCa aaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaiodacaGGVaGa aGOmaaaaaaaakiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacqaHdpWCdaWgaaWc baGaamOCaiaadkhaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiabeI 7aXjabeI7aXbqabaGccqGH9aqpcqGHsisldaWcaaqaaiaadcfaaeaa cqaHapaCcaWGHbWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaWaaS aaaeaacaaIXaGaey4kaSIaaGOmaiabe27aUbqaaiaaikdaaaGaeyOe I0YaaSaaaeaacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaWG6b aabaGaaiikaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG 6bWaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaaGymai aac+cacaaIYaaaaaaakiabgUcaRmaalaaabaGaamOEamaaCaaaleqa baGaaG4maaaaaOqaaiaaikdacaGGOaGaamyyamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccaGGPaWa aWbaaSqabeaacaaIZaGaai4laiaaikdaaaaaaaGccaGLOaGaayzkaa aaaaa@890C@

 

Case 2: Parabolic pressure

σ zz = 3P 2π a 2 a 2 a 2 + z 2 σ rr = σ θθ = 3P 2π a 2 (1+ν) 1 z a tan -1 a z 1 2 a 2 a 2 + z 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOEai aadQhaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIZaGaamiuaaqa aiaaikdacqaHapaCcaWGHbWaaWbaaSqabeaacaaIYaaaaaaakmaala aabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaaaaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 oabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaakiabg2da9iab eo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaeyypa0JaeyOeI0 YaaSaaaeaacaaIZaGaamiuaaqaaiaaikdacqaHapaCcaWGHbWaaWba aSqabeaacaaIYaaaaaaakmaacmaabaGaaiikaiaaigdacqGHRaWkcq aH9oGBcaGGPaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWG6baa baGaamyyaaaacaqG0bGaaeyyaiaab6gadaahaaWcbeqaaiaab2caca qGXaaaaOWaaSaaaeaacaWGHbaabaGaamOEaaaaaiaawIcacaGLPaaa cqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaalaaabaGaamyyam aaCaaaleqabaGaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaWG6bWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eai aaw2haaaaaaa@850B@

 

Now, to demonstrate SVP, we want to show that the stresses are equal for large z/a.  We can do this graphically MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  The figures compare the variation of vertical and radial stress down the axis of symmetry with z/a.


 

The stresses induced by the two different pressures are clearly indistinguishable for z/a>3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiaac+cacaWGHbGaeyOpa4JaaG 4maaaa@353D@ .  This example helps to quantify what we mean by a `large’ distance.

 

The second commonly used application of SVP is a rather vague statement that

 

 A localized geometrical feature with characteristic size R in a large solid only influences the stress in a region with size approximately 3R surrounding the feature.

 

This is more a rule of thumb than a precise mathematical statement.  It can be illustrated by looking at specific solutions.  For example, the figure below shows the von-Mises stress contours surrounding a circular hole in a thin rectangular plate that is subjected to extensional loading (calculated using the finite element method). Far from the hole, the stress is uniform.  The contours deviate from the uniform solution in a region that is about three times the hole radius.