5.2 Airy Function Solution to Plane Stress and Strain Static Linear Elastic Problems

 

In this section we outline a general technique for solving 2D static linear elasticity problems.  The technique is known as the `Airy Stress Function’ method.

 

A typical plane elasticity problem is illustrated in the figure. The solid is two dimensional, which means either that

 

1. The solid is a thin sheet, with small thickness h, and is loaded only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  plane.  In this case the plane stress solution is applicable

 

2. The solid is very long in the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction, is prevented from stretching parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis, and every cross section is loaded identically and only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  plane.  In this case, the plane strain solution is applicable.

 

 

Some additional basic assumptions and restrictions are:

 

· The Airy stress function is applicable only to isotropic solids.  We will assume that the solid has Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@

 

· The Airy Stress function can only be used if the body force has a special form. Specifically, the requirement is

ρ 0 b 1 = Ω x 1 ρ 0 b 2 = Ω x 2 b 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaamOyamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaeyOa IyRaeuyQdCfabaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaa GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqaHbpGCdaWgaaWcbaGaaGimaa qabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaa cqGHciITcqqHPoWvaeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaae qaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadkgadaWgaaWcbaGaaG4maaqabaGccqGH9aqpca aIWaaaaa@6CAE@

where Ω( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cMcaaaa@3853@  is a scalar function of position.  Fortunately, most practical body forces can be expressed in this form, including gravity.

 

· The Airy Stress Function approach works best for problems where a solid is subjected to prescribed tractions on its boundary, rather than prescribed displacements.  Specifically, we will assume that the solid is loaded by boundary tractions t 1 ( x 1 , x 2 ) t 2 ( x 1 , x 2 ) t 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaaIXaaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamiDamaaBaaaleaacaaIYaaabeaakiaacIcacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWG0bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0 JaaGimaaaa@59C7@ .

 

 

 

5.2.1 The Airy solution in rectangular coordinates

 

The Airy function procedure can then be summarized as follows:

 

1. Begin by finding a scalar function ϕ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cMcaaaa@388D@  (known as the Airy potential) which satisfies:

4 ϕ 4 ϕ x 1 4 +2 4 ϕ x 1 2 x 2 2 + 4 ϕ x 1 4 =C ν ρ 0 b 1 x 1 + b 2 x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4bIe9aaWbaaSqabeaacaaI0aaaaO Gaeqy1dyMaeyyyIO7aaSaaaeaacqGHciITdaahaaWcbeqaaiaaisda aaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaaca aI0aaaaaaakiabgUcaRiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGinaaaakiabew9aMbqaaiabgkGi2kaadIhadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaa caaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaa baGaaGinaaaaaaGccqGH9aqpcaWGdbWaaeWaaeaacqaH9oGBaiaawI cacaGLPaaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaqadaqaamaa laaabaGaeyOaIyRaamOyamaaBaaaleaacaaIXaaabeaaaOqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaa cqGHciITcaWGIbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaaaaa@6DBD@

where

C ν = 1ν 12ν (Plane Strain) 1 1ν (Plane Stress) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaabmaabaGaeqyVd4gacaGLOa GaayzkaaGaeyypa0ZaaiqaaqaabeqaamaalaaabaGaaGymaiabgkHi Tiabe27aUbqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaaiaaykW7ca aMc8UaaGPaVlaaykW7caqGOaGaaeiuaiaabYgacaqGHbGaaeOBaiaa bwgacaqGGaGaae4uaiaabshacaqGYbGaaeyyaiaabMgacaqGUbGaae ykaaqaamaalaaabaGaaeymaaqaaiaabgdacqGHsislcqaH9oGBaaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaeikaiaabcfacaqGSbGaaeyyaiaab6gacaqGLbGaaeiiaiaa bofacaqG0bGaaeOCaiaabwgacaqGZbGaae4CaiaabMcaaaGaay5Eaa GaaGPaVdaa@705D@

In addition, ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  must satisfy the following traction boundary conditions on the surface of the solid

2 ϕ x 2 2 n 1 2 ϕ x 1 x 2 n 2 = t 1 2 ϕ x 1 2 n 2 2 ϕ x 1 x 2 n 1 = t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaaikda aeaacaaIYaaaaaaakiaad6gadaWgaaWcbaGaaGymaaqabaGccqGHsi sldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqa aiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaakiaad6gadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaadIhadaqhaaWcbaGa aGymaaqaaiaaikdaaaaaaOGaamOBamaaBaaaleaacaaIYaaabeaaki abgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1 dygabaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaakiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaamOBamaaBaaaleaacaaI Xaaabeaakiabg2da9iaadshadaWgaaWcbaGaaGOmaaqabaaaaa@7BF5@

where ( n 1 , n 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad6gadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamOBamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@36B2@  are the components of a unit vector normal to the boundary.

 

2. Given ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaQaeqy1dygaaa@3350@ , the stress field within the region of interest can be calculated from the formulas

σ 11 = 2 ϕ x 2 2 Ω σ 22 = 2 ϕ x 1 2 Ω σ 12 = σ 21 = 2 ϕ x 1 x 2 σ 33 =0(Plane Stress) σ 33 =ν σ 11 + σ 22 (Plane Strain) σ 23 = σ 13 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaaikdaae aacaaIYaaaaaaakiaaykW7cqGHsislcqqHPoWvcaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaa BaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2o aaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaaaaOGaaGPaVlabgkHiTiabfM6axj aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq aHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Jaeq4Wdm3a aSbaaSqaaiaaikdacaaIXaaabeaakiabg2da9iabgkHiTmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOaIyRa amiEamaaBaaaleaacaaIXaaabeaakiabgkGi2kaadIhadaWgaaWcba GaaGOmaaqabaaaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaa beaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaaeiuaiaabYgacaqG HbGaaeOBaiaabwgacaqGGaGaae4uaiaabshacaqGYbGaaeyzaiaabo hacaqGZbGaaeykaaqaaiabeo8aZnaaBaaaleaacaqGZaGaae4maaqa baGccqGH9aqpcqaH9oGBdaqadaqaaiabeo8aZnaaBaaaleaacaaIXa GaaGymaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaGOmaiaaikda aeqaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caGGOaGaaeiuaiaabYgacaqGHbGaaeOBaiaabwgacaqGGa Gaae4uaiaabshacaqGYbGaaeyyaiaabMgacaqGUbGaaeykaaqaaiab eo8aZnaaBaaaleaacaqGYaGaae4maaqabaGccqGH9aqpcqaHdpWCda WgaaWcbaGaaGymaiaaiodaaeqaaOGaeyypa0JaaGimaaaaaa@26B4@

 

3. If the strains are needed, they may be computed from the stresses using the elastic stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relations.

 

4. If the displacement field is needed, it may be computed by integrating the strains, following the procedure described in Section 2.2.15.  An example (in polar coordinates) is given in Section 5.2.4 below.

 

 

Although it is easier to solve for ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  than it is to solve for stress directly, this is still not a trivial exercise.  Usually, one guesses a suitable form for ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@ , as illustrated below.  This may seem highly unsatisfactory, but remember that we are essentially integrating a system of PDEs.  The general procedure to evaluate any integral is to guess a solution, differentiate it, and see if the guess was correct. 

 

 

 

5.2.2 Demonstration that the Airy solution satisfies the governing equations

 

Recall that to solve a linear elasticity problem, we need to satisfy the following equations:

 

· Displacement MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ strain relation ε ij = 1 2 u i x j + u j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@47C9@

 

· Stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ strain relation ε ij = 1+ν E σ ij ν E σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaa dweaaaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTm aalaaabaGaeqyVd4gabaGaamyraaaacqaHdpWCdaWgaaWcbaGaam4A aiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaa a@48AA@

 

 

· Equilibrium Equation σ ij x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaaGimaaaa@4110@  

 

where we have neglected thermal expansion, for simplicity.  We proceed to show that these equations are satisfied.

 

1. We show first that the Airy function satisfies the equilibrium equations automatically.  For plane stress or plane strain conditions, the equilibrium equations reduce to

σ 11 x 1 + σ 12 x 2 + ρ 0 b 1 =0 σ 12 x 1 + σ 22 x 2 + ρ 0 b 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaaGymaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo8aZnaaBa aaleaacaaIXaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaaikdaaeqaaaaakiabgUcaRiabeg8aYnaaBaaaleaacaaIWaaabe aakiaadkgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaaIWaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVpaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaig dacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqa baaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaG OmaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaa beaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIb WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@7F33@

Substitute for the stresses in terms of ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  to see that

x 1 2 ϕ x 2 2 Ω + x 2 2 ϕ x 1 x 2 + ρ 0 b 1 =0 x 1 2 ϕ x 1 x 2 + x 2 2 ϕ x 1 2 Ω + ρ 0 b 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2cqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOWaaeWaaeaadaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2k aadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaeyOeI0IaeuyQ dCfacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacqGHciITaeaacqGHci ITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakmaabmaabaGaeyOeI0Ya aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacq GHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOaIyRaamiEamaa BaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacqGHRaWkcqaHbp GCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaeyypa0JaaGimaaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaaiabgkHiTmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOaIy RaamiEamaaBaaaleaacaaIXaaabeaakiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacq GHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakmaa bmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvp GzaeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaa kiabgkHiTiabfM6axbGaayjkaiaawMcaaiabgUcaRiabeg8aYnaaBa aaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaaGOmaaqabaGccqGH 9aqpcaaIWaaaaaa@8757@

so that the equilibrium equations are satisfied automatically for any choice of ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@ .

 

2. To show that the strain-displacement equation and the strain-displacement equation are satisfied, we first compute the strains using the elastic stress-strain equations.  Recall that

σ 33 =βν σ 11 + σ 22 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iabek7aIjabe27aUnaabmaabaGaeq4Wdm3aaSba aSqaaiaaigdacaaIXaaabeaakiabgUcaRiabeo8aZnaaBaaaleaaca aIYaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@41FC@

with β=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0JaaGimaaaa@3440@  for plane stress and β=1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0JaaGymaaaa@3441@  for plane strain.  Hence

ε ij = 1+ν E σ ij ν E σ kk δ ij ε 11 = 1+ν E σ 11 ν E 1+βν σ 11 + σ 22 ε 22 = 1+ν E σ 22 ν E 1+βν σ 11 + σ 22 ε 12 = 1+ν E σ 12 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaeqyVd4ga baGaamyraaaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey OeI0YaaSaaaeaacqaH9oGBaeaacaWGfbaaaiabeo8aZnaaBaaaleaa caWGRbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaae qaaaGcbaGaeyO0H4TaeqyTdu2aaSbaaSqaaiaaigdacaaIXaaabeaa kiabg2da9maalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaadweaaa Gaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTmaalaaa baGaeqyVd4gabaGaamyraaaadaqadaqaaiaaigdacqGHRaWkcqaHYo GycqaH9oGBaiaawIcacaGLPaaadaqadaqaaiabeo8aZnaaBaaaleaa caaIXaGaaGymaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzdaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaeqyV d4gabaGaamyraaaacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaO GaeyOeI0YaaSaaaeaacqaH9oGBaeaacaWGfbaaamaabmaabaGaaGym aiabgUcaRiabek7aIjabe27aUbGaayjkaiaawMcaamaabmaabaGaeq 4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRiabeo8aZnaa BaaaleaacaaIYaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7a LnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaig dacqGHRaWkcqaH9oGBaeaacaWGfbaaaiabeo8aZnaaBaaaleaacaaI XaGaaGOmaaqabaaaaaa@AE3D@

Next, recall that the strain MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ displacement relation is satisfied provided that the strains obey the compatibility conditions

2 ε 11 x 2 2 + 2 ε 22 x 1 2 2 2 ε 12 x 1 x 2 =0 2 ε 11 x 3 2 + 2 ε 33 x 1 2 2 2 ε 13 x 1 x 3 =0 2 ε 22 x 3 2 + 2 ε 33 x 2 2 2 2 ε 23 x 2 x 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaa keaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaaki abgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyT du2aaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiabgkGi2kaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaeyOeI0IaaGOmamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaai aaigdacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGym aaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabg2 da9iaaicdaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaa kiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqGHciITca WG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaai aaiodacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaaaaOGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaigdacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGccqGHci ITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaeaa daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew7aLnaaBa aaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaa0baaSqa aiaaiodaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaiodacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaa aaaOGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaeqyTdu2aaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHciITcaWG4bWaaSba aSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaaaa@9DE0@   

   2 ε 11 x 2 x 3 x 1 ε 23 x 1 + ε 31 x 2 + ε 12 x 3 =0 2 ε 22 x 3 x 1 x 2 ε 31 x 2 + ε 12 x 3 + ε 23 x 1 =0 2 ε 33 x 1 x 2 x 3 ε 12 x 3 + ε 23 x 1 + ε 31 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaa keaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaaaaGccqGHciITca WG4bWaa0baaSqaaiaaiodaaeaaaaaaaOGaeyOeI0YaaSaaaeaacqGH ciITcaaMc8UaaGPaVdqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaaaOWaaeWaaeaacqGHsisldaWcaaqaaiabgkGi2kabew7aLnaa BaaaleaacaaIYaGaaG4maaqabaaakeaacqGHciITcaWG4bWaa0baaS qaaiaaigdaaeaaaaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaH1oqz daWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaDa aaleaacaaIYaaabaaaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeqyT du2aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiabgkGi2kaadIhada qhaaWcbaGaaG4maaqaaaaaaaaakiaawIcacaGLPaaacqGH9aqpcaaI WaaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH1o qzdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaa DaaaleaacaaIZaaabaaaaOGaeyOaIyRaamiEamaaDaaaleaacaaIXa aabaaaaaaakiabgkHiTmaalaaabaGaeyOaIyRaaGPaVlaaykW7aeaa cqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakmaabmaabaGaey OeI0YaaSaaaeaacqGHciITcqaH1oqzdaWgaaWcbaGaaG4maiaaigda aeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaaaaaaaki abgUcaRmaalaaabaGaeyOaIyRaeqyTdu2aaSbaaSqaaiaaigdacaaI YaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaG4maaqaaaaaaa GccqGHRaWkdaWcaaqaaiabgkGi2kabew7aLnaaBaaaleaacaaIYaGa aG4maaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaaaa aaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaqaamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaiodaca aIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaaaa kiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaaaaaaGccqGHsislda WcaaqaaiabgkGi2kaaykW7caaMc8oabaGaeyOaIyRaamiEamaaBaaa leaacaaIZaaabeaaaaGcdaqadaqaaiabgkHiTmaalaaabaGaeyOaIy RaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiabgkGi2kaa dIhadaqhaaWcbaGaaG4maaqaaaaaaaGccqGHRaWkdaWcaaqaaiabgk Gi2kabew7aLnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacqGHciIT caWG4bWaa0baaSqaaiaaigdaaeaaaaaaaOGaey4kaSYaaSaaaeaacq GHciITcqaH1oqzdaWgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaeyOa IyRaamiEamaaDaaaleaacaaIYaaabaaaaaaaaOGaayjkaiaawMcaai abg2da9iaaicdaaaaa@CBA6@

 

All but the first of these equations are satisfied automatically by any plane strain or plane stress field. We therefore need to show that the Airy representation satisfies the first equation.  To see this substitute into the first compatibility equation in terms of stress to see that

1+ν E 2 σ 11 x 2 2 + 2 σ 22 x 1 2 ν E 1+βν 2 x 1 2 + 2 x 2 2 σ 11 + σ 22 2 1+ν E 2 σ 12 x 1 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaaigdacqGHRaWkcq aH9oGBaeaacaWGfbaaamaabmaabaWaaSaaaeaacqGHciITdaahaaWc beqaaiaaikdaaaGccqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaa GcbaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGc cqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabeo 8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWa a0baaSqaaiaaigdaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgk HiTmaalaaabaGaeqyVd4gabaGaamyraaaadaqadaqaaiaaigdacqGH RaWkcqaHYoGycqaH9oGBaiaawIcacaGLPaaadaqadaqaamaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaa DaaaleaacaaIXaaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaeWaaeaacq aHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3a aSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaGOmamaala aabaGaaGymaiabgUcaRiabe27aUbqaaiaadweaaaWaaSaaaeaacqGH ciITdaahaaWcbeqaaiaaikdaaaGccqaHdpWCdaWgaaWcbaGaaGymai aaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaa kiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaeyypa0JaaG imaaaaaa@14AD@

Finally, substitute into this horrible looking equation for stress in terms of ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  and rearrange to see that

4 ϕ x 2 4 2 Ω x 2 2 + 4 ϕ x 1 4 2 Ω x 1 2 ν 1+βν 1+ν 2 x 1 2 + 2 x 2 2 2 ϕ x 1 2 + 2 ϕ x 2 2 2Ω +2 4 ϕ x 1 2 x 2 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2oaaCaaale qabaGaaGinaaaakiabew9aMbqaaiabgkGi2kaadIhadaqhaaWcbaGa aGOmaaqaaiaaisdaaaaaaOGaeyOeI0YaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccqqHPoWvaeaacqGHciITcaWG4bWaa0baaSqa aiaaikdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaW baaSqabeaacaaI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaa leaacaaIXaaabaGaaGinaaaaaaGccqGHsisldaWcaaqaaiabgkGi2o aaCaaaleqabaGaaGOmaaaakiabfM6axbqaaiabgkGi2kaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacqaH9o GBdaqadaqaaiaaigdacqGHRaWkcqaHYoGycqaH9oGBaiaawIcacaGL PaaaaeaacaaIXaGaey4kaSIaeqyVd4gaamaabmaabaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaa0ba aSqaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaDaaaleaa caaIYaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaqadaqaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOa IyRaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccqGHRaWkda WcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiab gkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaeyOeI0 IaaGOmaiabfM6axbGaayjkaiaawMcaaaqaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGOmamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabgkGi2kaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaaaaOGaeyypa0JaaGimaaaaaa@5B84@

A few more weeks of algebra reduces this to

4 ϕ x 1 4 +2 4 ϕ x 1 2 x 2 2 + 4 ϕ x 2 4 = 1β ν 2 1ν2β ν 2 2 Ω x 1 2 + 2 Ω x 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaisdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaaigda aeaacaaI0aaaaaaakiabgUcaRiaaikdadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGinaaaakiabew9aMbqaaiabgkGi2kaadIhadaqhaaWc baGaaGymaaqaaiaaikdaaaGccqGHciITcaWG4bWaa0baaSqaaiaaik daaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaaca aIYaaabaGaaGinaaaaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHsisl cqaHYoGycqaH9oGBdaahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaey OeI0IaeqyVd4MaeyOeI0IaaGOmaiabek7aIjabe27aUnaaCaaaleqa baGaaGOmaaaaaaGcdaqadaqaamaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaeuyQdCfabaGaeyOaIyRaamiEamaaDaaaleaacaaI XaaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaaaakiabfM6axbqaaiabgkGi2kaadIhadaqhaaWcbaGa aGOmaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@731D@

This is the governing equation for the Airy function MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  so if the governing equation is satisfied, then the compatibility equation is also satisfied.

 

 

This proves that the Airy representation satisfies the governing equations.  A second important question is MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  is it possible to find an Airy function for all 2D plane stress and plane strain problems?  If not, the method would be useless, because you couldn’t tell ahead of time whether ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@  existed for the problem you were trying to solve.  Fortunately, it is possible to prove that all properly posed 2D elasticity problems do have an Airy representation.

 

 

 

5.2.3 The Airy solution in cylindrical-polar coordinates

 

Boundary value problems involving cylindrical regions are best solved using Cylindrical-polar coordinates.  It is worth recording the Airy function equations for this coordinate system.

 

In a 2D cylindrical-polar coordinate system, a point in the solid is specified by its radial distance r= x 1 2 + x 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaaabeaaaaa@391C@  from the origin and the angle θ= tan 1 x 2 / x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaciiDaiaacggaca GGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamiEamaaBaaaleaa caaIYaaabeaakiaac+cacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@3CD2@ .  The solution is independent of z.  The Airy function is written as a function of the coordinates as ϕ(r,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaadkhacaGGSaGaeq iUdeNaaiykaaaa@375E@ .  Vector quantities (displacement, body force) and tensor quantities (strain, stress) are expressed as components in the basis e r , e θ , e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk haaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYca caWHLbWaaSbaaSqaaiaadQhaaeqaaaGccaGL7bGaayzFaaaaaa@3B89@  shown in the figure.

 

The governing equation for the Airy function in this coordinate system is

2 r 2 + 1 r r + 1 r 2 2 θ 2 2 ϕ=C ν ρ 0 b r r + 1 r b θ θ C ν = 1ν 12ν (Plane Strain) 1 1ν (Plane Stress) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaadaqadaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamOCamaaCaaaleqa baGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbaaam aalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaacqGHRaWkdaWcaaqa aiaaigdaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeqiUde3a aWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaakiabew9aMjabg2da9iaadoeadaqadaqaaiabe27aUbGa ayjkaiaawMcaaiabeg8aYnaaBaaaleaacaaIWaaabeaakmaabmaaba WaaSaaaeaacqGHciITcaWGIbWaaSbaaSqaaiaadkhaaeqaaaGcbaGa eyOaIyRaamOCaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbaaam aalaaabaGaeyOaIyRaamOyamaaBaaaleaacqaH4oqCaeqaaaGcbaGa eyOaIyRaeqiUdehaaaGaayjkaiaawMcaaaqaaiaadoeadaqadaqaai abe27aUbGaayjkaiaawMcaaiabg2da9maaceaaeaqabeaadaWcaaqa aiaaigdacqGHsislcqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe2 7aUbaacaaMc8UaaGPaVlaaykW7caaMc8UaaeikaiaabcfacaqGSbGa aeyyaiaab6gacaqGLbGaaeiiaiaabofacaqG0bGaaeOCaiaabggaca qGPbGaaeOBaiaabMcaaeaadaWcaaqaaiaabgdaaeaacaqGXaGaeyOe I0IaeqyVd4gaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaabIcacaqGqbGaaeiBaiaabggacaqGUbGa aeyzaiaabccacaqGtbGaaeiDaiaabkhacaqGLbGaae4Caiaabohaca qGPaaaaiaawUhaaiaaykW7aaaa@A420@

The state of stress is related to the Airy function by

σ rr = 1 r ϕ r + 1 r 2 2 ϕ θ 2 Ω σ θθ = 2 ϕ r 2 Ω σ rθ = r 1 r ϕ θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOCaaaadaWc aaqaaiabgkGi2kabew9aMbqaaiabgkGi2kaadkhaaaGaey4kaSYaaS aaaeaacaaIXaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGcdaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgk Gi2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaaGccqGHsislcqqHPoWv caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacqaHdpWCda WgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9maalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOaIyRaamOCam aaCaaaleqabaGaaGOmaaaaaaGccqGHsislcqqHPoWvcaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVdqaaiabeo8aZnaaBaaaleaacaWGYbGaeq iUdehabeaakiabg2da9iabgkHiTmaalaaabaGaeyOaIylabaGaeyOa IyRaamOCaaaadaqadaqaamaalaaabaGaaGymaaqaaiaadkhaaaWaaS aaaeaacqGHciITcqaHvpGzaeaacqGHciITcqaH4oqCaaaacaGLOaGa ayzkaaaaaaa@80F4@

In polar coordinates the strains are related to the stresses by

ε rr ε θθ 2 ε rθ = (1+ν) E 1ν ν 0 ν 1ν 0 0 0 2 σ rr σ θθ σ rθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeqyTdu 2aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiabew7aLnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaaca WGYbGaeqiUdehabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqa aiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaqaaiaadweaaaWaam WaaeaafaqabeWadaaabaGaaGymaiabgkHiTiabe27aUbqaaiabgkHi Tiabe27aUbqaaiaaicdaaeaacqGHsislcqaH9oGBaeaacaaIXaGaey OeI0IaeqyVd4gabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOm aaaaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacqaHdpWCda WgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiab eI7aXjabeI7aXbqabaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiabeI 7aXbqabaaaaaGccaGLBbGaayzxaaaaaa@6973@

for plane strain, while

ε rr ε θθ 2 ε rθ = 1 E 1 ν 0 ν 1 0 0 0 2(1+ν) σ rr σ θθ σ rθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeqyTdu 2aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiabew7aLnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaaca WGYbGaeqiUdehabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqa aiaaigdaaeaacaWGfbaaamaadmaabaqbaeqabmWaaaqaaiaaigdaae aacqGHsislcqaH9oGBaeaacaaIWaaabaGaeyOeI0IaeqyVd4gabaGa aGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikdacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcaaaaacaGLBbGaayzxaaWaamWa aeaafaqabeWabaaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabe aaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGa eq4Wdm3aaSbaaSqaaiaadkhacqaH4oqCaeqaaaaaaOGaay5waiaaw2 faaaaa@64E4@

for plane stress.  The displacements must be determined by integrating these strains following the procedure similar to that outlined in Section 2.2.15.  To this end, let u= u r e r + u θ e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhadaWgaaWcba GaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIa amyDamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4o qCaeqaaaaa@3DBE@  denote the displacement vector.  The strain-displacement relations in polar coordinates are:

ε rr = u r r ε θθ = u r r + 1 r u θ θ ε rθ = 1 2 1 r u r θ + u θ r u θ r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWG1bWaaSbaaSqa aiaadkhaaeqaaaGcbaGaeyOaIyRaamOCaaaacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8oabaGaeqyTdu2aaSbaaSqaaiab eI7aXjabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaadwhadaWgaaWcba GaamOCaaqabaaakeaacaWGYbaaaiabgUcaRmaalaaabaGaaGymaaqa aiaadkhaaaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeI7aXb qabaaakeaacqGHciITcqaH4oqCaaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiabew7aLn aaBaaaleaacaWGYbGaeqiUdehabeaakiabg2da9maalaaabaGaaGym aaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaam aalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGYbaabeaaaOqaaiab gkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaa WcbaGaeqiUdehabeaaaOqaaiabgkGi2kaadkhaaaGaeyOeI0YaaSaa aeaacaWG1bWaaSbaaSqaaiabeI7aXbqabaaakeaacaWGYbaaaaGaay jkaiaawMcaaaaaaa@8716@

These can be integrated using a procedure analogous to that outlined in Section 2.1.15.  An example is given in Section 5.2.5.

 

In the following sections, we give several examples of Airy function solutions to boundary value problems.

 

 

 

5.2.4 Airy function solution to the end loaded cantilever

 

Consider a cantilever beam, with length L, height 2a and out-of-plane thickness b, as shown below.

 


 

The beam is made from an isotropic linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ . The top and bottom of the beam x 2 =±a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iabgglaXkaadggaaaa@36A9@  are traction free, the left hand end is subjected to a resultant force P, and the right hand end is clamped.  Assume that b<<a, so that a state of plane stress is developed in the beam. An approximate solution to the stress in the beam can be calculated from the Airy function

ϕ= 3P 4ab x 1 x 2 + P 4 a 3 b x 1 x 2 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaeyOeI0YaaSaaae aacaaIZaGaamiuaaqaaiaaisdacaWGHbGaamOyaaaacaWG4bWaaSba aSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgU caRmaalaaabaGaamiuaaqaaiaaisdacaWGHbWaaWbaaSqabeaacaaI ZaaaaOGaamOyaaaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEam aaDaaaleaacaaIYaaabaGaaG4maaaaaaa@467C@

You can easily show that this function satisfies the governing equation for the Airy function. The stresses follow as

σ 11 = 2 ϕ x 2 2 Ω= 3P 2 a 3 b x 1 x 2 σ 22 = 2 ϕ x 1 2 Ω=0 σ 12 = σ 21 = 2 ϕ x 1 x 2 = 3P 4ab 1 x 2 2 a 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaaikdaae aacaaIYaaaaaaakiaaykW7cqGHsislcqqHPoWvcqGH9aqpdaWcaaqa aiaaiodacaWGqbaabaGaaGOmaiaadggadaahaaWcbeqaaiaaiodaaa GccaWGIbaaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7aeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0 ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaa cqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiaayk W7cqGHsislcqqHPoWvcqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8oabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da 9iabeo8aZnaaBaaaleaacaaIYaGaaGymaaqabaGccqGH9aqpcqGHsi sldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqa aiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaakiabg2da9maalaaabaGaaG4maiaa dcfaaeaacaaI0aGaamyyaiaadkgaaaWaaeWaaeaacaaIXaGaeyOeI0 YaaSaaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGa amyyamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaaa@A7F0@

 

To see that this solution satisfies the boundary conditions, note that

 

1. The top and bottom surfaces of the beam x 2 =±a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iabgglaXkaadggaaaa@36A9@  are traction free ( σ ij n i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaaa aa@388D@  ).  Since the normal is in the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  direction on these surfaces, this requires that σ 22 = σ 21 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGymaaqabaGc cqGH9aqpcaaIWaaaaa@3A87@ .  The stress field clearly satisfies this condition.

 

2. The plane stress assumption automatically satisfies boundary conditions on x 3 =±b/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iabgglaXkaadkgacaGGVaGaaGOmaaaa@381A@ .

 

3. The traction boundary condition on the left hand end of the beam ( x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348E@  ) was not specified in detail: instead, we only required that the resultant of the traction acting on the surface is P e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamiuaiaahwgadaWgaaWcba GaaGOmaaqabaaaaa@3478@ .  The normal to the surface at the left hand end of the beam is in the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaaIXa aabeaaaaa@33A2@  direction, so the traction vector is

t i = σ ij n i = σ 12 δ i2 = 3P 4ab 1 x 2 2 a 2 δ i2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaki abg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGUbWa aSbaaSqaaiaadMgaaeqaaOGaeyypa0JaeyOeI0Iaeq4Wdm3aaSbaaS qaaiaaigdacaaIYaaabeaakiabes7aKnaaBaaaleaacaWGPbGaaGOm aaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaiodacaWGqbaabaGaaG inaiaadggacaWGIbaaamaabmaabaGaaGymaiabgkHiTmaalaaabaGa amiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOqaaiaadggadaahaa WcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaeqiTdq2aaSbaaSqa aiaadMgacaaIYaaabeaaaaa@5439@

The resultant force can be calculated by integrating the traction over the end of the beam:

F i =b a a 3P 4ab 1 x 2 2 a 2 δ i2 d x 2 =P δ i2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbaabeaaki abg2da9iaadkgadaWdXbqaaiabgkHiTmaalaaabaGaaG4maiaadcfa aeaacaaI0aGaamyyaiaadkgaaaWaaeWaaeaacaaIXaGaeyOeI0YaaS aaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaamyy amaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqaH0oazda WgaaWcbaGaamyAaiaaikdaaeqaaOGaamizaiaadIhadaWgaaWcbaGa aGOmaaqabaaabaGaeyOeI0Iaamyyaaqaaiaadggaa0Gaey4kIipaki abg2da9iabgkHiTiaadcfacqaH0oazdaWgaaWcbaGaamyAaiaaikda aeqaaaaa@5353@

The stresses thus satisfy the boundary condition.  Note that by Saint-Venant’s principle, other distributions of traction with the same resultant will induce the same stresses sufficiently far ( x 1 >3a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg6da+iaaiodacaWGHbaaaa@3579@  ) from the end of the beam.

 

4. The boundary conditions on the right hand end of the beam are not satisfied exactly.  The exact solution should satisfy both u 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348B@  and u 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348C@  on x 1 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadYeaaaa@34A5@ .  The displacement field corresponding to the stress distribution was calculated in the example problem in Sect 2.1.20, where we found that

u 1 = 3P 4E a 3 b x 1 2 x 2 P 4E a 3 b (2+ν) x 2 3 + 3P 2E a 3 b (1+ν) a 2 x 2 ω x 2 +c u 2 =ν 3P 4E a 3 b x 1 x 2 2 P 4E a 3 b x 1 3 +ω x 1 +d MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacaaIZaGaamiuaaqaaiaaisdacaWGfbGa amyyamaaCaaaleqabaGaaG4maaaakiaadkgaaaGaamiEamaaDaaale aacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGc cqGHsisldaWcaaqaaiaadcfaaeaacaaI0aGaamyraiaadggadaahaa WcbeqaaiaaiodaaaGccaWGIbaaaiaacIcacaaIYaGaey4kaSIaeqyV d4MaaiykaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaiodaaaGccqGHRa WkdaWcaaqaaiaaiodacaWGqbaabaGaaGOmaiaadweacaWGHbWaaWba aSqabeaacaaIZaaaaOGaamOyaaaacaGGOaGaaGymaiabgUcaRiabe2 7aUjaacMcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaa leaacaaIYaaabeaakiabgkHiTiabeM8a3jaadIhadaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcaWGJbaabaGaaGPaVlaadwhadaWgaaWcbaGa aGOmaaqabaGccqGH9aqpcqGHsislcqaH9oGBdaWcaaqaaiaaiodaca WGqbaabaGaaGinaiaadweacaWGHbWaaWbaaSqabeaacaaIZaaaaOGa amOyaaaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaDaaale aacaaIYaaabaGaaGOmaaaakiabgkHiTmaalaaabaGaamiuaaqaaiaa isdacaWGfbGaamyyamaaCaaaleqabaGaaG4maaaakiaadkgaaaGaam iEamaaDaaaleaacaaIXaaabaGaaG4maaaakiabgUcaRiabeM8a3jaa dIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGKbaaaaa@825D@

where c,d,ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiaacYcacaWGKbGaaiilaiabeM 8a3baa@35DE@  are constants that may be selected to satisfy the boundary condition as far as possible.  We can satisfy u 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348B@  and u 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348C@  at some, but not all, points on x 1 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadYeaaaa@34A5@ .  The choice is arbitrary.  Usually the boundary condition is approximated by requiring u 1 = u 2 = u 2 / x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki abg2da9iaadwhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqGHciIT caWG1bWaaSbaaSqaaiaaikdaaeqaaOGaai4laiabgkGi2kaadIhada WgaaWcbaGaaGymaaqabaGccqGH9aqpcaaIWaaaaa@3FDC@  at x 1 =L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadYeaaaa@34A5@ , x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348F@ .  This gives c=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabg2da9iaaicdaaaa@3388@ , d=P L 3 /2E a 3 b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabg2da9iabgkHiTiaadcfaca WGmbWaaWbaaSqabeaacaaIZaaaaOGaai4laiaaikdacaWGfbGaamyy amaaCaaaleqabaGaaG4maaaakiaadkgaaaa@3B50@  and ω=3P L 2 /4E a 3 b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyypa0JaaG4maiaadcfaca WGmbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaaisdacaWGfbGaamyy amaaCaaaleqabaGaaG4maaaakiaadkgaaaa@3C05@ .   By Saint-Venant’s principle, applying other boundary conditions (including the exact boundary condition) will not influence the stresses and displacements sufficiently far from the end.

 

 

 

5.2.5 2D Line load acting perpendicular to the surface of an infinite solid

 

As a second example, the stress fields due to a line load magnitude P per unit out-of-plane length acting on the surface of a homogeneous, isotropic half-space can be generated from the Airy function

ϕ= P π rθsinθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaeyOeI0YaaSaaae aacaWGqbaabaGaeqiWdahaaiaadkhacqaH4oqCciGGZbGaaiyAaiaa c6gacqaH4oqCaaa@3E77@

where (r,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ykaaaa@3596@  are cylindrical polar coordinates illustrated in the figure. The formulas in the preceding section yield

σ rr = 2P π cosθ r σ θθ = σ rθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTmaalaaabaGaaGOmaiaadcfaaeaacqaH apaCaaWaaSaaaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacaWGYb aaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaS baaSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWc baGaamOCaiabeI7aXbqabaGccqGH9aqpcaaIWaaaaa@6212@

 

The stresses in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  basis are

σ 11 = 2P π x 1 3 x 1 2 + x 2 2 2 σ 22 = 2P π x 1 x 2 2 x 1 2 + x 2 2 2 σ 12 = 2P π x 1 2 x 2 x 1 2 + x 2 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTmaalaaabaGaaGOmaiaadcfaaeaacqaH apaCaaWaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIZaaaaa GcbaWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGa ey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaa WcbaGaaGOmaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaI YaGaamiuaaqaaiabec8aWbaadaWcaaqaaiaadIhadaqhaaWcbaGaaG ymaaqaaaaakiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaa daqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRa WkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4W dm3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabgkHiTmaala aabaGaaGOmaiaadcfaaeaacqaHapaCaaWaaSaaaeaacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaamiEamaaDaaaleaacaaIYaaaba aaaaGcbaWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa@9026@

 

The method outlined in section 5.2.3 can be used to calculate the displacements: the procedure is described in detail below to provide a representative example.  For plane strain deformation, we find

u r = 2 1 ν 2 πE Pcosθlogr 1+ν 12ν πE Pθsinθ u θ = 2 1 ν 2 πE Psinθlogr+ 1+ν πE Psinθ 2 12ν 1+ν πE Pθcosθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadkhaae qaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaWaaeWaaeaacaaIXaGa eyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa aabaGaeqiWdaNaamyraaaacaWGqbGaci4yaiaac+gacaGGZbGaeqiU deNaciiBaiaac+gacaGGNbGaamOCaiabgkHiTmaalaaabaWaaeWaae aacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaI XaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiabec8aWj aadweaaaGaamiuaiabeI7aXjGacohacaGGPbGaaiOBaiabeI7aXbqa aiaadwhadaWgaaWcbaGaeqiUdehabeaakiabg2da9maalaaabaGaaG OmamaabmaabaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaaqaaiabec8aWjaadweaaaGaamiuaiGaco hacaGGPbGaaiOBaiabeI7aXjGacYgacaGGVbGaai4zaiaadkhacqGH RaWkdaWcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaacqaHapaCcaWGfb aaaiaadcfaciGGZbGaaiyAaiaac6gacqaH4oqCcqGHsisldaWcaaqa aiaaikdadaqadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOa GaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzk aaaabaGaeqiWdaNaamyraaaacaWGqbGaeqiUdeNaci4yaiaac+gaca GGZbGaeqiUdehaaaa@94C1@

to within an arbitrary rigid motion.  Note that the displacements vary as log(r) so they are unbounded both at the origin and at infinity.  Moreover, the displacements due to any distribution of traction that exerts a nonzero resultant force on the surface will also be unbounded at infinity. 

 

It is easy to see that this solution satisfies all the relevant boundary conditions.  The surface is traction free ( σ 22 = σ 12 =0 x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGc cqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaaca aIXaaabeaakiabg2da9iaaicdaaaa@42D6@  ) except at r=0.  To see that the stresses are consistent with a vertical point force, note that the resultant vertical force exerted by the tractions acting on the dashed curve shown in the picture can be calculated as

F 1 = π/2 π/2 σ rr cosθrdθ = π/2 π/2 2P π cosθ r cosθrdθ =P MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIXaaabeaaki abg2da9maapehabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaa kiGacogacaGGVbGaai4CaiabeI7aXjaaykW7caaMc8UaamOCaiaads gacqaH4oqCaSqaaiabgkHiTiabec8aWjaac+cacaaIYaaabaGaeqiW daNaai4laiaaikdaa0Gaey4kIipakiabg2da9maapehabaGaeyOeI0 YaaSaaaeaacaaIYaGaamiuaaqaaiabec8aWbaadaWcaaqaaiGacoga caGGVbGaai4CaiabeI7aXbqaaiaadkhaaaGaci4yaiaac+gacaGGZb GaeqiUdeNaaGPaVlaaykW7caWGYbGaamizaiabeI7aXbWcbaGaeyOe I0IaeqiWdaNaai4laiaaikdaaeaacqaHapaCcaGGVaGaaGOmaaqdcq GHRiI8aOGaeyypa0JaeyOeI0Iaamiuaaaa@6F0C@

 

The expressions for displacement can be derived as follows.  Substituting the expression for stress into the stress-strain laws and using the strain-displacement relations yields

ε rr = u r r = 1+ν E (1ν) σ rr ν σ θθ = 2P 1 ν 2 πE cosθ r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWG YbaabeaaaOqaaiabgkGi2kaadkhaaaGaeyypa0ZaaSaaaeaadaqada qaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaeaacaWGfbaa amaadmaabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaeq4Wdm 3aaSbaaSqaaiaadkhacaWGYbaabeaakiabgkHiTiabe27aUjabeo8a ZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGccaGLBbGaayzxaaGaey ypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuamaabmaabaGaaGymaiab gkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaa qaaiabec8aWjaadweaaaWaaSaaaeaaciGGJbGaai4BaiaacohacqaH 4oqCaeaacaWGYbaaaaaa@668C@

Integrating

u r = 2P 1 ν 2 πE cosθlog(r)+ f r (θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki abg2da9iabgkHiTmaalaaabaGaaGOmaiaadcfadaqadaqaaiaaigda cqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aaaeaacqaHapaCcaWGfbaaaiGacogacaGGVbGaai4CaiabeI7aXjGa cYgacaGGVbGaai4zaiaacIcacaWGYbGaaiykaiabgUcaRiaadAgada WgaaWcbaGaamOCaaqabaGccaGGOaGaeqiUdeNaaiykaaaa@4EB0@

where f r (θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGYbaabeaaki aacIcacqaH4oqCcaGGPaaaaa@3607@  is a function of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  to be determined.  Similarly, considering the hoop stresses gives

ε θθ = u r r + 1 r u θ θ = 1+ν E (1ν) σ θθ ν σ rr = 2Pν(1+ν) πE cosθ r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpdaWcaaqaaiaadwhadaWgaaWcbaGaamOCaaqa baaakeaacaWGYbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaa WaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeI7aXbqabaaakeaa cqGHciITcqaH4oqCaaGaeyypa0ZaaSaaaeaadaqadaqaaiaaigdacq GHRaWkcqaH9oGBaiaawIcacaGLPaaaaeaacaWGfbaaamaadmaabaGa aiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaeq4Wdm3aaSbaaSqaai abeI7aXjabeI7aXbqabaGccqGHsislcqaH9oGBcqaHdpWCdaWgaaWc baGaamOCaiaadkhaaeqaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaae aacaaIYaGaamiuaiabe27aUjaacIcacaaIXaGaey4kaSIaeqyVd4Ma aiykaaqaaiabec8aWjaadweaaaWaaSaaaeaaciGGJbGaai4Baiaaco hacqaH4oqCaeaacaWGYbaaaaaa@6EF6@

Rearrange and integrate with respect to θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@

u θ = 2P 1+ν πE sinθ ν+(1ν)log(r) f r (θ)dθ + f θ (r) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacqaH4oqCaeqaaO Gaeyypa0ZaaSaaaeaacaaIYaGaamiuamaabmaabaGaaGymaiabgUca Riabe27aUbGaayjkaiaawMcaaaqaaiabec8aWjaadweaaaGaci4Cai aacMgacaGGUbGaeqiUde3aaeWaaeaacqaH9oGBcqGHRaWkcaGGOaGa aGymaiabgkHiTiabe27aUjaacMcaciGGSbGaai4BaiaacEgacaGGOa GaamOCaiaacMcaaiaawIcacaGLPaaacqGHsisldaWdbaqaaiaadAga daWgaaWcbaGaamOCaaqabaGccaGGOaGaeqiUdeNaaiykaiaadsgacq aH4oqCaSqabeqaniabgUIiYdGccqGHRaWkcaWGMbWaaSbaaSqaaiab eI7aXbqabaGccaGGOaGaamOCaiaacMcaaaa@611D@

where f θ (r) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaH4oqCaeqaaO GaaiikaiaadkhacaGGPaaaaa@3607@  is a function of r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaaaa@31D7@  to be determined.  Finally, substituting for stresses into the expression for shear strain shows that

ε rθ = 1 2 1 r u r θ + u θ r u θ r = 1+ν E σ rθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadkhacqaH4o qCaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqa amaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWG1b WaaSbaaSqaaiaadkhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgUca RmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacqaH4oqCaeqaaaGcba GaeyOaIyRaamOCaaaacqGHsisldaWcaaqaaiaadwhadaWgaaWcbaGa eqiUdehabeaaaOqaaiaadkhaaaaacaGLOaGaayzkaaGaeyypa0ZaaS aaaeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaa aeaacaWGfbaaaiabeo8aZnaaBaaaleaacaWGYbGaeqiUdehabeaaki abg2da9iaaicdaaaa@5B93@

Inserting the expressions for displacement and simplifying gives

1 r f r (θ) θ + f r (θ)dθ+ 2P(1+ν)(12ν) πE sinθ + f θ (r) r f θ (r) r =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaamOCaaaada GadaqaamaalaaabaGaeyOaIyRaamOzamaaBaaaleaacaWGYbaabeaa kiaacIcacqaH4oqCcaGGPaaabaGaeyOaIyRaeqiUdehaaiabgUcaRm aapeaabaGaamOzamaaBaaaleaacaWGYbaabeaakiaacIcacqaH4oqC caGGPaGaamizaiabeI7aXjabgUcaRmaalaaabaGaaGOmaiaadcfaca GGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymaiabgkHi TiaaikdacqaH9oGBcaGGPaaabaGaeqiWdaNaamyraaaaciGGZbGaai yAaiaac6gacqaH4oqCaSqabeqaniabgUIiYdaakiaawUhacaGL9baa cqGHRaWkdaGadaqaamaalaaabaGaeyOaIyRaamOzamaaBaaaleaacq aH4oqCaeqaaOGaaiikaiaadkhacaGGPaaabaGaeyOaIyRaamOCaaaa cqGHsisldaWcaaqaaiaadAgadaWgaaWcbaGaeqiUdehabeaakiaacI cacaWGYbGaaiykaaqaaiaadkhaaaaacaGL7bGaayzFaaGaeyypa0Ja aGimaaaa@71DC@

The two terms in parentheses are functions of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and r, respectively, and so must both be separately equal to zero to satisfy this expression for all possible values of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and r. Therefore

2 f r (θ) θ 2 + f r (θ)= 2P(1+ν)(12ν) πE cosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWGMbWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiabeI7a XjaacMcaaeaacqGHciITcqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaO Gaey4kaSIaamOzamaaBaaaleaacaWGYbaabeaakiaacIcacqaH4oqC caGGPaGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuaiaacIcaca aIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0IaaGOm aiabe27aUjaacMcaaeaacqaHapaCcaWGfbaaaiGacogacaGGVbGaai 4CaiabeI7aXbaa@574F@

This ODE has solution

f r (θ)= P(1+ν)(12ν) πE θsinθ+Asinθ+Bcosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacaWGYbaabeaaki aacIcacqaH4oqCcaGGPaGaeyypa0JaeyOeI0YaaSaaaeaacaWGqbGa aiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGHsi slcaaIYaGaeqyVd4Maaiykaaqaaiabec8aWjaadweaaaGaeqiUdeNa ci4CaiaacMgacaGGUbGaeqiUdeNaey4kaSIaamyqaiGacohacaGGPb GaaiOBaiabeI7aXjabgUcaRiaadkeaciGGJbGaai4BaiaacohacqaH 4oqCaaa@5835@

The second equation gives

f θ (r) r f θ (r) r =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbWaaSbaaS qaaiabeI7aXbqabaGccaGGOaGaamOCaiaacMcaaeaacqGHciITcaWG YbaaaiabgkHiTmaalaaabaGaamOzamaaBaaaleaacqaH4oqCaeqaaO GaaiikaiaadkhacaGGPaaabaGaamOCaaaacqGH9aqpcaaIWaaaaa@42B5@

which has solution f θ (r)=Cr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaaBaaaleaacqaH4oqCaeqaaO GaaiikaiaadkhacaGGPaGaeyypa0Jaam4qaiaadkhaaaa@38CC@ .  The constants A,B,C represent an arbitrary rigid displacement, and can be taken to be zero.  This gives the required answer.

 

 

 

5.2.6 2D Line load acting parallel to the surface of an infinite solid

 

Similarly, the stress fields due to a line load magnitude P per unit out-of-plane length acting tangent to the surface of a homogeneous, isotropic half-space can be generated from the Airy function

ϕ= P π rθcosθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaeyOeI0YaaSaaae aacaWGqbaabaGaeqiWdahaaiaadkhacqaH4oqCciGGJbGaai4Baiaa cohacqaH4oqCaaa@3E72@

The formulas in the preceding section yield

σ rr = 2P π sinθ r σ θθ = σ rθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTmaalaaabaGaaGOmaiaadcfaaeaacqaH apaCaaWaaSaaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaWGYb aaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaS baaSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWc baGaamOCaiabeI7aXbqabaGccqGH9aqpcaaIWaaaaa@6217@

The method outlined in the preceding section can be used to calculate the displacements. The procedure gives

u r = 2 1 ν 2 πE Psinθlogr 1+ν 12ν πE Pθcosθ u θ = 2 1 ν 2 πE Pcosθlogr+ 1+ν πE Pcosθ 2 12ν 1+ν πE Pθsinθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadkhaae qaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaWaaeWaaeaacaaIXaGa eyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa aabaGaeqiWdaNaamyraaaacaWGqbGaci4CaiaacMgacaGGUbGaeqiU deNaciiBaiaac+gacaGGNbGaamOCaiabgkHiTmaalaaabaWaaeWaae aacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaI XaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiabec8aWj aadweaaaGaamiuaiabeI7aXjGacogacaGGVbGaai4CaiabeI7aXbqa aiaadwhadaWgaaWcbaGaeqiUdehabeaakiabg2da9maalaaabaGaaG OmamaabmaabaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaaqaaiabec8aWjaadweaaaGaamiuaiGaco gacaGGVbGaai4CaiabeI7aXjGacYgacaGGVbGaai4zaiaadkhacqGH RaWkdaWcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaacqaHapaCcaWGfb aaaiaadcfaciGGJbGaai4BaiaacohacqaH4oqCcqGHsisldaWcaaqa aiaaikdadaqadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOa GaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzk aaaabaGaeqiWdaNaamyraaaacaWGqbGaeqiUdeNaci4CaiaacMgaca GGUbGaeqiUdehaaaa@94BC@

to within an arbitrary rigid motion. 

 

The stresses and displacements in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  basis are

σ 11 = 2P π x 1 2 x 2 x 1 2 + x 2 2 2 σ 22 = 2P π x 2 3 x 1 2 + x 2 2 2 σ 12 = 2P π x 1 x 2 2 x 1 2 + x 2 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTmaalaaabaGaaGOmaiaadcfaaeaacqaH apaCaaWaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaaaOqaamaabmaabaGaamiEamaa DaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWcba GaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iabgkHiTmaalaaabaGaaGOmaiaadcfaaeaacqaHapaCaa WaaSaaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIZaaaaaGcbaWa aeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaS IaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8a ZnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcqGHsisldaWcaa qaaiaaikdacaWGqbaabaGaeqiWdahaamaalaaabaGaamiEamaaDaaa leaacaaIXaaabaaaaOGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaa aaaOqaamaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa@9026@

 

 

 

5.2.7 Arbitrary pressure acting on a flat surface

 

The principle of superposition can be used to extend the point force solutions to arbitrary pressures acting on a surface. For example, we can find the solution for a uniform pressure acting on the strip of width 2a on the surface of a half-space by distributing the point force solution appropriately.  The figure illustrates the problem to be solved.

 

 

Distributing point forces with magnitude p(s)ds e 1 +q(s)ds e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWGZbGaaiykaiaads gacaWGZbGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadgha caGGOaGaam4CaiaacMcacaWGKbGaam4CaiaahwgadaWgaaWcbaGaaG Omaaqabaaaaa@3FC6@  over the loaded region shows that

 

σ 11 = 2 π A x 1 2 ( x 1 p(s)+ x 2 s q(s)) x 1 2 + x 2 s 2 2 ds σ 22 = 2 π A ( x 2 s) 2 x 1 p(s)+( x 2 s)q(s) x 1 2 + x 2 s 2 2 ds σ 12 = 2 π A x 1 ( x 2 s) x 1 p(s)+( x 2 s)q(s) x 1 2 + x 2 s 2 2 ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaaabaGaeqiW dahaamaapefabaWaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaaca aIYaaaaOGaaiikaiaadIhadaqhaaWcbaGaaGymaaqaaaaakiaadcha caGGOaGaam4CaiaacMcacqGHRaWkdaqadaqaaiaadIhadaWgaaWcba GaaGOmaaqabaGccqGHsislcaWGZbaacaGLOaGaayzkaaGaamyCaiaa cIcacaWGZbGaaiykaiaacMcaaeaadaqadaqaaiaadIhadaqhaaWcba GaaGymaaqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadIhadaWgaaWc baGaaGOmaaqabaGccqGHsislcaWGZbaacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaaaaeaacaWGbbaabeqdcqGHRiI8aOGaamizaiaadohacaaMc8oaba GaaGPaVlabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqp cqGHsisldaWcaaqaaiaaikdaaeaacqaHapaCaaWaa8quaeaadaWcaa qaaiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaam4C aiaacMcadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadIhadaqhaa WcbaGaaGymaaqaaaaakiaadchacaGGOaGaam4CaiaacMcacqGHRaWk caGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadohaca GGPaGaamyCaiaacIcacaWGZbGaaiykaaGaayjkaiaawMcaaaqaamaa bmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRm aabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadoha aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaaaaqaaiaadgeaaeqaniabgUIiYdGc caWGKbGaam4CaaqaaiaaykW7cqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaaabaGaeqiWdaha amaapefabaWaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaaaaGcca GGOaGaamiEamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0Iaam4Caiaa cMcadaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWGWbGaai ikaiaadohacaGGPaGaey4kaSIaaiikaiaadIhadaqhaaWcbaGaaGOm aaqaaaaakiabgkHiTiaadohacaGGPaGaamyCaiaacIcacaWGZbGaai ykaaGaayjkaiaawMcaaaqaamaabmaabaGaamiEamaaDaaaleaacaaI XaaabaGaaGOmaaaakiabgUcaRmaabmaabaGaamiEamaaBaaaleaaca aIYaaabeaakiabgkHiTiaadohaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaO GaamizaiaadohaaSqaaiaadgeaaeqaniabgUIiYdaaaaa@C169@

 

 

 

5.2.8 Uniform normal pressure acting on a strip

 

For the particular case of a uniform pressure, the integrals can be evaluated to show that

σ 22 = p 2π 2 θ 1 θ 2 + sin2 θ 1 sin2 θ 2 σ 11 = p 2π 2 θ 1 θ 2 sin2 θ 1 sin2 θ 2 σ 12 = p 2π cos2 θ 1 cos2 θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGWbaabaGaaGOm aiabec8aWbaadaqadaqaaiaaikdadaqadaqaaiabeI7aXnaaBaaale aacaaIXaaabeaakiabgkHiTiabeI7aXnaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaci4CaiaacMgacaGGUb GaaGOmaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiGacoha caGGPbGaaiOBaiaaikdacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaaaiaawIcacaGLPaaaaeaacqaHdpWCdaWgaaWcbaGa aGymaiaaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGWbaaba GaaGOmaiabec8aWbaadaqadaqaaiaaikdadaqadaqaaiabeI7aXnaa BaaaleaacaaIXaaabeaakiabgkHiTiabeI7aXnaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGaci4CaiaacMga caGGUbGaaGOmaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTi GacohacaGGPbGaaiOBaiaaikdacqaH4oqCdaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacqaHdpWCdaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGWbaabaGa aGOmaiabec8aWbaadaqadaqaaiGacogacaGGVbGaai4Caiaaikdacq aH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHsislciGGJbGaai4Baiaa cohacaaIYaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaay zkaaaaaaa@8D3D@

where 0 θ α π MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkabeI7aXnaaBaaale aacqaHXoqyaeqaaOGaeyizImQaeqiWdahaaa@3A4B@  and θ 1 = tan 1 x 1 /( x 2 a) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaamiEamaaBaaaleaacaaIXaaabeaakiaac+cacaGGOaGaam iEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadggacaGGPaaaaa@40F8@   θ 2 = tan 1 x 1 /( x 2 +a) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaciiDaiaacggacaGGUbWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaamiEamaaBaaaleaacaaIXaaabeaakiaac+cacaGGOaGaam iEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadggacaGGPaaaaa@40EE@  as shown below.

 


 

 

 

5.2.9 Stresses near the tip of a crack

 

Consider an infinite solid, which contains a semi-infinite crack on the (x1,x3) plane, as illustrated below

 


 

Suppose that the solid deforms in plane strain and is subjected to bounded stress at infinity.  The stress field near the tip of the crack can be derived from the Airy function

ϕ= K I 3 2π r 3/2 cos3θ/2+3cosθ/2 K II 2π r 3/2 sin3θ/2+sinθ/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHvpGzcqGH9aqpdaWcaaqaai aadUeadaWgaaWcbaGaamysaaqabaaakeaacaaIZaWaaOaaaeaacaaI YaGaeqiWdahaleqaaaaakiaadkhadaahaaWcbeqaaiaaiodacaGGVa GaaGOmaaaakmaabmaabaGaci4yaiaac+gacaGGZbGaaG4maiabeI7a Xjaac+cacaaIYaGaey4kaSIaaG4maiGacogacaGGVbGaai4CaiabeI 7aXjaac+cacaaIYaaacaGLOaGaayzkaaaabaGaaGPaVlaaykW7caaM c8UaaGPaVlabgkHiTmaalaaabaGaam4samaaBaaaleaacaWGjbGaam ysaaqabaaakeaadaGcaaqaaiaaikdacqaHapaCaSqabaaaaOGaamOC amaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaOWaaeWaaeaaciGGZb GaaiyAaiaac6gacaaIZaGaeqiUdeNaai4laiaaikdacqGHRaWkciGG ZbGaaiyAaiaac6gacqaH4oqCcaGGVaGaaGOmaaGaayjkaiaawMcaaa aaaa@6B07@

Here, K I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGjbaabeaaaa a@32AA@  and K II MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGjbGaamysaa qabaaaaa@3378@  are two constants, known as mode I and mode II stress intensity factors, respectively.  They quantify the magnitudes of the stresses near the crack tip, as shown below. Their role will be discussed in more detail when we discuss fracture mechanics in Chapter 9. The stresses can be calculated as

σ rr = K I 2πr 5 4 cos θ 2 1 4 cos 3θ 2 + K II 2πr 5 4 sin θ 2 + 3 4 sin 3θ 2 σ θθ = K I 2πr 3 4 cos θ 2 + 1 4 cos 3θ 2 K II 2πr 3 4 sin θ 2 + 3 4 sin 3θ 2 σ rθ = K I 2πr 1 4 sin θ 2 + 1 4 sin 3θ 2 + K II 2πr 1 4 cos θ 2 + 3 4 cos 3θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqaaiaadMea aeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcda qadaqaamaalaaabaGaaGynaaqaaiaaisdaaaGaci4yaiaac+gacaGG ZbWaaSaaaeaacqaH4oqCaeaacaaIYaaaaiabgkHiTmaalaaabaGaaG ymaaqaaiaaisdaaaGaci4yaiaac+gacaGGZbWaaSaaaeaacaaIZaGa eqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaai aadUeadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaWaaOaaaeaacaaI YaGaeqiWdaNaamOCaaWcbeaaaaGcdaqadaqaaiabgkHiTmaalaaaba GaaGynaaqaaiaaisdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaH 4oqCaeaacaaIYaaaaiabgUcaRmaalaaabaGaaG4maaqaaiaaisdaaa Gaci4CaiaacMgacaGGUbWaaSaaaeaacaaIZaGaeqiUdehabaGaaGOm aaaaaiaawIcacaGLPaaaaeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9maalaaabaGaam4samaaBaaaleaacaWGjbaa beaaaOqaamaakaaabaGaaGOmaiabec8aWjaadkhaaSqabaaaaOWaae WaaeaadaWcaaqaaiaaiodaaeaacaaI0aaaaiGacogacaGGVbGaai4C amaalaaabaGaeqiUdehabaGaaGOmaaaacqGHRaWkdaWcaaqaaiaaig daaeaacaaI0aaaaiGacogacaGGVbGaai4CamaalaaabaGaaG4maiab eI7aXbqaaiaaikdaaaaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaaca WGlbWaaSbaaSqaaiaadMeacaWGjbaabeaaaOqaamaakaaabaGaaGOm aiabec8aWjaadkhaaSqabaaaaOWaaeWaaeaadaWcaaqaaiaaiodaae aacaaI0aaaaiGacohacaGGPbGaaiOBamaalaaabaGaeqiUdehabaGa aGOmaaaacqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0aaaaiGacohaca GGPbGaaiOBamaalaaabaGaaG4maiabeI7aXbqaaiaaikdaaaaacaGL OaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH4oqCaeqaaO Gaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqaaiaadMeaaeqaaaGcbaWa aOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaqadaqaamaala aabaGaaGymaaqaaiaaisdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaa cqaH4oqCaeaacaaIYaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaais daaaGaci4CaiaacMgacaGGUbWaaSaaaeaacaaIZaGaeqiUdehabaGa aGOmaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaadUeadaWgaa WcbaGaamysaiaadMeaaeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWdaNa amOCaaWcbeaaaaGcdaqadaqaamaalaaabaGaaGymaaqaaiaaisdaaa Gaci4yaiaac+gacaGGZbWaaSaaaeaacqaH4oqCaeaacaaIYaaaaiab gUcaRmaalaaabaGaaG4maaqaaiaaisdaaaGaci4yaiaac+gacaGGZb WaaSaaaeaacaaIZaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaa aaaa@CE5C@

Equivalent expressions in rectangular coordinates are

σ 11 = K I 2πr cos θ 2 1sin θ 2 sin 3θ 2 K II 2πr sin θ 2 2+cos θ 2 cos 3θ 2 σ 22 = K I 2πr cos θ 2 1+sin θ 2 sin 3θ 2 + K II 2πr cos θ 2 sin θ 2 cos 3θ 2 σ 12 = K I 2πr cos θ 2 sin θ 2 cos 3θ 2 + K II 2πr cos θ 2 1sin θ 2 sin 3θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqaaiaadMea aeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcci GGJbGaai4BaiaacohadaWcaaqaaiabeI7aXbqaaiaaikdaaaWaaeWa aeaacaaIXaGaeyOeI0Iaci4CaiaacMgacaGGUbWaaSaaaeaacqaH4o qCaeaacaaIYaaaaiGacohacaGGPbGaaiOBamaalaaabaGaaG4maiab eI7aXbqaaiaaikdaaaaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaaca WGlbWaaSbaaSqaaiaadMeacaWGjbaabeaaaOqaamaakaaabaGaaGOm aiabec8aWjaadkhaaSqabaaaaOGaci4CaiaacMgacaGGUbWaaSaaae aacqaH4oqCaeaacaaIYaaaamaabmaabaGaaGOmaiabgUcaRiGacoga caGGVbGaai4CamaalaaabaGaeqiUdehabaGaaGOmaaaaciGGJbGaai 4BaiaacohadaWcaaqaaiaaiodacqaH4oqCaeaacaaIYaaaaaGaayjk aiaawMcaaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccq GH9aqpdaWcaaqaaiaadUeadaWgaaWcbaGaamysaaqabaaakeaadaGc aaqaaiaaikdacqaHapaCcaWGYbaaleqaaaaakiGacogacaGGVbGaai 4CamaalaaabaGaeqiUdehabaGaaGOmaaaadaqadaqaaiaaigdacqGH RaWkciGGZbGaaiyAaiaac6gadaWcaaqaaiabeI7aXbqaaiaaikdaaa Gaci4CaiaacMgacaGGUbWaaSaaaeaacaaIZaGaeqiUdehabaGaaGOm aaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaadUeadaWgaaWcba GaamysaiaadMeaaeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOC aaWcbeaaaaGcciGGJbGaai4BaiaacohadaWcaaqaaiabeI7aXbqaai aaikdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaH4oqCaeaacaaI YaaaaiGacogacaGGVbGaai4CamaalaaabaGaaG4maiabeI7aXbqaai aaikdaaaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiab g2da9maalaaabaGaam4samaaBaaaleaacaWGjbaabeaaaOqaamaaka aabaGaaGOmaiabec8aWjaadkhaaSqabaaaaOGaci4yaiaac+gacaGG ZbWaaSaaaeaacqaH4oqCaeaacaaIYaaaaiGacohacaGGPbGaaiOBam aalaaabaGaeqiUdehabaGaaGOmaaaaciGGJbGaai4BaiaacohadaWc aaqaaiaaiodacqaH4oqCaeaacaaIYaaaaiabgUcaRmaalaaabaGaam 4samaaBaaaleaacaWGjbGaamysaaqabaaakeaadaGcaaqaaiaaikda cqaHapaCcaWGYbaaleqaaaaakiGacogacaGGVbGaai4Camaalaaaba GaeqiUdehabaGaaGOmaaaadaqadaqaaiaaigdacqGHsislciGGZbGa aiyAaiaac6gadaWcaaqaaiabeI7aXbqaaiaaikdaaaGaci4CaiaacM gacaGGUbWaaSaaaeaacaaIZaGaeqiUdehabaGaaGOmaaaaaiaawIca caGLPaaaaaaa@D57E@

while the displacements can be calculated by integrating the strains, with the result

u 1 = K I μ r 2π 12ν+ sin 2 θ 2 cos θ 2 + K II μ r 2π 22ν+ cos 2 θ 2 sin θ 2 u 2 = K I μ r 2π 22ν cos 2 θ 2 sin θ 2 + K II μ r 2π 1+2ν+ sin 2 θ 2 cos θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqaaiaadMeaaeqaaaGc baGaeqiVd0gaamaakaaabaWaaSaaaeaacaWGYbaabaGaaGOmaiabec 8aWbaaaSqabaGcdaWadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4Ma ey4kaSIaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOWaaS aaaeaacqaH4oqCaeaacaaIYaaaaaGaay5waiaaw2faaiGacogacaGG VbGaai4CamaalaaabaGaeqiUdehabaGaaGOmaaaacqGHRaWkdaWcaa qaaiaadUeadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaeqiVd0ga amaakaaabaWaaSaaaeaacaWGYbaabaGaaGOmaiabec8aWbaaaSqaba GcdaWadaqaaiaaikdacqGHsislcaaIYaGaeqyVd4Maey4kaSIaci4y aiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaacqaH4o qCaeaacaaIYaaaaaGaay5waiaaw2faaiGacohacaGGPbGaaiOBamaa laaabaGaeqiUdehabaGaaGOmaaaaaeaacaWG1bWaaSbaaSqaaiaaik daaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqaaiaadMeaaeqa aaGcbaGaeqiVd0gaamaakaaabaWaaSaaaeaacaWGYbaabaGaaGOmai abec8aWbaaaSqabaGcdaWadaqaaiaaikdacqGHsislcaaIYaGaeqyV d4MaeyOeI0Iaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaO WaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGaay5waiaaw2faaiGacoha caGGPbGaaiOBamaalaaabaGaeqiUdehabaGaaGOmaaaacqGHRaWkda WcaaqaaiaadUeadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaeqiV d0gaamaakaaabaWaaSaaaeaacaWGYbaabaGaaGOmaiabec8aWbaaaS qabaGcdaWadaqaaiabgkHiTiaaigdacqGHRaWkcaaIYaGaeqyVd4Ma ey4kaSIaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOWaaS aaaeaacqaH4oqCaeaacaaIYaaaaaGaay5waiaaw2faaiGacogacaGG VbGaai4CamaalaaabaGaeqiUdehabaGaaGOmaaaaaaaa@A25C@

Note that this displacement field is valid for plane strain deformation only.

 

Observe that the stress intensity factor has the bizarre units of N m 3/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtaiaad2gadaahaaWcbeqaaiabgk HiTiaaiodacaGGVaGaaGOmaaaaaaa@35EA@ .