5.3 Complex Variable Solution to Plane Strain Static Linear Elastic Problems

 

Airy functions have been used to find many useful solutions to plane elastostatic boundary value problems.  The method does have some limitations, however.  The biharmonic equation is not the easiest field equation to solve, for one thing. Another limitation is that displacement components are difficult to determine from Airy functions, so that the method is not well suited to displacement boundary value problems.

 

In this section we outline a more versatile representation for 2D static linear elasticity problems, based on complex potentials.  The main goal is to provide you with enough background to be able to interpret solutions that use the complex variable formulation.  The techniques to derive the complex potentials are beyond the scope of this book, but can be found in most linear elasticity texts.

 

A typical plane elasticity problem is illustrated in the figure. Just as in the preceding section, we assume that the solid is two dimensional, which means either that

 

1. The solid is a thin sheet, with small thickness h, and is loaded only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  plane.  In this case the plane stress solution is applicable

 

2. The solid is very long in the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction, is prevented from stretching parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis, and every cross section is loaded identically and only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  plane.  In this case, the plane strain solution is applicable.

 

 

Some additional basic assumptions and restrictions are:

 

· The complex variable method outlined below is applicable only to isotropic solids.  We will assume that the solid has Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@

 

· We will assume no body forces, and constant temperature

 

 

 

5.3.1 Complex variable solutions to elasticity problems

 

The figure shows a 2D solid.  In the complex variable formalism,

 

· The position of a point in the solid is specified by a complex number z= x 1 +i x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGPbGaamiEamaaBaaaleaacaaIYaaa beaaaaa@3888@

 

· The position of a point can also be expressed as z=r e iθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaadkhacaWGLbWaaW baaSqabeaacaWGPbGaeqiUdehaaaaa@3797@  where r= x 1 2 + x 2 2 θ= tan 1 x 2 / x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9maakaaabaGaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaaabeaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabeI7aXjabg2da9iGacshacaGGHbGaaiOBamaa CaaaleqabaGaeyOeI0IaaGymaaaakiaadIhadaWgaaWcbaGaaGOmaa qabaGccaGGVaGaamiEamaaBaaaleaacaaIXaaabeaaaaa@4E5A@ . You can show that these are equivalent using Euler’s formula e iθ =cosθ+isinθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaCaaaleqabaGaamyAaiabeI 7aXbaakiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaa dMgaciGGZbGaaiyAaiaac6gacqaH4oqCaaa@4092@ , which gives

z=r e iθ = x 1 2 + x 2 2 cosθ+isinθ = x 1 2 + x 2 2 x 1 x 1 2 + x 2 2 + i x 2 x 1 2 + x 2 2 = x 1 +i x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG6bGaeyypa0JaamOCaiaadw gadaahaaWcbeqaaiaadMgacqaH4oqCaaGccqGH9aqpdaGcaaqaaiaa dIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWG4bWaa0 baaSqaaiaaikdaaeaacaaIYaaaaaqabaGcdaqadaqaaiGacogacaGG VbGaai4CaiabeI7aXjabgUcaRiaadMgaciGGZbGaaiyAaiaac6gacq aH4oqCaiaawIcacaGLPaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0Za aOaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaS IaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaOWaaeWaaeaa daWcaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaaakeaadaGcaaqaai aadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWG4bWa a0baaSqaaiaaikdaaeaacaaIYaaaaaqabaaaaOGaey4kaSYaaSaaae aacaWGPbGaamiEamaaBaaaleaacaaIYaaabeaaaOqaamaakaaabaGa amiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadIhada qhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaaaaaakiaawIcacaGLPaaa caaMc8UaaGPaVlaaykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2 da9iaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGPbGaamiE amaaBaaaleaacaaIYaaabeaaaaaa@AE15@

 

· The displacement of a point is specified using a second complex number D= u 1 +i u 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiraiabg2da9iaadwhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGPbGaamyDamaaBaaaleaacaaIYaaa beaaaaa@384C@

 

· The displacement and stress fields in rectangular coordinates are generated from two complex potentials Ω(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaaaaa@34C6@  and ω(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaaiikaiaadQhacaGGPaaaaa@3505@ , which are differentiable (also called `analytic’ or `holomorphic’) functions of z  (e.g. a polynomial), using the following formulas

E (1+ν) D=(34ν)Ω(z)z Ω (z) ¯ ω(z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbaabaGaaiikaiaaig dacqGHRaWkcqaH9oGBcaGGPaaaaiaadseacqGH9aqpcaGGOaGaaG4m aiabgkHiTiaaisdacqaH9oGBcaGGPaGaeuyQdCLaaiikaiaadQhaca GGPaGaeyOeI0IaamOEaiaaykW7caaMc8+aa0aaaeaacuqHPoWvgaqb aiaacIcacaWG6bGaaiykaaaacqGHsislcaaMc8+aa0aaaeaacqaHjp WDcaGGOaGaamOEaiaacMcaaaaaaa@5148@

σ 11 + σ 22 =2 Ω (z)+ Ω (z) ¯ σ 11 σ 22 +2i σ 12 =2 z Ω (z) ¯ + ω (z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabg2da9iaaikdadaqadaqaaiqbfM6axzaafaGaaiikaiaadQ hacaGGPaGaey4kaSYaa0aaaeaacuqHPoWvgaqbaiaacIcacaWG6bGa aiykaaaaaiaawIcacaGLPaaaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabgUcaRiaaikdacaWGPbGaeq4Wdm3aaSbaaSqaaiaaigdaca aIYaaabeaakiabg2da9iabgkHiTiaaikdadaqadaqaaiaadQhacaaM c8+aa0aaaeaacuqHPoWvgaGbaiaacIcacaWG6bGaaiykaaaacqGHRa WkdaqdaaqaaiqbeM8a3zaafaGaaiikaiaadQhacaGGPaaaaaGaayjk aiaawMcaaaaaaa@627D@

Here, Ω (z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafuyQdCLbauaacaGGOaGaamOEaiaacM caaaa@34D2@  denotes the derivative of Ω(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaaaaa@34C6@  with respect to z, and Ω(z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacqqHPoWvcaGGOaGaamOEai aacMcaaaaaaa@34D7@  denotes the complex conjugate of Ω(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaaaaa@34C6@ .  Recall that to calculate the complex conjugate of a complex number, you simply change the sign of its imaginary part, i.e. a+ib ¯ =aib MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacaWGHbGaey4kaSIaamyAai aadkgaaaGaeyypa0JaamyyaiabgkHiTiaadMgacaWGIbaaaa@393C@ .

 

· The displacement and stress in polar coordinates can be derived as

E (1+ν) u r +i u θ = (34ν)Ω(z)z Ω (z) ¯ ω(z) ¯ e iθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbaabaGaaiikaiaaig dacqGHRaWkcqaH9oGBcaGGPaaaamaabmaabaGaamyDamaaBaaaleaa caWGYbaabeaakiabgUcaRiaadMgacaWG1bWaaSbaaSqaaiabeI7aXb qabaaakiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaacIcacaaIZaGa eyOeI0IaaGinaiabe27aUjaacMcacqqHPoWvcaGGOaGaamOEaiaacM cacqGHsislcaWG6bGaaGPaVlaaykW7daqdaaqaaiqbfM6axzaafaGa aiikaiaadQhacaGGPaaaaiabgkHiTiaaykW7daqdaaqaaiabeM8a3j aacIcacaWG6bGaaiykaaaaaiaawUfacaGLDbaacaWGLbWaaWbaaSqa beaacqGHsislcaWGPbGaeqiUdehaaaaa@5F7F@

σ rr + σ θθ =2 Ω (z)+ Ω (z) ¯ σ rr σ θθ +2i σ rθ =2 z Ω (z) ¯ + ω (z) ¯ e 2iθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7a XbqabaGccqGH9aqpcaaIYaWaaeWaaeaacuqHPoWvgaqbaiaacIcaca WG6bGaaiykaiabgUcaRmaanaaabaGafuyQdCLbauaacaGGOaGaamOE aiaacMcaaaaacaGLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiaadk hacaWGYbaabeaakiabgkHiTiabeo8aZnaaBaaaleaacqaH4oqCcqaH 4oqCaeqaaOGaey4kaSIaaGOmaiaadMgacqaHdpWCdaWgaaWcbaGaam OCaiabeI7aXbqabaGccqGH9aqpcqGHsislcaaIYaWaaeWaaeaacaWG 6bGaaGPaVpaanaaabaGafuyQdCLbayaacaGGOaGaamOEaiaacMcaaa Gaey4kaSYaa0aaaeaacuaHjpWDgaqbaiaacIcacaWG6bGaaiykaaaa aiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsislcaaIYaGaam yAaiabeI7aXbaaaaaa@6DEF@

 

· The formulas given here for displacements and stresses are the most general representation, but other special formulas are sometimes used for particular problems.  For example, if the solid is a half-space in the region   x 2 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abgwMiZkaaicdaaaa@354F@  with a boundary at x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348F@  the solution can be generated from a single complex potential Ω(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaaaaa@34C6@ , using the formulas

2μD=(34ν)Ω(z)+Ω( z ¯ )+( z ¯ z) Ω (z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiabeY7aTjaadseacqGH9aqpca GGOaGaaG4maiabgkHiTiaaisdacqaH9oGBcaGGPaGaeuyQdCLaaiik aiaadQhacaGGPaGaey4kaSIaeuyQdCLaaiikaiqadQhagaqeaiaacM cacqGHRaWkcaGGOaGabmOEayaaraGaeyOeI0IaamOEaiaacMcadaqd aaqaaiqbfM6axzaafaGaaiikaiaadQhacaGGPaaaaaaa@4CA0@

σ 11 + σ 22 =2 Ω (z)+ Ω (z) ¯ σ 22 i σ 12 = Ω (z) Ω ( z ¯ )+(z z ¯ ) Ω (z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabg2da9iaaikdadaqadaqaaiqbfM6axzaafaGaaiikaiaadQ hacaGGPaGaey4kaSYaa0aaaeaacuqHPoWvgaqbaiaacIcacaWG6bGa aiykaaaaaiaawIcacaGLPaaaaeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyOeI0IaamyAaiabeo8aZnaaBaaaleaacaaIXaGa aGOmaaqabaGccqGH9aqpcuqHPoWvgaqbaiaacIcacaWG6bGaaiykai abgkHiTiqbfM6axzaafaGaaiikaiqadQhagaqeaiaacMcacqGHRaWk caGGOaGaamOEaiabgkHiTiqadQhagaqeaiaacMcadaqdaaqaaiqbfM 6axzaagaGaaiikaiaadQhacaGGPaaaaaaaaa@60B7@

For example, you can use these formulas to calculate stresses from the potentials given in Sections 5.3.7-5.3.9.  The conventional representation gives the same results, of course.

 

 

 

5.3.2 Demonstration that the complex variable solution satisfies the governing equations

 

We need to show two things:

 

1.  That the displacement field satisfies the equilibrium equation (See sect 5.1.2)

1 12ν 2 u k x k x i + 2 u i x k x k =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaaGymaiabgk HiTiaaikdacqaH9oGBaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccaWG1bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhadaWgaaWcba Gaam4AaaqabaaaaOGaeyypa0JaaGimaaaa@4F9A@

 

2.  That the stresses are related to the displacements by the elastic stress-strain equations

 

To do this, we need to review some basic results from the theory of complex variables.  Recall that we have set z= x 1 +i x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaiabg2da9iaadIhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGPbGaamiEamaaBaaaleaacaaIYaaa beaaaaa@3888@ , so that a differentiable function f(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG6bGaaiykaaaa@3423@  can be decomposed into real and imaginary parts, each of which are functions of x 1 , x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki aacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@3563@ , as

f(z)=v( x 1 , x 2 )+iw( x 1 , x 2 )=v z+ z ¯ 2 ,i z ¯ z 2 +iw z+ z ¯ 2 ,i z ¯ z 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG6bGaaiykaiabg2 da9iaadAhacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYca caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaadMgaca WG3bGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiE amaaBaaaleaacaaIYaaabeaakiaacMcacaaMc8UaaGPaVlaaykW7cq GH9aqpcaaMc8UaaGPaVlaaykW7caWG2bWaaeWaaeaadaWcaaqaaiaa dQhacqGHRaWkceWG6bGbaebaaeaacaaIYaaaaiaacYcacaWGPbWaaS aaaeaaceWG6bGbaebacqGHsislcaWG6baabaGaaGOmaaaaaiaawIca caGLPaaacqGHRaWkcaWGPbGaam4DamaabmaabaWaaSaaaeaacaWG6b Gaey4kaSIabmOEayaaraaabaGaaGOmaaaacaGGSaGaamyAamaalaaa baGabmOEayaaraGaeyOeI0IaamOEaaqaaiaaikdaaaaacaGLOaGaay zkaaaaaa@683E@

This shows that

z 1 2 x 1 i x 2 z ¯ 1 2 x 1 +i x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITaeaacqGHciITca WG6baaaiabggMi6oaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaaaOGaeyOeI0IaamyAamaalaaabaGaeyOaIylabaGaeyOaIyRa amiEamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacqGHciITaeaacqGHciITceWG6bGbaebaaaGaeyyyIO7aaSaaaeaa caaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaeyOaIylabaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccqGHRaWkcaWGPbWa aSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaae qaaaaaaOGaayjkaiaawMcaaaaa@71E4@

Next, recall that if f(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG6bGaaiykaaaa@3423@  is differentiable with respect to z, its real and imaginary parts must satisfy the Cauchy-Riemann equations

v x 1 = w x 2 w x 1 = v x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG2baabaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccqGH9aqpdaWcaaqa aiabgkGi2kaadEhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaae qaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOa IyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaO Gaeyypa0JaeyOeI0YaaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRa amiEamaaBaaaleaacaaIYaaabeaaaaaaaa@6B4D@

We can then show that the derivative of f(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG6bGaaiykaaaa@3423@  with respect to z ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOEayaaraaaaa@31F7@  is zero, and similarly, the derivative of f(z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacaWGMbGaaiikaiaadQhaca GGPaaaaaaa@3434@  with respect to z is zero.  To see these, use the definitions and the Cauchy-Riemann equations

2 f(z) z ¯ = x 1 +i x 2 (v+iw)= v x 1 w x 2 +i( v x 2 + w x 1 )=0 2 f(z) ¯ z = x 1 i x 2 (viw)= v x 1 w x 2 i( v x 2 + w x 1 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaIYaWaaSaaaeaacqGHciITca WGMbGaaiikaiaadQhacaGGPaaabaGaeyOaIyRabmOEayaaraaaaiab g2da9maabmaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaS baaSqaaiaaigdaaeqaaaaakiabgUcaRiaadMgadaWcaaqaaiabgkGi 2cqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOa GaayzkaaGaaiikaiaadAhacqGHRaWkcaWGPbGaam4DaiaacMcacqGH 9aqpdaWcaaqaaiabgkGi2kaadAhaaeaacqGHciITcaWG4bWaaSbaaS qaaiaaigdaaeqaaaaakiabgkHiTmaalaaabaGaeyOaIyRaam4Daaqa aiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSIaam yAaiaacIcadaWcaaqaaiabgkGi2kaadAhaaeaacqGHciITcaWG4bWa aSbaaSqaaiaaikdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaam 4DaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaaiyk aiabg2da9iaaicdaaeaacaaIYaWaaSaaaeaacqGHciITdaqdaaqaai aadAgacaGGOaGaamOEaiaacMcaaaaabaGaeyOaIyRaamOEaaaacqGH 9aqpdaqadaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBa aaleaacaaIXaaabeaaaaGccqGHsislcaWGPbWaaSaaaeaacqGHciIT aeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkai aawMcaaiaacIcacaWG2bGaeyOeI0IaamyAaiaadEhacaGGPaGaeyyp a0ZaaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRaamiEamaaBaaale aacaaIXaaabeaaaaGccqGHsisldaWcaaqaaiabgkGi2kaadEhaaeaa cqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgkHiTiaadM gacaGGOaWaaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRaamiEamaa BaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadE haaeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaacMca cqGH9aqpcaaIWaaaaaa@A4B8@

 

We can now proceed with the proof.   The equilibrium equations for plane deformation reduce to

2 x 1 2 + 2 x 2 2 u 1 + 1 12ν x 1 u 1 x 1 + u 2 x 2 =0 2 x 1 2 + 2 x 2 2 u 2 + 1 12ν x 2 u 1 x 1 + u 2 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaqadaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaDaaaleaa caaIXaaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOm aaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaamyDamaaBaaaleaaca aIXaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaigdacqGHsisl caaIYaGaeqyVd4gaamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEam aaDaaaleaacaaIXaaabaaaaaaakmaabmaabaWaaSaaaeaacqGHciIT caWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaDa aaleaacaaIXaaabaaaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamyD amaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcba GaaGOmaaqaaaaaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaabaWa aeWaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaai abgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaey4k aSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHci ITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaaaOGaayjkaiaa wMcaaiaadwhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaaaaaaGcda qadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabeaa aOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaaaaaaGccqGHRa WkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGOmaaqabaaakeaa cqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaaaaaaaaGccaGLOaGaay zkaaGaeyypa0JaaGimaaaaaa@8BD8@

These equations can be written in a combined, complex, form as

2 x 1 2 + 2 x 2 2 ( u 1 +i u 2 )+ 1 12ν x 1 +i x 2 u 1 x 1 + u 2 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaa caaIYaaaaaaaaOGaayjkaiaawMcaaiaacIcacaWG1bWaaSbaaSqaai aaigdaaeqaaOGaey4kaSIaamyAaiaadwhadaWgaaWcbaGaaGOmaaqa baGccaGGPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymaiabgkHiTi aaikdacqaH9oGBaaWaaeWaaeaadaWcaaqaaiabgkGi2cqaaiabgkGi 2kaadIhadaqhaaWcbaGaaGymaaqaaaaaaaGccqGHRaWkcaWGPbWaaS aaaeaacqGHciITaeaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaa aaaaaaGccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaa0baaSqa aiaaigdaaeaaaaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaS baaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaI YaaabaaaaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaaa@6B91@

It is easy to show (simply substitute D= u 1 +i u 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiraiabg2da9iaadwhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGPbGaamyDamaaBaaaleaacaaIYaaa beaaaaa@384C@  and use the definitions of differentiation with respect to z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaaaa@31DF@  and z ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOEayaaraaaaa@31F7@  ) that this can be re-written as

4 2 z z ¯ D+ 2 12ν z ¯ D z + D ¯ z ¯ =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGinamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaaGcbaGaeyOaIyRaamOEaiabgkGi2kqadQhagaqe aaaacaWGebGaey4kaSYaaSaaaeaacaaIYaaabaGaaGymaiabgkHiTi aaikdacqaH9oGBaaWaaSaaaeaacqGHciITaeaacqGHciITceWG6bGb aebaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadseaaeaacqGHciITca WG6baaaiabgUcaRmaalaaabaGaeyOaIy7aa0aaaeaacaWGebaaaaqa aiabgkGi2kqadQhagaqeaaaaaiaawIcacaGLPaaacqGH9aqpcaaIWa aaaa@510A@

Finally, substituting

D= 1+ν E (34ν)Ω(z)z Ω (z) ¯ ω(z) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiraiabg2da9maalaaabaWaaeWaae aacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaabaGaamyraaaa daGadaqaaiaacIcacaaIZaGaeyOeI0IaaGinaiabe27aUjaacMcacq qHPoWvcaGGOaGaamOEaiaacMcacqGHsislcaWG6bGaaGPaVlaaykW7 daqdaaqaaiqbfM6axzaafaGaaiikaiaadQhacaGGPaaaaiabgkHiTi aaykW7daqdaaqaaiabeM8a3jaacIcacaWG6bGaaiykaaaaaiaawUha caGL9baaaaa@53A9@

and noting that Ω/ z ¯ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeuyQdCLaai4laiabgkGi2k qadQhagaqeaiabg2da9iaaicdaaaa@38C4@  and Ω ¯ /z= ω ¯ /z=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aa0aaaeaacqqHPoWvaaGaai 4laiabgkGi2kaadQhacqGH9aqpcqGHciITdaqdaaqaaiabeM8a3baa caGGVaGaeyOaIyRaamOEaiabg2da9iaaicdaaaa@401F@  shows that this equation is indeed satisfied.

 

To show that the stress-strain relations are satisfied, note that the stress-strain relations for plane strain deformation (Section 3.1.4) can be written as

σ 11 + σ 22 = E (1+ν)(12ν) u 1 x 1 + u 2 x 2 = E (1+ν)(12ν) D z + D ¯ z ¯ σ 11 σ 22 +2i σ 12 = E (1+ν) x 1 +i x 2 ( u 1 +i u 2 )= 2E (1+ν) D z ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabg2da9maalaaabaGaamyraaqaaiaacIcacaaIXaGaey4kaS IaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaa cMcaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaG ymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa kiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIYaaabe aaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacaWGfbaabaGaaiikaiaaigdacq GHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyV d4MaaiykaaaadaqadaqaamaalaaabaGaeyOaIyRaamiraaqaaiabgk Gi2kaadQhaaaGaey4kaSYaaSaaaeaacqGHciITdaqdaaqaaiaadsea aaaabaGaeyOaIyRabmOEayaaraaaaaGaayjkaiaawMcaaaqaaiabeo 8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcqaHdpWCdaWg aaWcbaGaaGOmaiaaikdaaeqaaOGaey4kaSIaaGOmaiaadMgacqaHdp WCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWG fbaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaaamaabmaaba WaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaaigda aeqaaaaakiabgUcaRiaadMgadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaaiik aiaadwhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGPbGaamyDam aaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpdaWcaaqaaiaaikda caWGfbaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaaamaala aabaGaeyOaIyRaamiraaqaaiabgkGi2kqadQhagaqeaaaaaaaa@A0AD@

Substituting for D in terms of the complex potentials and evaluating the derivatives gives the required results.

 

 

 

5.3.3 Complex variable solution for a line force in an infinite solid (plane strain deformation)

 

The figure shows a line load with force per unit out of plane distance F= F 1 e 1 + F 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiabg2da9iaadAeadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amOramaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3AC5@  acting at the origin of a large (infinite) solid. The displacements and stresses are calculated from the complex potentials

Ω(z)= F 1 +i F 2 8π(1ν) log(z)ω(z)= (34ν)( F 1 i F 2 ) 8π(1ν) log(z) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaGaey ypa0JaeyOeI0YaaSaaaeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyAaiaadAeadaWgaaWcbaGaaGOmaaqabaaakeaacaaI4a GaeqiWdaNaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaaaaiGacYga caGGVbGaai4zaiaacIcacaWG6bGaaiykaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeM8a3jaacIca caWG6bGaaiykaiabg2da9maalaaabaGaaiikaiaaiodacqGHsislca aI0aGaeqyVd4MaaiykaiaacIcacaWGgbWaaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IaamyAaiaadAeadaWgaaWcbaGaaGOmaaqabaGccaGGPa aabaGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aaaaciGGSbGaai4BaiaacEgacaGGOaGaamOEaiaacMcaaaa@7415@

 

The displacements can be calculated from these potentials as

u 1 = (1+ν) F 1 8πE(1ν) 2(34ν)log(r)+cos2θ (1+ν) F 2 8πE(1ν) sin2θ u 2 = (1+ν) F 2 8πE(1ν) 2(34ν)log(r)sin2θ + (1+ν) F 1 8πE(1ν) cos2θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeyOeI0YaaSaaaeaacaGGOaGaaGymaiabgUcaRiab e27aUjaacMcacaWGgbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGioai abec8aWjaadweacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcaaaWa aiWaaeaacaaIYaGaaiikaiaaiodacqGHsislcaaI0aGaeqyVd4Maai ykaiGacYgacaGGVbGaai4zaiaacIcacaWGYbGaaiykaiabgUcaRiGa cogacaGGVbGaai4CaiaaikdacqaH4oqCaiaawUhacaGL9baacqGHsi sldaWcaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaadAea daWgaaWcbaGaaGOmaaqabaaakeaacaaI4aGaeqiWdaNaamyraiaacI cacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaaciGGZbGaaiyAaiaac6ga caaIYaGaeqiUdehabaGaamyDamaaBaaaleaacaaIYaaabeaakiabg2 da9iabgkHiTmaalaaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGG PaGaamOramaaBaaaleaacaaIYaaabeaaaOqaaiaaiIdacqaHapaCca WGfbGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaaaamaacmaabaGa aGOmaiaacIcacaaIZaGaeyOeI0IaaGinaiabe27aUjaacMcaciGGSb Gaai4BaiaacEgacaGGOaGaamOCaiaacMcacqGHsislciGGZbGaaiyA aiaac6gacaaIYaGaeqiUdehacaGL7bGaayzFaaGaey4kaSYaaSaaae aacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaWGgbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaaGioaiabec8aWjaadweacaGGOaGaaGymai abgkHiTiabe27aUjaacMcaaaGaci4yaiaac+gacaGGZbGaaGOmaiab eI7aXbaaaa@A65E@

 

σ rr = 32ν 4π(1ν)r F 1 cosθ+ F 2 sinθ σ θθ = (12ν) 4π(1ν)r F 1 cosθ+ F 2 sinθ σ rθ = (12ν) 4π(1ν)r F 1 sinθ F 2 cosθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIZaGaeyOeI0Ia aGOmaiabe27aUbqaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTi abe27aUjaacMcacaWGYbaaamaabmaabaGaamOramaaBaaaleaacaaI XaaabeaakiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaadAeada WgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqCaiaa wIcacaGLPaaaaeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabe aakiabg2da9maalaaabaGaaiikaiaaigdacqGHsislcaaIYaGaeqyV d4MaaiykaaqaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe2 7aUjaacMcacaWGYbaaamaabmaabaGaamOramaaBaaaleaacaaIXaaa beaakiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaadAeadaWgaa WcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqCaiaawIca caGLPaaaaeaacqaHdpWCdaWgaaWcbaGaamOCaiabeI7aXbqabaGccq GH9aqpdaWcaaqaaiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaa cMcaaeaacaaI0aGaeqiWdaNaaiikaiaaigdacqGHsislcqaH9oGBca GGPaGaamOCaaaadaqadaqaaiaadAeadaWgaaWcbaGaaGymaaqabaGc ciGGZbGaaiyAaiaac6gacqaH4oqCcqGHsislcaWGgbWaaSbaaSqaai aaikdaaeqaaOGaci4yaiaac+gacaGGZbGaeqiUdehacaGLOaGaayzk aaaaaaa@978E@

 

σ 11 = F 1 cosθ 4π(1ν)r 12ν+2 cos 2 θ + F 2 sinθ 4π(1ν)r 12ν2 cos 2 θ σ 22 = F 1 cosθ 4π(1ν)r 1+2ν2 cos 2 θ F 2 sinθ 4π(1ν)r 32ν2 cos 2 θ σ 12 = F 1 sinθ 4π(1ν)r 12ν+2 cos 2 θ F 2 cosθ 4π(1ν)r 32ν2 cos 2 θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGgbWaaSbaaSqa aiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGinai abec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaiaadkhaaaWa aeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUjabgUcaRiaaikdaci GGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqCaiaa wIcacaGLPaaacqGHRaWkdaWcaaqaaiaadAeadaWgaaWcbaGaaGOmaa qabaGcciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaaI0aGaeqiWdaNa aiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaamOCaaaadaqadaqaai aaigdacqGHsislcaaIYaGaeqyVd4MaeyOeI0IaaGOmaiGacogacaGG VbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeI7aXbGaayjkaiaawM caaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqp cqGHsisldaWcaaqaaiaadAeadaWgaaWcbaGaaGymaaqabaGcciGGJb Gaai4BaiaacohacqaH4oqCaeaacaaI0aGaeqiWdaNaaiikaiaaigda cqGHsislcqaH9oGBcaGGPaGaamOCaaaadaqadaqaaiaaigdacqGHRa WkcaaIYaGaeqyVd4MaeyOeI0IaaGOmaiGacogacaGGVbGaai4Camaa CaaaleqabaGaaGOmaaaakiabeI7aXbGaayjkaiaawMcaaiabgkHiTm aalaaabaGaamOramaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGa aiOBaiabeI7aXbqaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTi abe27aUjaacMcacaWGYbaaamaabmaabaGaaG4maiabgkHiTiaaikda cqaH9oGBcqGHsislcaaIYaGaci4yaiaac+gacaGGZbWaaWbaaSqabe aacaaIYaaaaOGaeqiUdehacaGLOaGaayzkaaaabaGaeq4Wdm3aaSba aSqaaiaaigdacaaIYaaabeaakiabg2da9iabgkHiTmaalaaabaGaam OramaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeI7a XbqaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe27aUjaacM cacaWGYbaaamaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBcqGH RaWkcaaIYaGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaO GaeqiUdehacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaWGgbWaaSba aSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaG inaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiaadkha aaWaaeWaaeaacaaIZaGaeyOeI0IaaGOmaiabe27aUjabgkHiTiaaik daciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqC aiaawIcacaGLPaaaaaaa@E77E@

 

We will work through the algebra required to calculate these formulae for displacement and stress as a representative example.  In practice a symbolic manipulation program makes the calculations painless.  To begin, note that

log(z)=log(r e iθ )=log(r)+iθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaaiikaiaadQ hacaGGPaGaeyypa0JaciiBaiaac+gacaGGNbGaaiikaiaadkhacaWG LbWaaWbaaSqabeaacaWGPbGaeqiUdehaaOGaaiykaiabg2da9iGacY gacaGGVbGaai4zaiaacIcacaWGYbGaaiykaiabgUcaRiaadMgacqaH 4oqCaaa@499E@

and

d dz (log(z))= 1 z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaadQ haaaGaaiikaiGacYgacaGGVbGaai4zaiaacIcacaWG6bGaaiykaiaa cMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG6baaaaaa@3D12@

The displacements are thus

E (1+ν) D=(34ν)Ω(z) ω(z) ¯ z Ω (z) ¯ = (34ν) 8π(1ν) F 1 +i F 2 log(z)+ F 1 i F 2 ¯ log(z) ¯ F 1 +i F 2 ¯ 8π(1ν) z z ¯ = 2(34ν) 8π(1ν) F 1 +i F 2 log(r) F 1 i F 2 8π(1ν) r e iθ r e iθ = 2(34ν) 8π(1ν) F 1 +i F 2 log(r) F 1 i F 2 8π(1ν) e 2iθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadweaaeaacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcaaaGaamiraiabg2da9iaacIca caaIZaGaeyOeI0IaaGinaiabe27aUjaacMcacqqHPoWvcaGGOaGaam OEaiaacMcacqGHsislcaaMc8+aa0aaaeaacqaHjpWDcaGGOaGaamOE aiaacMcaaaGaeyOeI0IaamOEaiaaykW7caaMc8+aa0aaaeaacuqHPo WvgaqbaiaacIcacaWG6bGaaiykaaaaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7cqGH9aqpcqGHsisldaWcaaqaaiaacIcacaaIZaGaeyOeI0Ia aGinaiabe27aUjaacMcaaeaacaaI4aGaeqiWdaNaaiikaiaaigdacq GHsislcqaH9oGBcaGGPaaaamaabmaabaWaaeWaaeaacaWGgbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamyAaiaadAeadaWgaaWcbaGaaG OmaaqabaaakiaawIcacaGLPaaaciGGSbGaai4BaiaacEgacaGGOaGa amOEaiaacMcacqGHRaWkdaqdaaqaamaabmaabaGaamOramaaBaaale aacaaIXaaabeaakiabgkHiTiaadMgacaWGgbWaaSbaaSqaaiaaikda aeqaaaGccaGLOaGaayzkaaaaamaanaaabaGaciiBaiaac+gacaGGNb GaaiikaiaadQhacaGGPaaaaaGaayjkaiaawMcaaiabgkHiTmaalaaa baWaa0aaaeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam yAaiaadAeadaWgaaWcbaGaaGOmaaqabaaaaaGcbaGaaGioaiabec8a WjaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaadaWcaaqaaiaadQ haaeaaceWG6bGbaebaaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabg2da9iabgkHiTmaalaaabaGaaGOmaiaacIcacaaIZaGaeyOe I0IaaGinaiabe27aUjaacMcaaeaacaaI4aGaeqiWdaNaaiikaiaaig dacqGHsislcqaH9oGBcaGGPaaaamaabmaabaGaamOramaaBaaaleaa caaIXaaabeaakiabgUcaRiaadMgacaWGgbWaaSbaaSqaaiaaikdaae qaaaGccaGLOaGaayzkaaGaciiBaiaac+gacaGGNbGaaiikaiaadkha caGGPaGaeyOeI0YaaSaaaeaadaqadaqaaiaadAeadaWgaaWcbaGaaG ymaaqabaGccqGHsislcaWGPbGaamOramaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaaqaaiaaiIdacqaHapaCcaGGOaGaaGymaiabgk HiTiabe27aUjaacMcaaaWaaSaaaeaacaWGYbGaamyzamaaCaaaleqa baGaamyAaiabeI7aXbaaaOqaaiaadkhacaWGLbWaaWbaaSqabeaacq GHsislcaWGPbGaeqiUdehaaaaaaOqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey ypa0JaeyOeI0YaaSaaaeaacaaIYaGaaiikaiaaiodacqGHsislcaaI 0aGaeqyVd4MaaiykaaqaaiaaiIdacqaHapaCcaGGOaGaaGymaiabgk HiTiabe27aUjaacMcaaaWaaeWaaeaacaWGgbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamyAaiaadAeadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaaciGGSbGaai4BaiaacEgacaGGOaGaamOCaiaacMca cqGHsisldaWcaaqaamaabmaabaGaamOramaaBaaaleaacaaIXaaabe aakiabgkHiTiaadMgacaWGgbWaaSbaaSqaaiaaikdaaeqaaaGccaGL OaGaayzkaaaabaGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0Iaeq yVd4MaaiykaaaacaWGLbWaaWbaaSqabeaacaaIYaGaamyAaiabeI7a Xbaaaaaa@25A6@

Finally, using Euler’s formula and taking real and imaginary parts gives the answer listed earlier.  Similarly, the formulas for stress give

σ rr + σ θθ =2 Ω (z)+ Ω (z) ¯ = 1 4π(1ν) F 1 +i F 2 z + F 1 i F 2 z ¯ = ( F 1 +i F 2 ) e iθ +( F 1 i F 2 ) e iθ 4π(1ν)r σ rr σ θθ +2i σ rθ =2 z Ω (z) ¯ + ω (z) ¯ e 2iθ = e 2iθ 4π(1ν) ( F 1 i F 2 ) r e iθ r 2 e 2iθ +(34ν)( F 1 +i F 2 ) 1 r e iθ = 1 4π(1ν)r ( F 1 i F 2 ) e iθ +(34ν)( F 1 +i F 2 ) e iθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7a XbqabaGccqGH9aqpcaaIYaWaaeWaaeaacuqHPoWvgaqbaiaacIcaca WG6bGaaiykaiabgUcaRmaanaaabaGafuyQdCLbauaacaGGOaGaamOE aiaacMcaaaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaaeaaca aIXaaabaGaaGinaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4Ma aiykaaaadaqadaqaamaalaaabaGaamOramaaBaaaleaacaaIXaaabe aakiabgUcaRiaadMgacaWGgbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa amOEaaaacqGHRaWkdaWcaaqaaiaadAeadaWgaaWcbaGaaGymaaqaba GccqGHsislcaWGPbGaamOramaaBaaaleaacaaIYaaabeaaaOqaaiqa dQhagaqeaaaaaiaawIcacaGLPaaaaeaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaeyypa0JaeyOeI0YaaSaaaeaacaGGOaGaamOramaa BaaaleaacaaIXaaabeaakiabgUcaRiaadMgacaWGgbWaaSbaaSqaai aaikdaaeqaaOGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiaadMga cqaH4oqCaaGccqGHRaWkcaGGOaGaamOramaaBaaaleaacaaIXaaabe aakiabgkHiTiaadMgacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiyk aiaadwgadaahaaWcbeqaaiaadMgacqaH4oqCaaaakeaacaaI0aGaeq iWdaNaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaamOCaaaaaeaa cqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGaeyOeI0Iaeq4Wdm 3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGHRaWkcaaIYaGaamyA aiabeo8aZnaaBaaaleaacaWGYbGaeqiUdehabeaakiabg2da9iabgk HiTiaaikdadaqadaqaaiaadQhacaaMc8+aa0aaaeaacuqHPoWvgaGb aiaacIcacaWG6bGaaiykaaaacqGHRaWkdaqdaaqaaiqbeM8a3zaafa GaaiikaiaadQhacaGGPaaaaaGaayjkaiaawMcaaiaadwgadaahaaWc beqaaiabgkHiTiaaikdacaWGPbGaeqiUdehaaaGcbaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaeyOeI0YaaSaa aeaacaWGLbWaaWbaaSqabeaacqGHsislcaaIYaGaamyAaiabeI7aXb aaaOqaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe27aUjaa cMcaaaWaaiWaaeaacaGGOaGaamOramaaBaaaleaacaaIXaaabeaaki abgkHiTiaadMgacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaaiykamaa laaabaGaamOCaiaadwgadaahaaWcbeqaaiaadMgacqaH4oqCaaaake aacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaamyzamaaCaaaleqabaGa eyOeI0IaaGOmaiaadMgacqaH4oqCaaaaaOGaey4kaSIaaiikaiaaio dacqGHsislcaaI0aGaeqyVd4MaaiykaiaacIcacaWGgbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamyAaiaadAeadaWgaaWcbaGaaGOmaa qabaGccaGGPaWaaSaaaeaacaaIXaaabaGaamOCaiaadwgadaahaaWc beqaaiabgkHiTiaadMgacqaH4oqCaaaaaaGccaGL7bGaayzFaaaaba GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab g2da9iabgkHiTmaalaaabaGaaGymaaqaaiaaisdacqaHapaCcaGGOa GaaGymaiabgkHiTiabe27aUjaacMcacaWGYbaaamaacmaabaGaaiik aiaadAeadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGPbGaamOram aaBaaaleaacaaIYaaabeaakiaacMcacaWGLbWaaWbaaSqabeaacaWG PbGaeqiUdehaaOGaey4kaSIaaiikaiaaiodacqGHsislcaaI0aGaeq yVd4MaaiykaiaacIcacaWGgbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamyAaiaadAeadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaamyzam aaCaaaleqabaGaeyOeI0IaamyAaiabeI7aXbaaaOGaay5Eaiaaw2ha aaaaaa@EE3C@

Adding the two formulas for stress shows that

2 σ rr +2i σ rθ = 1 4π(1ν)r 2( F 1 i F 2 ) e iθ +4(1ν)( F 1 +i F 2 ) e iθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiabeo8aZnaaBaaaleaacaWGYb GaamOCaaqabaGccqGHRaWkcaaIYaGaamyAaiabeo8aZnaaBaaaleaa caWGYbGaeqiUdehabeaakiabg2da9iabgkHiTmaalaaabaGaaGymaa qaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe27aUjaacMca caWGYbaaamaacmaabaGaaGOmaiaacIcacaWGgbWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaamyAaiaadAeadaWgaaWcbaGaaGOmaaqabaGc caGGPaGaamyzamaaCaaaleqabaGaamyAaiabeI7aXbaakiabgUcaRi aaisdacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacaGGOaGaamOr amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadMgacaWGgbWaaSbaaS qaaiaaikdaaeqaaOGaaiykaiaadwgadaahaaWcbeqaaiabgkHiTiaa dMgacqaH4oqCaaaakiaawUhacaGL9baaaaa@66AA@

Using Euler’s formula and taking real and imaginary parts of this expression gives the formulas for σ rr MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaaaaa@34BD@  and σ rθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH4o qCaeqaaaaa@357C@

 

Finally, we need to verify that the stresses are consistent with a point force acting at the origin.  To do this, we can evaluate the resultant force exerted by tractions acting on a circle enclosing the point force, as shown in the figure. Since the solid is in static equilibrium, the total force acting on this circular region must sum to zero.  Recall that the resultant force exerted by stresses on an internal surface can be calculated as

R= A nσdA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabg2da9maapefabaGaaCOBai abgwSixlaaho8acaWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipa aaa@3C10@

A unit normal to the circle is n=cosθ e 1 +sinθ e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iGacogacaGGVbGaai 4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGG ZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@408B@ ; multiplying by the stress tensor (in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  basis) gives

R 1 = 0 2π σ 11 cosθ+ σ 12 sinθ rdθ R 2 = 0 2π σ 22 sinθ+ σ 12 cosθ rdθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGsbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Zaa8qCaeaadaqadaqaaiabeo8aZnaaBaaaleaacaaI XaGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWkcq aHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaci4CaiaacMgacaGG UbGaeqiUdehacaGLOaGaayzkaaaaleaacaaIWaaabaGaaGOmaiabec 8aWbqdcqGHRiI8aOGaaGPaVlaadkhacaWGKbGaeqiUdeNaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaadkfadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWdXbqaamaabmaabaGaeq4Wdm3a aSbaaSqaaiaaikdacaaIYaaabeaakiGacohacaGGPbGaaiOBaiabeI 7aXjabgUcaRiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGcciGG JbGaai4BaiaacohacqaH4oqCaiaawIcacaGLPaaaaSqaaiaaicdaae aacaaIYaGaeqiWdahaniabgUIiYdGccaaMc8UaamOCaiaadsgacqaH 4oqCaaaa@7BA3@

Evaluating the integrals shows that R 1 = F 1 R 2 = F 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTiaadAeadaWgaaWcbaGaaGymaaqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadkfadaWgaaWcbaGaaGOmaaqaba GccqGH9aqpcqGHsislcaWGgbWaaSbaaSqaaiaaikdaaeqaaaaa@437D@ , so R+ F 1 e 1 + F 2 e 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabgUcaRiaadAeadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amOramaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaGccqGH9aqpcaWHWaaaaa@3C76@  as required.

 

 

 

 

5.3.4 Complex variable solution for an edge dislocation in an infinite solid

 

A dislocation is an atomic-scale defect in a crystal.  The defect can be detected directly in high-resolution transmission electron microscope pictures, which can show the positions of individual atoms in a crystal.  The leftmost figure below shows a typical example (an edge dislocation in a step-graded thin film of AlGaAsSb, kindly provided by Prof. David Paine of Brown University).  The dislocation is not easy to see, but can be identified by describing a `burger’s circuit’ around the dislocation, as shown by the yellow line.  Each straight portion of the circuit connects nine atoms.   In a perfect crystal, the circuit would start and end at the same atom.  (Try this for yourself for any path that does not encircle the dislocation).  Since the blue curve encircles the dislocation, it does not start and end on the same atom.  The `Burger’s vector’ for the dislocation is the difference in position vector of the start and end atom, as shown in the picture.


 

 

A continuum model of a dislocation can be created using the procedure illustrated in the right-hand figure above. Take an elastic solid, and cut part-way through it.  The edge of the cut defines a dislocation line ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@ .  Next, displace the two material surfaces created by the cut by the burger’s vector b, and fill in the (infinitesimal) gap. Note that (by convention) the burger’s vector specifies the displacement of a point at the end of the Burger’s circuit as seen by an observer who sits on the start of the circuit, as shown in the picture.

 

HEALTH WARNING: Some texts define the Burger’s vector to be the negative of the vector defined here MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  that is to say, the vector pointing from the end of the circuit back to the start.

 

 A general Burger’s vector has three components MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the component b s =bξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGZbaabeaaki abg2da9iaahkgacqGHflY1caWH+oaaaa@387A@  parallel to the dislocation line is known as the screw component of b, while the two remaining components b e =b b s ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyamaaBaaaleaacaWGLbaabeaaki abg2da9iaahkgacqGHsislcaWGIbWaaSbaaSqaaiaadohaaeqaaOGa aCOVdaaa@3928@  are known as the edge components of b. The stress field induced by the dislocation depends only on ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  and b, and is independent of the cut that created it.

 


The figure above illustrates a pure edge dislocation, with line direction parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis and burgers vector b= b 1 e 1 + b 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaadkgadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B19@  at the origin of an infinite solid. The displacements and stresses can be derived from the complex potentials

Ω(z)=i E b 1 +i b 2 8π(1 ν 2 ) log(z)ω(z)=i E( b 1 i b 2 ) 8π(1 ν 2 ) log(z) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaGaey ypa0JaeyOeI0IaamyAamaalaaabaGaamyramaabmaabaGaamOyamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadMgacaWGIbWaaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGioaiabec8aWjaacIca caaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaa aaciGGSbGaai4BaiaacEgacaGGOaGaamOEaiaacMcacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeM8a3jaacIcacaWG6bGaaiykaiabg2da 9iaadMgadaWcaaqaaiaadweacaGGOaGaamOyamaaBaaaleaacaaIXa aabeaakiabgkHiTiaadMgacaWGIbWaaSbaaSqaaiaaikdaaeqaaOGa aiykaaqaaiaaiIdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe27aUn aaCaaaleqabaGaaGOmaaaakiaacMcaaaGaciiBaiaac+gacaGGNbGa aiikaiaadQhacaGGPaaaaa@94C7@

 

The displacement and stresses (in polar coordinates) can be derived from these potentials as

u 1 = θ b 1 2π + 12ν 4π(1ν) b 2 log(r) 1 8π(1ν) b 2 cos2θ b 1 sin2θ u 2 = θ b 2 2π 12ν 4π(1ν) b 1 log(r) 1 8π(1ν) b 1 cos2θ+ b 2 sin2θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacqaH4oqCcaWGIbWaaSbaaSqaaiaaigda aeqaaaGcbaGaaGOmaiabec8aWbaacqGHRaWkdaWcaaqaaiaaigdacq GHsislcaaIYaGaeqyVd4gabaGaaGinaiabec8aWjaacIcacaaIXaGa eyOeI0IaeqyVd4MaaiykaaaacaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaciiBaiaac+gacaGGNbGaaiikaiaadkhacaGGPaGaeyOeI0YaaSaa aeaacaaIXaaabaGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0Iaeq yVd4MaaiykaaaadaqadaqaaiaadkgadaWgaaWcbaGaaGOmaaqabaGc ciGGJbGaai4BaiaacohacaaIYaGaeqiUdeNaeyOeI0IaamOyamaaBa aaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiaaikdacqaH4oqC aiaawIcacaGLPaaaaeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaey ypa0ZaaSaaaeaacqaH4oqCcaWGIbWaaSbaaSqaaiaaikdaaeqaaaGc baGaaGOmaiabec8aWbaacqGHsisldaWcaaqaaiaaigdacqGHsislca aIYaGaeqyVd4gabaGaaGinaiabec8aWjaacIcacaaIXaGaeyOeI0Ia eqyVd4MaaiykaaaacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaciiBai aac+gacaGGNbGaaiikaiaadkhacaGGPaGaeyOeI0YaaSaaaeaacaaI XaaabaGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4Maai ykaaaadaqadaqaaiaadkgadaWgaaWcbaGaaGymaaqabaGcciGGJbGa ai4BaiaacohacaaIYaGaeqiUdeNaey4kaSIaamOyamaaBaaaleaaca aIYaaabeaakiGacohacaGGPbGaaiOBaiaaikdacqaH4oqCaiaawIca caGLPaaaaaaa@9CBA@

σ rr = σ θθ = E( b 1 sinθ b 2 cosθ) 4π(1 ν 2 )r σ rθ = E( b 1 cosθ+ b 2 sinθ) 4π(1 ν 2 )r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqa aOGaeyypa0JaeyOeI0YaaSaaaeaacaWGfbGaaiikaiaadkgadaWgaa WcbaGaaGymaaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqCcqGHsisl caWGIbWaaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZbGaeq iUdeNaaiykaaqaaiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTiab e27aUnaaCaaaleqabaGaaGOmaaaakiaacMcacaWGYbaaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadkhacqaH4oqCaeqaaOGaey ypa0ZaaSaaaeaacaWGfbGaaiikaiaadkgadaWgaaWcbaGaaGymaaqa baGcciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWkcaWGIbWaaSbaaS qaaiaaikdaaeqaaOGaci4CaiaacMgacaGGUbGaeqiUdeNaaiykaaqa aiaaisdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaale qabaGaaGOmaaaakiaacMcacaWGYbaaaaaa@85CA@

σ 11 = E b 1 (3sinθ+sin3θ) 8π(1 ν 2 )r + E b 2 (cosθ+cos3θ) 8π(1 ν 2 )r σ 22 = E b 1 (sinθsin3θ) 8π(1 ν 2 )r + E b 2 (3cosθcos3θ) 8π(1 ν 2 )r σ 12 =+ E b 1 (cosθ+cos3θ) 8π(1 ν 2 )r E b 2 (sinθsin3θ) 8π(1 ν 2 )r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGfbGaamOyamaa BaaaleaacaaIXaaabeaakiaacIcacaaIZaGaci4CaiaacMgacaGGUb GaeqiUdeNaey4kaSIaci4CaiaacMgacaGGUbGaaG4maiabeI7aXjaa cMcaaeaacaaI4aGaeqiWdaNaaiikaiaaigdacqGHsislcqaH9oGBda ahaaWcbeqaaiaaikdaaaGccaGGPaGaamOCaaaacqGHRaWkdaWcaaqa aiaadweacaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiGacogaca GGVbGaai4CaiabeI7aXjabgUcaRiGacogacaGGVbGaai4Caiaaioda cqaH4oqCcaGGPaaabaGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0 IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaiaadkhaaaaabaGa eq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabgkHiTm aalaaabaGaamyraiaadkgadaWgaaWcbaGaaGymaaqabaGccaGGOaGa ci4CaiaacMgacaGGUbGaeqiUdeNaeyOeI0Iaci4CaiaacMgacaGGUb GaaG4maiabeI7aXjaacMcaaeaacaaI4aGaeqiWdaNaaiikaiaaigda cqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaGaamOCaa aacqGHRaWkdaWcaaqaaiaadweacaWGIbWaaSbaaSqaaiaaikdaaeqa aOGaaiikaiaaiodaciGGJbGaai4BaiaacohacqaH4oqCcqGHsislci GGJbGaai4BaiaacohacaaIZaGaeqiUdeNaaiykaaqaaiaaiIdacqaH apaCcaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaa aakiaacMcacaWGYbaaaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOm aaqabaGccqGH9aqpcqGHRaWkdaWcaaqaaiaadweacaWGIbWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiGacogacaGGVbGaai4CaiabeI7aXjab gUcaRiGacogacaGGVbGaai4CaiaaiodacqaH4oqCcaGGPaaabaGaaG ioaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaa caaIYaaaaOGaaiykaiaadkhaaaGaeyOeI0YaaSaaaeaacaWGfbGaam OyamaaBaaaleaacaaIYaaabeaakiaacIcaciGGZbGaaiyAaiaac6ga cqaH4oqCcqGHsislciGGZbGaaiyAaiaac6gacaaIZaGaeqiUdeNaai ykaaqaaiaaiIdacqaHapaCcaGGOaGaaGymaiabgkHiTiabe27aUnaa CaaaleqabaGaaGOmaaaakiaacMcacaWGYbaaaaaaaa@D4A7@

 

The displacement components are plotted below, for a dislocation with b 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@3479@ .  The contours show a sudden jump in u 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaaa a@32C1@  at x 2 =0, x 1 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdacaGGSaGaamiEamaaBaaaleaacaaIXaaabeaakiab g6da+iaaicdaaaa@38EF@  (This is caused by the term involving θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  in the formula for u 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaaa a@32C1@  - we assumed that 0<θ<2π MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgYda8iabeI7aXjabgYda8i aaikdacqaHapaCaaa@37D1@  when plotting the displacement contours). Physically, the plane x 2 =0, x 1 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdacaGGSaGaamiEamaaBaaaleaacaaIXaaabeaakiab g6da+iaaicdaaaa@38EF@  corresponds to the `cut’ that created the dislocation, and the jump in displacement across the cut is equal to the Burger’s vector.

 

   

 

Contours of stress are plotted below.  The radial and hoop stresses are equal, and compressive above the dislocation, and tensile below it, as one would expect.  Shear stress is positive to the right of the dislocation and negative to the left, again, in concord with our physical intuition.  The stresses are infinite at the dislocation itself, but of course in this region linear elasticity does not accurately model material behavior, because the atomic bonds are very severely distorted.

 


 

 

 

5.3.5 Cylindrical hole in an infinite solid under remote loading

 

The figure shows a circular cylindrical cavity with radius a in an infinite, isotropic linear elastic solid. Far from the cavity, the solid is subjected to a tensile stress σ 11 = σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@3729@ , with all other stress components zero.

 

 

The solution is generated by complex potentials

Ω(z)= σ 0 4 z+ 2 a 2 z ω(z)= σ 0 2 z+ a 2 z a 4 z 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvcaGGOaGaamOEaiaacM cacqGH9aqpdaWcaaqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqa aiaaisdaaaWaaeWaaeaacaWG6bGaey4kaSYaaSaaaeaacaaIYaGaam yyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadQhaaaaacaGLOaGaayzk aaaabaGaeqyYdCNaaiikaiaadQhacaGGPaGaeyypa0ZaaSaaaeaacq GHsislcqaHdpWCdaWgaaWcbaGaaGimaaqabaaakeaacaaIYaaaamaa bmaabaGaamOEaiabgUcaRmaalaaabaGaamyyamaaCaaaleqabaGaaG OmaaaaaOqaaiaadQhaaaGaeyOeI0YaaSaaaeaacaWGHbWaaWbaaSqa beaacaaI0aaaaaGcbaGaamOEamaaCaaaleqabaGaaG4maaaaaaaaki aawIcacaGLPaaaaaaa@5516@

 

The displacement and stress states are easily calculated as

u 1 = σ 0 (1+ν)a 2E 2 1ν r a + 2a r cosθ+ a r a 3 r 3 cos3θ u 2 = σ 0 (1+ν)a 2E 2 12ν a r sinθ2ν r a sinθ+ a r a 3 r 3 sin3θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaGc caGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaWGHbaabaGaaGOmai aadweaaaWaaiWaaeaacaaIYaWaaeWaaeaacaaIXaGaeyOeI0IaeqyV d4gacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaadkhaaeaacaWGHb aaaiabgUcaRmaalaaabaGaaGOmaiaadggaaeaacaWGYbaaaaGaayjk aiaawMcaaiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRmaabmaaba WaaSaaaeaacaWGHbaabaGaamOCaaaacqGHsisldaWcaaqaaiaadgga daahaaWcbeqaaiaaiodaaaaakeaacaWGYbWaaWbaaSqabeaacaaIZa aaaaaaaOGaayjkaiaawMcaaiGacogacaGGVbGaai4CaiaaiodacqaH 4oqCaiaawUhacaGL9baaaeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0ZaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaGccaGG OaGaaGymaiabgUcaRiabe27aUjaacMcacaWGHbaabaGaaGOmaiaadw eaaaWaaiWaaeaacqGHsislcaaIYaWaaeWaaeaacaaIXaGaeyOeI0Ia aGOmaiabe27aUbGaayjkaiaawMcaamaalaaabaGaamyyaaqaaiaadk haaaGaci4CaiaacMgacaGGUbGaeqiUdeNaeyOeI0IaaGOmaiabe27a UnaalaaabaGaamOCaaqaaiaadggaaaGaci4CaiaacMgacaGGUbGaeq iUdeNaey4kaSYaaeWaaeaadaWcaaqaaiaadggaaeaacaWGYbaaaiab gkHiTmaalaaabaGaamyyamaaCaaaleqabaGaaG4maaaaaOqaaiaadk hadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaGaci4Caiaa cMgacaGGUbGaaG4maiabeI7aXbGaay5Eaiaaw2haaaaaaa@947F@

σ 11 = σ 0 1+ 3 a 4 2 r 4 a 2 r 2 cos4θ 3 a 2 2 r 2 cos2θ σ 22 = σ 0 a 2 r 2 3 a 4 2 r 4 cos4θ a 2 2 r 2 cos2θ σ 12 = σ 0 3 a 4 2 r 4 a 2 r 2 sin4θ a 2 2 r 2 sin2θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOWa aeWaaeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaaiaaiodacaWGHb WaaWbaaSqabeaacaaI0aaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqa aiaaisdaaaaaaOGaeyOeI0YaaSaaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaaaaaakiaawIca caGLPaaaciGGJbGaai4BaiaacohacaaI0aGaeqiUdeNaeyOeI0YaaS aaaeaacaaIZaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda caWGYbWaaWbaaSqabeaacaaIYaaaaaaakiGacogacaGGVbGaai4Cai aaikdacqaH4oqCaiaawIcacaGLPaaacaaMc8oabaGaeq4Wdm3aaSba aSqaaiaaikdacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaaca aIWaaabeaakmaabmaabaWaaeWaaeaadaWcaaqaaiaadggadaahaaWc beqaaiaaikdaaaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaki abgkHiTmaalaaabaGaaG4maiaadggadaahaaWcbeqaaiaaisdaaaaa keaacaaIYaGaamOCamaaCaaaleqabaGaaGinaaaaaaaakiaawIcaca GLPaaaciGGJbGaai4BaiaacohacaaI0aGaeqiUdeNaeyOeI0YaaSaa aeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadkhada ahaaWcbeqaaiaaikdaaaaaaOGaci4yaiaac+gacaGGZbGaaGOmaiab eI7aXbGaayjkaiaawMcaaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaG OmaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaGcdaqa daqaamaabmaabaWaaSaaaeaacaaIZaGaamyyamaaCaaaleqabaGaaG inaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaacaaI0aaaaaaakiab gkHiTmaalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadk hadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaci4Caiaa cMgacaGGUbGaaGinaiabeI7aXjabgkHiTmaalaaabaGaamyyamaaCa aaleqabaGaaGOmaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaacaaI YaaaaaaakiGacohacaGGPbGaaiOBaiaaikdacqaH4oqCaiaawIcaca GLPaaaaaaa@A1D0@

 

 

 

5.3.6 Crack in an infinite elastic solid under remote loading

 

The figure below shows a 2D crack with length 2a in an infinite solid, which is subjected to a uniform state of stress σ 22 , σ 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaikdacaaIYa aabaGaeyOhIukaaOGaaiilaiabeo8aZnaaDaaaleaacaaIXaGaaGOm aaqaaiabg6HiLcaaaaa@3B4B@  at infinity. The solution can be generated by complex potentials

Ω(z)= 1 4 σ 22 z+ 1 2 σ 22 i σ 12 z 2 a 2 z ω(z)= Ω( z ¯ ) ¯ z Ω (z)+ σ 22 z/2+i σ 12 z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvcaGGOaGaamOEaiaacM cacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI0aaaamaabmaabaGaeq4W dm3aa0baaSqaaiaaikdacaaIYaaabaGaeyOhIukaaaGccaGLOaGaay zkaaGaamOEaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWa aeaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaacqGHEisPaaGccq GHsislcaWGPbGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaeyOh IukaaaGccaGLOaGaayzkaaWaaeWaaeaadaGcaaqaaiaadQhadaahaa WcbeqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaa aaqabaGccqGHsislcaWG6baacaGLOaGaayzkaaaabaGaeqyYdCNaai ikaiaadQhacaGGPaGaeyypa0Zaa0aaaeaacqqHPoWvcaGGOaGabmOE ayaaraGaaiykaaaacqGHsislcaWG6bGafuyQdCLbauaacaGGOaGaam OEaiaacMcacqGHRaWkcqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaa cqGHEisPaaGccaWG6bGaai4laiaaikdacqGHRaWkcaWGPbGaeq4Wdm 3aa0baaSqaaiaaigdacaaIYaaabaGaeyOhIukaaOGaamOEaaaaaa@7591@

Here, the notation Ω( z ¯ ) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacqqHPoWvcaGGOaGabmOEay aaraGaaiykaaaaaaa@34EF@  indicates that you should substitute z ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOEayaaraaaaa@31F7@  into the function Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCfaaa@326E@ , and then take the conjugate of the whole function. Since z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaaaa@31DF@  gets conjugated twice, Ω( z ¯ ) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacqqHPoWvcaGGOaGabmOEay aaraGaaiykaaaaaaa@34EF@  is actually a function of z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaaaa@31DF@ . It is an analytic function, and its derivative with respect to z can be calculated as Ω'( z ¯ ) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacqqHPoWvcaGGNaGaaiikai qadQhagaqeaiaacMcaaaaaaa@359A@ .

 


 

Some care is required to evaluate the square root in the complex potentials properly (square roots are multiple valued, and you need to know which value, or `branch’ to use.  Multiple valued functions are made single valued by introducing a `branch cut’ where the function is discontinuous.  In crack problems the branch cut is always along the line of the crack).  For this purpose, it is helpful to note that the appropriate branch can be obtained by setting

z 2 a 2 = (za)(z+a) = r 1 e i θ 1 /2 r 2 e i θ 2 /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaWG6bWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaOGa eyypa0ZaaOaaaeaacaGGOaGaamOEaiabgkHiTiaadggacaGGPaGaai ikaiaadQhacqGHRaWkcaWGHbGaaiykaaWcbeaakiabg2da9maakaaa baGaamOCamaaBaaaleaacaaIXaaabeaaaeqaaOGaamyzamaaCaaale qabaGaamyAaiabeI7aXnaaBaaameaacaaIXaaabeaaliaac+cacaaI YaaaaOWaaOaaaeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaaqabaGcca WGLbWaaWbaaSqabeaacaWGPbGaeqiUde3aaSbaaWqaaiaaikdaaeqa aSGaai4laiaaikdaaaaaaa@5059@

where the angles and distances r 1 , θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIXaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGymaaqabaaaaa@3615@  and r 2 , θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIYaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@3617@  are shown above, and the angles θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaa aa@337D@  and θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaa aa@337E@  must lie in the ranges π θ 1 π0 θ 2 2π MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaeqiWdaNaeyizImQaeqiUde 3aaSbaaSqaaiaaigdaaeqaaOGaeyizImQaeqiWdaNaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaIWaGaeyizImQaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGa eyizImQaaGOmaiabec8aWbaa@5595@ , respectively.

 

The solution is most conveniently expressed in terms of the polar coordinates (r,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ykaaaa@3596@  centered at the origin, together with the auxiliary angles r 1 , θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIXaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGymaaqabaaaaa@3615@  and r 2 , θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIYaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@3617@ .  The displacement (for plane strain deformation) and stress fields are

u 1 = 1+ν E σ 22 r 1 r 2 (12ν)cos( θ 1 /2+ θ 2 /2) r 2 r 1 r 2 sinθsin(θ θ 1 /2 θ 2 /2) + 1+ν E σ 12 r 1 r 2 2(1+ν)sin( θ 1 /2+ θ 2 /2)+ r 2 r 1 r 2 sinθcos(θ θ 1 /2 θ 2 /2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGaamyr aaaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaacqGHEisPaaGcda GcaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccaWGYbWaaSbaaSqa aiaaikdaaeqaaaqabaGcdaGadaqaaiaacIcacaaIXaGaeyOeI0IaaG Omaiabe27aUjaacMcaciGGJbGaai4BaiaacohacaGGOaGaeqiUde3a aSbaaSqaaiaaigdaaeqaaOGaai4laiaaikdacqGHRaWkcqaH4oqCda WgaaWcbaGaaGOmaaqabaGccaGGVaGaaGOmaiaacMcacqGHsisldaWc aaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaWGYbWaaSbaaS qaaiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaaGcciGG ZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacaGGOaGaeq iUdeNaeyOeI0IaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaai4laiaa ikdacqGHsislcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGVaGaaG OmaiaacMcaaiaawUhacaGL9baaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRmaalaaabaGaaGymai abgUcaRiabe27aUbqaaiaadweaaaGaeq4Wdm3aa0baaSqaaiaaigda caaIYaaabaGaeyOhIukaaOWaaOaaaeaacaWGYbWaaSbaaSqaaiaaig daaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaeqaaOWaaiWaaeaa caaIYaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaci4CaiaacM gacaGGUbGaaiikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiaac+ca caaIYaGaey4kaSIaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaai4lai aaikdacaGGPaGaey4kaSYaaSaaaeaacaWGYbWaaWbaaSqabeaacaaI YaaaaaGcbaGaamOCamaaBaaaleaacaaIXaaabeaakiaadkhadaWgaa WcbaGaaGOmaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqiUdeNaci4y aiaac+gacaGGZbGaaiikaiabeI7aXjabgkHiTiabeI7aXnaaBaaale aacaaIXaaabeaakiaac+cacaaIYaGaeyOeI0IaeqiUde3aaSbaaSqa aiaaikdaaeqaaOGaai4laiaaikdacaGGPaaacaGL7bGaayzFaaaaaa a@BB0B@

u 2 = 1+ν E σ 22 r 1 r 2 2(1+ν)sin( θ 1 /2+ θ 2 /2) r 2 r 1 r 2 sinθcos(θ θ 1 /2 θ 2 /2) 1+ν E σ 12 r 1 r 2 (12ν)cos( θ 1 /2+ θ 2 /2)+ r 2 r 1 r 2 sinθsin(θ θ 1 /2 θ 2 /2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaikdaae qaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGaamyr aaaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaacqGHEisPaaGcda GcaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccaWGYbWaaSbaaSqa aiaaikdaaeqaaaqabaGcdaGadaqaaiaaikdacaGGOaGaaGymaiabgU caRiabe27aUjaacMcaciGGZbGaaiyAaiaac6gacaGGOaGaeqiUde3a aSbaaSqaaiaaigdaaeqaaOGaai4laiaaikdacqGHRaWkcqaH4oqCda WgaaWcbaGaaGOmaaqabaGccaGGVaGaaGOmaiaacMcacqGHsisldaWc aaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaWGYbWaaSbaaS qaaiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaaGcciGG ZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacaGGOaGaeq iUdeNaeyOeI0IaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaai4laiaa ikdacqGHsislcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGVaGaaG OmaiaacMcaaiaawUhacaGL9baaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTmaalaaabaGaaGymai abgUcaRiabe27aUbqaaiaadweaaaGaeq4Wdm3aa0baaSqaaiaaigda caaIYaaabaGaeyOhIukaaOWaaOaaaeaacaWGYbWaaSbaaSqaaiaaig daaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaeqaaOWaaiWaaeaa caGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaGaci4yaiaac+ gacaGGZbGaaiikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiaac+ca caaIYaGaey4kaSIaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaai4lai aaikdacaGGPaGaey4kaSYaaSaaaeaacaWGYbWaaWbaaSqabeaacaaI YaaaaaGcbaGaamOCamaaBaaaleaacaaIXaaabeaakiaadkhadaWgaa WcbaGaaGOmaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqiUdeNaci4C aiaacMgacaGGUbGaaiikaiabeI7aXjabgkHiTiabeI7aXnaaBaaale aacaaIXaaabeaakiaac+cacaaIYaGaeyOeI0IaeqiUde3aaSbaaSqa aiaaikdaaeqaaOGaai4laiaaikdacaGGPaaacaGL7bGaayzFaaaaaa a@BB17@

 

σ 11 = σ 22 r r 1 r 2 cos θ θ 1 /2 θ 2 /2 1 a 2 r 1 r 2 sinθsin 3 θ 1 + θ 2 /2 + σ 12 r r 1 r 2 2sin θ θ 1 /2 θ 2 /2 a 2 r 1 r 2 sinθcos 3 θ 1 + θ 2 /2 σ 22 = σ 22 r r 1 r 2 cos θ θ 1 /2 θ 2 /2 + a 2 r 1 r 2 sinθsin 3 θ 1 + θ 2 /2 + σ 12 r r 1 r 2 a 2 r 1 r 2 sinθcos 3 θ 1 + θ 2 /2 σ 12 = σ 22 r r 1 r 2 a 2 r 1 r 2 sinθcos 3 θ 1 + θ 2 /2 + σ 12 r r 1 r 2 cos θ θ 1 /2 θ 2 /2 + a 2 r 1 r 2 sinθsin 3 θ 1 + θ 2 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0ZaaSaaaeaacqaHdpWCdaqhaaWcbaGaaGOm aiaaikdaaeaacqGHEisPaaGccaWGYbaabaWaaOaaaeaacaWGYbWaaS baaSqaaiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaeqa aaaakmaacmaabaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCcq GHsislcqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaGGVaGaaGOmaiab gkHiTiabeI7aXnaaBaaaleaacaaIYaaabeaakiaac+cacaaIYaaaca GLOaGaayzkaaGaeyOeI0IaaGymaiabgkHiTmaalaaabaGaamyyamaa CaaaleqabaGaaGOmaaaaaOqaaiaadkhadaWgaaWcbaGaaGymaaqaba GccaWGYbWaaSbaaSqaaiaaikdaaeqaaaaakiGacohacaGGPbGaaiOB aiabeI7aXjGacohacaGGPbGaaiOBamaabmaabaGaaG4mamaabmaaba GaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiUde3aaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaiaawI cacaGLPaaaaiaawUhacaGL9baaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRmaalaaabaGaeq4Wdm 3aa0baaSqaaiaaigdacaaIYaaabaGaeyOhIukaaOGaamOCaaqaamaa kaaabaGaamOCamaaBaaaleaacaaIXaaabeaakiaadkhadaWgaaWcba GaaGOmaaqabaaabeaaaaGcdaGadaqaaiaaikdaciGGZbGaaiyAaiaa c6gadaqadaqaaiabeI7aXjabgkHiTiabeI7aXnaaBaaaleaacaaIXa aabeaakiaac+cacaaIYaGaeyOeI0IaeqiUde3aaSbaaSqaaiaaikda aeqaaOGaai4laiaaikdaaiaawIcacaGLPaaacqGHsisldaWcaaqaai aadggadaahaaWcbeqaaiaaikdaaaaakeaacaWGYbWaaSbaaSqaaiaa igdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaaGcciGGZbGaai yAaiaac6gacqaH4oqCciGGJbGaai4Baiaacohadaqadaqaaiaaioda daqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeI 7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaac+cacaaI YaaacaGLOaGaayzkaaaacaGL7bGaayzFaaaabaGaeq4Wdm3aaSbaaS qaaiaaikdacaaIYaaabeaakiabg2da9maalaaabaGaeq4Wdm3aa0ba aSqaaiaaikdacaaIYaaabaGaeyOhIukaaOGaamOCaaqaamaakaaaba GaamOCamaaBaaaleaacaaIXaaabeaakiaadkhadaWgaaWcbaGaaGOm aaqabaaabeaaaaGcdaGadaqaaiGacogacaGGVbGaai4Camaabmaaba GaeqiUdeNaeyOeI0IaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaai4l aiaaikdacqGHsislcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGVa GaaGOmaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamyyamaaCaaa leqabaGaaGOmaaaaaOqaaiaadkhadaWgaaWcbaGaaGymaaqabaGcca WGYbWaaSbaaSqaaiaaikdaaeqaaaaakiGacohacaGGPbGaaiOBaiab eI7aXjGacohacaGGPbGaaiOBamaabmaabaGaaG4mamaabmaabaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiUde3aaSbaaSqa aiaaikdaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaiaawIcaca GLPaaaaiaawUhacaGL9baaaeaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRm aalaaabaGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaeyOhIuka aOGaamOCaaqaamaakaaabaGaamOCamaaBaaaleaacaaIXaaabeaaki aadkhadaWgaaWcbaGaaGOmaaqabaaabeaaaaGcdaWcaaqaaiaadgga daahaaWcbeqaaiaaikdaaaaakeaacaWGYbWaaSbaaSqaaiaaigdaae qaaOGaamOCamaaBaaaleaacaaIYaaabeaaaaGcciGGZbGaaiyAaiaa c6gacqaH4oqCciGGJbGaai4Baiaacohadaqadaqaaiaaiodadaqada qaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeI7aXnaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaca GLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaa kiabg2da9maalaaabaGaeq4Wdm3aa0baaSqaaiaaikdacaaIYaaaba GaeyOhIukaaOGaamOCaaqaamaakaaabaGaamOCamaaBaaaleaacaaI XaaabeaakiaadkhadaWgaaWcbaGaaGOmaaqabaaabeaaaaGcdaWcaa qaaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaWGYbWaaSbaaSqa aiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaaaGcciGGZb GaaiyAaiaac6gacqaH4oqCciGGJbGaai4Baiaacohadaqadaqaaiaa iodadaqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRi abeI7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaac+ca caaIYaaacaGLOaGaayzkaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRmaalaaa baGaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaeyOhIukaaOGaam OCaaqaamaakaaabaGaamOCamaaBaaaleaacaaIXaaabeaakiaadkha daWgaaWcbaGaaGOmaaqabaaabeaaaaGcdaGadaqaaiGacogacaGGVb Gaai4CamaabmaabaGaeqiUdeNaeyOeI0IaeqiUde3aaSbaaSqaaiaa igdaaeqaaOGaai4laiaaikdacqGHsislcqaH4oqCdaWgaaWcbaGaaG OmaaqabaGccaGGVaGaaGOmaaGaayjkaiaawMcaaiabgUcaRmaalaaa baGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaWgaaWcba GaaGymaaqabaGccaWGYbWaaSbaaSqaaiaaikdaaeqaaaaakiGacoha caGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBamaabmaabaGaaG 4mamaabmaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa eqiUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaai4lai aaikdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaaa@8AEB@

 

 

 

5.3.7 Fields near the tip of a crack on bimaterial interface

 

The figure shows a semi-infinite crack, which lies in the x 1 , x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki aacYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@3564@  plane, with crack tip aligned with the x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  axis.  The material above the crack has shear modulus and Poisson’s ratio μ 1 , ν 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO Gaaiilaiabe27aUnaaBaaaleaacaaIXaaabeaaaaa@36D5@ ; the material below the crack has shear modulus and Poisson’s ratio μ 2 , ν 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaO Gaaiilaiabe27aUnaaBaaaleaacaaIYaaabeaakiaaykW7aaa@386C@ .  In this section we give the complex variable solution that governs the variation of stress and displacement near the crack tip.  The solution is significant because all interface cracks (regardless of their geometry and the way the solid is loaded) have the same stress and displacement distribution near the crack tip.

 

 

Additional elastic constants for bimaterial problems

 

To simplify the solution, we define additional elastic constants as follows

 

1. Plane strain moduli E 1 =2 μ 1 /(1 ν 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyrayaafaWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaGOmaiabeY7aTnaaBaaaleaacaaIXaaabeaakiaa c+cacaGGOaGaaGymaiabgkHiTiabe27aUnaaBaaaleaacaaIXaaabe aakiaacMcaaaa@3D6C@ , E 2 =2 μ 2 /(1 ν 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyrayaafaWaaSbaaSqaaiaaikdaae qaaOGaeyypa0JaaGOmaiabeY7aTnaaBaaaleaacaaIYaaabeaakiaa c+cacaGGOaGaaGymaiabgkHiTiabe27aUnaaBaaaleaacaaIYaaabe aakiaacMcaaaa@3D6F@

 

2. Bimaterial modulus 1 E * = 1 E 1 + 1 E 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaamyramaaCa aaleqabaGaaiOkaaaaaaGccqGH9aqpdaGadaqaamaalaaabaGaaGym aaqaaiqadweagaqbamaaBaaaleaacaaIXaaabeaaaaGccqGHRaWkda WcaaqaaiaaigdaaeaaceWGfbGbauaadaWgaaWcbaGaaGOmaaqabaaa aaGccaGL7bGaayzFaaaaaa@3C97@

 

 

3. Dundur’s elastic constants

α= E 1 E 2 E 1 + E 2 β= 12 ν 2 / μ 2 12 ν 1 / μ 1 2 1 ν 2 / μ 2 +2 1 ν 1 / μ 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0ZaaSaaaeaaceWGfb GbauaadaWgaaWcbaGaaGymaaqabaGccqGHsislceWGfbGbauaadaWg aaWcbaGaaGOmaaqabaaakeaaceWGfbGbauaadaWgaaWcbaGaaGymaa qabaGccqGHRaWkceWGfbGbauaadaWgaaWcbaGaaGOmaaqabaaaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqaHYoGycqGH9aqpdaWcaaqaamaabmaabaGaaGymaiabgkHiTi aaikdacqaH9oGBdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa caGGVaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaeWaae aacaaIXaGaeyOeI0IaaGOmaiabe27aUnaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiaac+cacqaH8oqBdaWgaaWcbaGaaGymaaqaba aakeaacaaIYaWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqa aiaaikdaaeqaaaGccaGLOaGaayzkaaGaai4laiabeY7aTnaaBaaale aacaaIYaaabeaakiabgUcaRiaaikdadaqadaqaaiaaigdacqGHsisl cqaH9oGBdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaGGVa GaeqiVd02aaSbaaSqaaiaaigdaaeqaaaaaaaa@82FC@

Evidently α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  is a measure of the relative stiffness of the two materials.  It must lie in the range 1<α<1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGymaiabgYda8iabeg7aHj abgYda8iaaigdaaaa@36E9@  for all possible material combinations, with α=1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0JaaGymaaaa@343F@  signifying that material 1 is rigid, while α=1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0JaeyOeI0IaaGymaa aa@352C@  signifies that material 2 is rigid.  The second parameter does not have such a nice physical interpretation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it is a rough measure of the relative compressibilities of the two materials.  For Poisson’s ratios in the range 0<ν<1/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgYda8iabe27aUjabgYda8i aaigdacaGGVaGaaGOmaaaa@3783@ , one can show that that 1<α4β<1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGymaiabgYda8iabeg7aHj abgkHiTiaaisdacqaHYoGycqGH8aapcaaIXaaaaa@3A35@ .

 

4. Crack tip singularity parameter

ε= 1 2π log 1β 1+β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOmaiabec8aWbaaciGGSbGaai4BaiaacEgadaqadaqaamaa laaabaGaaGymaiabgkHiTiabek7aIbqaaiaaigdacqGHRaWkcqaHYo GyaaaacaGLOaGaayzkaaaaaa@41C0@

For most material combinations the value of ε MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdugaaa@3286@  is very small MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  typically of order 0.01 or so.

 

The full displacement and stress fields in the two materials are calculated from two sets of complex potentials

Ω 1 (z)= 1+β (12iε) 2π ( K 1 i K 2 ) z (12iε)/2 Im(z)>0 Ω 2 (z)= 1β (12iε) 2π ( K 1 i K 2 ) z (12iε)/2 Im(z)<0 ω 1 (z)= Ω 2 ( z ¯ ) ¯ z Ω 1 (z)Im(z)>0 ω 2 (z)= Ω 1 ( z ¯ ) ¯ z Ω 2 (z)Im(z)<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvdaWgaaWcbaGaaGymaa qabaGccaGGOaGaamOEaiaacMcacqGH9aqpdaWcaaqaaiaaigdacqGH RaWkcqaHYoGyaeaacaGGOaGaaGymaiabgkHiTiaaikdacaWGPbGaeq yTduMaaiykamaakaaabaGaaGOmaiabec8aWbWcbeaaaaGccaGGOaGa am4samaaBaaaleaacaaIXaaabeaakiabgkHiTiaadMgacaWGlbWaaS baaSqaaiaaikdaaeqaaOGaaiykaiaadQhadaahaaWcbeqaaiaacIca caaIXaGaeyOeI0IaaGOmaiaadMgacqaH1oqzcaGGPaGaai4laiaaik daaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlGacMeacaGGTbGaaiikaiaadQhaca GGPaGaeyOpa4JaaGimaaqaaiabfM6axnaaBaaaleaacaaIYaaabeaa kiaacIcacaWG6bGaaiykaiabg2da9maalaaabaGaaGymaiabgkHiTi abek7aIbqaaiaacIcacaaIXaGaeyOeI0IaaGOmaiaadMgacqaH1oqz caGGPaWaaOaaaeaacaaIYaGaeqiWdahaleqaaaaakiaacIcacaWGlb WaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyAaiaadUeadaWgaaWc baGaaGOmaaqabaGccaGGPaGaamOEamaaCaaaleqabaGaaiikaiaaig dacqGHsislcaaIYaGaamyAaiabew7aLjaacMcacaGGVaGaaGOmaaaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaciysaiaac2gacaGGOaGaamOEaiaacMca cqGH8aapcaaIWaaabaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaai ikaiaadQhacaGGPaGaeyypa0Zaa0aaaeaacqqHPoWvdaWgaaWcbaGa aGOmaaqabaGccaGGOaGabmOEayaaraGaaiykaaaacqGHsislcaWG6b GafuyQdCLbauaadaWgaaWcbaGaaGymaaqabaGccaGGOaGaamOEaiaa cMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7ciGGjbGaaiyBaiaacIcacaWG6bGaaiykaiabg6da+iaaic daaeaacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamOEaiaa cMcacqGH9aqpdaqdaaqaaiabfM6axnaaBaaaleaacaaIXaaabeaaki aacIcaceWG6bGbaebacaGGPaaaaiabgkHiTiaadQhacuqHPoWvgaqb amaaBaaaleaacaaIYaaabeaakiaacIcacaWG6bGaaiykaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaciysaiaac2 gacaGGOaGaamOEaiaacMcacqGH8aapcaaIWaaaaaa@35FD@

where K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaaa a@3297@  and K 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIYaaabeaaaa a@3298@  are parameters that resemble the mode I and mode II stress intensity factors that characterize the crack-tip stresses in a homogeneous solid.  In practice these parameters are not usually used in fracture criteria for interface cracks MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  instead, the crack tip loading is characterized the magnitude of the stress intensity factor K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWGlbaacaGLhWUaayjcSd aaaa@34D2@ , a characteristic length L, and a phase angle ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@ , defined as

K = K 1 2 + K 2 2 ψ= tan 1 Im ( K 1 +i K 2 ) L iε Re ( K 1 +i K 2 ) L iε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWGlbaacaGLhWUaayjcSd Gaeyypa0ZaaOaaaeaacaWGlbWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaam4samaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeI8a5jabg2da9iGacs hacaGGHbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaalaaa baGaciysaiaac2gadaWadaqaaiaacIcacaWGlbWaaSbaaSqaaiaaig daaeqaaOGaey4kaSIaamyAaiaadUeadaWgaaWcbaGaaGOmaaqabaGc caGGPaGaamitamaaCaaaleqabaGaamyAaiabew7aLbaaaOGaay5wai aaw2faaaqaaiGackfacaGGLbWaamWaaeaacaGGOaGaam4samaaBaaa leaacaaIXaaabeaakiabgUcaRiaadMgacaWGlbWaaSbaaSqaaiaaik daaeqaaOGaaiykaiaadYeadaahaaWcbeqaaiaadMgacqaH1oqzaaaa kiaawUfacaGLDbaaaaaaaa@7361@

This means that K 1 +i K 2 L iε = K e iψ K 1 i K 2 = K e iψ L iε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGlbWaaSbaaSqaaiaaig daaeqaaOGaey4kaSIaamyAaiaadUeadaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaacaWGmbWaaWbaaSqabeaacaWGPbGaeqyTdugaaO Gaeyypa0ZaaqWaaeaacaWGlbaacaGLhWUaayjcSdGaamyzamaaCaaa leqabaGaamyAaiabeI8a5baakiabgkDiEpaabmaabaGaam4samaaBa aaleaacaaIXaaabeaakiabgkHiTiaadMgacaWGlbWaaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaqWaaeaacaWGlbaaca GLhWUaayjcSdGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeI8a 5baakiaadYeadaahaaWcbeqaaiaadMgacqaH1oqzaaaaaa@5AC7@ .

 

Complete expressions for the displacement components and stress components at a point r,θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiaacYcacqaH4oqCaaa@343D@  in the solid can be calculated from these potentials.  To simplify the results, it is helpful to note that

cosh(πε)= 1 2 e πε + e πε = 1 2 1β 1+β + 1+β 1β = 1 (1β ) (1+β) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaci4yaiaac+gacaGGZbGaaiiAaiaacI cacqaHapaCcqaH1oqzcaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaadaqadaqaaiaadwgadaahaaWcbeqaaiabec8aWjabew7aLb aakiabgUcaRiaadwgadaahaaWcbeqaaiabgkHiTiabec8aWjabew7a LbaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaik daaaWaaeWaaeaadaGcaaqaamaalaaabaGaaGymaiabgkHiTiabek7a IbqaaiaaigdacqGHRaWkcqaHYoGyaaaaleqaaOGaey4kaSYaaOaaae aadaWcaaqaaiaaigdacqGHRaWkcqaHYoGyaeaacaaIXaGaeyOeI0Ia eqOSdigaaaWcbeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaG ymaaqaamaakaaabaGaaiikaiaaigdacqGHsislcqaHYoGyaSqabaGc caGGPaWaaOaaaeaacaGGOaGaaGymaiabgUcaRiabek7aIjaacMcaaS qabaaaaaaa@6605@

Then, in material 1

2 μ 1 ( u 1 +i u 2 )= K cosh(πε) r 2π 1 12iε r L iε (34 ν 1 ) e i(θ/2ψ) e ε(θπ) e i(θ/2+ψ) e ε(θπ) r L iε isinθ e i(θ/2+ψ) e ε(θπ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaIYaGaeqiVd02aaSbaaSqaai aaigdaaeqaaOGaaiikaiaadwhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGPbGaamyDamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9a qpdaWcaaqaamaaemaabaGaam4saaGaay5bSlaawIa7aaqaaiGacoga caGGVbGaai4CaiaacIgacaGGOaGaeqiWdaNaeqyTduMaaiykaaaada GcaaqaamaalaaabaGaamOCaaqaaiaaikdacqaHapaCaaaaleqaaOWa aiqaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaaGOmaiaadM gacqaH1oqzaaWaaeWaaeaadaWcaaqaaiaadkhaaeaacaWGmbaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaamyAaiabew7aLbaakm aadmaabaGaaiikaiaaiodacqGHsislcaaI0aGaeqyVd42aaSbaaSqa aiaaigdaaeqaaOGaaiykaiaadwgadaahaaWcbeqaaiaadMgacaGGOa GaeqiUdeNaai4laiaaikdacqGHsislcqaHipqEcaGGPaaaaOGaamyz amaaCaaaleqabaGaeqyTduMaaiikaiabeI7aXjabgkHiTiabec8aWj aacMcaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGa aiikaiabeI7aXjaac+cacaaIYaGaey4kaSIaeqiYdKNaaiykaaaaki aadwgadaahaaWcbeqaaiabgkHiTiabew7aLjaacIcacqaH4oqCcqGH sislcqaHapaCcaGGPaaaaaGccaGLBbGaayzxaaaacaGL7baaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGacaqaaiabgkHiTmaa bmaabaWaaSaaaeaacaWGYbaabaGaamitaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiaadMgacqaH1oqzaaGccaWGPbGaci4CaiaacMgacaGG UbGaeqiUdeNaamyzamaaCaaaleqabaGaamyAaiaacIcacqaH4oqCca GGVaGaaGOmaiabgUcaRiabeI8a5jaacMcaaaGccaWGLbWaaWbaaSqa beaacqaH1oqzcaGGOaGaeqiUdeNaeyOeI0IaeqiWdaNaaiykaaaaaO GaayzFaaaaaaa@78D3@

σ 11 + σ 22 = K 2πr 1+β e εθ r L iε e i(θ/2+ψ) + r L iε e i(θ/2+ψ) σ 11 σ 22 +2i σ 12 = K e iθ 2πr r L iε e iψ e εθ e iθ/2 1+β cosθ+2εsinθ r L iε e iψ e εθ e iθ/2 1β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabg2da9maalaaabaWaaqWaaeaacaWGlbaacaGLhWUaayjcSd aabaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaqadaqa aiaaigdacqGHRaWkcqaHYoGyaiaawIcacaGLPaaacaWGLbWaaWbaaS qabeaacqaH1oqzcqaH4oqCaaGcdaGadaqaamaabmaabaWaaSaaaeaa caWGYbaabaGaamitaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabgk HiTiaadMgacqaH1oqzaaGccaWGLbWaaWbaaSqabeaacqGHsislcaWG PbGaaiikaiabeI7aXjaac+cacaaIYaGaey4kaSIaeqiYdKNaaiykaa aakiabgUcaRmaabmaabaWaaSaaaeaacaWGYbaabaGaamitaaaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadMgacqaH1oqzaaGccaWGLbWaaW baaSqabeaacaWGPbGaaiikaiabeI7aXjaac+cacaaIYaGaey4kaSIa eqiYdKNaaiykaaaaaOGaay5Eaiaaw2haaaqaaiabeo8aZnaaBaaale aacaaIXaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOm aiaaikdaaeqaaOGaey4kaSIaaGOmaiaadMgacqaHdpWCdaWgaaWcba GaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaadaabdaqaaiaadUea aiaawEa7caGLiWoacaWGLbWaaWbaaSqabeaacaWGPbGaeqiUdehaaa GcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaGabaqa amaabmaabaWaaSaaaeaacaWGYbaabaGaamitaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaadMgacqaH1oqzaaGccaWGLbWaaWbaaSqabeaa caWGPbGaeqiYdKhaaOGaamyzamaaCaaaleqabaGaeqyTduMaeqiUde haaOGaamyzamaaCaaaleqabaGaamyAaiabeI7aXjaac+cacaaIYaaa aOWaaeWaaeaacaaIXaGaey4kaSIaeqOSdigacaGLOaGaayzkaaWaae WaaeaaciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWkcaaIYaGaeqyT duMaci4CaiaacMgacaGGUbGaeqiUdehacaGLOaGaayzkaaaacaGL7b aaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+a aiGaaeaacqGHsisldaqadaqaamaalaaabaGaamOCaaqaaiaadYeaaa aacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaWGPbGaeqyTduga aOGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeI8a5baakiaadw gadaahaaWcbeqaaiabgkHiTiabew7aLjabeI7aXbaakiaadwgadaah aaWcbeqaaiabgkHiTiaadMgacqaH4oqCcaGGVaGaaGOmaaaakmaabm aabaGaaGymaiabgkHiTiabek7aIbGaayjkaiaawMcaaaGaayzFaaaa aaa@560D@

while in material 2

2 μ 2 ( u 1 +i u 2 )= K cosh(πε) r 2π 1 12iε r L iε (34 ν 2 ) e i(θ/2ψ) e ε(θ+π) e i(θ/2+ψ) e ε(θ+π) r L iε isinθ e i(θ/2+ψ) e ε(θ+π) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaIYaGaeqiVd02aaSbaaSqaai aaikdaaeqaaOGaaiikaiaadwhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGPbGaamyDamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9a qpdaWcaaqaamaaemaabaGaam4saaGaay5bSlaawIa7aaqaaiGacoga caGGVbGaai4CaiaacIgacaGGOaGaeqiWdaNaeqyTduMaaiykaaaada GcaaqaamaalaaabaGaamOCaaqaaiaaikdacqaHapaCaaaaleqaaOWa aiqaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaaGOmaiaadM gacqaH1oqzaaWaaeWaaeaadaWcaaqaaiaadkhaaeaacaWGmbaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaamyAaiabew7aLbaakm aadmaabaGaaiikaiaaiodacqGHsislcaaI0aGaeqyVd42aaSbaaSqa aiaaikdaaeqaaOGaaiykaiaadwgadaahaaWcbeqaaiaadMgacaGGOa GaeqiUdeNaai4laiaaikdacqGHsislcqaHipqEcaGGPaaaaOGaamyz amaaCaaaleqabaGaeqyTduMaaiikaiabeI7aXjabgUcaRiabec8aWj aacMcaaaGccqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGa aiikaiabeI7aXjaac+cacaaIYaGaey4kaSIaeqiYdKNaaiykaaaaki aadwgadaahaaWcbeqaaiabgkHiTiabew7aLjaacIcacqaH4oqCcqGH RaWkcqaHapaCcaGGPaaaaaGccaGLBbGaayzxaaaacaGL7baaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGacaqaaiabgkHiTmaa bmaabaWaaSaaaeaacaWGYbaabaGaamitaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiaadMgacqaH1oqzaaGccaWGPbGaci4CaiaacMgacaGG UbGaeqiUdeNaamyzamaaCaaaleqabaGaamyAaiaacIcacqaH4oqCca GGVaGaaGOmaiabgUcaRiabeI8a5jaacMcaaaGccaWGLbWaaWbaaSqa beaacqaH1oqzcaGGOaGaeqiUdeNaey4kaSIaeqiWdaNaaiykaaaaaO GaayzFaaaaaaa@78B4@

σ 11 + σ 22 = K 2πr 1β e εθ r L iε e i(θ/2+ψ) + r L iε e i(θ/2+ψ) σ 11 σ 22 +2i σ 12 = K e iθ 2πr r L iε e iψ e εθ e iθ/2 1β cosθ+2εsinθ r L iε e iψ e εθ e iθ/2 1+β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabg2da9maalaaabaWaaqWaaeaacaWGlbaacaGLhWUaayjcSd aabaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaqadaqa aiaaigdacqGHsislcqaHYoGyaiaawIcacaGLPaaacaWGLbWaaWbaaS qabeaacqaH1oqzcqaH4oqCaaGcdaGadaqaamaabmaabaWaaSaaaeaa caWGYbaabaGaamitaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabgk HiTiaadMgacqaH1oqzaaGccaWGLbWaaWbaaSqabeaacqGHsislcaWG PbGaaiikaiabeI7aXjaac+cacaaIYaGaey4kaSIaeqiYdKNaaiykaa aakiabgUcaRmaabmaabaWaaSaaaeaacaWGYbaabaGaamitaaaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadMgacqaH1oqzaaGccaWGLbWaaW baaSqabeaacaWGPbGaaiikaiabeI7aXjaac+cacaaIYaGaey4kaSIa eqiYdKNaaiykaaaaaOGaay5Eaiaaw2haaaqaaiabeo8aZnaaBaaale aacaaIXaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOm aiaaikdaaeqaaOGaey4kaSIaaGOmaiaadMgacqaHdpWCdaWgaaWcba GaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaadaabdaqaaiaadUea aiaawEa7caGLiWoacaWGLbWaaWbaaSqabeaacaWGPbGaeqiUdehaaa GcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaGabaqa amaabmaabaWaaSaaaeaacaWGYbaabaGaamitaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaadMgacqaH1oqzaaGccaWGLbWaaWbaaSqabeaa caWGPbGaeqiYdKhaaOGaamyzamaaCaaaleqabaGaeqyTduMaeqiUde haaOGaamyzamaaCaaaleqabaGaamyAaiabeI7aXjaac+cacaaIYaaa aOWaaeWaaeaacaaIXaGaeyOeI0IaeqOSdigacaGLOaGaayzkaaWaae WaaeaaciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWkcaaIYaGaeqyT duMaci4CaiaacMgacaGGUbGaeqiUdehacaGLOaGaayzkaaaacaGL7b aaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+a aiGaaeaacqGHsisldaqadaqaamaalaaabaGaamOCaaqaaiaadYeaaa aacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaWGPbGaeqyTduga aOGaamyzamaaCaaaleqabaGaeyOeI0IaamyAaiabeI8a5baakiaadw gadaahaaWcbeqaaiabgkHiTiabew7aLjabeI7aXbaakiaadwgadaah aaWcbeqaaiabgkHiTiaadMgacqaH4oqCcaGGVaGaaGOmaaaakmaabm aabaGaaGymaiabgUcaRiabek7aIbGaayjkaiaawMcaaaGaayzFaaaa aaa@5618@

The individual stress components can be determined by adding/subtracting the last two equations and taking real and imaginary parts.  Note that

(r/L) iε =exp(iεlog(r/L))=cos(εlog(r/L))+isin(εlog(r/L)) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGVaGaamitaiaacM cadaahaaWcbeqaaiaadMgacqaH1oqzaaGccqGH9aqpciGGLbGaaiiE aiaacchacaGGOaGaamyAaiabew7aLjGacYgacaGGVbGaai4zaiaacI cacaWGYbGaai4laiaadYeacaGGPaGaaiykaiabg2da9iGacogacaGG VbGaai4CaiaacIcacqaH1oqzciGGSbGaai4BaiaacEgacaGGOaGaam OCaiaac+cacaWGmbGaaiykaiaacMcacqGHRaWkcaWGPbGaci4Caiaa cMgacaGGUbGaaiikaiabew7aLjGacYgacaGGVbGaai4zaiaacIcaca WGYbGaai4laiaadYeacaGGPaGaaiykaaaa@61BB@ .

Features of this solution are discussed in more detail in Section 9.6.1.

 

 

 

5.3.8 Frictionless rigid flat indenter in contact with a half-space

 

The figure shows a rigid, flat punch with width 2a and infinite length perpendicular to the plane of the figure. It is pushed into an elastic half-space with a force F 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaaa a@3293@  per unit out of plane distance. The half-space is a linear elastic solid with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ . The interface between the two solids is frictionless. 

 

 

The solution is generated from the following complex potentials

Ω(z)= i F 2 2π log z+ z 2 a 2 + μi d 2 2(1ν) ω(z)= Ω( z ¯ ) ¯ z Ω (z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvcaGGOaGaamOEaiaacM cacqGH9aqpdaWcaaqaaiabgkHiTiaadMgacaWGgbWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaaGOmaiabec8aWbaaciGGSbGaai4BaiaacEgada qadaqaaiaadQhacqGHRaWkdaGcaaqaaiaadQhadaahaaWcbeqaaiaa ikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaaaki aawIcacaGLPaaacaaMc8Uaey4kaSYaaSaaaeaacqaH8oqBcaWGPbGa amizamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdacaGGOaGaaGymai abgkHiTiabe27aUjaacMcaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7aeaacqaHjpWDcaGGOaGaamOEaiaacMcacqGH9aqpcqGH sisldaqdaaqaaiabfM6axjaacIcaceWG6bGbaebacaGGPaaaaiabgk HiTiaadQhacuqHPoWvgaqbaiaacIcacaWG6bGaaiykaaaaaa@7906@

where d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@  is an arbitrary constant, representing an unknown rigid displacement. Note that the solution is valid only for Im(z)>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciysaiaac2gacaGGOaGaamOEaiaacM cacqGH+aGpcaaIWaaaaa@36BA@ .

 

Stresses and displacements can be determined by substituting for Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCfaaa@326E@  and ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  into the general formulas, or alternatively, by substituting Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCfaaa@326E@  into the simplified representation for half-space problems given in 5.3.1. Some care is required to evaluate the square root in the complex potentials, particularly when calculating Ω( z ¯ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiqadQhagaqeaiaacM caaaa@34DE@  and Ω ( z ¯ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafuyQdCLbauaacaGGOaGabmOEayaara Gaaiykaaaa@34EA@ . The solution assumes that

z 2 a 2 = (za)(z+a) = r 1 e i θ 1 /2 r 2 e i θ 2 /2 z 2 a 2 ¯ = (za)(z+a) ¯ = r 1 e i θ 1 /2 r 2 e i θ 2 /2 z ¯ 2 a 2 = ( z ¯ a)( z ¯ +a) = r 1 e i θ 1 /2 r 2 e i θ 2 /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaGcaaqaaiaadQhadaahaaWcbe qaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaaqa baGccqGH9aqpdaGcaaqaaiaacIcacaWG6bGaeyOeI0IaamyyaiaacM cacaGGOaGaamOEaiabgUcaRiaadggacaGGPaaaleqaaOGaeyypa0Za aOaaaeaacaWGYbWaaSbaaSqaaiaaigdaaeqaaaqabaGccaWGLbWaaW baaSqabeaacaWGPbGaeqiUde3aaSbaaWqaaiaaigdaaeqaaSGaai4l aiaaikdaaaGcdaGcaaqaaiaadkhadaWgaaWcbaGaaGOmaaqabaaabe aakiaadwgadaahaaWcbeqaaiaadMgacqaH4oqCdaWgaaadbaGaaGOm aaqabaWccaGGVaGaaGOmaaaaaOqaamaanaaabaWaaOaaaeaacaWG6b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGa aGOmaaaaaeqaaaaakiabg2da9maanaaabaWaaOaaaeaacaGGOaGaam OEaiabgkHiTiaadggacaGGPaGaaiikaiaadQhacqGHRaWkcaWGHbGa aiykaaWcbeaaaaGccqGH9aqpdaGcaaqaaiaadkhadaWgaaWcbaGaaG ymaaqabaaabeaakiaadwgadaahaaWcbeqaaiabgkHiTiaadMgacqaH 4oqCdaWgaaadbaGaaGymaaqabaWccaGGVaGaaGOmaaaakmaakaaaba GaamOCamaaBaaaleaacaaIYaaabeaaaeqaaOGaamyzamaaCaaaleqa baGaeyOeI0IaamyAaiabeI7aXnaaBaaameaacaaIYaaabeaaliaac+ cacaaIYaaaaaGcbaWaaOaaaeaaceWG6bGbaebadaahaaWcbeqaaiaa ikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaaqabaGccq GH9aqpdaGcaaqaaiaacIcaceWG6bGbaebacqGHsislcaWGHbGaaiyk aiaacIcaceWG6bGbaebacqGHRaWkcaWGHbGaaiykaaWcbeaakiabg2 da9maakaaabaGaamOCamaaBaaaleaacaaIXaaabeaaaeqaaOGaamyz amaaCaaaleqabaGaeyOeI0IaamyAaiabeI7aXnaaBaaameaacaaIXa aabeaaliaac+cacaaIYaaaaOWaaOaaaeaacaWGYbWaaSbaaSqaaiaa ikdaaeqaaaqabaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeq iUde3aaSbaaWqaaiaaikdaaeqaaSGaai4laiaaikdaaaaaaaa@9387@

where the angles and distances r 1 , θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIXaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGymaaqabaaaaa@3615@  and r 2 , θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIYaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@3617@  are shown in Figure 5.26, and θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaa aa@337D@  and θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaa aa@337E@  must lie in the ranges 0 θ 1 π0 θ 2 π MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkabeI7aXnaaBaaale aacaaIXaaabeaakiabgsMiJkabec8aWjaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG imaiabgsMiJkabeI7aXnaaBaaaleaacaaIYaaabeaakiabgsMiJkab ec8aWbaa@52E9@ .

 

The full displacement and stress fields can be determined without difficulty, but are too lengthy to write out in full.  However, important features of the solution can be extracted.  In particular:

 

1. Contact pressure: The pressure exerted by the indenter on the elastic solid follows as

p( x 1 )= σ 22 ( x 1 , x 2 =0)= F 2 π a 2 x 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiykaiabg2da9iabgkHiTiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabe aakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGim aiaacMcacqGH9aqpdaWcaaqaaiaadAeadaWgaaWcbaGaaGOmaaqaba aakeaacqaHapaCdaGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGc cqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaqabaaaaa aa@4C2D@

 

2. Surface displacement: The displacement of the surface is

u 2 = F 2 (1ν) πμ log x 1 + x 1 2 a 2 + d 2 x 1 >a F 2 (1ν) πμ log(a)+ d 2 x 1 <a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki abg2da9maaceaabaqbaeqabiqaaaqaaiabgkHiTmaalaaabaGaamOr amaaBaaaleaacaaIYaaabeaakiaacIcacaaIXaGaeyOeI0IaeqyVd4 Maaiykaaqaaiabec8aWjabeY7aTbaaciGGSbGaai4BaiaacEgadaqa daqaamaaemaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaay5bSl aawIa7aiabgUcaRmaakaaabaGaamiEamaaDaaaleaacaaIXaaabaGa aGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaabeaaaO GaayjkaiaawMcaaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8+aaqWaaeaacaWG4bWaaSbaaSqaaiaaigdaae qaaaGccaGLhWUaayjcSdGaeyOpa4JaamyyaaqaaiabgkHiTmaalaaa baGaamOramaaBaaaleaacaaIYaaabeaakiaacIcacaaIXaGaeyOeI0 IaeqyVd4Maaiykaaqaaiabec8aWjabeY7aTbaaciGGSbGaai4Baiaa cEgacaGGOaGaamyyaiaacMcacaaMc8Uaey4kaSIaamizamaaBaaale aacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaqWaaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdGaeyipaW JaamyyaaaaaiaawUhaaaaa@E3B5@

Note that there is no unambiguous way to determine the value of d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@ .  It is tempting, for example, to attempt to calculate d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@  by assuming that the surface remains fixed at some point far from the indenter.  However, in this case d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@  increases without limit as the distance of the fixed point from the indenter increases. 

 

3. Contact stiffness: the stiffness of a contact is defined as the ratio of the force acting on the indenter to its displacement k c = F 2 / u 2 (z=0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGJbaabeaaki abg2da9iaadAeadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaamyDamaa BaaaleaacaaIYaaabeaakiaacIcacaWG6bGaeyypa0JaaGimaiaacM caaaa@3C68@ , and is of considerable interest in practical applications.  Unfortunately, the solution for an infinite solid cannot be used to estimate the stiffness of a 2D contact (the stiffness depends on d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@  ).  Of course, the stiffness of a contact between two finite sized elastic solids is well defined MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  but the stiffness depends on the overall geometry of the two contacting solids, and varies as k c =μ/[(1ν)log(R/a)] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGJbaabeaaki abg2da9iabeY7aTjaac+cacaGGBbGaaiikaiaaigdacqGHsislcqaH 9oGBcaGGPaGaciiBaiaac+gacaGGNbGaaiikaiaadkfacaGGVaGaam yyaiaacMcacaGGDbaaaa@436F@ , where R is a characteristic length comparable to the specimen size, and a is the contact width.

 

 

 

5.3.9 Frictionless parabolic (cylindrical) indenter in contact with a half-space

 

The figure shows a rigid, parabolic punch with profile

f(r)= r 2 /(2R) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWGYbGaaiykaiabg2 da9iaadkhadaahaaWcbeqaaiaaikdaaaGccaGGVaGaaiikaiaaikda caWGsbGaaiykaaaa@3AAA@

(and infinite length perpendicular to the plane of the figure), which is pushed into an elastic half-space by a force F 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaaa a@3293@ . This profile is often used to approximate a cylinder with radius R.  The interface between the two solids is frictionless, and cannot withstand any tensile stress.    The indenter sinks into the elastic solid, so that the two solids make contact over a finite region a< x 1 <a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamyyaiabgYda8iaadIhada WgaaWcbaGaaGymaaqabaGccqGH8aapcaWGHbaaaa@378F@ , where

a= 4R F 2 /π E * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabg2da9maakaaabaGaaGinai aadkfacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiabec8aWjaa dweadaahaaWcbeqaaiaacQcaaaaabeaaaaa@3A43@              E * =E/(1 ν 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaCaaaleqabaGaaiOkaaaaki abg2da9iaadweacaGGVaGaaiikaiaaigdacqGHsislcqaH9oGBdaah aaWcbeqaaiaaikdaaaGccaGGPaaaaa@3ABE@

The solution is generated from the following complex potentials

Ω(z)= i F 2 2π a 2 z z 2 a 2 z 2 a 2 log z+ z 2 a 2 + Ei d 2 4(1 ν 2 ) ω(z)= Ω( z ¯ ) ¯ z Ω (z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvcaGGOaGaamOEaiaacM cacqGH9aqpdaWcaaqaaiaadMgacaWGgbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaaGOmaiabec8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaO WaaiWaaeaacaWG6bWaaOaaaeaacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaaaeqaaOGaeyOeI0 IaamOEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWc beqaaiaaikdaaaGcciGGSbGaai4BaiaacEgadaqadaqaaiaadQhacq GHRaWkdaGcaaqaaiaadQhadaahaaWcbeqaaiaaikdaaaGccqGHsisl caWGHbWaaWbaaSqabeaacaaIYaaaaaqabaaakiaawIcacaGLPaaaai aawUhacaGL9baacaaMc8Uaey4kaSYaaSaaaeaacaWGfbGaamyAaiaa dsgadaWgaaWcbaGaaGOmaaqabaaakeaacaaI0aGaaiikaiaaigdacq GHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaaiaaykW7 aeaacqaHjpWDcaGGOaGaamOEaiaacMcacqGH9aqpcqGHsisldaqdaa qaaiabfM6axjaacIcaceWG6bGbaebacaGGPaaaaiabgkHiTiaadQha cuqHPoWvgaqbaiaacIcacaWG6bGaaiykaaaaaa@7389@

where d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@  is an arbitrary constant, representing an unknown rigid displacement. Note that the solution is valid only for Im(z)>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciysaiaac2gacaGGOaGaamOEaiaacM cacqGH+aGpcaaIWaaaaa@36BA@ . You can use the formulas given at the end of Section 5.3.1 to determine displacements and stress directly from Ω(z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaaaaa@34C6@ .  In addition, the formulas in 5.3.7 should be used to determine correct sign for the square root.

 

Important features of the solution are:

 

1. Contact pressure: The pressure exerted by the indenter on the elastic solid follows as

p( x 1 )= σ 22 ( x 1 , x 2 =0)= 2 F 2 π a 2 a 2 x 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiykaiabg2da9iabgkHiTiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabe aakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGim aiaacMcacqGH9aqpdaWcaaqaaiaaikdacaWGgbWaaSbaaSqaaiaaik daaeqaaaGcbaGaeqiWdaNaamyyamaaCaaaleqabaGaaGOmaaaaaaGc daGcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4b Waa0baaSqaaiaaigdaaeaacaaIYaaaaaqabaaaaa@4EC2@

 

2. Surface displacement: The vertical displacement of the surface is

u 2 = 2 F 2 π E * a 2 x 1 x 1 2 a 2 x 1 2 a 2 log x 1 + x 1 2 a 2 + d 2 x 1 >a 2 F 2 π E * a 2 log(a)+ x 1 2 + d 2 x 1 <a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaki abg2da9maaceaabaqbaeqabiqaaaqaamaalaaabaGaaGOmaiaadAea daWgaaWcbaGaaGOmaaqabaaakeaacqaHapaCcaWGfbWaaWbaaSqabe aacaGGQaaaaOGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaGadaqa aiaadIhadaWgaaWcbaGaaGymaaqabaGcdaGcaaqaaiaadIhadaqhaa WcbaGaaGymaaqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqabeaa caaIYaaaaaqabaGccqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaaca aIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiGacYga caGGVbGaai4zamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaaki abgUcaRmaakaaabaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaabeaaaOGaayjkai aawMcaaaGaay5Eaiaaw2haaiabgUcaRiaadsgadaWgaaWcbaGaaGOm aaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8+aaqWaaeaacaWG4bWaaSbaaSqaai aaigdaaeqaaaGccaGLhWUaayjcSdGaeyOpa4JaamyyaaqaaiabgkHi TmaalaaabaGaaGOmaiaadAeadaWgaaWcbaGaaGOmaaqabaaakeaacq aHapaCcaWGfbWaaWbaaSqabeaacaGGQaaaaOGaamyyamaaCaaaleqa baGaaGOmaaaaaaGcdaqadaqaaiGacYgacaGGVbGaai4zaiaacIcaca WGHbGaaiykaiabgUcaRiaadIhadaqhaaWcbaGaaGymaaqaaiaaikda aaaakiaawIcacaGLPaaacaaMc8Uaey4kaSIaamizamaaBaaaleaaca aIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaa emaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaay5bSlaawIa7ai abgYda8iaadggaaaaacaGL7baaaaa@24DA@

As discussed in 5.3.8, d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIYaaabeaaaa a@32B1@  or the contact stiffness cannot be determined uniquely.

 

3. Stress field

σ 11 = 2 F 2 π a 2 m 1+  ( x 2 2 + n 2 ) ( m 2 + n 2 ) 2 x 2 σ 22 =  2 F 2 π a 2 m 1 ( x 2 2 + n 2 ) ( m 2 + n 2 ) σ 12 = 2 F 2 π a 2 n ( m 2 x 2 2 ) ( m 2 + n 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamOramaa BaaaleaacaaIYaaabeaaaOqaaiabec8aWjaadggadaahaaWcbeqaai aaikdaaaaaaOWaaeWaaeaacaWGTbWaaeWaaeaacaaIXaGaey4kaSIa aeiiamaalaaabaGaaiikaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaik daaaGccqGHRaWkcaWGUbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaqa aiaacIcacaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOBam aaCaaaleqabaGaaGOmaaaakiaacMcaaaaacaGLOaGaayzkaaGaeyOe I0IaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vdqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpca qGGaGaeyOeI0YaaSaaaeaacaaIYaGaamOramaaBaaaleaacaaIYaaa beaaaOqaaiabec8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaOGaam yBamaabmaabaGaaGymaiabgkHiTmaalaaabaGaaiikaiaadIhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaWGUbWaaWbaaSqabe aacaaIYaaaaOGaaiykaaqaaiaacIcacaWGTbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaamOBamaaCaaaleqabaGaaGOmaaaakiaacMcaaa aacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVdqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGccq GH9aqpcqGHsisldaWcaaqaaiaaikdacaWGgbWaaSbaaSqaaiaaikda aeqaaaGcbaGaeqiWdaNaamyyamaaCaaaleqabaGaaGOmaaaaaaGcca WGUbWaaSaaaeaacaGGOaGaamyBamaaCaaaleqabaGaaGOmaaaakiab gkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPaaaba Gaaiikaiaad2gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGUbWa aWbaaSqabeaacaaIYaaaaOGaaiykaaaaaaaa@A0DB@

where

m= c 1 + c 2 /2 n= x 1 c 1 c 2 /(2 x 1 2 ) c 1 = a 2 x 1 2 x 2 2 c 2 = c 1 2 +4 x 1 2 x 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGTbGaeyypa0ZaaOaaaeaada qadaqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaS qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamOBaiabg2da9iaadIhadaWgaaWcbaGaaG ymaaqabaGcdaGcaaqaamaabmaabaGaam4yamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadogadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaacaGGVaGaaiikaiaaikdacaWG4bWaa0baaSqaaiaaigdaaeaa caaIYaaaaOGaaiykaaWcbeaakiaaykW7caaMc8UaaGPaVdqaaiaado gadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGHbWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaGOmaa aakiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaado gadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaGcaaqaaiaadogadaqh aaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaaI0aGaamiEamaaDa aaleaacaaIXaaabaGaaGOmaaaakiaadIhadaqhaaWcbaGaaGOmaaqa aiaaikdaaaaabeaaaaaa@82FC@

 

4. Critical load required to cause yield.  The elastic limit is best calculated using the Tresca yield criterion, which gives

F 2 /a=2.616Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaki aac+cacaWGHbGaeyypa0JaaGOmaiaac6cacaaI2aGaaGymaiaaiAda caWGzbaaaa@39C3@

where Y is the tensile yield stress of the solid.  To derive this result, note that the stresses are proportional to F 2 /a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaki aac+cacaWGHbaaaa@3436@ .  This means we can write

σ ij =( F 2 /a) σ ^ ij ( x i /a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaacIcacaWGgbWaaSbaaSqaaiaaikdaaeqaaOGa ai4laiaadggacaGGPaGafq4WdmNbaKaadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGVaGa amyyaiaacMcaaaa@4364@

where σ ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34BC@  is the stress induced at x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  for a contact with a=1 subjected to load F 2 =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaki abg2da9iaaigdaaaa@345E@ .  The yield criterion can therefore be expressed as

F 2 a max (x1,x2) ( σ ^ 11 σ ^ 22 ) 2 +4 σ ^ 12 2 =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGgbWaaSbaaSqaaiaaik daaeqaaaGcbaGaamyyaaaaciGGTbGaaiyyaiaacIhadaWgaaWcbaGa aiikaiaadIhacaaIXaGaaiilaiaadIhacaaIYaGaaiykaaqabaGcda GadaqaamaakaaabaGaaiikaiqbeo8aZzaajaWaaSbaaSqaaiaaigda caaIXaaabeaakiabgkHiTiqbeo8aZzaajaWaaSbaaSqaaiaaikdaca aIYaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 0aGafq4WdmNbaKaadaqhaaWcbaGaaGymaiaaikdaaeaacaaIYaaaaa qabaaakiaawUhacaGL9baacqGH9aqpcaWGzbaaaa@5052@

where max (x1,x2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciyBaiaacggacaGG4bWaaSbaaSqaai aacIcacaWG4bGaaGymaiaacYcacaWG4bGaaGOmaiaacMcaaeqaaaaa @395A@  denotes maximizing with respect to position in the solid.   The figure below shows contours of ( σ ^ 11 σ ^ 22 ) 2 +4 σ ^ 12 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaGGOaGafq4WdmNbaKaada WgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Iafq4WdmNbaKaadaWg aaWcbaGaaGOmaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaisdacuaHdpWCgaqcamaaDaaaleaacaaIXaGaaGOm aaqaaiaaikdaaaaabeaaaaa@40FC@ : the maximum value is approximately 0.3823, and occurs on the symmetry axis at a depth of about 0.78a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiaac6cacaaI3aGaaGioaiaadg gaaaa@34B5@ .  Substituting this value back into the yield criterion gives the result.

 

 


 

 

5.3.10 Line contact between two non-conformal frictionless elastic solids

 

The solution in the preceding section can be generalized to find stress and displacement caused by contact between two elastic solids.  The solution assumes:

 

1. The two contacting solids initially meet at along a line perpendicular to the plane of the figure (the line of initial contact lies on the line connecting the centers of curvature of the two solids)

 

2. The two contacting solids have radii of curvature R 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIXaaabeaaaa a@329E@  and R 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIYaaabeaaaa a@329F@  at the point of initial contact.  A convex surface has a positive radius of curvature; a concave surface (like the internal surface of a hole) has a negative radius of curvature

 

3. The two solids have Young’s modulus and Poissons ratio E 1 , ν 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaaIXaaabeaaki aacYcacqaH9oGBdaWgaaWcbaGaaGymaaqabaaaaa@35EA@  and E 2 , ν 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaaIYaaabeaaki aacYcacqaH9oGBdaWgaaWcbaGaaGOmaaqabaaaaa@35EC@ .

 

4. The two solids are pushed into contact by a force F 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaaa a@3293@

 

 

The solution is expressed in terms of an effective contact radius and an effective modulus, defined as

R= R 1 R 2 R 1 + R 2 E * = E 1 E 2 (1 ν 1 2 ) E 2 +(1 ν 2 2 ) E 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiabg2da9maalaaabaGaamOuam aaBaaaleaacaaIXaaabeaakiaadkfadaWgaaWcbaGaaGOmaaqabaaa keaacaWGsbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOuamaaBa aaleaacaaIYaaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaadweadaahaaWcbeqaaiaacQca aaGccqGH9aqpdaWcaaqaaiaadweadaWgaaWcbaGaaGymaaqabaGcca WGfbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaiikaiaaigdacqGHsisl cqaH9oGBdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGPaGaamyram aaBaaaleaacaaIYaaabeaakiabgUcaRiaacIcacaaIXaGaeyOeI0Ia eqyVd42aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaiykaiaadweada WgaaWcbaGaaGymaaqabaaaaaaa@6C66@

The contact width and contact pressure can be determined by substituting these values into the formulas given in the preceding section.   The full stress and displacement field in each solid can be calculated from the potential given in the preceding section, by adopting a coordinate system that points into the solid of interest.

 

 

 

5.3.11 Sliding contact between two rough elastic cylinders

 

The figure shows two elastic cylinders with elastic constants E 1 , ν 1 , E 2 , ν 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaaIXaaabeaaki aacYcacqaH9oGBdaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyramaa BaaaleaacaaIYaaabeaakiaacYcacqaH9oGBdaWgaaWcbaGaaGOmaa qabaaaaa@3BB0@ , radii R 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIXaaabeaaaa a@329E@ , R 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIYaaabeaaaa a@329F@  and infinite length perpendicular to the plane of the figure, which are pushed into contact by a forces F 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIYaaabeaaaa a@3293@  acting perpendicular to the line of contact, and   F 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIXaaabeaaaa a@3292@  acting parallel to the tangent plane.   The interface between the two solids has a coefficient of friction f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaaaa@31CB@ , and cannot withstand any tensile stress.  The tangential force is sufficient to cause the two solids to slide against each other, so that F 1 =f F 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaaIXaaabeaaki abg2da9iaadAgacaWGgbWaaSbaaSqaaiaaikdaaeqaaaaa@3640@ . We give the solution for solid (1) only: the solution for the second solid can be found by exchanging the moduli appropriately.

 

The coordinate system has origin at the initial point of contact between the two solids. The two solids make contact over a finite region a< x 1 <b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamyyaiabgYda8iaadIhada WgaaWcbaGaaGymaaqabaGccqGH8aapcaWGIbaaaa@3790@ , where

a= 4R F 2 (1+2γ)/π(12γ) E * b= 4R F 2 (12γ)/(1+2γ)π E * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGHbGaeyypa0ZaaOaaaeaaca aI0aGaamOuaiaadAeadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaaGym aiabgUcaRiaaikdacqaHZoWzcaGGPaGaai4laiabec8aWjaacIcaca aIXaGaeyOeI0IaaGOmaiabeo7aNjaacMcacaWGfbWaaWbaaSqabeaa caGGQaaaaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacaWGIbGa eyypa0ZaaOaaaeaacaaI0aGaamOuaiaadAeadaWgaaWcbaGaaGOmaa qabaGccaGGOaGaaGymaiabgkHiTiaaikdacqaHZoWzcaGGPaGaai4l aiaacIcacaaIXaGaey4kaSIaaGOmaiabeo7aNjaacMcacqaHapaCca WGfbWaaWbaaSqabeaacaGGQaaaaaqabaaaaaa@6BB6@

and

R= R 1 R 2 R 1 + R 2 E * = E 1 E 2 (1 ν 1 2 ) E 2 +(1 ν 2 2 ) E 1 β= 12 ν 2 / μ 2 12 ν 1 / μ 1 2 1 ν 2 / μ 2 +2 1 ν 1 / μ 1 γ= 1 π tan 1 (βf) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGsbGaeyypa0ZaaSaaaeaaca WGsbWaaSbaaSqaaiaaigdaaeqaaOGaamOuamaaBaaaleaacaaIYaaa beaaaOqaaiaadkfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGsb WaaSbaaSqaaiaaikdaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7 aeaacaWGfbWaaWbaaSqabeaacaGGQaaaaOGaeyypa0ZaaSaaaeaaca WGfbWaaSbaaSqaaiaaigdaaeqaaOGaamyramaaBaaaleaacaaIYaaa beaaaOqaaiaacIcacaaIXaGaeyOeI0IaeqyVd42aa0baaSqaaiaaig daaeaacaaIYaaaaOGaaiykaiaadweadaWgaaWcbaGaaGOmaaqabaGc cqGHRaWkcaGGOaGaaGymaiabgkHiTiabe27aUnaaDaaaleaacaaIYa aabaGaaGOmaaaakiaacMcacaWGfbWaaSbaaSqaaiaaigdaaeqaaaaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiabek7aIj abg2da9maalaaabaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27a UnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaac+cacqaH8o qBdaWgaaWcbaGaaGOmaaqabaGccqGHsisldaqadaqaaiaaigdacqGH sislcaaIYaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaay zkaaGaai4laiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiaaikda daqadaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaacaGGVaGaeqiVd02aaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaaGOmamaabmaabaGaaGymaiabgkHiTiabe27aUnaaBa aaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaac+cacqaH8oqBdaWg aaWcbaGaaGymaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVdqaaiabeo7aNjabg2da9iabgkHiTmaalaaabaGa aGymaaqaaiabec8aWbaaciGG0bGaaiyyaiaac6gadaahaaWcbeqaai abgkHiTiaaigdaaaGccaGGOaGaeqOSdiMaamOzaiaacMcacaaMc8oa aaa@A905@

 

Only the derivatives of the complex potentials for this solution can be found analytically: they are

Ω (z)= (f+i) F 2 πab z z+a 1/2γ zb 1/2+γ ω (z)= Ω ( z ¯ ) ¯ z Ω (z) Ω (z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuqHPoWvgaqbaiaacIcacaWG6b Gaaiykaiabg2da9iabgkHiTmaalaaabaGaaiikaiaadAgacqGHRaWk caWGPbGaaiykaiaadAeadaWgaaWcbaGaaGOmaaqabaaakeaacqaHap aCcaWGHbGaamOyaaaadaGadaqaaiaadQhacqGHsisldaqadaqaaiaa dQhacqGHRaWkcaWGHbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXa Gaai4laiaaikdacqGHsislcqaHZoWzaaGcdaqadaqaaiaadQhacqGH sislcaWGIbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4lai aaikdacqGHRaWkcqaHZoWzaaaakiaawUhacaGL9baacaaMc8UaaGPa VdqaaiqbeM8a3zaafaGaaiikaiaadQhacaGGPaGaeyypa0JaeyOeI0 Yaa0aaaeaacuqHPoWvgaqbaiaacIcaceWG6bGbaebacaGGPaaaaiab gkHiTiaadQhacuqHPoWvgaGbaiaacIcacaWG6bGaaiykaiabgkHiTi qbfM6axzaafaGaaiikaiaadQhacaGGPaaaaaa@6EF2@

 

 

Note that the solution is valid only for Im(z)>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciysaiaac2gacaGGOaGaamOEaiaacM cacqGH+aGpcaaIWaaaaa@36BA@ . You can use the formulas given at the end of Section 5.3.1 to determine stresses directly from Ω (z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafuyQdCLbauaacaGGOaGaamOEaiaacM caaaa@34D2@ .  In addition, the branch of (z+a) γ1/2 (zb) γ1/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadQhacqGHRaWkcaWGHbGaai ykamaaCaaaleqabaGaeq4SdCMaeyOeI0IaaGymaiaac+cacaaIYaaa aOGaaiikaiaadQhacqGHsislcaWGIbGaaiykamaaCaaaleqabaGaey OeI0Iaeq4SdCMaeyOeI0IaaGymaiaac+cacaaIYaaaaaaa@43F8@  must be selected so that

zb 1/2+γ z+a 1/2γ = r 1 1/2γ e i(1/2γ) θ 1 r 2 1/2+γ e i(1/2+γ) θ 2 zb 1/2+γ z+a 1/2γ ¯ = r 1 1/2γ e i(1/2γ) θ 1 r 2 1/2+γ e i(1/2+γ) θ 2 z ¯ b 1/2+γ z ¯ +a 1/2γ = r 1 1/2γ e i(1/2γ) θ 1 r 2 1/2+γ e i(1/2+γ) θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaqadaqaaiaadQhacqGHsislca WGIbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikda cqGHRaWkcqaHZoWzaaGcdaqadaqaaiaadQhacqGHRaWkcaWGHbaaca GLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdacqGHsisl cqaHZoWzaaGccqGH9aqpcaWGYbWaa0baaSqaaiaaigdaaeaacaaIXa Gaai4laiaaikdacqGHsislcqaHZoWzaaGccaWGLbWaaWbaaSqabeaa caWGPbGaaiikaiaaigdacaGGVaGaaGOmaiabgkHiTiabeo7aNjaacM cacqaH4oqCdaWgaaadbaGaaGymaaqabaaaaOGaamOCamaaDaaaleaa caaIYaaabaGaaGymaiaac+cacaaIYaGaey4kaSIaeq4SdCgaaOGaam yzamaaCaaaleqabaGaamyAaiaacIcacaaIXaGaai4laiaaikdacqGH RaWkcqaHZoWzcaGGPaGaeqiUde3aaSbaaWqaaiaaikdaaeqaaaaaaO qaamaanaaabaWaaeWaaeaacaWG6bGaeyOeI0IaamOyaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGymaiaac+cacaaIYaGaey4kaSIaeq4SdC gaaOWaaeWaaeaacaWG6bGaey4kaSIaamyyaaGaayjkaiaawMcaamaa CaaaleqabaGaaGymaiaac+cacaaIYaGaeyOeI0Iaeq4SdCgaaaaaki abg2da9iaadkhadaqhaaWcbaGaaGymaaqaaiaaigdacaGGVaGaaGOm aiabgkHiTiabeo7aNbaakiaadwgadaahaaWcbeqaaiabgkHiTiaadM gacaGGOaGaaGymaiaac+cacaaIYaGaeyOeI0Iaeq4SdCMaaiykaiab eI7aXnaaBaaameaacaaIXaaabeaaaaGccaWGYbWaa0baaSqaaiaaik daaeaacaaIXaGaai4laiaaikdacqGHRaWkcqaHZoWzaaGccaWGLbWa aWbaaSqabeaacqGHsislcaWGPbGaaiikaiaaigdacaGGVaGaaGOmai abgUcaRiabeo7aNjaacMcacqaH4oqCdaWgaaadbaGaaGOmaaqabaaa aaGcbaWaaeWaaeaaceWG6bGbaebacqGHsislcaWGIbaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdacqGHRaWkcqaHZoWz aaGcdaqadaqaaiqadQhagaqeaiabgUcaRiaadggaaiaawIcacaGLPa aadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaiabgkHiTiabeo7aNbaa kiabg2da9iaadkhadaqhaaWcbaGaaGymaaqaaiaaigdacaGGVaGaaG OmaiabgkHiTiabeo7aNbaakiaadwgadaahaaWcbeqaaiabgkHiTiaa dMgacaGGOaGaaGymaiaac+cacaaIYaGaeyOeI0Iaeq4SdCMaaiykai abeI7aXnaaBaaameaacaaIXaaabeaaaaGccaWGYbWaa0baaSqaaiaa ikdaaeaacaaIXaGaai4laiaaikdacqGHRaWkcqaHZoWzaaGccaWGLb WaaWbaaSqabeaacqGHsislcaWGPbGaaiikaiaaigdacaGGVaGaaGOm aiabgUcaRiabeo7aNjaacMcacqaH4oqCdaWgaaadbaGaaGOmaaqaba aaaaaaaa@D7CB@

where the angles and distances r 1 , θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIXaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGymaaqabaaaaa@3615@  and r 2 , θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIYaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@3617@  are shown in Figure 5.29, and θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaa aa@337D@  and θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaa aa@337E@  must lie in the ranges 0 θ 1 π0 θ 2 π MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkabeI7aXnaaBaaale aacaaIXaaabeaakiabgsMiJkabec8aWjaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG imaiabgsMiJkabeI7aXnaaBaaaleaacaaIYaaabeaakiabgsMiJkab ec8aWbaa@52E9@ .

 

Important features of the solution are:

 

1. Contact pressure: The tractions exerted by the indenter on the elastic solid follow as

p( x 1 )= σ 22 ( x 1 , x 2 =0)= 2 F 2 πab 1+ β 2 f 2 a+ x 1 x 1 b x 1 +a x 1 b γ q( x 1 )= σ 12 =fp( x 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGWbGaaiikaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGPaGaeyypa0JaeyOeI0Iaeq4Wdm3aaSba aSqaaiaaikdacaaIYaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqp caaIWaGaaiykaiabg2da9maalaaabaGaaGOmaiaadAeadaWgaaWcba GaaGOmaaqabaaakeaacqaHapaCcaWGHbGaamOyamaakaaabaGaaGym aiabgUcaRiabek7aInaaCaaaleqabaGaaGOmaaaakiaadAgadaahaa WcbeqaaiaaikdaaaaabeaaaaGcdaGcaaqaaiaadggacqGHRaWkcaWG 4bWaaSbaaSqaaiaaigdaaeqaaaqabaGcdaGcaaqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccqGHsislcaWGIbaaleqaaOWaaeWaaeaadaWc aaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGHbaaba GaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadkgaaaaacaGL OaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7aeaacaWGXbGaaiikaiaadIhadaWgaaWc baGaaGymaaqabaGccaGGPaGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaig dacaaIYaaabeaakiabg2da9iaadAgacaWGWbGaaiikaiaadIhadaWg aaWcbaGaaGymaaqabaGccaGGPaaaaaa@7A23@

In practice, the value of γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3287@  is very small (generally less than 0.05), and you can approximate the solution by assuming that γ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCMaeyypa0JaaGimaaaa@3447@  without significant error.

 

2. Approximate expressions for stresses.  For γ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCMaeyypa0JaaGimaaaa@3447@ , the stresses can be written in a simple form.  The stresses induced by the vertical force are given in Section 5.3.8.  The stresses resulting from the friction force are

σ 11 = 2f F 2 π a 2 n 2 ( x 2 2 m 2 ) ( m 2 + n 2 ) 2 x 1 σ 22 = 2f F 2 π a 2 n ( m 2 x 2 2 ) ( m 2 + n 2 ) σ 12 = 2f F 2 π a 2 m 1 ( x 2 2 + n 2 ) ( m 2 + n 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamOzaiaa dAeadaWgaaWcbaGaaGOmaaqabaaakeaacqaHapaCcaWGHbWaaWbaaS qabeaacaaIYaaaaaaakmaabmaabaGaamOBamaabmaabaGaaGOmaiab gkHiTmaalaaabaGaaiikaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaik daaaGccqGHsislcaWGTbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaqa aiaacIcacaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOBam aaCaaaleqabaGaaGOmaaaakiaacMcaaaaacaGLOaGaayzkaaGaeyOe I0IaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPa aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGa eq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabgkHiTm aalaaabaGaaGOmaiaadAgacaWGgbWaaSbaaSqaaiaaikdaaeqaaaGc baGaeqiWdaNaamyyamaaCaaaleqabaGaaGOmaaaaaaGccaWGUbWaaS aaaeaacaGGOaGaamyBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa dIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPaaabaGaaiikai aad2gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGUbWaaWbaaSqa beaacaaIYaaaaOGaaiykaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7aeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGa eyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamOzaiaadAeadaWgaaWcba GaaGOmaaqabaaakeaacqaHapaCcaWGHbWaaWbaaSqabeaacaaIYaaa aaaakiaad2gadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaacIcaca WG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaamOBamaa CaaaleqabaGaaGOmaaaakiaacMcaaeaacaGGOaGaamyBamaaCaaale qabaGaaGOmaaaakiabgUcaRiaad6gadaahaaWcbeqaaiaaikdaaaGc caGGPaaaaaGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVdaaaa@A3F7@

where

m= c 1 + c 2 /2 n= x 1 c 1 c 2 /(2 x 1 2 ) c 1 =1 x 1 2 x 2 2 c 2 = c 1 2 +4 x 1 2 x 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGTbGaeyypa0ZaaOaaaeaada qadaqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaS qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamOBaiabg2da9iaadIhadaWgaaWcbaGaaG ymaaqabaGcdaGcaaqaamaabmaabaGaam4yamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadogadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaacaGGVaGaaiikaiaaikdacaWG4bWaa0baaSqaaiaaigdaaeaa caaIYaaaaOGaaiykaaWcbeaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGaam4y amaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacqGHsislcaWG4b Waa0baaSqaaiaaigdaaeaacaaIYaaaaOGaeyOeI0IaamiEamaaDaaa leaacaaIYaaabaGaaGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaacaaIYaaabeaa kiabg2da9maakaaabaGaam4yamaaDaaaleaacaaIXaaabaGaaGOmaa aakiabgUcaRiaaisdacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaaaaaa@8E36@

 

 

 

5.3.12 Dislocation near the surface of a half-space

 

The figure shows a dislocation with burgers vector b= b 1 e 1 + b 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaadkgadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B19@  located at a depth h below the surface of an isotropic linear elastic half-space, with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  The surface of the half-space is traction free.

 

The solution is given by the sum of two potentials:

Ω(z)= Ω 0 (z)+ Ω 1 (z)ω(z)= ω 0 (z)+ ω 1 (z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaaiikaiaadQhacaGGPaGaey ypa0JaeuyQdC1aaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadQhacaGG PaGaey4kaSIaeuyQdC1aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadQ hacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqaHjpWDcaGGOaGaamOEaiaacM cacqGH9aqpcqaHjpWDdaWgaaWcbaGaaGimaaqabaGccaGGOaGaamOE aiaacMcacqGHRaWkcqaHjpWDdaWgaaWcbaGaaGymaaqabaGccaGGOa GaamOEaiaacMcaaaa@618C@

where

Ω 0 (z)=i E b 1 +i b 2 8π(1 ν 2 ) log(zih) ω 0 (z)=i E( b 1 i b 2 ) 8π(1 ν 2 ) log(zih)+ E b 1 +i b 2 8π(1 ν 2 ) h zih MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvdaWgaaWcbaGaaGimaa qabaGccaGGOaGaamOEaiaacMcacqGH9aqpcqGHsislcaWGPbWaaSaa aeaacaWGfbWaaeWaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamyAaiaadkgadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaaaeaacaaI4aGaeqiWdaNaaiikaiaaigdacqGHsislcqaH9oGBda ahaaWcbeqaaiaaikdaaaGccaGGPaaaaiGacYgacaGGVbGaai4zaiaa cIcacaWG6bGaeyOeI0IaamyAaiaadIgacaGGPaaabaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaOGaaiikaiaadQhacaGGPaGaeyypa0JaamyA amaalaaabaGaamyraiaacIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaamyAaiaadkgadaWgaaWcbaGaaGOmaaqabaGccaGGPaaa baGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaS qabeaacaaIYaaaaOGaaiykaaaaciGGSbGaai4BaiaacEgacaGGOaGa amOEaiabgkHiTiaadMgacaWGObGaaiykaiabgUcaRmaalaaabaGaam yramaabmaabaGaamOyamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dMgacaWGIbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaba GaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqa beaacaaIYaaaaOGaaiykaaaadaWcaaqaaiaadIgaaeaacaWG6bGaey OeI0IaamyAaiaadIgaaaaaaaa@8534@

is the solution for a dislocation at position z 0 =ih MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEamaaBaaaleaacaaIWaaabeaaki abg2da9iaadMgacaWGObaaaa@35B0@  in an infinite solid, and

Ω 1 (z)=z Ω 0 ( z ¯ ) ¯ ω 0 ( z ¯ ) ¯ ω 1 (z)=z ω 0 ( z ¯ ) ¯ Ω 0 ( z ¯ ) ¯ +z Ω 0 ( z ¯ ) ¯ + z 2 Ω 0 ( z ¯ ) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHPoWvdaWgaaWcbaGaaGymaa qabaGccaGGOaGaamOEaiaacMcacqGH9aqpcqGHsislcaWG6bWaa0aa aeaacuqHPoWvgaqbamaaBaaaleaacaaIWaaabeaakiaacIcaceWG6b GbaebacaGGPaaaaiabgkHiTmaanaaabaGaeqyYdC3aaSbaaSqaaiaa icdaaeqaaOGaaiikaiqadQhagaqeaiaacMcaaaaabaGaeqyYdC3aaS baaSqaaiaaigdaaeqaaOGaaiikaiaadQhacaGGPaGaeyypa0JaamOE amaanaaabaGafqyYdCNbauaadaWgaaWcbaGaaGimaaqabaGccaGGOa GabmOEayaaraGaaiykaaaacqGHsisldaqdaaqaaiabfM6axnaaBaaa leaacaaIWaaabeaakiaacIcaceWG6bGbaebacaGGPaaaaiabgUcaRi aadQhadaqdaaqaaiqbfM6axzaafaWaaSbaaSqaaiaaicdaaeqaaOGa aiikaiqadQhagaqeaiaacMcaaaGaey4kaSIaamOEamaaCaaaleqaba GaaGOmaaaakmaanaaabaGafuyQdCLbayaadaWgaaWcbaGaaGimaaqa baGccaGGOaGabmOEayaaraGaaiykaaaaaaaa@6503@

corrects the solution to satisfy the traction free boundary condition at the surface.

 

The displacement and stress fields can be computed by substituting Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCfaaa@326E@  and ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  into the standard formulas given in Sect 5.3.1 (do not use the half-space representation).  A symbolic manipulation program makes the calculation painless. Most symbolic manipulation programs will not be able to differentiate the complex conjugate of a function, so the derivatives of Ω 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdC1aaSbaaSqaaiaaigdaaeqaaa aa@3355@  and ω 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaa aa@3394@  should be calculated by substituting appropriate derivatives of Ω 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdC1aaSbaaSqaaiaaicdaaeqaaa aa@3354@  and ω 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaa aa@3393@  into the following formulas

Ω 1 (z)=z Ω 0 ( z ¯ ) ¯ Ω 0 ( z ¯ ) ¯ ω 0 ( z ¯ ) ¯ Ω 1 (z)=z Ω 0 ( z ¯ ) ¯ 2 Ω 0 ( z ¯ ) ¯ ω 0 ( z ¯ ) ¯ ω 1 (z)=z ω 0 ( z ¯ ) ¯ + ω 0 ( z ¯ ) ¯ +3z Ω 0 ( z ¯ ) ¯ + z 2 Ω 0 ( z ¯ ) ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuqHPoWvgaqbamaaBaaaleaaca aIXaaabeaakiaacIcacaWG6bGaaiykaiabg2da9iabgkHiTiaadQha daqdaaqaaiqbfM6axzaagaWaaSbaaSqaaiaaicdaaeqaaOGaaiikai qadQhagaqeaiaacMcaaaGaeyOeI0Yaa0aaaeaacuqHPoWvgaqbamaa BaaaleaacaaIWaaabeaakiaacIcaceWG6bGbaebacaGGPaaaaiabgk HiTmaanaaabaGafqyYdCNbauaadaWgaaWcbaGaaGimaaqabaGccaGG OaGabmOEayaaraGaaiykaaaaaeaacuqHPoWvgaGbamaaBaaaleaaca aIXaaabeaakiaacIcacaWG6bGaaiykaiabg2da9iabgkHiTiaadQha daqdaaqaaiqbfM6axzaasaWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVl aacIcaceWG6bGbaebacaGGPaaaaiabgkHiTiaaikdadaqdaaqaaiqb fM6axzaagaWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadQhagaqeai aacMcaaaGaeyOeI0Yaa0aaaeaacuaHjpWDgaGbamaaBaaaleaacaaI WaaabeaakiaacIcaceWG6bGbaebacaGGPaaaaaqaaiqbeM8a3zaafa WaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadQhacaGGPaGaeyypa0Ja amOEamaanaaabaGafqyYdCNbayaadaWgaaWcbaGaaGimaaqabaGcca GGOaGabmOEayaaraGaaiykaaaacqGHRaWkdaqdaaqaaiqbeM8a3zaa faWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiqadQhagaqeaiaacMcaaa Gaey4kaSIaaG4maiaadQhadaqdaaqaaiqbfM6axzaagaWaaSbaaSqa aiaaicdaaeqaaOGaaiikaiqadQhagaqeaiaacMcaaaGaey4kaSIaam OEamaaCaaaleqabaGaaGOmaaaakmaanaaabaGafuyQdCLbaibadaWg aaWcbaGaaGimaaqabaGccaGGOaGabmOEayaaraGaaiykaaaaaaaa@8791@

As an example, the variation of stress along the line x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@348E@  is given by

σ 22 = E b 1 π(1 ν 2 ) 2h x 2 2 ( x 2 +h) 3 ( x 2 h) σ 11 = E b 1 π(1 ν 2 ) 2 h 2 x 2 ( x 2 +h) 3 ( x 2 h) σ 12 = E b 2 π(1 ν 2 ) 2 h 2 x 2 ( x 2 +h) 3 ( x 2 h) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamOyamaaBaaaleaa caaIXaaabeaaaOqaaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWcaaqaaiaaikdacaWG ObGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOqaaiaacIcaca WG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiAaiaacMcadaah aaWcbeqaaiaaiodaaaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabe aakiabgkHiTiaadIgacaGGPaaaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7aeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaamOyamaaBaaaleaacaaI XaaabeaaaOqaaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd42aaW baaSqabeaacaaIYaaaaOGaaiykaaaadaWcaaqaaiaaikdacaWGObWa aWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaaaO qaaiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiA aiaacMcadaahaaWcbeqaaiaaiodaaaGccaGGOaGaamiEamaaBaaale aacaaIYaaabeaakiabgkHiTiaadIgacaGGPaaaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVdqaaiabeo8aZnaaBaaaleaacaaIXa GaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaadweacaWGIbWaaSbaaSqa aiaaikdaaeqaaaGcbaGaeqiWdaNaaiikaiaaigdacqGHsislcqaH9o GBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaalaaabaGaeyOeI0Ia aGOmaiaadIgadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaai aaikdaaeqaaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGc cqGHRaWkcaWGObGaaiykamaaCaaaleqabaGaaG4maaaakiaacIcaca WG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiAaiaacMcaaaaa aaa@A0BA@