Chapter 5

 

Analytical techniques and solutions for linear elastic solids

 

 

 

5.5 Solutions to generalized plane problems for anisotropic linear elastic solids

 

Materials such as wood, laminated composites, and single crystal metals are stiffer when loaded along some material directions than others.   Such materials are said to be anisotropic, and cannot be modeled using the procedures described in the preceding sections.   In this chapter, we describe briefly the most widely used method for calculating elastic deformation and stress in two dimensional anisotropic solids.  As you might expect, these calculations are difficult, and while the solutions can be expressed in a surprisingly compact form, the resulting expressions can usually only be evaluated using a computer.  In many practical situations it is simplest to calculate solutions for anisotropic materials using direct numerical computations (e.g. using the finite element method, discussed in Chapters 7 and 8).   Nevertheless, analytical solutions are useful: for example, the finite element method cannot easily be applied to problems involving cracks, dislocations, or point forces, because they contain singularities; in addition exact calculations can show how the solutions vary parametrically with elastic constants and material orientation.   

 

 

5.5.1 Governing Equations of elasticity for anisotropic solids

 

A typical plane elasticity problem is illustrated in the picture.  The solid is two dimensional: in this case we are concerned with plane strain solutions, which means that the solid is very long in the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@324F@  direction, and every cross section is loaded identically and only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGG9baaaa@36E7@  plane.   The material is an anisotropic, linear elastic solid, whose properties can be characterized by the elasticity tensor C ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3778@  (or an equivalent matrix) as discussed in Chapter 3.

 

To simplify calculations, we shall assume that (i) The solid is free of body forces; (ii) thermal strains can be neglected.   Under these conditions the general equations of elasticity listed in Section 5.1.2 reduce to

C ijkl 2 u k x i x l =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaalaadoeakm aaBaaajeaWbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGcdaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaam 4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa eyOaIyRaamiEamaaBaaaleaacaWGSbaabeaaaaqcaaSaeyypa0Jcca aIWaaaaa@4978@

subject to the usual boundary conditions.  In subsequent discussions, it will be convenient to write the  equilibrium equations in matrix form as

[ x 1 0 0 x 2 x 3 0 0 x 2 0 x 1 0 x 3 0 0 x 3 0 x 1 x 2 ][ c 11 c 12 c 13 c 14 c 15 c 16 c 12 c 22 c 23 c 24 c 25 c 26 c 13 c 23 c 33 c 34 c 35 c 36 c 14 c 24 c 34 c 44 c 45 c 46 c 15 c 25 c 35 c 45 c 55 c 56 c 16 c 26 c 36 c 46 c 56 c 66 ][ u 1 / x 1 u 2 / x 2 u 3 / x 3 u 2 / x 3 + u 3 / x 2 u 1 / x 3 + u 3 / x 1 u 1 / x 2 + u 2 / x 1 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqadyaaaaqaamaala aabaGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaa aaaakeaacaaIWaaabaGaaGimaaqaamaalaaabaGaeyOaIylabaGaey OaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaaGcba GaaGimaaqaaiaaicdaaeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaGaaGimaaqaamaalaaaba GaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaa keaacaaIWaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaS baaSqaaiaaiodaaeqaaaaaaOqaaiaaicdaaeaacaaIWaaabaWaaSaa aeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaa aaaOqaaiaaicdaaeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIha daWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGHciITaeaacq GHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaaaakiaawUfacaGL DbaadaWadaqaauaabeqagyaaaaaabaGaam4yamaaBaaaleaacaaIXa GaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaa aOqaaiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4yam aaBaaaleaacaaIXaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaa igdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaiAdaae qaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWG JbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadogadaWgaaWcba GaaGOmaiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaGin aaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI1aaabeaaaOqaai aadogadaWgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGaam4yamaaBaaa leaacaaIXaGaaG4maaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdaca aIZaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiodaaeqaaaGc baGaam4yamaaBaaaleaacaaIZaGaaGinaaqabaaakeaacaWGJbWaaS baaSqaaiaaiodacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4m aiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGinaaqaba aakeaacaWGJbWaaSbaaSqaaiaaikdacaaI0aaabeaaaOqaaiaadoga daWgaaWcbaGaaG4maiaaisdaaeqaaaGcbaGaam4yamaaBaaaleaaca aI0aGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaisdacaaI1aaa beaaaOqaaiaadogadaWgaaWcbaGaaGinaiaaiAdaaeqaaaGcbaGaam 4yamaaBaaaleaacaaIXaGaaGynaaqabaaakeaacaWGJbWaaSbaaSqa aiaaikdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiw daaeqaaaGcbaGaam4yamaaBaaaleaacaaI0aGaaGynaaqabaaakeaa caWGJbWaaSbaaSqaaiaaiwdacaaI1aaabeaaaOqaaiaadogadaWgaa WcbaGaaGynaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGa aGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI2aaabeaaaO qaaiaadogadaWgaaWcbaGaaG4maiaaiAdaaeqaaaGcbaGaam4yamaa BaaaleaacaaI0aGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaiw dacaaI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaGOnaiaaiAdaaeqa aaaaaOGaay5waiaaw2faamaadmaabaqbaeqabyqaaaaabaGaeyOaIy RaamyDamaaBaaaleaacaaIXaaabeaakiaac+cacqGHciITcaWG4bWa aSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamyDamaaBaaaleaaca aIYaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaakiaac+cacq GHciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamyD amaaBaaaleaacaaIYaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaaI Zaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaa GcbaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabeaakiaac+cacqGH ciITcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeyOaIyRaam yDamaaBaaaleaacaaIZaaabeaakiaac+cacqGHciITcaWG4bWaaSba aSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaaIXa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGa ey4kaSIaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaakiaac+cacq GHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaOGaay5waiaaw2fa aiabg2da9iaaicdaaaa@0ECD@

 

 

Conditions necessary for strict plane strain deformation of anisotropic solids.  For Plane strain deformations the displacement field has the form u= u 1 ( x 1 , x 2 ) e 1 + u 2 ( x 1 , x 2 ) e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaamyDamaaBaaale aacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaCyzamaaBa aaleaacaaIXaaabeaakiabgUcaRiaadwhadaWgaaWcbaGaaGOmaaqa baGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4b WaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaGOm aaqabaaaaa@4904@ . Under these conditions the equilibrium equations reduce to

c 11 2 u 1 x 1 2 + c 66 2 u 1 x 2 2 +2 c 16 2 u 1 x 1 x 2 + c 16 2 u 2 x 1 2 + c 26 2 u 2 x 2 2 +( c 12 + c 66 ) 2 u 2 x 1 x 2 =0 c 16 2 u 1 x 1 2 + c 26 2 u 1 x 2 2 +( c 66 + c 12 ) 2 u 1 x 1 x 2 + c 66 2 u 2 x 1 2 + c 22 2 u 2 x 2 2 +2 c 26 2 u 2 x 1 x 2 =0 c 15 2 u 1 x 1 2 + c 46 2 u 1 x 2 2 +( c 56 + c 14 ) 2 u 1 x 1 x 2 + c 56 2 u 2 x 1 2 + c 24 2 u 2 x 2 2 +( c 25 + c 46 ) 2 u 2 x 1 x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadogadaWgaaWcbaGaaGymai aaigdaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaDa aaleaacaaIXaaabaGaaGOmaaaaaaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaiAdacaaI2aaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaa dIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaey4kaSIaaGOmai aadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaOWaaSaaaeaacqGHciIT daahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaakiabgkGi2kaa dIhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSIaam4yamaaBaaale aacaaIXaGaaGOnaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaadwhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITca WG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRiaadoga daWgaaWcbaGaaGOmaiaaiAdaaeqaaOWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGa eyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccqGHRa WkcaGGOaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWk caWGJbWaaSbaaSqaaiaaiAdacaaI2aaabeaakiaacMcadaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGOm aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey OaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpcaaIWaaa baGaam4yamaaBaaaleaacaaIXaGaaGOnaaqabaGcdaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqa baaakeaacqGHciITcaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaa aakiabgUcaRiaadogadaWgaaWcbaGaaGOmaiaaiAdaaeqaaOWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaai aaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGa aGOmaaaaaaGccqGHRaWkcaGGOaGaam4yamaaBaaaleaacaaI2aGaaG OnaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaa kiaacMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadw hadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaa GccqGHRaWkcaWGJbWaaSbaaSqaaiaaiAdacaaI2aaabeaakmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaaca aIYaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaiaa ikdaaaaaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaGaaGOmaaqaba GcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWg aaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaik daaeaacaaIYaaaaaaakiabgUcaRiaaikdacaWGJbWaaSbaaSqaaiaa ikdacaaI2aaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYa aaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaaGymaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaaik daaeqaaaaakiabg2da9iaaicdaaeaacaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaaaaOGaey4kaSIaam4yamaaBaaale aacaaI0aGaaGOnaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITca WG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgUcaRiaacIca caWGJbWaaSbaaSqaaiaaiwdacaaI2aaabeaakiabgUcaRiaadogada WgaaWcbaGaaGymaiaaisdaaeqaaOGaaiykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG 4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgUcaRiaadogadaWgaaWcba GaaGynaiaaiAdaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaam iEamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaikdacaaI0aaabeaakmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiab gkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaey4kaS IaaiikaiaadogadaWgaaWcbaGaaGOmaiaaiwdaaeqaaOGaey4kaSIa am4yamaaBaaaleaacaaI0aGaaGOnaaqabaGccaGGPaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaikda aeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaakiabgk Gi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaeyypa0JaaGimaaaa aa@2FA0@

In this case, u αβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiabeg7aHjabek 7aIbqabaaaaa@372C@  can be chosen to satisfy two, but not all three, of the three equations.  The elastic constants must satisfy c 11 >0, c 22 >0, c 66 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaIXa aabeaakiabg6da+iaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGJbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabg6da+i aaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGJbWa aSbaaSqaaiaaiAdacaaI2aaabeaakiabg6da+iaaicdaaaa@50A2@ .  Consequently, the third equation can only be satisfied by setting

c 15 = c 46 = c 14 = c 56 = c 24 = c 25 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaI1a aabeaakiabg2da9iaadogadaWgaaWcbaGaaGinaiaaiAdaaeqaaOGa eyypa0Jaam4yamaaBaaaleaacaaIXaGaaGinaaqabaGccqGH9aqpca WGJbWaaSbaaSqaaiaaiwdacaaI2aaabeaakiabg2da9iaadogadaWg aaWcbaGaaGOmaiaaisdaaeqaaOGaeyypa0Jaam4yamaaBaaaleaaca aIYaGaaGynaaqabaGccqGH9aqpcaaIWaaaaa@493D@

Strict plane deformations therefore only exist in a material with elastic constants and orientation satisfying

[ c 11 c 12 c 13 0 0 c 16 c 12 c 22 c 23 0 0 c 26 c 13 c 23 c 33 c 34 c 35 c 36 0 0 c 34 c 44 c 45 0 0 0 c 35 c 45 c 55 0 c 16 c 26 c 36 0 0 c 66 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqagyaaaaaabaGaam 4yamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaio daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaWGJbWaaSbaaSqaaiaa igdacaaI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaikdaae qaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaWG JbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaaicdaaeaacaaIWa aabaGaam4yamaaBaaaleaacaaIYaGaaGOnaaqabaaakeaacaWGJbWa aSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaadogadaWgaaWcbaGaaG OmaiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIZaGaaG4maaqa baaakeaacaWGJbWaaSbaaSqaaiaaiodacaaI0aaabeaaaOqaaiaado gadaWgaaWcbaGaaG4maiaaiwdaaeqaaaGcbaGaam4yamaaBaaaleaa caaIZaGaaGOnaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaadogada WgaaWcbaGaaG4maiaaisdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI 0aGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaisdacaaI1aaabe aaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadogadaWgaaWc baGaaG4maiaaiwdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI0aGaaG ynaaqabaaakeaacaWGJbWaaSbaaSqaaiaaiwdacaaI1aaabeaaaOqa aiaaicdaaeaacaWGJbWaaSbaaSqaaiaaigdacaaI2aaabeaaaOqaai aadogadaWgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGaam4yamaaBaaa leaacaaIZaGaaGOnaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaado gadaWgaaWcbaGaaGOnaiaaiAdaaeqaaaaaaOGaay5waiaaw2faaaaa @7BFA@

The most common class of crystals MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  cubic materials MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  satisfies these conditions for appropriate orientations. 

 

Generalized plane strain deformations.  A generalized plane strain displacement field can exist in any general anisotropic crystal.  In this case the displacement field has the form

u= u 1 ( x 1 , x 2 ) e 1 + u 2 ( x 1 , x 2 ) e 2 + u 3 ( x 1 , x 2 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaamyDamaaBaaale aacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaCyzamaaBa aaleaacaaIXaaabeaakiabgUcaRiaadwhadaWgaaWcbaGaaGOmaaqa baGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4b WaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacMcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@539A@

i.e. the displacement is independent of position along the length of the cylindrical solid, but points may move out of their original plane when the solid is loaded.

 

 

 

5.5.2 Stroh representation for fields in anisotropic solids

 

The Stroh solution is a compact, complex variable, representation for generalized plane strain solutions to elastically anisotropic solids.  To write the solution, we need to define several new quantities:

1.      We define three new 3x3 matrices of elastic constants, as follows

Q=[ c 11 c 16 c 15 c 16 c 66 c 56 c 15 c 56 c 55 ]R=[ c 16 c 12 c 14 c 66 c 26 c 46 c 56 c 25 c 45 ]T=[ c 66 c 26 c 46 c 26 c 22 c 24 c 46 c 24 c 44 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaiabg2 da9maadmaabaqbaeqabmWaaaqaaiaadogadaWgaaWcbaGaaGymaiaa igdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOnaaqabaaake aacaWGJbWaaSbaaSqaaiaaigdacaaI1aaabeaaaOqaaiaadogadaWg aaWcbaGaaGymaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI2a GaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaiwdacaaI2aaabeaa aOqaaiaadogadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaam4yam aaBaaaleaacaaI1aGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaa iwdacaaI1aaabeaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaCOuaiabg2da9maadmaabaqb aeqabmWaaaqaaiaadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaaGcba Gaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGJbWaaSba aSqaaiaaigdacaaI0aaabeaaaOqaaiaadogadaWgaaWcbaGaaGOnai aaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaGOnaaqabaaa keaacaWGJbWaaSbaaSqaaiaaisdacaaI2aaabeaaaOqaaiaadogada WgaaWcbaGaaGynaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI YaGaaGynaaqabaaakeaacaWGJbWaaSbaaSqaaiaaisdacaaI1aaabe aaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaCiv aiabg2da9maadmaabaqbaeqabmWaaaqaaiaadogadaWgaaWcbaGaaG OnaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaGOnaaqa baaakeaacaWGJbWaaSbaaSqaaiaaisdacaaI2aaabeaaaOqaaiaado gadaWgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI0a aabeaaaOqaaiaadogadaWgaaWcbaGaaGinaiaaiAdaaeqaaaGcbaGa am4yamaaBaaaleaacaaIYaGaaGinaaqabaaakeaacaWGJbWaaSbaaS qaaiaaisdacaaI0aaabeaaaaaakiaawUfacaGLDbaaaaa@99F4@

2.      We introduce three complex valued eigenvalues p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@  (i=1…3) and eigenvectors a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3624@  which satisfy

[ Q+p(R+ R T )+ p 2 T ] a (i) =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WHrbGaey4kaSIaamiCaiaacIcacaWHsbGaey4kaSIaaCOuamaaCaaa leqabaGaamivaaaakiaacMcacqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaaCivaaGaay5waiaaw2faaiaahggadaahaaWcbeqaaiaa cIcacaWGPbGaaiykaaaakiabg2da9iaaicdaaaa@4971@

The eigenvalues can be computed by solving the equation

det[ Q+p(R+ R T )+ p 2 T ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bWaamWaaeaacaWHrbGaey4kaSIaamiCaiaacIcacaWHsbGa ey4kaSIaaCOuamaaCaaaleqabaGaamivaaaakiaacMcacqGHRaWkca WGWbWaaWbaaSqabeaacaaIYaaaaOGaaCivaaGaay5waiaaw2faaiab g2da9iaaicdaaaa@47CD@

Since Q, R and T are 3x3 matrices, this is a sextic equation for p, with 6 roots.  It is possible to show that for a material with physically admissible elastic constants p is always complex, so the 6 roots are pairs of complex conjugates (p, p ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamiCaiaacYcaceWGWbGbae bacaGGPaaaaa@36D1@ .  Each pair of complex roots has a corresponding pair of complex valued eigenvectors (a, a ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaaCyyaiaacYcaceWHHbGbae bacaGGPaaaaa@36BB@ ,   We define p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@  to be the roots with positive imaginary part, and a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3624@  to be the corresponding eigenvector.

3.      To calculate the stresses, it is helpful to introduce three further vectors b (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3625@  defined as

[ R T + p i T ] a (i) = b (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiaahkfadaahaaWcbeqaai aadsfaaaGccqGHRaWkcaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaaCiv aaGaay5waiaaw2faaiaahggadaahaaWcbeqaaiaacIcacaWGPbGaai ykaaaakiabg2da9iaahkgadaahaaWcbeqaaiaacIcacaWGPbGaaiyk aaaaaaa@4248@

4.      It is often convenient to collect the eigenvectors a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3624@  and b (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3625@  and the eigenvalues p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@  into matrices A,B,P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHbbGaaiilaiaahkeacaGGSaGaaC iuaaaa@3694@  as follows

A[ a 1 (1) a 1 (2) a 1 (3) a 2 (1) a 2 (2) a 2 (3) a 3 (1) a 3 (2) a 3 (3) ]B[ b 1 (1) b 1 (2) b 1 (3) b 2 (1) b 2 (2) b 2 (3) b 3 (1) b 3 (2) b 3 (3) ]P=[ p 1 0 0 0 p 2 0 0 0 p 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHbbGaeyyyIO7aamWaaeaafaqabe WadaaabaGaamyyamaaDaaaleaacaaIXaaabaGaaiikaiaaigdacaGG PaaaaaGcbaGaamyyamaaDaaaleaacaaIXaaabaGaaiikaiaaikdaca GGPaaaaaGcbaGaamyyamaaDaaaleaacaaIXaaabaGaaiikaiaaioda caGGPaaaaaGcbaGaamyyamaaDaaaleaacaaIYaaabaGaaiikaiaaig dacaGGPaaaaaGcbaGaamyyamaaDaaaleaacaaIYaaabaGaaiikaiaa ikdacaGGPaaaaaGcbaGaamyyamaaDaaaleaacaaIYaaabaGaaiikai aaiodacaGGPaaaaaGcbaGaamyyamaaDaaaleaacaaIZaaabaGaaiik aiaaigdacaGGPaaaaaGcbaGaamyyamaaDaaaleaacaaIZaaabaGaai ikaiaaikdacaGGPaaaaaGcbaGaamyyamaaDaaaleaacaaIZaaabaGa aiikaiaaiodacaGGPaaaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaCOqaiabggMi6oaadmaabaqbae qabmWaaaqaaiaadkgadaqhaaWcbaGaaGymaaqaaiaacIcacaaIXaGa aiykaaaaaOqaaiaadkgadaqhaaWcbaGaaGymaaqaaiaacIcacaaIYa GaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaGymaaqaaiaacIcacaaI ZaGaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaGOmaaqaaiaacIcaca aIXaGaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaGOmaaqaaiaacIca caaIYaGaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaGOmaaqaaiaacI cacaaIZaGaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaG4maaqaaiaa cIcacaaIXaGaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaG4maaqaai aacIcacaaIYaGaaiykaaaaaOqaaiaadkgadaqhaaWcbaGaaG4maaqa aiaacIcacaaIZaGaaiykaaaaaaaakiaawUfacaGLDbaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCiuaiabg2 da9maadmaabaqbaeqabmWaaaqaaiaadchadaWgaaWcbaGaaGymaaqa baaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGWbWaaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa amiCamaaBaaaleaacaaIZaaabeaaaaaakiaawUfacaGLDbaaaaa@BF07@

Note also that, as always, while the eigenvalues p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@  are uniquely defined for a particular set of elastic constants, the eigenvectors a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3624@  (and consequently the vectors b (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3625@  ) are not unique, since they may be multiplied by any arbitrary complex number and will remain eigenvectors.  It is helpful to normalize the eigenvectors so that the matrices A and B satisfy

B T A+ A T B=I B ¯ T A ¯ + A ¯ T B ¯ =I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHcbWaaWbaaSqabeaacaWGubaaaO GaaCyqaiabgUcaRiaahgeadaahaaWcbeqaaiaadsfaaaGccaWHcbGa eyypa0JaaCysaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCOqayaaraWaaWbaaSqa beaacaWGubaaaOGabCyqayaaraGaey4kaSIabCyqayaaraWaaWbaaS qabeaacaWGubaaaOGabCOqayaaraGaeyypa0JaaCysaaaa@5427@

where I is the identity matrix.

 

 

General representation of displacements: The displacement u= u 1 ( x 1 , x 2 ) e 1 + u 2 ( x 1 , x 2 ) e 2 + u 3 ( x 1 , x 2 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaamyDamaaBaaale aacaaIXaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaCyzamaaBa aaleaacaaIXaaabeaakiabgUcaRiaadwhadaWgaaWcbaGaaGOmaaqa baGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4b WaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiaacMcacaWHLbWaaSbaaSqaaiaaiodaaeqaaaaa@539A@  at a point ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa @38AC@  in the solid is

u( x 1 , x 2 )= i=1 3 a (i) f i ( z i )+ a ¯ (i) g i ( z ¯ i ) ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cMcacqGH9aqpdaaeWbqaaiaahggadaahaaWcbeqaaiaacIcacaWGPb GaaiykaaaakiaadAgadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOE amaaBaaaleaacaWGPbaabeaakiaacMcacqGHRaWkaSqaaiaadMgacq GH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aOGabCyyayaaraWaaWba aSqabeaacaGGOaGaamyAaiaacMcaaaGcdaqdaaqaaiaadEgadaWgaa WcbaGaamyAaaqabaGccaGGOaGabmOEayaaraWaaSbaaSqaaiaadMga aeqaaOGaaiykaaaaaaa@5372@

where p i , p ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO GaaiilaiqadchagaqeamaaBaaaleaacaWGPbaabeaaaaa@37B6@  are the three pairs of complex roots of the characteristic equation; a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaaaa@3624@  are the corresponding eigenvalues, z i = x 1 + p i x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadcha daWgaaWcbaGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@3CBD@  and f(z),g(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbGaaiikaiaadQhacaGGPaGaai ilaiaadEgacaGGOaGaamOEaiaacMcaaaa@39FD@  are analytic functions, which are analogous to the complex potentials Ω(z),ω( z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHPoWvcaGGOaGaamOEaiaacMcaca GGSaGaeqyYdC3aaeWaaeaacaWG6baacaGLOaGaayzkaaaaaa@3BB1@  for isotropic solids.

General representation of stresses: The stresses can be expressed in terms of a vector valued stress function φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHgpaaaa@3418@  (you can think of this as a generalized Airy function) defined as

φ= i=1 3 b (i) f i ( z i )+ b ¯ (i) g i ( z ¯ i ) ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHgpGaeyypa0ZaaabCaeaacaWHIb WaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaWGMbWaaSbaaSqa aiaadMgaaeqaaOGaaiikaiaadQhadaWgaaWcbaGaamyAaaqabaGcca GGPaGaey4kaScaleaacaWGPbGaeyypa0JaaGymaaqaaiaaiodaa0Ga eyyeIuoakiqahkgagaqeamaaCaaaleqabaGaaiikaiaadMgacaGGPa aaaOWaa0aaaeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiqa dQhagaqeamaaBaaaleaacaWGPbaabeaakiaacMcaaaaaaa@4DE2@

The stresses can be calculated from the three components of φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHgpaaaa@3418@  as

σ i1 = ϕ i x 2 σ i2 = ϕ i x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaaig daaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacqGHciITcqaHvpGzdaWg aaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaik daaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamyAaiaaik daaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcqaHvpGzdaWgaaWcbaGa amyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaa aaaaa@5BD5@

 

Combined matrix representation for displacement and stresses:  The solution for the displacement field and stress function can be expressed in the form

[ u φ ]=[ A A ¯ B B ¯ ][ f g ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWH1b aabaGaaCOXdaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqa ciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeaga qeaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaceaaaeaacaWHMbaa baGaaC4zaaaaaiaawUfacaGLDbaaaaa@4155@

where g [ g 1 ( z ¯ 1 ) ¯ , g 2 ( z ¯ 2 ) ¯ , g 3 ( z ¯ 3 ) ¯ ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHNbGaeyyyIORaai4wamaanaaaba Gaam4zamaaBaaaleaacaaIXaaabeaakiaacIcaceWG6bGbaebadaWg aaWcbaGaaGymaaqabaGccaGGPaaaaiaacYcadaqdaaqaaiaadEgada WgaaWcbaGaaGOmaaqabaGccaGGOaGabmOEayaaraWaaSbaaSqaaiaa ikdaaeqaaOGaaiykaaaacaGGSaWaa0aaaeaacaWGNbWaaSbaaSqaai aaiodaaeqaaOGaaiikaiqadQhagaqeamaaBaaaleaacaaIZaaabeaa kiaacMcaaaGaaiyxamaaCaaaleqabaGaamivaaaaaaa@4997@

 

Simpler representation for stresses and displacements: The solutions given above are the most general form of the generalized plane strain solution to the governing equations of linear elasticity.  However, not all the solutions of this form are of practical interest, since the displacements and stresses must be real valued.   In practice most solutions can be expressed in a much simpler the form as

u=2Re(Af)φ=2Re(Bf) t 2 =2Re(Bf') t 1 =2Re(BPf') MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaaGOmaiGackfaca GGLbGaaiikaiaahgeacaWHMbGaaiykaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahA8acqGH9aqpca aIYaGaciOuaiaacwgacaGGOaGaaCOqaiaahAgacaGGPaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC iDamaaBaaaleaacaaIYaaabeaakiabg2da9iaaikdaciGGsbGaaiyz aiaacIcacaWHcbGaaCOzaiaacEcacaGGPaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahshadaWgaaWcbaGaaGymaaqa baGccqGH9aqpcqGHsislcaaIYaGaciOuaiaacwgacaGGOaGaaCOqai aahcfacaWHMbGaai4jaiaacMcaaaa@7CF9@

where Re(z) denotes the real part of z,

t 1 =[ σ 11 σ 21 σ 31 ] t 2 =[ σ 12 σ 22 σ 32 ]f=[ f 1 ( z 1 ) f 2 ( z 2 ) f 3 ( z 3 ) ]f'=[ f 1 ( z 1 ) f 2 ( z 2 ) f 3 ( z 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH0bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0ZaamWaaeaafaqabeWabaaabaGaeq4Wdm3aaSbaaSqaaiaa igdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaGymaa qabaaakeaacqaHdpWCdaWgaaWcbaGaaG4maiaaigdaaeqaaaaaaOGa ay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaahshadaWgaaWcbaGaaGOmaaqaba GccqGH9aqpdaWadaqaauaabeqadeaaaeaacqaHdpWCdaWgaaWcbaGa aGymaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaGOmaaqabaaaaaGc caGLBbGaayzxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWHMbGaeyypa0ZaamWaaeaafaqabeWabaaabaGaamOzamaaBaaale aacaaIXaaabeaakiaacIcacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGa aiykaaqaaiaadAgadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamOEam aaBaaaleaacaaIYaaabeaakiaacMcaaeaacaWGMbWaaSbaaSqaaiaa iodaaeqaaOGaaiikaiaadQhadaWgaaWcbaGaaG4maaqabaGccaGGPa aaaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WHMbGaai4jaiabg2da9maadmaabaqbaeqabmqaaaqaaiqadAgagaqb amaaBaaaleaacaaIXaaabeaakiaacIcacaWG6bWaaSbaaSqaaiaaig daaeqaaOGaaiykaaqaaiqadAgagaqbamaaBaaaleaacaaIYaaabeaa kiaacIcacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaqaaiqadA gagaqbamaaBaaaleaacaaIZaaabeaakiaacIcacaWG6bWaaSbaaSqa aiaaiodaaeqaaOGaaiykaaaaaiaawUfacaGLDbaaaaa@BE68@

and f'(z)f/z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbGaai4jaiaacIcacaWG6bGaai ykaiabggMi6kabgkGi2kaadAgacaGGVaGaeyOaIyRaamOEaaaa@3DE6@ .

 

 

5.5.3 Demonstration that the Stroh representation satisfies the governing equations

 

Our first objective is to show that a displacement field of the form u i = a i f(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiabg2da9iaadggadaWgaaWcbaGaamyAaaqa baGccaWGMbGaaiikaiaadQhacaGGPaaaaa@3F6F@ , with z= x 1 +p x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabg2 da9iaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIYaaabeaaaaa@3DA6@ , and  (p, a i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaa aa@34C6@  ) are any one of the eigenvalues p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@  and eigenvectors a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaCa aaleqabaGaaiikaiaadMgacaGGPaaaaaaa@3A5C@  defined in the preceding section, satisfy the governing equations

C ijkl 2 u k x i x l =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaalaadoeakm aaBaaajeaWbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGcdaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaam 4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa eyOaIyRaamiEamaaBaaaleaacaWGSbaabeaaaaqcaaSaeyypa0Jcca aIWaaaaa@4978@

To see this,

1.      Note that   z/ x i = δ i1 +p δ i2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHciITcaWG6bGaai4laiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqaH0oazdaWgaaWc baGaamyAaiaaigdaaeqaaOGaey4kaSIaamiCaiabes7aKnaaBaaale aacaWGPbGaaGOmaaqabaaaaa@4341@ , where δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3674@  is the Kronecker delta.  Therefore, it follows that

u k x l = a k ( δ l1 +p δ l2 )f'(z) u k x lj = a k ( δ l1 +p δ l2 )( δ j1 +p δ j2 )f''(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWG1bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacaWGSbaabeaaaaGccqGH9aqpcaWGHbWaaSbaaSqaai aadUgaaeqaaOGaaiikaiabes7aKnaaBaaaleaacaWGSbGaaGymaaqa baGccqGHRaWkcaWGWbGaeqiTdq2aaSbaaSqaaiaadYgacaaIYaaabe aakiaacMcacaWGMbGaai4jaiaacIcacaWG6bGaaiykaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaam4Aaaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaadYgacaWGQbaabeaaaaGccqGH9a qpcaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiabes7aKnaaBaaa leaacaWGSbGaaGymaaqabaGccqGHRaWkcaWGWbGaeqiTdq2aaSbaaS qaaiaadYgacaaIYaaabeaakiaacMcacaGGOaGaeqiTdq2aaSbaaSqa aiaadQgacaaIXaaabeaakiabgUcaRiaadchacqaH0oazdaWgaaWcba GaamOAaiaaikdaaeqaaOGaaiykaiaadAgacaGGNaGaai4jaiaacIca caWG6bGaaiykaaaa@82FF@

2.      Substituting this result into the governing equation shows that

C ijkl ( δ l1 +p δ l2 )( δ j1 +p δ j2 ) a k f''(z)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaOGaaiikaiabes7aKnaaBaaaleaacaWGSbGa aGymaaqabaGccqGHRaWkcaWGWbGaeqiTdq2aaSbaaSqaaiaadYgaca aIYaaabeaakiaacMcacaGGOaGaeqiTdq2aaSbaaSqaaiaadQgacaaI XaaabeaakiabgUcaRiaadchacqaH0oazdaWgaaWcbaGaamOAaiaaik daaeqaaOGaaiykaiaadggadaWgaaWcbaGaam4AaaqabaGccaWGMbGa ai4jaiaacEcacaGGOaGaamOEaiaacMcacqGH9aqpcaaIWaaaaa@5461@

3.      This can be re-written as

( C i1k1 +p( C i1k2 + C i2k1 )+ p 2 C i2k2 ) a k =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGdbWaaSbaaSqaaiaadMgacaaIXaGaam4AaiaaigdaaeqaaOGaey4k aSIaamiCaiaacIcacaWGdbWaaSbaaSqaaiaadMgacaaIXaGaam4Aai aaikdaaeqaaOGaey4kaSIaam4qamaaBaaaleaacaWGPbGaaGOmaiaa dUgacaaIXaaabeaakiaacMcacqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaam4qamaaBaaaleaacaWGPbGaaGOmaiaadUgacaaIYaaa beaaaOGaayjkaiaawMcaaiaadggadaWgaaWcbaGaam4AaaqabaGccq GH9aqpcaaIWaaaaa@547B@

or in matrix form as

[ Q+p(R+ R T )+ p 2 T ]a=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WHrbGaey4kaSIaamiCaiaacIcacaWHsbGaey4kaSIaaCOuamaaCaaa leqabaGaamivaaaakiaacMcacqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaaCivaaGaay5waiaaw2faaiaahggacqGH9aqpcaaIWaaa aa@45EC@

where Q,R,T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHrbGaaiilaiaahkfacaGGSaGaaC ivaaaa@36B8@  are the matrices defined in Section 5.5.2.  The eigenvalue/eigenvector pairs (p, a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbaaaa@33B0@  ) satisfy this equation by definition, which shows that the governing equation is indeed satisfied.

 

Our next objective is to show that stresses can be computed from the formulas given in Section 5.5.2.  To see this,

1.      Note that the stresses can be obtained from the constitutive equation σ ij = C ijkl u k x l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaWGPbGaamOAaiaadUga caWGSbaabeaakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGRb aabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaaaaaa @4374@

2.      Recall that for each of the six characteristic solutions we may obtain displacements as u k / x l =( δ l1 +p δ l2 ) a k f'(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaam yDamaaBaaaleaacaWGRbaabeaakiaac+cacqGHciITcaWG4bWaaSba aSqaaiaadYgaaeqaaOGaeyypa0Jaaiikaiabes7aKnaaBaaaleaaca WGSbGaaGymaaqabaGccqGHRaWkcaWGWbGaeqiTdq2aaSbaaSqaaiaa dYgacaaIYaaabeaakiaacMcacaWGHbWaaSbaaSqaaiaadUgaaeqaaO GaamOzaiaacEcacaGGOaGaamOEaiaacMcaaaa@5000@ , so that

σ i1 =( C i1k1 +p C i1k2 ) a k f'(z)=[ Q ik +p R ik ] a k f'(z) σ i2 =( C i2k1 +p C i2k2 ) a k f'(z)=[ R ki +p T ik ] a k f'(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaWGPb GaaGymaaqabaGccqGH9aqpdaqadaqaaiaadoeadaWgaaWcbaGaamyA aiaaigdacaWGRbGaaGymaaqabaGccqGHRaWkcaWGWbGaam4qamaaBa aaleaacaWGPbGaaGymaiaadUgacaaIYaaabeaaaOGaayjkaiaawMca aiaadggadaWgaaWcbaGaam4AaaqabaGccaWGMbGaai4jaiaacIcaca WG6bGaaiykaiabg2da9iaacUfacaWGrbWaaSbaaSqaaiaadMgacaWG RbaabeaakiabgUcaRiaadchacaWGsbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaac2facaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamOzaiaa cEcacaGGOaGaamOEaiaacMcaaeaacqaHdpWCdaWgaaWcbaGaamyAai aaikdaaeqaaOGaeyypa0ZaaeWaaeaacaWGdbWaaSbaaSqaaiaadMga caaIYaGaam4AaiaaigdaaeqaaOGaey4kaSIaamiCaiaadoeadaWgaa WcbaGaamyAaiaaikdacaWGRbGaaGOmaaqabaaakiaawIcacaGLPaaa caWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamOzaiaacEcacaGGOaGaam OEaiaacMcacqGH9aqpcaGGBbGaamOuamaaBaaaleaacaWGRbGaamyA aaqabaGccqGHRaWkcaWGWbGaamivamaaBaaaleaacaWGPbGaam4Aaa qabaGccaGGDbGaamyyamaaBaaaleaacaWGRbaabeaakiaadAgacaGG NaGaaiikaiaadQhacaGGPaaaaaa@80F9@

where Q, R and T are the matrices defined in the preceding section.

3.      To simplify this result, define

[ R T +pT ]a=b[ Q+pR ]a=c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiaahkfadaahaaWcbeqaai aadsfaaaGccqGHRaWkcaWGWbGaaCivaaGaay5waiaaw2faaiaahgga cqGH9aqpcaWHIbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWadaqaaiaahgfacqGHRaWkcaWGWbGaaCOuaaGa ay5waiaaw2faaiaahggacqGH9aqpcaWHJbaaaa@50E4@

and note that the governing equations require that

[ Q+p(R+ R T )+ p 2 T ]a=c+pb=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WHrbGaey4kaSIaamiCaiaacIcacaWHsbGaey4kaSIaaCOuamaaCaaa leqabaGaamivaaaakiaacMcacqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaaCivaaGaay5waiaaw2faaiaahggacqGH9aqpcaWHJbGa ey4kaSIaamiCaiaahkgacqGH9aqpcaaIWaaaaa@4BA7@

4.      Combining the results of (2) and (3) shows that stresses can be computed from

σ i1 =p b i f'(z) σ i2 = b i f'(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaaig daaeqaaOGaeyypa0JaeyOeI0IaamiCaiaadkgadaWgaaWcbaGaamyA aaqabaGccaWGMbGaai4jaiaacIcacaWG6bGaaiykaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm 3aaSbaaSqaaiaadMgacaaIYaaabeaakiabg2da9iaadkgadaWgaaWc baGaamyAaaqabaGccaWGMbGaai4jaiaacIcacaWG6bGaaiykaaaa@6426@

5.      Finally, recall that the stress function φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHgpaaaa@3418@  has components ϕ i = b i f(z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzdaWgaaWcbaGaamyAaaqaba GccqGH9aqpcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOzaiaacIca caWG6bGaaiykaaaa@3C06@ , and z/ x i = δ i1 +p δ i2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHciITcaWG6bGaai4laiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqaH0oazdaWgaaWc baGaamyAaiaaigdaaeqaaOGaey4kaSIaamiCaiabes7aKnaaBaaale aacaWGPbGaaGOmaaqabaaaaa@4341@ .  Consequently, the stresses are related to the stress function by σ i1 = ϕ i / x 2 σ i2 = ϕ i / x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaaig daaeqaaOGaeyypa0JaeyOeI0IaeyOaIyRaeqy1dy2aaSbaaSqaaiaa dMgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadMgacaaIYaaabeaaki abg2da9iabgkGi2kabew9aMnaaBaaaleaacaWGPbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@5D1B@  as required.

 

 

 

5.5.4 Stroh eigenvalues and anisotropy matrices for cubic materials

 

Since the eigenvalues p for a general anisotropic material involve the solution to a sextic equation, an explicit general solution cannot be found.  Even monoclinic materials (which have a single symmetry plane) give solutions that are so cumbersome that many symbolic manipulation programs cannot handle them.  The solution for cubic materials is manageable, as long as one of the coordinate axes is parallel to the x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaiodaaeqaaa aa@34AC@  direction.  If the cube axes coincide with the coordinate directions, the elasticity matrix reduces to

[ c 11 c 12 c 12 0 0 0 c 12 c 11 c 12 0 0 0 c 12 c 12 c 11 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 44 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqagyaaaaaabaGaam 4yamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaik daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGJbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaikdaaeqa aaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4yamaaBaaale aacaaIXaGaaGOmaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaI YaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaGaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaakeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaaaOqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaadogadaWgaaWcbaGaaGinaiaaisdaaeqaaaaaaOGaay5wai aaw2faaaaa@6568@

whence

Q=[ c 11 0 0 0 c 44 0 0 0 c 44 ]R=[ 0 c 12 0 c 44 0 0 0 0 0 ]T=[ c 44 0 0 0 c 11 0 0 0 c 44 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyuaiabg2 da9maadmaabaqbaeqabmWaaaqaaiaadogadaWgaaWcbaGaaGymaiaa igdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4yam aaBaaaleaacaaI0aGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaaaaaaki aawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaCOuaiabg2da9maadmaabaqbaeqabmWaaaqaaiaaicdaae aacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaaicdaaeaa caWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaaaOqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaaw2fa aiaaykW7caaMc8UaaGPaVlaaykW7caWHubGaeyypa0ZaamWaaeaafa qabeWadaaabaGaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaakeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGJbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa dogadaWgaaWcbaGaaGinaiaaisdaaeqaaaaaaOGaay5waiaaw2faaa aa@7643@

The characteristic equation therefore has the form

det[ c 11 + p 2 c 44 p( c 12 + c 44 ) 0 p( c 12 + c 44 ) c 44 + c 11 p 2 0 0 0 c 44 (1+ p 2 ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bWaamWaaeaafaqabeWadaaabaGaam4yamaaBaaaleaacaaI XaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO Gaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaakeaacaWGWbWaaeWa aeaacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgUcaRiaado gadaWgaaWcbaGaaGinaiaaisdaaeqaaaGccaGLOaGaayzkaaaabaGa aGimaaqaaiaadchadaqadaqaaiaadogadaWgaaWcbaGaaGymaiaaik daaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaa kiaawIcacaGLPaaaaeaacaWGJbWaaSbaaSqaaiaaisdacaaI0aaabe aakiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamiC amaaCaaaleqabaGaaGOmaaaaaOqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaadogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaaiikaiaa igdacqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaaaai aawUfacaGLDbaacaaMc8Uaeyypa0JaaGimaaaa@6A8B@

giving

(1+ p 2 )( p 4 +η p 2 +1)=0η= c 11 2 c 12 2 2 c 12 c 44 c 11 c 44 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaaGymaiabgUcaRiaadchada ahaaWcbeqaaiaaikdaaaGccaGGPaGaaiikaiaadchadaahaaWcbeqa aiaaisdaaaGccqGHRaWkcqaH3oaAcaWGWbWaaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGymaiaacMcacqGH9aqpcaaIWaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeE7aOjabg2da9maalaaabaGaam4yamaa DaaaleaacaaIXaGaaGymaaqaaiaaikdaaaGccqGHsislcaWGJbWaa0 baaSqaaiaaigdacaaIYaaabaGaaGOmaaaakiabgkHiTiaaikdacaWG JbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadogadaWgaaWcbaGaaG inaiaaisdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGymaaqa baGccaWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaaaaaaaa@6D17@

whence

p 1 = 1 2 ( 2η +i 2+η ) p 2 = 1 2 ( 2η +i 2+η ) p 3 =i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaakaaa baGaaGOmaiabgkHiTiabeE7aObWcbeaakiabgUcaRiaadMgadaGcaa qaaiaaikdacqGHRaWkcqaH3oaAaSqabaaakiaawIcacaGLPaaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaadchadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaig daaeaacaaIYaaaamaabmaabaGaeyOeI0YaaOaaaeaacaaIYaGaeyOe I0Iaeq4TdGgaleqaaOGaey4kaSIaamyAamaakaaabaGaaGOmaiabgU caRiabeE7aObWcbeaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamiCamaaBaaaleaacaaIZaaabeaakiabg2da9iaadMgaaaa@802E@

For η>2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH3oaAcqGH+aGpcaaIYaaaaa@3636@  the eigenvalues are purely imaginary.  The special case η=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH3oaAcqGH9aqpcaaIYaaaaa@3634@  corresponds to an isotropic material.

 

The matrices A and B can be expressed as

A=[ p 1 ( c 12 + c 44 )/ β 1 p 2 ( c 12 + c 44 )/ β 2 0 ( c 11 + p 1 2 c 44 )/ β 1 ( c 11 + p 2 2 c 44 )/ β 2 0 0 0 (1i)/2 ] β i = 2 c 11 p i ( ( c 11 + p i 2 c 44 ) 2 ( c 12 + c 44 ) 2 ) B=[ c 44 ( c 11 c 12 p 1 2 )/ β 1 c 44 ( c 11 c 12 p 2 2 )/ β 2 0 p 1 ( c 11 c 44 p 1 2 + c 11 2 c 12 2 c 12 c 44 )/ β 1 p 2 ( c 11 c 44 p 2 2 + c 11 2 c 12 2 c 12 c 44 )/ β 2 0 0 0 (1+i)/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahgeacqGH9aqpdaWadaqaau aabeqadmaaaeaacqGHsislcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGa aiikaiaadogadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaey4kaSIaam 4yamaaBaaaleaacaaI0aGaaGinaaqabaGccaGGPaGaai4laiabek7a InaaBaaaleaacaaIXaaabeaaaOqaaiabgkHiTiaadchadaWgaaWcba GaaGOmaaqabaGccaGGOaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqa baGccqGHRaWkcaWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaakiaacM cacaGGVaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqa aiaacIcacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRi aadchadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGJbWaaSbaaSqa aiaaisdacaaI0aaabeaakiaacMcacaGGVaGaeqOSdi2aaSbaaSqaai aaigdaaeqaaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaiaaigda aeqaaOGaey4kaSIaamiCamaaDaaaleaacaaIYaaabaGaaGOmaaaaki aadogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaaiykaiaac+cacqaH YoGydaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaGGOaGaaGymaiabgkHiTiaadMgacaGGPaGaai4laiaa ikdaaaaacaGLBbGaayzxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Ebaeqabiqaaaqaaiabek7aInaaBaaaleaacaWGPbaabeaakiabg2da 9maakaaabaGaaGOmaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaO GaamiCamaaBaaaleaacaWGPbaabeaakmaabmaabaGaaiikaiaadoga daWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaamiCamaaDaaale aacaWGPbaabaGaaGOmaaaakiaadogadaWgaaWcbaGaaGinaiaaisda aeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaacIcaca WGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgUcaRiaadogadaWg aaWcbaGaaGinaiaaisdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaa aaaOGaayjkaiaawMcaaaWcbeaaaOqaaaaaaeaacaWHcbGaeyypa0Za amWaaeaafaqabeWadaaabaGaam4yamaaBaaaleaacaaI0aGaaGinaa qabaGccaGGOaGaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccqGH sislcaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadchadaqhaa WcbaGaaGymaaqaaiaaikdaaaGccaGGPaGaai4laiabek7aInaaBaaa leaacaaIXaaabeaaaOqaaiaadogadaWgaaWcbaGaaGinaiaaisdaae qaaOGaaiikaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOe I0Iaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGWbWaa0baaS qaaiaaikdaaeaacaaIYaaaaOGaaiykaiaac+cacqaHYoGydaWgaaWc baGaaGOmaaqabaaakeaacaaIWaaabaGaamiCamaaBaaaleaacaaIXa aabeaakiaacIcacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaa dogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaamiCamaaDaaaleaaca aIXaaabaGaaGOmaaaakiabgUcaRiaadogadaqhaaWcbaGaaGymaiaa igdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaDaaaleaacaaIXaGaaG OmaaqaaiaaikdaaaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdacaaI YaaabeaakiaadogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaaiykai aac+cacqaHYoGydaWgaaWcbaGaaGymaaqabaaakeaacaWGWbWaaSba aSqaaiaaikdaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaiaaig daaeqaaOGaam4yamaaBaaaleaacaaI0aGaaGinaaqabaGccaWGWbWa a0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaam4yamaaDaaale aacaaIXaGaaGymaaqaaiaaikdaaaGccqGHsislcaWGJbWaa0baaSqa aiaaigdacaaIYaaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWcba GaaGymaiaaikdaaeqaaOGaam4yamaaBaaaleaacaaI0aGaaGinaaqa baGccaGGPaGaai4laiabek7aInaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaacIcacaaIXaGaey4kaSIa amyAaiaacMcacaGGVaGaaGOmaaaaaiaawUfacaGLDbaaaaaa@1A29@

 

 

 

5.5.5 Degenerate Materials

 

There are some materials for which the general procedure outlined in the preceding sections breaks down.   We can illustrate this by attempting to apply it to an isotropic material.  In this case we find that p 1 = p 2 = p 3 =i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaamiCamaaBaaaleaacaaIYaaabeaakiabg2da9iaadcha daWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGPbaaaa@3C7B@ , and there only two independent eigenvectors a associated with the repeated eigenvalue p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@ . In addition, if you attempt to substitute material constants representing an isotropic material into the formulas for A and B given in the preceding section you will find that the terms in the matrices are infinite.

 

The physical significance of this degeneracy is not known.  Although isotropic materials are degenerate, isotropy does not appear to be a necessary condition for degeneracy, as fully anisotropic materials may exhibit the same degeneracy for appropriate values of their stiffnesses.

 

S. T. Choi, H. Shin and Y. Y. Earmme, Int J. Solids Structures 40, (6) 1411-1431 (2003) have found a way to re-write the complex variable formulation for isotropic materials into a form that is identical in structure to the Stroh formulation.  This approach is very useful, because it enables us to solve problems involving interfaces between isotropic and anisotropic materials, but it does not provide any fundamental insight into the cause of degeneracy, nor does it provide a general fix for the problem.

 

In many practical situations the problems associated with degeneracy can be avoided by re-writing the solution in terms of special tensors (to be defined below) which can be computed directly from the elastic constants, without needing to determine A and B.

 

 

 

5.5.6 Fundamental Elasticity Matrix

 

The vector [ a (i) , b (i) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGaaCyyamaaCaaaleqabaGaai ikaiaadMgacaGGPaaaaOGaaiilaiaahkgadaahaaWcbeqaaiaacIca caWGPbGaaiykaaaakiaac2faaaa@3C07@  and corresponding eigenvector p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@34D5@  can be shown to be the right eigenvectors and eigenvalues of a real, unsymmetric matrix known as the fundamental elasticity matrix, defined as

N=[ N 1 N 2 N 3 N 1 T ] N 1 = T 1 R T N 2 = T 1 N 3 =R T 1 R T Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHobGaeyypa0ZaamWaaeaafaqabe GacaaabaGaaCOtamaaBaaaleaacaaIXaaabeaaaOqaaiaah6eadaWg aaWcbaGaaGOmaaqabaaakeaacaWHobWaaSbaaSqaaiaaiodaaeqaaa GcbaGaaCOtamaaDaaaleaacaaIXaaabaGaamivaaaaaaaakiaawUfa caGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCOtamaaBaaaleaacaaIXaaabeaakiab g2da9iabgkHiTiaahsfadaahaaWcbeqaaiabgkHiTiaaigdaaaGcca WHsbWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWHobWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaCivam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaCOtamaaBaaaleaacaaIZaaabeaakiabg2da9iaahk facaWHubWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCOuamaaCaaa leqabaGaamivaaaakiabgkHiTiaahgfaaaa@7584@

where the matrices Q,R,T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHrbGaaiilaiaahkfacaGGSaGaaC ivaaaa@36B8@  are the elasticity matrices defined in Section 5.5.2.  Similarly, [ b (i) , a (i) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGaaCOyamaaCaaaleqabaGaai ikaiaadMgacaGGPaaaaOGaaiilaiaahggadaahaaWcbeqaaiaacIca caWGPbGaaiykaaaakiaac2faaaa@3C07@  can be shown to be the left eigenvector of N.

 

To see this, note that the expressions relating vectors a and b

[ R T +pT ]a=b[ Q+pR ]a=pb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiaahkfadaahaaWcbeqaai aadsfaaaGccqGHRaWkcaWGWbGaaCivaaGaay5waiaaw2faaiaahgga cqGH9aqpcaWHIbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWadaqaaiaahgfacqGHRaWkcaWGWbGaaCOuaaGa ay5waiaaw2faaiaahggacqGH9aqpcqGHsislcaWGWbGaaCOyaaaa@52C5@

can be expressed as

[ Q 0 R T I ][ a b ]=p[ R I T 0 ][ a b ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacqGHsi slcaWHrbaabaGaaCimaaqaaiabgkHiTiaahkfadaahaaWcbeqaaiaa dsfaaaaakeaacaWHjbaaaaGaay5waiaaw2faamaadmaabaqbaeqabi qaaaqaaiaahggaaeaacaWHIbaaaaGaay5waiaaw2faaiabg2da9iaa dchadaWadaqaauaabeqaciaaaeaacaWHsbaabaGaaCysaaqaaiaahs faaeaacaWHWaaaaaGaay5waiaaw2faamaadmaabaqbaeqabiqaaaqa aiaahggaaeaacaWHIbaaaaGaay5waiaaw2faaaaa@49DA@

Since T is positive definite and symmetric its inverse can always be computed.  Therefore we may write

[ 0 T 1 I R T 1 ][ R I T 0 ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHWa aabaGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaahMea aeaacqGHsislcaWHsbGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaa aaaaaakiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaWHsbaa baGaaCysaaqaaiaahsfaaeaacaWHWaaaaaGaay5waiaaw2faaiabg2 da9maadmaabaqbaeqabiGaaaqaaiaahMeaaeaacaWHWaaabaGaaCim aaqaaiaahMeaaaaacaGLBbGaayzxaaaaaa@48F6@

and therefore

[ 0 T 1 I R T 1 ][ Q 0 R T I ][ a b ]=p[ a b ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHWa aabaGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaahMea aeaacqGHsislcaWHsbGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaa aaaaaakiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaacqGHsisl caWHrbaabaGaaCimaaqaaiabgkHiTiaahkfadaahaaWcbeqaaiaads faaaaakeaacaWHjbaaaaGaay5waiaaw2faamaadmaabaqbaeqabiqa aaqaaiaahggaaeaacaWHIbaaaaGaay5waiaaw2faaiabg2da9iaadc hadaWadaqaauaabeqaceaaaeaacaWHHbaabaGaaCOyaaaaaiaawUfa caGLDbaaaaa@4F62@

This is an eigenvalue equation, and multiplying out the matrices gives the required result.

 

The second identity may be proved in exactly the same way.   Note that

[ b a ][ 0 I Q R ]=p[ b a ][ I 0 R T T ] [ I 0 R T T ][ I 0 T 1 R T T 1 ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaadmaabaqbaeqabeGaaaqaai aahkgaaeaacaWHHbaaaaGaay5waiaaw2faamaadmaabaqbaeqabiGa aaqaaiaahcdaaeaacaWHjbaabaGaeyOeI0IaaCyuaaqaaiabgkHiTi aahkfaaaaacaGLBbGaayzxaaGaeyypa0JaamiCamaadmaabaqbaeqa beGaaaqaaiaahkgaaeaacaWHHbaaaaGaay5waiaaw2faamaadmaaba qbaeqabiGaaaqaaiaahMeaaeaacaWHWaaabaGaaCOuamaaCaaaleqa baGaamivaaaaaOqaaiaahsfaaaaacaGLBbGaayzxaaaabaGaaGPaVp aadmaabaqbaeqabiGaaaqaaiaahMeaaeaacaWHWaaabaGaaCOuamaa CaaaleqabaGaamivaaaaaOqaaiaahsfaaaaacaGLBbGaayzxaaWaam WaaeaafaqabeGacaaabaGaaCysaaqaaiaahcdaaeaacqGHsislcaWH ubWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCOuamaaCaaaleqaba GaamivaaaaaOqaaiaahsfadaahaaWcbeqaaiabgkHiTiaaigdaaaaa aaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGacaaabaGaaC ysaaqaaiaahcdaaeaacaWHWaaabaGaaCysaaaaaiaawUfacaGLDbaa aaaa@63BC@

so

[ b a ][ 0 I Q R ][ I 0 T 1 R T T 1 ]=p[ b a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqabiaaaeaacaWHIb aabaGaaCyyaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaa caWHWaaabaGaaCysaaqaaiabgkHiTiaahgfaaeaacqGHsislcaWHsb aaaaGaay5waiaaw2faamaadmaabaqbaeqabiGaaaqaaiaahMeaaeaa caWHWaaabaGaeyOeI0IaaCivamaaCaaaleqabaGaeyOeI0IaaGymaa aakiaahkfadaahaaWcbeqaaiaadsfaaaaakeaacaWHubWaaWbaaSqa beaacqGHsislcaaIXaaaaaaaaOGaay5waiaaw2faaiabg2da9iaadc hadaWadaqaauaabeqabiaaaeaacaWHIbaabaGaaCyyaaaaaiaawUfa caGLDbaaaaa@4F62@

again, giving the required answer.

 

For non-degenerate materials N has six distinct eigenvectors.  A matrix of this kind is called simple.  For some materials N has repeated eigenvalues, but still has six distinct eigenvectors.  A matrix of this kind is called semi-simple.  For degenerate materials N does not have six distinct eigenvectors.  A matrix of this kind is called non semi-simple.

 

 

 

5.5.7 Orthogonal properties of Stroh matrices A and B

 

The observation that [ a (i) , b (i) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGaaCyyamaaCaaaleqabaGaai ikaiaadMgacaGGPaaaaOGaaiilaiaahkgadaahaaWcbeqaaiaacIca caWGPbGaaiykaaaakiaac2faaaa@3C07@  and [ b (i) , a (i) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGaaCOyamaaCaaaleqabaGaai ikaiaadMgacaGGPaaaaOGaaiilaiaahggadaahaaWcbeqaaiaacIca caWGPbGaaiykaaaakiaac2faaaa@3C07@  are right and left eigenvectors of N has an important consequence.  If the eigenvalues are distinct (i.e. the material is not degenerate), the left and right eigenvectors of a matrix are orthogonal.  This implies that

[ b (i) , a (i) ][ a (j) b (j) ]=0ij [ b (i) , a (i) ][ a ¯ (j) b ¯ (j) ]=[ b ¯ (i) , a ¯ (i) ][ a (j) b (j) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaacUfacaWHIbWaaWbaaSqabe aacaGGOaGaamyAaiaacMcaaaGccaGGSaGaaCyyamaaCaaaleqabaGa aiikaiaadMgacaGGPaaaaOGaaiyxamaadmaabaqbaeqabiqaaaqaai aahggadaahaaWcbeqaaiaacIcacaWGQbGaaiykaaaaaOqaaiaahkga daahaaWcbeqaaiaacIcacaWGQbGaaiykaaaaaaaakiaawUfacaGLDb aacqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWGPbGaeyiyIKRaamOAaaqaaiaacUfacaWHIb WaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGSaGaaCyyamaa CaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiyxamaadmaabaqbae qabiqaaaqaaiqahggagaqeamaaCaaaleqabaGaaiikaiaadQgacaGG PaaaaaGcbaGabCOyayaaraWaaWbaaSqabeaacaGGOaGaamOAaiaacM caaaaaaaGccaGLBbGaayzxaaGaeyypa0Jaai4waiqahkgagaqeamaa CaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiilaiqahggagaqeam aaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiyxamaadmaabaqb aeqabiqaaaqaaiaahggadaahaaWcbeqaaiaacIcacaWGQbGaaiykaa aaaOqaaiaahkgadaahaaWcbeqaaiaacIcacaWGQbGaaiykaaaaaaaa kiaawUfacaGLDbaacqGH9aqpcaaIWaaaaaa@7DE8@

In addition. the vectors can always be normalized so that

[ b (i) , a (i) ][ a (i) b (i) ]=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGaaCOyamaaCaaaleqabaGaai ikaiaadMgacaGGPaaaaOGaaiilaiaahggadaahaaWcbeqaaiaacIca caWGPbGaaiykaaaakiaac2fadaWadaqaauaabeqaceaaaeaacaWHHb WaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaaakeaacaWHIbWaaWba aSqabeaacaGGOaGaamyAaiaacMcaaaaaaaGccaGLBbGaayzxaaGaey ypa0JaaGymaaaa@4698@

 

If this is done, we see that the matrices A and B must satisfy

[ B T A T B ¯ T A ¯ T ][ A A ¯ B B ¯ ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHcb WaaWbaaSqabeaacaWGubaaaaGcbaGaaCyqamaaCaaaleqabaGaamiv aaaaaOqaaiqahkeagaqeamaaCaaaleqabaGaamivaaaaaOqaaiqahg eagaqeamaaCaaaleqabaGaamivaaaaaaaakiaawUfacaGLDbaadaWa daqaauaabeqaciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaa qaaiqahkeagaqeaaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaa beqaciaaaeaacaWHjbaabaGaaCimaaqaaiaahcdaaeaacaWHjbaaaa Gaay5waiaaw2faaaaa@47DC@

Clearly the two matrices are inverses of each other, and therefore we also have that

[ A A ¯ B B ¯ ][ B T A T B ¯ T A ¯ T ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHbb aabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeagaqeaaaaaiaawUfa caGLDbaadaWadaqaauaabeqaciaaaeaacaWHcbWaaWbaaSqabeaaca WGubaaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaaOqaaiqahkea gaqeamaaCaaaleqabaGaamivaaaaaOqaaiqahgeagaqeamaaCaaale qabaGaamivaaaaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaa beqaciaaaeaacaWHjbaabaGaaCimaaqaaiaahcdaaeaacaWHjbaaaa Gaay5waiaaw2faaaaa@47DC@

These results give the following relations between A and B

B T A+ A T B= B ¯ T A ¯ + A ¯ T B ¯ =A B T + A ¯ B ¯ T =B A T + B ¯ A ¯ T =I B T A ¯ + A T B ¯ = B ¯ T A+ A ¯ T B=A A T + A ¯ A ¯ T =B B T + B ¯ B ¯ T =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahkeadaahaaWcbeqaaiaads faaaGccaWHbbGaey4kaSIaaCyqamaaCaaaleqabaGaamivaaaakiaa hkeacqGH9aqpceWHcbGbaebadaahaaWcbeqaaiaadsfaaaGcceWHbb GbaebacqGHRaWkceWHbbGbaebadaahaaWcbeqaaiaadsfaaaGcceWH cbGbaebacqGH9aqpcaWHbbGaaCOqamaaCaaaleqabaGaamivaaaaki abgUcaRiqahgeagaqeaiqahkeagaqeamaaCaaaleqabaGaamivaaaa kiabg2da9iaahkeacaWHbbWaaWbaaSqabeaacaWGubaaaOGaey4kaS IabCOqayaaraGabCyqayaaraWaaWbaaSqabeaacaWGubaaaOGaeyyp a0JaaCysaaqaaiaahkeadaahaaWcbeqaaiaadsfaaaGcceWHbbGbae bacqGHRaWkcaWHbbWaaWbaaSqabeaacaWGubaaaOGabCOqayaaraGa eyypa0JabCOqayaaraWaaWbaaSqabeaacaWGubaaaOGaaCyqaiabgU caRiqahgeagaqeamaaCaaaleqabaGaamivaaaakiaahkeacqGH9aqp caWHbbGaaCyqamaaCaaaleqabaGaamivaaaakiabgUcaRiqahgeaga qeaiqahgeagaqeamaaCaaaleqabaGaamivaaaakiabg2da9iaahkea caWHcbWaaWbaaSqabeaacaWGubaaaOGaey4kaSIabCOqayaaraGabC OqayaaraWaaWbaaSqabeaacaWGubaaaOGaeyypa0JaaCimaaaaaa@6F68@

 

 

 

5.5.8 Barnett-Lothe tensors and the Impedance Tensor.

 

In this section we define four important tensors that can be calculated from the Stroh matrices A and B.  Specifically, we introduce:

The Barnett-Lothe tensors S=i(2A B T I)H=2iA A T L=2iB B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHtbGaeyypa0JaamyAaiaacIcaca aIYaGaaCyqaiaahkeadaahaaWcbeqaaiaadsfaaaGccqGHsislcaWH jbGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaCisaiabg2da9iaaikdacaWGPbGaaCyqaiaahgeadaah aaWcbeqaaiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWHmbGaeyypa0JaeyOeI0IaaGOmaiaadMgacaWHcbGaaCOq amaaCaaaleqabaGaamivaaaaaaa@5EDC@

The Impedance Tensor with properties M=iB A 1 M 1 =iA B 1 B=iMA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbGaeyypa0JaeyOeI0IaamyAai aahkeacaWHbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHnbWaaW baaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaamyAaiaahgeacaWH cbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHcbGaeyypa0JaamyA aiaah2eacaWHbbaaaa@5F1D@  ( i= 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGPbGaeyypa0ZaaOaaaeaacqGHsi slcaaIXaaaleqaaaaa@367D@  )

The following relations between the Barnett-Lothe tensors and the impedance tensor are also useful

M=iB A 1 = H 1 +i H 1 S M 1 =iA B 1 = L 1 +iS L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbGaeyypa0JaeyOeI0IaamyAai aahkeacaWHbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0Ja aCisamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRiaadMgaca WHibWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaC4uaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCytamaaCaaaleqaba GaeyOeI0IaaGymaaaakiabg2da9iaadMgacaWHbbGaaCOqamaaCaaa leqabaGaeyOeI0IaaGymaaaakiabg2da9iaahYeadaahaaWcbeqaai abgkHiTiaaigdaaaGccqGHRaWkcaWGPbGaaC4uaiaahYeadaahaaWc beqaaiabgkHiTiaaigdaaaaaaa@77AD@

 

Many solutions can be expressed in terms of S, H and L directly, rather than in terms of A and B.  In addition, Barnett and Lothe devised a procedure for computing S, H and L without needing to calculate A and B (See Sect. 5.5.11).  Consequently, these tensors can be calculated even for degenerate materials.

 

As an example, for cubic materials, with coordinate axes aligned with coordinate directions,

  M=[ γ i c 44 ( c 11 c 12 ) c 11 + c 44 0 i c 44 ( c 11 c 12 ) c 11 + c 44 γ 0 0 0 1 ]γ= c 11 c 44 ( c 11 c 12 )( c 11 +2 c 44 + c 12 ) c 11 + c 44 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpdaWadaqaauaabeqadm aaaeaacqaHZoWzaeaadaWcaaqaaiabgkHiTiaadMgacaWGJbWaaSba aSqaaiaaisdacaaI0aaabeaakiaacIcacaWGJbWaaSbaaSqaaiaaig dacaaIXaaabeaakiabgkHiTiaadogadaWgaaWcbaGaaGymaiaaikda aeqaaOGaaiykaaqaaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaO Gaey4kaSIaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaaaaGcbaGa aGimaaqaamaalaaabaGaamyAaiaadogadaWgaaWcbaGaaGinaiaais daaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaOGa eyOeI0Iaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccaGGPaaaba Gaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaisdacaaI0aaabeaaaaaakeaacqaHZoWzaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlabeo7aNjabg2da9maalaaabaWaaOaa aeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadogadaWgaa WcbaGaaGinaiaaisdaaeqaaOGaaiikaiaadogadaWgaaWcbaGaaGym aiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaGaaGOmaa qabaGccaGGPaGaaiikaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqa aOGaey4kaSIaaGOmaiaadogadaWgaaWcbaGaaGinaiaaisdaaeqaaO Gaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccaGGPaaa leqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRa WkcaWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaaaaaaaa@91FE@

 

 

 

5.5.9 Useful properties of matrices in anisotropic elasticity

 

We collect below various useful algebraic relations between the various matrices that were introduced in the preceding sections.

 

By definition, a matrix M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbaaaa@339C@  satisfying M T = M ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbWaaWbaaSqabeaacaWGubaaaO Gaeyypa0JabCytayaaraaaaa@36A0@  is Hermitian.  A matrix satisfying M T = M ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbWaaWbaaSqabeaacaWGubaaaO Gaeyypa0JaeyOeI0IabCytayaaraaaaa@378D@  is skew-Hermitian.

 

·         B ¯ T A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHcbGbaebadaahaaWcbeqaaiaads faaaGccaWHbbaaaa@3583@  is skew Hermitian.  To see this, note that the orthogonality relations for A and B require that B ¯ T A+ A ¯ T B=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHcbGbaebadaahaaWcbeqaaiaads faaaGccaWHbbGaey4kaSIabCyqayaaraWaaWbaaSqabeaacaWGubaa aOGaaCOqaiabg2da9iaahcdaaaa@3AE1@

·         i B ¯ T A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGPbGabCOqayaaraWaaWbaaSqabe aacaWGubaaaOGaaCyqaaaa@3671@  is Hermitian.  This follows trivially from the preceding expression.

·         M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbaaaa@339C@  and M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbWaaWbaaSqabeaacqGHsislca aIXaaaaaaa@3571@  are both Hermitian. To see this, note M=B (i B ¯ T A) 1 B ¯ T M 1 =A (i A ¯ T B) 1 A ¯ T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbGaeyypa0JaaCOqaiaacIcacq GHsislcaWGPbGaaGPaVlqahkeagaqeamaaCaaaleqabaGaamivaaaa kiaahgeacaGGPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGabCOqay aaraWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaah2eadaahaaWcbeqaaiabgkHiTiaaig daaaGccqGH9aqpcaWHbbGaaiikaiaadMgacaaMc8UaaGPaVlqahgea gaqeamaaCaaaleqabaGaamivaaaakiaahkeacaGGPaWaaWbaaSqabe aacqGHsislcaaIXaaaaOGabCyqayaaraWaaWbaaSqabeaacaWGubaa aaaa@5BEE@  and use the preceding result.

·         The matrices i B 1 B ¯ i A 1 A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGPbGaaCOqamaaCaaaleqabaGaey OeI0IaaGymaaaakiqahkeagaqeaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaamyAaiaahgeadaahaa WcbeqaaiabgkHiTiaaigdaaaGcceWHbbGbaebaaaa@48FF@  are Hermitian.  To show the first expression, note that i B 1 B ¯ =i B T (B B T ) 1 B ¯ =2 B T L 1 B ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGPbGaaCOqamaaCaaaleqabaGaey OeI0IaaGymaaaakiqahkeagaqeaiabg2da9iaadMgacaWHcbWaaWba aSqabeaacaWGubaaaOGaaiikaiaahkeacaWHcbWaaWbaaSqabeaaca WGubaaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiqahkea gaqeaiabg2da9iaaikdacaWHcbWaaWbaaSqabeaacaWGubaaaOGaaC itamaaCaaaleqabaGaeyOeI0IaaGymaaaakiqahkeagaqeaaaa@4905@  and recall that L is real.  A similar technique shows the second.

·         i B 1 B ¯ i A 1 A ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGPbGaaCOqamaaCaaaleqabaGaey OeI0IaaGymaaaakiqahkeagaqeaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaamyAaiaahgeadaahaa WcbeqaaiabgkHiTiaaigdaaaGcceWHbbGbaebaaaa@48FF@  are both orthogonal matrices.  To see this for the first matrix, note that i B 1 B ¯ ( i B 1 B ¯ ) T = B 1 B ¯ B ¯ T B T = B 1 B B T B T =I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGPbGaaCOqamaaCaaaleqabaGaey OeI0IaaGymaaaakiqahkeagaqeamaabmaabaGaamyAaiaahkeadaah aaWcbeqaaiabgkHiTiaaigdaaaGcceWHcbGbaebaaiaawIcacaGLPa aadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaaMc8UaeyOeI0IaaCOq amaaCaaaleqabaGaeyOeI0IaaGymaaaakiqahkeagaqeaiqahkeaga qeamaaCaaaleqabaGaamivaaaakiaahkeadaahaaWcbeqaaiabgkHi TiaadsfaaaGccqGH9aqpcaWHcbWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaaCOqaiaahkeadaahaaWcbeqaaiaadsfaaaGccaWHcbWaaWba aSqabeaacqGHsislcaWGubaaaOGaeyypa0JaaCysaaaa@5511@ , where we have used the orthogonality properties of B.  A similar procedure shows the second result.

·         The Barnett-Lothe tensors are real (i.e. they have zero imaginary part).  To see this, note that the orthogonality of A and B (see sect. 5.5.7) implies that

A B T + A ¯ B ¯ T =IA A T + A ¯ A ¯ T =B B T + B ¯ B ¯ T =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHbbGaaCOqamaaCaaaleqabaGaam ivaaaakiabgUcaRiqahgeagaqeaiqahkeagaqeamaaCaaaleqabaGa amivaaaakiabg2da9iaahMeacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHbbGaaCyqamaaCa aaleqabaGaamivaaaakiabgUcaRiqahgeagaqeaiqahgeagaqeamaa CaaaleqabaGaamivaaaakiabg2da9iaahkeacaWHcbWaaWbaaSqabe aacaWGubaaaOGaey4kaSIabCOqayaaraGabCOqayaaraWaaWbaaSqa beaacaWGubaaaOGaeyypa0JaaCimaaaa@663D@

Therefore A A T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHbbGaaCyqamaaCaaaleqabaGaam ivaaaaaaa@3560@  and B B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHcbGaaCOqamaaCaaaleqabaGaam ivaaaaaaa@3562@  are pure imaginary, while the real part of A B T =1/2I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHbbGaaCOqamaaCaaaleqabaGaam ivaaaakiabg2da9iaaigdacaGGVaGaaGOmaiaahMeaaaa@396D@ .   

·         The impedance tensor can be expressed in terms of the Barnett Lothe tensors as

M=iB A 1 = H 1 +i H 1 S M 1 =iA B 1 = L 1 +iS L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHnbGaeyypa0JaeyOeI0IaamyAai aahkeacaWHbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0Ja aCisamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRiaadMgaca WHibWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaC4uaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWHnbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaamyA aiaahgeacaWHcbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0 JaaCitamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRiaadMga caWHtbGaaCitamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@639E@

To see the first result, note that B A 1 = (A B T ) T (A A T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHcbGaaCyqamaaCaaaleqabaGaey OeI0IaaGymaaaakiabg2da9iaacIcacaWHbbGaaCOqamaaCaaaleqa baGaamivaaaakiaacMcadaahaaWcbeqaaiaadsfaaaGccaGGOaGaaC yqaiaahgeadaahaaWcbeqaaiaadsfaaaGccaGGPaWaaWbaaSqabeaa cqGHsislcaaIXaaaaaaa@4220@  and use the definitions of H and S.  The second result follows in the same way.  Note that H, L and S are all real, so this gives a decomposition of M and its inverse into real and imaginary parts.  In addition, since we can compute the Barnett-Lothe tensors for degenerate materials, M can also be determined without needing to compute A and B explicitly.

·         H 1 S+ S T H 1 =0S L 1 + L 1 S T =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHibWaaWbaaSqabeaacqGHsislca aIXaaaaOGaaC4uaiabgUcaRiaahofadaahaaWcbeqaaiaadsfaaaGc caWHibWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0JaaCimai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC4uaiaahYeadaahaaWc beqaaiabgkHiTiaaigdaaaGccqGHRaWkcaWHmbWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaaC4uamaaCaaaleqabaGaamivaaaakiabg2da 9iaahcdaaaa@5017@ .  To see these, note that M and its inverse are Hermitian, note that the imaginary part of a Hermitian matrix is skew symmetric, and use the preceding result.

·         BP= N 3 A+ N 1 T B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahkeacaWHqbGaeyypa0JaaCOtamaaBa aaleaacaaIZaaabeaakiaahgeacqGHRaWkcaWHobWaa0baaSqaaiaa igdaaeaacaWGubaaaOGaaCOqaaaa@39F5@ , where P=diag( p 1 , p 2 , p 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHqbGaeyypa0JaciizaiaacMgaca GGHbGaai4zaiGacIcacaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaaiil aiaadchadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiCamaaBaaale aacaaIZaaabeaakiaacMcaaaa@40BC@ .  To see this, recall that the fundamental elasticity tensor satisfies

[ N 1 N 2 N 3 N 1 T ][ a (i) b (i) ]= p i [ a (i) b (i) ][ N 1 N 2 N 3 N 1 T ][ A B ]=[ A 0 0 B ][ P P ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHob WaaSbaaSqaaiaaigdaaeqaaaGcbaGaaCOtamaaBaaaleaacaaIYaaa beaaaOqaaiaah6eadaWgaaWcbaGaaG4maaqabaaakeaacaWHobWaa0 baaSqaaiaaigdaaeaacaWGubaaaaaaaOGaay5waiaaw2faaiaaykW7 daWadaqaauaabeqaceaaaeaacaWHHbWaaWbaaSqabeaacaGGOaGaam yAaiaacMcaaaaakeaacaWHIbWaaWbaaSqabeaacaGGOaGaamyAaiaa cMcaaaaaaaGccaGLBbGaayzxaaGaeyypa0JaamiCamaaBaaaleaaca WGPbaabeaakmaadmaabaqbaeqabiqaaaqaaiaahggadaahaaWcbeqa aiaacIcacaWGPbGaaiykaaaaaOqaaiaahkgadaahaaWcbeqaaiaacI cacaWGPbGaaiykaaaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVpaadmaabaqbaeqabiGaaaqaaiaah6eadaWgaa WcbaGaaGymaaqabaaakeaacaWHobWaaSbaaSqaaiaaikdaaeqaaaGc baGaaCOtamaaBaaaleaacaaIZaaabeaaaOqaaiaah6eadaqhaaWcba GaaGymaaqaaiaadsfaaaaaaaGccaGLBbGaayzxaaGaaGPaVpaadmaa baqbaeqabiqaaaqaaiaahgeaaeaacaWHcbaaaaGaay5waiaaw2faai abg2da9maadmaabaqbaeqabiGaaaqaaiaahgeaaeaacaWHWaaabaGa aCimaaqaaiaahkeaaaaacaGLBbGaayzxaaGaaGPaVpaadmaabaqbae qabiqaaaqaaiaahcfaaeaacaWHqbaaaaGaay5waiaaw2faaiaaykW7 aaa@903C@

The second row of this equation is N 3 A+ N 1 T B=BP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6eadaWgaaWcbaGaaG4maaqabaGcca WHbbGaey4kaSIaaCOtamaaDaaaleaacaaIXaaabaGaamivaaaakiaa hkeacqGH9aqpcaWHcbGaaCiuaaaa@39F5@ .

 

 

5.5.10 Basis Change formulas for matrices used in anisotropic elasticity

 

The various tensors and matrices defined in the preceding sections are all functions of the elastic constants for the material.  Since the elastic constants depend on the orientation of the material with respect to the coordinate axes, the matrices are functions of the direction of the coordinate system.  

 

To this end:

1.      Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@  and { e ^ 1 , e ^ 2 , e ^ 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGabCyzayaajaWaaSbaaSqaai aaigdaaeqaaOGaaiilaiqahwgagaqcamaaBaaaleaacaaIYaaabeaa kiaacYcaceWHLbGbaKaadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BF6@  be two Cartesian bases, as indicated in the figure.

2.      Let n i , m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaaiilaiaad2gadaWgaaWcbaGaamyAaaqabaaaaa@3799@  denote the components of e ^ 1 , e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHLbGbaKaadaWgaaWcbaGaaGymaa qabaGccaGGSaGabCyzayaajaWaaSbaaSqaaiaaikdaaeqaaaaa@374B@  in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@ , i.e. e ^ 1 = n i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHLbGbaKaadaWgaaWcbaGaaGymaa qabaGccqGH9aqpcaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaa BaaaleaacaWGPbaabeaaaaa@39DA@     e ^ 2 = m i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHLbGbaKaadaWgaaWcbaGaaGOmaa qabaGccqGH9aqpcaWGTbWaaSbaaSqaaiaadMgaaeqaaOGaaCyzamaa BaaaleaacaWGPbaabeaaaaa@39DA@

3.      Let C ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3778@  be the components of the elasticity tensor in { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@ , and let matrices Q, R and T be matrices of elastic constants defined in Section 5.5.2.

4.      Let   p,A,B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbGaaiilaiaahgeacaGGSaGaaC Oqaaaa@36B0@  denote any one of the three Stroh eigenvalues and the matrices of Stroh eigenvectors, computed for the coordinate system { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@ ;

5.      Let S,H,L,M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHtbGaaiilaiaahIeacaGGSaGaaC itaiaacYcacaWHnbaaaa@382E@  denote the Barnett-Lothe tensors and impedance tensor in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@  basis;

6.      Similarly, let Q ^ , R ^ , T ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHrbGbaKaacaGGSaGabCOuayaaja Gaaiilaiqahsfagaqcaaaa@36E8@ p ^ , A ^ , B ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGWbGbaKaacaGGSaGabCyqayaaja Gaaiilaiqahkeagaqcaaaa@36E0@ , etc denote the various matrices and tensors in the { e ^ 1 , e ^ 2 , e ^ 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGabCyzayaajaWaaSbaaSqaai aaigdaaeqaaOGaaiilaiqahwgagaqcamaaBaaaleaacaaIYaaabeaa kiaacYcaceWHLbGbaKaadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BF6@  basis.

 

In addition, define rotation matrices Ω, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHPoWvcaGGSaaaaa@3504@   Q(θ),R(θ),T(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHrbGaaiikaiabeI7aXjaacMcaca GGSaGaaGPaVlaahkfacaGGOaGaeqiUdeNaaiykaiaacYcacaWHubGa aiikaiabeI7aXjaacMcaaaa@4170@  as follows

Ω[ cosθ sinθ 0 sinθ cosθ 0 0 0 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHPoWvcqGHHjIUdaWadaqaauaabe qadmaaaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyA aiaac6gacqaH4oqCaeaacaaIWaaabaGaeyOeI0Iaci4CaiaacMgaca GGUbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGymaaaaaiaawUfacaGLDbaaaa a@4EE4@      [ Q(θ) R(θ) R T (θ) T(θ) ]=[ cosθI sinθI sinθI cosθI ][ Q R R T T ][ cosθI sinθI sinθI cosθI ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHrb GaaiikaiabeI7aXjaacMcaaeaacaWHsbGaaiikaiabeI7aXjaacMca aeaacaWHsbWaaWbaaSqabeaacaWGubaaaOGaaiikaiabeI7aXjaacM caaeaacaWHubGaaiikaiabeI7aXjaacMcaaaaacaGLBbGaayzxaaGa eyypa0ZaamWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbGaeq iUdeNaaCysaaqaaiGacohacaGGPbGaaiOBaiabeI7aXjaahMeaaeaa cqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWHjbaabaGaci4yai aac+gacaGGZbGaeqiUdeNaaCysaaaaaiaawUfacaGLDbaadaWadaqa auaabeqaciaaaeaacaWHrbaabaGaaCOuaaqaaiaahkfadaahaaWcbe qaaiaadsfaaaaakeaacaWHubaaaaGaay5waiaaw2faamaadmaabaqb aeqabiGaaaqaaiGacogacaGGVbGaai4CaiabeI7aXjaahMeaaeaacq GHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWHjbaabaGaci4Caiaa cMgacaGGUbGaeqiUdeNaaCysaaqaaiGacogacaGGVbGaai4CaiabeI 7aXjaahMeaaaaacaGLBbGaayzxaaaaaa@7DD0@

The following alternative expressions for Q(θ),R(θ),T(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHrbGaaiikaiabeI7aXjaacMcaca GGSaGaaGPaVlaahkfacaGGOaGaeqiUdeNaaiykaiaacYcacaWHubGa aiikaiabeI7aXjaacMcaaaa@4170@  are also useful

Q ij (θ)= C ikjl n k n l R ij (θ)= C ikjl n k m l T ij (θ)= C ikjl m k m l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGrbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaacIcacqaH4oqCcaGGPaGaeyypa0Jaam4qamaaBaaaleaa caWGPbGaam4AaiaadQgacaWGSbaabeaakiaad6gadaWgaaWcbaGaam 4AaaqabaGccaWGUbWaaSbaaSqaaiaadYgaaeqaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWGsbWaaSbaaSqaaiaadMgacaWGQbaabe aakiaacIcacqaH4oqCcaGGPaGaeyypa0Jaam4qamaaBaaaleaacaWG PbGaam4AaiaadQgacaWGSbaabeaakiaad6gadaWgaaWcbaGaam4Aaa qabaGccaWGTbWaaSbaaSqaaiaadYgaaeqaaOGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGdbWaaSba aSqaaiaadMgacaWGRbGaamOAaiaadYgaaeqaaOGaamyBamaaBaaale aacaWGRbaabeaakiaad2gadaWgaaWcbaGaamiBaaqabaaaaa@7508@

Q(θ)=Q cos 2 θ+(R+ R T )sinθcosθ+T sin 2 θ R(θ)=R cos 2 θ+(TQ)sinθcosθ R T sin 2 θ T(θ)=T cos 2 θ(R+ R T )sinθcosθ+Q sin 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahgfacaGGOaGaeqiUdeNaai ykaiabg2da9iaahgfaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaa ikdaaaGccqaH4oqCcqGHRaWkcaGGOaGaaCOuaiabgUcaRiaahkfada ahaaWcbeqaaiaadsfaaaGccaGGPaGaci4CaiaacMgacaGGUbGaeqiU deNaci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaaCivaiGacohaca GGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeI7aXbqaaiaahkfa caGGOaGaeqiUdeNaaiykaiabg2da9iaahkfaciGGJbGaai4Baiaaco hadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHRaWkcaGGOaGaaCiv aiabgkHiTiaahgfacaGGPaGaci4CaiaacMgacaGGUbGaeqiUdeNaci 4yaiaac+gacaGGZbGaeqiUdeNaeyOeI0IaaCOuamaaCaaaleqabaGa amivaaaakiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaki abeI7aXbqaaiaahsfacaGGOaGaeqiUdeNaaiykaiabg2da9iaahsfa ciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcq GHsislcaGGOaGaaCOuaiabgUcaRiaahkfadaahaaWcbeqaaiaadsfa aaGccaGGPaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gaca GGZbGaeqiUdeNaey4kaSIaaCyuaiGacohacaGGPbGaaiOBamaaCaaa leqabaGaaGOmaaaakiabeI7aXbaaaa@9770@

 

The basis change formulas can then be expressed as

p ^ p(θ)= pcosθsinθ psinθ+cosθ A ^ =ΩA B ^ =ΩB Q ^ =ΩQ(θ) Ω T R ^ =ΩR(θ) Ω T T ^ =ΩT(θ) Ω T S ^ =ΩS Ω T H ^ =ΩH Ω T L ^ =ΩL Ω T M ^ =ΩM Ω T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiqadchagaqcaiabggMi6kaadc hacaGGOaGaeqiUdeNaaiykaiabg2da9maalaaabaGaamiCaiGacoga caGGVbGaai4CaiabeI7aXjabgkHiTiGacohacaGGPbGaaiOBaiabeI 7aXbqaaiaadchaciGGZbGaaiyAaiaac6gacqaH4oqCcqGHRaWkciGG JbGaai4BaiaacohacqaH4oqCaaaabaGabCyqayaajaGaeyypa0Jaeu yQdCLaaCyqaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UabCOqayaajaGaeyypa0JaeuyQdCLaaCOqaaqaaiqahg fagaqcaiabg2da9iabfM6axjaahgfacaGGOaGaeqiUdeNaaiykaiab fM6axnaaCaaaleqabaGaamivaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7ceWHsbGbaKaacqGH9aqpcqqHPoWvcaWH sbGaaiikaiabeI7aXjaacMcacqqHPoWvdaahaaWcbeqaaiaadsfaaa GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCiv ayaajaGaeyypa0JaeuyQdCLaaCivaiaacIcacqaH4oqCcaGGPaGaeu yQdC1aaWbaaSqabeaacaWGubaaaOGaaGPaVdqaaiqahofagaqcaiab g2da9iabfM6axjaahofacqqHPoWvdaahaaWcbeqaaiaadsfaaaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCisayaa jaGaeyypa0JaeuyQdCLaaCisaiabfM6axnaaCaaaleqabaGaamivaa aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlqahYeagaqcaiabg2da9iabfM6axjaahYeacqqHPoWvda ahaaWcbeqaaiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabCytayaajaGaeyypa0 JaeuyQdCLaaCytaiabfM6axnaaCaaaleqabaGaamivaaaaaaaa@DE70@

 

 

Derivation: These results can be derived as follow:

1.      Note that the displacements transform as vectors, so that u ^ =Ωu MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWH1bGbaKaacqGH9aqpcqqHPoWvca WH1baaaa@3766@ .  Consequently,

u ^ = i=1 3 a ^ (i) f i ( z i )+ a ^ ¯ (i) g i ( z ¯ i ) ¯ =Ω( i=1 3 a (i) f i ( z i )+ a ¯ (i) g i ( z ¯ i ) ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWH1bGbaKaacqGH9aqpdaaeWbqaai qahggagaqcamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaamOz amaaBaaaleaacaWGPbaabeaakiaacIcacaWG6bWaaSbaaSqaaiaadM gaaeqaaOGaaiykaiabgUcaRaWcbaGaamyAaiabg2da9iaaigdaaeaa caaIZaaaniabggHiLdGcceWHHbGbaKGbaebadaahaaWcbeqaaiaacI cacaWGPbGaaiykaaaakmaanaaabaGaam4zamaaBaaaleaacaWGPbaa beaakiaacIcaceWG6bGbaebadaWgaaWcbaGaamyAaaqabaGccaGGPa aaaiabg2da9iabfM6axnaabmaabaWaaabCaeaacaWHHbWaaWbaaSqa beaacaGGOaGaamyAaiaacMcaaaGccaWGMbWaaSbaaSqaaiaadMgaae qaaOGaaiikaiaadQhadaWgaaWcbaGaamyAaaqabaGccaGGPaGaey4k aScaleaacaWGPbGaeyypa0JaaGymaaqaaiaaiodaa0GaeyyeIuoaki qahggagaqeamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOWaa0aa aeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiqadQhagaqeam aaBaaaleaacaWGPbaabeaakiaacMcaaaaacaGLOaGaayzkaaaaaa@6A9A@

which shows that a ^ (i) =Ω a (i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHHbGbaKaadaahaaWcbeqaaiaacI cacaWGPbGaaiykaaaakiabg2da9iabfM6axjaahggadaahaaWcbeqa aiaacIcacaWGPbGaaiykaaaaaaa@3C30@  anddirectly gives the basis change formula for A.

2.      To find the expression for p, we note that

z ^ = x ^ 1 + p ^ x ^ 2 = x 1 +p x 2 = x ^ 1 cosθ x ^ 2 sinθ+p( x ^ 1 sinθ+ x ^ 2 cosθ) =(cosθ+psinθ){ x ^ 1 + (pcosθsinθ) cosθ+psinθ x ^ 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiqadQhagaqcaiabg2da9iqadI hagaqcamaaBaaaleaacaaIXaaabeaakiabgUcaRiqadchagaqcaiqa dIhagaqcamaaBaaaleaacaaIYaaabeaakiabg2da9iaadIhadaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaaleaacaaI Yaaabeaakiabg2da9iqadIhagaqcamaaBaaaleaacaaIXaaabeaaki GacogacaGGVbGaai4CaiabeI7aXjabgkHiTiqadIhagaqcamaaBaaa leaacaaIYaaabeaakiGacohacaGGPbGaaiOBaiabeI7aXjabgUcaRi aadchacaGGOaGabmiEayaajaWaaSbaaSqaaiaaigdaaeqaaOGaci4C aiaacMgacaGGUbGaeqiUdeNaey4kaSIabmiEayaajaWaaSbaaSqaai aaikdaaeqaaOGaci4yaiaac+gacaGGZbGaeqiUdeNaaiykaaqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyyp a0JaaiikaiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaadchaci GGZbGaaiyAaiaac6gacqaH4oqCcaGGPaWaaiWaaeaaceWG4bGbaKaa daWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaacIcacaWGWb Gaci4yaiaac+gacaGGZbGaeqiUdeNaeyOeI0Iaci4CaiaacMgacaGG UbGaeqiUdeNaaiykaaqaaiGacogacaGGVbGaai4CaiabeI7aXjabgU caRiaadchaciGGZbGaaiyAaiaac6gacqaH4oqCaaGabmiEayaajaWa aSbaaSqaaiaaikdaaeqaaaGccaGL7bGaayzFaaaaaaa@BEBA@

Therefore, we may write f ^ i ( z ^ i )= f i ( [ cosθ+ p i sinθ ] z ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGMbGbaKaadaWgaaWcbaGaamyAaa qabaGccaGGOaGabmOEayaajaWaaSbaaSqaaiaadMgaaeqaaOGaaiyk aiabg2da9iaadAgadaWgaaWcbaGaamyAaaqabaGcdaqadaqaamaadm aabaGaci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaamiCamaaBaaa leaacaWGPbaabeaakiGacohacaGGPbGaaiOBaiabeI7aXbGaay5wai aaw2faaiqadQhagaqcamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaaaa@4D46@  with z ^ i = x ^ 1 + p ^ i x ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWG6bGbaKaadaWgaaWcbaGaamyAaa qabaGccqGH9aqpceWG4bGbaKaadaWgaaWcbaGaaGymaaqabaGccqGH RaWkceWGWbGbaKaacaWLa8+aaSbaaSqaaiaadMgaaeqaaOGabmiEay aajaWaaSbaaSqaaiaaikdaaeqaaaaa@3E85@  and

p ^ i p i (θ)= p i cosθsinθ p i sinθ+cosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGWbGbaKaadaWgaaWcbaGaamyAaa qabaGccqGHHjIUcaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiab eI7aXjaacMcacqGH9aqpdaWcaaqaaiaadchadaWgaaWcbaGaamyAaa qabaGcciGGJbGaai4BaiaacohacqaH4oqCcqGHsislciGGZbGaaiyA aiaac6gacqaH4oqCaeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaci 4CaiaacMgacaGGUbGaeqiUdeNaey4kaSIaci4yaiaac+gacaGGZbGa eqiUdehaaaaa@5525@

as required.

3.      The basis change formulas for Q, R and T follow directly from the definitions of these matrices. 

4.      The basis change formula for B is a bit more cumbersome.  By definition

b ^ =( R ^ T + p ^ T ^ ) a ^ =( ΩR (θ) T Ω T + p ^ ΩT(θ) Ω T )Ωa=Ω( R (θ) T + p ^ T(θ) )a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWHIbGbaKaacqGH9aqpcaGGOaGabC OuayaajaWaaWbaaSqabeaacaWGubaaaOGaey4kaSIabmiCayaajaGa bCivayaajaGaaiykaiqahggagaqcaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8+aaeWaaeaacqqHPoWv caWHsbGaaiikaiabeI7aXjaacMcadaahaaWcbeqaaiaadsfaaaGccq qHPoWvdaahaaWcbeqaaiaadsfaaaGccqGHRaWkceWGWbGbaKaacqqH PoWvcaWHubGaaiikaiabeI7aXjaacMcacqqHPoWvdaahaaWcbeqaai aadsfaaaaakiaawIcacaGLPaaacqqHPoWvcaWHHbGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8 UaeuyQdC1aaeWaaeaacaWHsbGaaiikaiabeI7aXjaacMcadaahaaWc beqaaiaadsfaaaGccqGHRaWkceWGWbGbaKaacaWHubGaaiikaiabeI 7aXjaacMcaaiaawIcacaGLPaaacaWHHbaaaa@7E23@

Substituting for R(θ),T(θ), p ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHsbGaaiikaiabeI7aXjaacMcaca GGSaGaaCivaiaacIcacqaH4oqCcaGGPaGaaiilaiqadchagaqcaaaa @3D01@  gives

b ^ =Ω( R T cos 2 θ+(TQ)sinθcosθR sin 2 θ+ pcosθsinθ psinθ+cosθ [ T cos 2 θ(R+ R T )sinθcosθ+Q sin 2 θ ] )a = Ω psinθ+cosθ ( R T cosθ+pTsinθpRsinθQcosθ )a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiqahkgagaqcaiaaykW7cqGH9a qpcqqHPoWvdaqadaqaaiaahkfadaahaaWcbeqaaiaadsfaaaGcciGG JbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHRa WkcaGGOaGaaCivaiabgkHiTiaahgfacaGGPaGaci4CaiaacMgacaGG UbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqiUdeNaeyOeI0IaaCOuai GacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeI7aXjab gUcaRmaalaaabaGaamiCaiGacogacaGGVbGaai4CaiabeI7aXjabgk HiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaadchaciGGZbGaaiyA aiaac6gacqaH4oqCcqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCaa WaamWaaeaacaWHubGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaI YaaaaOGaeqiUdeNaeyOeI0IaaiikaiaahkfacqGHRaWkcaWHsbWaaW baaSqabeaacaWGubaaaOGaaiykaiGacohacaGGPbGaaiOBaiabeI7a XjGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaahgfaciGGZbGaai yAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCaiaawUfacaGL DbaaaiaawIcacaGLPaaacaWHHbaabaGaaGPaVlaaykW7caaMc8UaaG PaVlabg2da9maalaaabaGaeuyQdCfabaGaamiCaiGacohacaGGPbGa aiOBaiabeI7aXjabgUcaRiGacogacaGGVbGaai4CaiabeI7aXbaada qadaqaaiaahkfadaahaaWcbeqaaiaadsfaaaGcciGGJbGaai4Baiaa cohacqaH4oqCcqGHRaWkcaWGWbGaaCivaiGacohacaGGPbGaaiOBai abeI7aXjabgkHiTiaadchacaWHsbGaci4CaiaacMgacaGGUbGaeqiU deNaeyOeI0IaaCyuaiGacogacaGGVbGaai4CaiabeI7aXbGaayjkai aawMcaaiaahggaaaaa@BDE7@

and finally recalling that [ R T +pT ]a=b[ Q+pR ]a=pb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaaiaahkfadaahaaWcbeqaai aadsfaaaGccqGHRaWkcaWGWbGaaCivaaGaay5waiaaw2faaiaahgga cqGH9aqpcaWHIbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWadaqaaiaahgfacqGHRaWkcaWGWbGaaCOuaaGa ay5waiaaw2faaiaahggacqGH9aqpcqGHsislcaWGWbGaaCOyaaaa@52C5@  we obtain the required result.

5.      The basis change formulas for the Barnett-Lothe tensors and impedance tensor follow trivially from their definitions.  The basis change formulas justify our earlier assertion that these quantities are tensors.

 

 

5.5.11 Barnett-Lothe integrals

 

The basis change formulas in the preceding section lead to a remarkable direct procedure for computing the Barnett-Lothe tensors, without needing to calculate A and B.  The significance of this result is that, while A and B break down for degenerate materials, S, H, and L are well-behaved.  Consequently, if a solution can be expressed in terms of these tensors, it can be computed for any combination of material parameters.

 

Specifically, we shall show that S, H, and L can be computed by integrating the sub-matrices of the fundamental elasticity matrix over orientation space, as follows. Let

Q(θ)=Q cos 2 θ+(R+ R T )sinθcosθ+T sin 2 θ R(θ)=R cos 2 θ+(TQ)sinθcosθ R T sin 2 θ T(θ)=T cos 2 θ(R+ R T )sinθcosθ+Q sin 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahgfacaGGOaGaeqiUdeNaai ykaiabg2da9iaahgfaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaa ikdaaaGccqaH4oqCcqGHRaWkcaGGOaGaaCOuaiabgUcaRiaahkfada ahaaWcbeqaaiaadsfaaaGccaGGPaGaci4CaiaacMgacaGGUbGaeqiU deNaci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaaCivaiGacohaca GGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeI7aXbqaaiaahkfa caGGOaGaeqiUdeNaaiykaiabg2da9iaahkfaciGGJbGaai4Baiaaco hadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHRaWkcaGGOaGaaCiv aiabgkHiTiaahgfacaGGPaGaci4CaiaacMgacaGGUbGaeqiUdeNaci 4yaiaac+gacaGGZbGaeqiUdeNaeyOeI0IaaCOuamaaCaaaleqabaGa amivaaaakiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaaki abeI7aXbqaaiaahsfacaGGOaGaeqiUdeNaaiykaiabg2da9iaahsfa ciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcq GHsislcaGGOaGaaCOuaiabgUcaRiaahkfadaahaaWcbeqaaiaadsfa aaGccaGGPaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gaca GGZbGaeqiUdeNaey4kaSIaaCyuaiGacohacaGGPbGaaiOBamaaCaaa leqabaGaaGOmaaaakiabeI7aXbaaaa@9770@

and define

N(θ)=[ N 1 (θ) N 2 (θ) N 3 (θ) N 1 T (θ) ] N 1 (θ)= T 1 (θ) R T (θ) N 2 (θ)= T 1 (θ) N 3 (θ)=R(θ) T 1 (θ) R T (θ)Q(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaah6eacaGGOaGaeqiUdeNaai ykaiabg2da9maadmaabaqbaeqabiGaaaqaaiaah6eadaWgaaWcbaGa aGymaaqabaGccaGGOaGaeqiUdeNaaiykaaqaaiaah6eadaWgaaWcba GaaGOmaaqabaGccaGGOaGaeqiUdeNaaiykaaqaaiaah6eadaWgaaWc baGaaG4maaqabaGccaGGOaGaeqiUdeNaaiykaaqaaiaah6eadaqhaa WcbaGaaGymaaqaaiaadsfaaaGccaGGOaGaeqiUdeNaaiykaaaaaiaa wUfacaGLDbaacaaMc8oabaGaaGPaVlaaykW7caWHobWaaSbaaSqaai aaigdaaeqaaOGaaiikaiabeI7aXjaacMcacqGH9aqpcqGHsislcaWH ubWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiabeI7aXjaacM cacaWHsbWaaWbaaSqabeaacaWGubaaaOGaaiikaiabeI7aXjaacMca caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah6eadaWgaaWcbaGaaG OmaaqabaGccaGGOaGaeqiUdeNaaiykaiabg2da9iaahsfadaahaaWc beqaaiabgkHiTiaaigdaaaGccaGGOaGaeqiUdeNaaiykaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaCOtamaaBaaaleaacaaIZaaabeaa kiaacIcacqaH4oqCcaGGPaGaeyypa0JaaCOuaiaacIcacqaH4oqCca GGPaGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacqaH 4oqCcaGGPaGaaCOuamaaCaaaleqabaGaamivaaaakiaacIcacqaH4o qCcaGGPaGaeyOeI0IaaCyuaiaacIcacqaH4oqCcaGGPaaaaaa@989F@

Then

[ S H L S T ]= 1 π 0 π N(θ)dθ S= 1 π 0 π T 1 (θ) R T (θ)dθ H= 1 π 0 π T 1 (θ)dθ L= 1 π 0 π { R(θ) T 1 (θ) R T (θ)Q(θ) }dθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaadmaabaqbaeqabiGaaaqaai aahofaaeaacaWHibaabaGaeyOeI0IaaCitaaqaaiaahofadaahaaWc beqaaiaadsfaaaaaaaGccaGLBbGaayzxaaGaaGPaVlabg2da9maala aabaGaaGymaaqaaiabec8aWbaadaWdXbqaaiaah6eacaGGOaGaeqiU deNaaiykaiaadsgacqaH4oqCaSqaaiaaicdaaeaacqaHapaCa0Gaey 4kIipaaOqaaiaaykW7caWHtbGaeyypa0JaeyOeI0YaaSaaaeaacaaI XaaabaGaeqiWdahaamaapehabaGaaCivamaaCaaaleqabaGaeyOeI0 IaaGymaaaakiaacIcacqaH4oqCcaGGPaGaaCOuamaaCaaaleqabaGa amivaaaakiaacIcacqaH4oqCcaGGPaGaamizaiabeI7aXbWcbaGaaG imaaqaaiabec8aWbqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWHibGaeyypa0ZaaSaaaeaacaaIXaaabaGaeqiWdahaam aapehabaGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIca cqaH4oqCcaGGPaGaamizaiabeI7aXjaaykW7caaMc8UaaGPaVlaayk W7caaMc8oaleaacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWHmbGa eyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaeqiWdahaamaapehaba WaaiWaaeaacaWHsbGaaiikaiabeI7aXjaacMcacaWHubWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaaiikaiabeI7aXjaacMcacaWHsbWaaW baaSqabeaacaWGubaaaOGaaiikaiabeI7aXjaacMcacqGHsislcaWH rbGaaiikaiabeI7aXjaacMcaaiaawUhacaGL9baacaWGKbGaeqiUde haleaacaaIWaaabaGaeqiWdahaniabgUIiYdaaaaa@A788@

 

Derivation: To see this, we show first that N(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHobGaaiikaiabeI7aXjaacMcaaa a@36AC@  can be diagonalized as

N(θ)=[ A A ¯ B B ¯ ][ P(θ) 0 0 P ¯ (θ) ][ B T A T B ¯ T A ¯ T ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHobGaaiikaiabeI7aXjaacMcacq GH9aqpdaWadaqaauaabeqaciaaaeaacaWHbbaabaGabCyqayaaraaa baGaaCOqaaqaaiqahkeagaqeaaaaaiaawUfacaGLDbaadaWadaqaau aabeqaciaaaeaacaWHqbGaaiikaiabeI7aXjaacMcaaeaacaWHWaaa baGaaCimaaqaaiqahcfagaqeaiaacIcacqaH4oqCcaGGPaaaaaGaay 5waiaaw2faamaadmaabaqbaeqabiGaaaqaaiaahkeadaahaaWcbeqa aiaadsfaaaaakeaacaWHbbWaaWbaaSqabeaacaWGubaaaaGcbaGabC OqayaaraWaaWbaaSqabeaacaWGubaaaaGcbaGabCyqayaaraWaaWba aSqabeaacaWGubaaaaaaaOGaay5waiaaw2faaaaa@5206@

where

P(θ)=[ p 1 (θ) 0 0 0 p 2 (θ) 0 0 0 p 2 (θ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHqbGaaiikaiabeI7aXjaacMcacq GH9aqpdaWadaqaauaabeqadmaaaeaacaWGWbWaaSbaaSqaaiaaigda aeqaaOGaaiikaiabeI7aXjaacMcaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiabeI7a XjaacMcaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGWbWaaS baaSqaaiaaikdaaeqaaOGaaiikaiabeI7aXjaacMcaaaaacaGLBbGa ayzxaaaaaa@4CFA@

and p(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbGaaiikaiabeI7aXjaacMcaaa a@36CA@  was defined earlier. From the preceding section, we note that

b=( R (θ) T +p(θ)T(θ) )a pb=( Q(θ)+p(θ)R(θ) )a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahkgacqGH9aqpdaqadaqaai aahkfacaGGOaGaeqiUdeNaaiykamaaCaaaleqabaGaamivaaaakiab gUcaRiaadchacaGGOaGaeqiUdeNaaiykaiaahsfacaGGOaGaeqiUde NaaiykaaGaayjkaiaawMcaaiaahggaaeaacaWGWbGaaCOyaiabg2da 9iabgkHiTmaabmaabaGaaCyuaiaacIcacqaH4oqCcaGGPaGaey4kaS IaamiCaiaacIcacqaH4oqCcaGGPaGaaCOuaiaacIcacqaH4oqCcaGG PaaacaGLOaGaayzkaaGaaCyyaaaaaa@57FB@

which can be expressed as

[ Q(θ) 0 R T (θ) I ][ a b ]=p(θ)[ R(θ) I T(θ) 0 ][ a b ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacqGHsi slcaWHrbGaaiikaiabeI7aXjaacMcaaeaacaWHWaaabaGaeyOeI0Ia aCOuamaaCaaaleqabaGaamivaaaakiaacIcacqaH4oqCcaGGPaaaba GaaCysaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaceaaaeaacaWH HbaabaGaaCOyaaaaaiaawUfacaGLDbaacqGH9aqpcaWGWbGaaiikai abeI7aXjaacMcadaWadaqaauaabeqaciaaaeaacaWHsbGaaiikaiab eI7aXjaacMcaaeaacaWHjbaabaGaaCivaiaacIcacqaH4oqCcaGGPa aabaGaaCimaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaceaaaeaa caWHHbaabaGaaCOyaaaaaiaawUfacaGLDbaaaaa@5925@

as before, we can arrange this into an Eigenvalue problem by writing

[ 0 T 1 (θ) I R(θ) T 1 (θ) ][ R(θ) I T(θ) 0 ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHWa aabaGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacqaH 4oqCcaGGPaaabaGaaCysaaqaaiabgkHiTiaahkfacaGGOaGaeqiUde NaaiykaiaahsfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGa eqiUdeNaaiykaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaae aacaWHsbGaaiikaiabeI7aXjaacMcaaeaacaWHjbaabaGaaCivaiaa cIcacqaH4oqCcaGGPaaabaGaaCimaaaaaiaawUfacaGLDbaacqGH9a qpdaWadaqaauaabeqaciaaaeaacaWHjbaabaGaaCimaaqaaiaahcda aeaacaWHjbaaaaGaay5waiaaw2faaaaa@5841@

whence

[ N 1 (θ) N 2 (θ) N 3 (θ) N 1 T (θ) ][ a b ]=p(θ)[ a b ] N 1 (θ)= T 1 (θ) R T (θ) N 2 (θ)= T 1 (θ) N 3 (θ)=R(θ) T 1 (θ) R T (θ)Q(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaadmaabaqbaeqabiGaaaqaai aah6eadaWgaaWcbaGaaGymaaqabaGccaGGOaGaeqiUdeNaaiykaaqa aiaah6eadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaeqiUdeNaaiykaa qaaiaah6eadaWgaaWcbaGaaG4maaqabaGccaGGOaGaeqiUdeNaaiyk aaqaaiaah6eadaqhaaWcbaGaaGymaaqaaiaadsfaaaGccaGGOaGaeq iUdeNaaiykaaaaaiaawUfacaGLDbaacaaMc8+aamWaaeaafaqabeGa baaabaGaaCyyaaqaaiaahkgaaaaacaGLBbGaayzxaaGaeyypa0Jaam iCaiaacIcacqaH4oqCcaGGPaWaamWaaeaafaqabeGabaaabaGaaCyy aaqaaiaahkgaaaaacaGLBbGaayzxaaaabaGaaGPaVlaaykW7caWHob WaaSbaaSqaaiaaigdaaeqaaOGaaiikaiabeI7aXjaacMcacqGH9aqp cqGHsislcaWHubWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikai abeI7aXjaacMcacaWHsbWaaWbaaSqabeaacaWGubaaaOGaaiikaiab eI7aXjaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah6eada WgaaWcbaGaaGOmaaqabaGccaGGOaGaeqiUdeNaaiykaiabg2da9iaa hsfadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaeqiUdeNaai ykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCOtamaaBaaaleaa caaIZaaabeaakiaacIcacqaH4oqCcaGGPaGaeyypa0JaaCOuaiaacI cacqaH4oqCcaGGPaGaaCivamaaCaaaleqabaGaeyOeI0IaaGymaaaa kiaacIcacqaH4oqCcaGGPaGaaCOuamaaCaaaleqabaGaamivaaaaki aacIcacqaH4oqCcaGGPaGaeyOeI0IaaCyuaiaacIcacqaH4oqCcaGG Paaaaaa@A065@

This shows that [a,b] are eigenvectors of the rotated elasticity matrix.  Following standard procedure, we obtain the diagonalization stated.

 

Now, we examine p(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbGaaiikaiabeI7aXjaacMcaaa a@36CA@  more closely.  Recall that

p(θ)= pcosθsinθ psinθ+cosθ = 1 psinθ+cosθ d dθ (psinθ+cosθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbGaaiikaiabeI7aXjaacMcacq GH9aqpdaWcaaqaaiaadchaciGGJbGaai4BaiaacohacqaH4oqCcqGH sislciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaWGWbGaci4CaiaacM gacaGGUbGaeqiUdeNaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeha aiabg2da9maalaaabaGaaGymaaqaaiaadchaciGGZbGaaiyAaiaac6 gacqaH4oqCcqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCaaWaaSaa aeaacaWGKbaabaGaamizaiabeI7aXbaacaGGOaGaamiCaiGacohaca GGPbGaaiOBaiabeI7aXjabgUcaRiGacogacaGGVbGaai4CaiabeI7a XjaacMcaaaa@6A65@

Integrating gives

0 θ p(θ)dθ =ln(cosθ+psinθ) 0 π p(θ)dθ ={ iπIm(p)>0 iπIm(p)<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaapehabaGaamiCaiaacIcacq aH4oqCcaGGPaGaamizaiabeI7aXbWcbaGaaGimaaqaaiabeI7aXbqd cqGHRiI8aOGaeyypa0JaciiBaiaac6gacaGGOaGaci4yaiaac+gaca GGZbGaeqiUdeNaey4kaSIaamiCaiGacohacaGGPbGaaiOBaiabeI7a XjaacMcaaeaadaWdXbqaaiaadchacaGGOaGaeqiUdeNaaiykaiaads gacqaH4oqCaSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipakiabg2da 9maaceaabaqbaeqabiqaaaqaaiaadMgacqaHapaCcaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaciysaiaac2gacaGGOaGa amiCaiaacMcacqGH+aGpcaaIWaaabaGaeyOeI0IaamyAaiabec8aWj aaykW7caaMc8UaaGPaVlaaykW7ciGGjbGaaiyBaiaacIcacaWGWbGa aiykaiabgYda8iaaicdaaaaacaGL7baaaaaa@7E16@

(the sign of the integral is determined by Im(p) because the branch cut for ln(cosθ+psinθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaciGGSbGaaiOBaiaacIcaciGGJbGaai 4BaiaacohacqaH4oqCcqGHRaWkcaWGWbGaci4CaiaacMgacaGGUbGa eqiUdeNaaiykaaaa@40F1@  is taken to lie along the negative real axis). Thus,

1 π 0 π N(θ)dθ =[ A A ¯ B B ¯ ][ iI 0 0 iI ][ B T A T B ¯ T A ¯ T ]=[ iA B T i A ¯ B ¯ T iA A T i A ¯ A ¯ T iB B T i B ¯ B ¯ T iB A T i B ¯ A ¯ T ]=[ S H L S T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaaigdaaeaacqaHapaCaa Waa8qCaeaacaWHobGaaiikaiabeI7aXjaacMcacaWGKbGaeqiUdeha leaacaaIWaaabaGaeqiWdahaniabgUIiYdGccqGH9aqpdaWadaqaau aabeqaciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqa hkeagaqeaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaaca WGPbGaaCysaaqaaiaahcdaaeaacaWHWaaabaGaeyOeI0IaamyAaiaa hMeaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeGacaaabaGaaCOqam aaCaaaleqabaGaamivaaaaaOqaaiaahgeadaahaaWcbeqaaiaadsfa aaaakeaaceWHcbGbaebadaahaaWcbeqaaiaadsfaaaaakeaaceWHbb GbaebadaahaaWcbeqaaiaadsfaaaaaaaGccaGLBbGaayzxaaGaeyyp a0ZaamWaaeaafaqabeGacaaabaGaamyAaiaahgeacaWHcbWaaWbaaS qabeaacaWGubaaaOGaeyOeI0IaamyAaiqahgeagaqeaiqahkeagaqe amaaCaaaleqabaGaamivaaaaaOqaaiaadMgacaWHbbGaaCyqamaaCa aaleqabaGaamivaaaakiabgkHiTiaadMgaceWHbbGbaebaceWHbbGb aebadaahaaWcbeqaaiaadsfaaaaakeaacaWGPbGaaCOqaiaahkeada ahaaWcbeqaaiaadsfaaaGccqGHsislcaWGPbGabCOqayaaraGabCOq ayaaraWaaWbaaSqabeaacaWGubaaaaGcbaGaamyAaiaahkeacaWHbb WaaWbaaSqabeaacaWGubaaaOGaeyOeI0IaamyAaiqahkeagaqeaiqa hgeagaqeamaaCaaaleqabaGaamivaaaaaaaakiaawUfacaGLDbaacq GH9aqpdaWadaqaauaabeqaciaaaeaacaWHtbaabaGaaCisaaqaaiab gkHiTiaahYeaaeaacaWHtbWaaWbaaSqabeaacaWGubaaaaaaaOGaay 5waiaaw2faaaaa@8512@

 

 

 

5.5.12 Stroh representation for a state of uniform stress

 

A uniform state of stress (with generalized plane strain deformation) provides a very simple example of the Stroh representation.  The solution can be expressed in several different forms.  Note that for a uniform state of stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3692@  and corresponding strain ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3676@  we may write

u= ε 1 x 1 + ε 2 x 2 φ= t 2 x 1 t 1 x 2 u=[ u 1 u 2 u 3 ] ε 1 =[ ε 11 ε 12 2 ε 31 ]= u x 1 ε 2 =[ ε 12 ε 22 2 ε 32 ]= u x 2 t 1 =[ σ 11 σ 12 σ 31 ]= φ x 2 t 2 =[ σ 12 σ 22 σ 32 ]= φ x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahwhacqGH9aqpcaWH1oWaaS baaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaahw7adaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaai aaikdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWHgpGaeyypa0JaaCiDamaaBaaaleaacaaIYaaabe aakiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWH0bWaaSba aSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOqaai aahwhacqGH9aqpdaWadaqaauaabeqadeaaaeaacaWG1bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaaOqaai aadwhadaWgaaWcbaGaaG4maaqabaaaaaGccaGLBbGaayzxaaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaahw7adaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWadaqa auaabeqadeaaaeaacqaH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaa GcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaaikda cqaH1oqzdaWgaaWcbaGaaG4maiaaigdaaeqaaaaaaOGaay5waiaaw2 faaiabg2da9maalaaabaGaeyOaIyRaaCyDaaqaaiabgkGi2kaadIha daWgaaWcbaGaaGymaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyTdmaaBaaaleaacaaI Yaaabeaakiabg2da9maadmaabaqbaeqabmqaaaqaaiabew7aLnaaBa aaleaacaaIXaGaaGOmaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGOm aiaaikdaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaaIZaGaaG OmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacqGHciIT caWH1baabaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaake aacaWH0bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaamWaaeaafaqa beWabaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaai abeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqaHdpWCdaWg aaWcbaGaaG4maiaaigdaaeqaaaaaaOGaay5waiaaw2faaiabg2da9i abgkHiTmaalaaabaGaeyOaIyRaaCOXdaqaaiabgkGi2kaadIhadaWg aaWcbaGaaGOmaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWH0bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaamWaaeaafaqa beWabaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaaaOqaai abeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWg aaWcbaGaaG4maiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabg2da9m aalaaabaGaeyOaIyRaaCOXdaqaaiabgkGi2kaadIhadaWgaaWcbaGa aGymaaqabaaaaaaaaa@DF57@

In terms of these vectors the Stroh representation is given by

u=2Re(AZq)φ=2Re(BZq) Z=diag( z 1 , z 2 , z 3 )q= A T t 2 + B T ε 1 z i = x 1 + p i x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaahwhacqGH9aqpcaaIYaGaci OuaiaacwgacaGGOaGaaCyqaiaahQfacaWHXbGaaiykaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahA 8acqGH9aqpcaaIYaGaciOuaiaacwgacaGGOaGaaCOqaiaahQfacaWH XbGaaiykaaqaaiaahQfacqGH9aqpciGGKbGaaiyAaiaacggacaGGNb GaciikaiaadQhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOEamaa BaaaleaacaaIYaaabeaakiaacYcacaWG6bWaaSbaaSqaaiaaiodaae qaaOGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaCyCaiabg2da9iaahgeadaahaaWcbeqaaiaadsfaaa GccaWH0bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaCOqamaaCaaa leqabaGaamivaaaakiaahw7adaWgaaWcbaGaaGymaaqabaaakeaaca WG6bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamiEamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadchadaWgaaWcbaGaamyAaaqabaGcca WG4bWaaSbaaSqaaiaaikdaaeqaaaaaaa@812D@

or, in matrix form

[ u φ ]=[ A A ¯ B B ¯ ][ Z 0 0 Z ¯ ][ B T A T B ¯ T A ¯ T ][ ε 1 t 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWH1b aabaGaaCOXdaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqa ciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeaga qeaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaWHAbaa baGaaCimaaqaaiaahcdaaeaaceWHAbGbaebaaaaacaGLBbGaayzxaa WaamWaaeaafaqabeGacaaabaGaaCOqamaaCaaaleqabaGaamivaaaa aOqaaiaahgeadaahaaWcbeqaaiaadsfaaaaakeaaceWHcbGbaebada ahaaWcbeqaaiaadsfaaaaakeaaceWHbbGbaebadaahaaWcbeqaaiaa dsfaaaaaaaGccaGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaGaaC yTdmaaBaaaleaacaaIXaaabeaaaOqaaiaahshadaWgaaWcbaGaaGOm aaqabaaaaaGccaGLBbGaayzxaaaaaa@5284@

 

Derivation: To see this, recall that a and b form eigenvectors of the fundamental elasticity matrix N as

N[ a b ]=p[ a b ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHobWaamWaaeaafaqabeGabaaaba GaaCyyaaqaaiaahkgaaaaacaGLBbGaayzxaaGaeyypa0JaamiCamaa dmaabaqbaeqabiqaaaqaaiaahggaaeaacaWHIbaaaaGaay5waiaaw2 faaaaa@3D40@

therefore we can write (for each pair of eigenvectors/values)

[ a b ]( x 1 +p x 2 )=[ a b ] x 1 +N[ a b ] x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWHHb aabaGaaCOyaaaaaiaawUfacaGLDbaadaqadaqaaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiabg2da9maadmaabaqbaeqabiqaaaqa aiaahggaaeaacaWHIbaaaaGaay5waiaaw2faaiaadIhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWHobWaamWaaeaafaqabeGabaaabaGa aCyyaaqaaiaahkgaaaaacaGLBbGaayzxaaGaamiEamaaBaaaleaaca aIYaaabeaaaaa@4C11@

Hence

[ AZ A ¯ Z ¯ BZ B ¯ Z ¯ ]= x 1 [ A A ¯ B B ¯ ]+ x 2 N[ A A ¯ B B ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHbb GaaCOwaaqaaiqahgeagaqeaiqahQfagaqeaaqaaiaahkeacaWHAbaa baGabCOqayaaraGabCOwayaaraaaaaGaay5waiaaw2faaiabg2da9i aadIhadaWgaaWcbaGaaGymaaqabaGcdaWadaqaauaabeqaciaaaeaa caWHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeagaqeaaaaai aawUfacaGLDbaacqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGa aCOtamaadmaabaqbaeqabiGaaaqaaiaahgeaaeaaceWHbbGbaebaae aacaWHcbaabaGabCOqayaaraaaaaGaay5waiaaw2faaaaa@4D32@

 

Recall that

[ A A ¯ B B ¯ ][ B T A T B ¯ T A ¯ T ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHbb aabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeagaqeaaaaaiaawUfa caGLDbaadaWadaqaauaabeqaciaaaeaacaWHcbWaaWbaaSqabeaaca WGubaaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaaOqaaiqahkea gaqeamaaCaaaleqabaGaamivaaaaaOqaaiqahgeagaqeamaaCaaale qabaGaamivaaaaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaa beqaciaaaeaacaWHjbaabaGaaCimaaqaaiaahcdaaeaacaWHjbaaaa Gaay5waiaaw2faaaaa@47DC@

so

[ AZ A ¯ Z ¯ BZ B ¯ Z ¯ ][ B T A T B ¯ T A ¯ T ]= x 1 [ I 0 0 I ]+ x 2 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHbb GaaCOwaaqaaiqahgeagaqeaiqahQfagaqeaaqaaiaahkeacaWHAbaa baGabCOqayaaraGabCOwayaaraaaaaGaay5waiaaw2faamaadmaaba qbaeqabiGaaaqaaiaahkeadaahaaWcbeqaaiaadsfaaaaakeaacaWH bbWaaWbaaSqabeaacaWGubaaaaGcbaGabCOqayaaraWaaWbaaSqabe aacaWGubaaaaGcbaGabCyqayaaraWaaWbaaSqabeaacaWGubaaaaaa aOGaay5waiaaw2faaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqaba GcdaWadaqaauaabeqaciaaaeaacaWHjbaabaGaaCimaaqaaiaahcda aeaacaWHjbaaaaGaay5waiaaw2faaiabgUcaRiaadIhadaWgaaWcba GaaGOmaaqabaGccaWHobaaaa@512E@

[ AZ A ¯ Z ¯ BZ B ¯ Z ¯ ][ B T A T B ¯ T A ¯ T ][ ε 1 t 2 ]= x 1 [ ε 1 t 2 ]+ x 2 N[ ε 1 t 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHbb GaaCOwaaqaaiqahgeagaqeaiqahQfagaqeaaqaaiaahkeacaWHAbaa baGabCOqayaaraGabCOwayaaraaaaaGaay5waiaaw2faamaadmaaba qbaeqabiGaaaqaaiaahkeadaahaaWcbeqaaiaadsfaaaaakeaacaWH bbWaaWbaaSqabeaacaWGubaaaaGcbaGabCOqayaaraWaaWbaaSqabe aacaWGubaaaaGcbaGabCyqayaaraWaaWbaaSqabeaacaWGubaaaaaa aOGaay5waiaaw2faamaadmaabaqbaeqabiqaaaqaaiaahw7adaWgaa WcbaGaaGymaaqabaaakeaacaWH0bWaaSbaaSqaaiaaikdaaeqaaaaa aOGaay5waiaaw2faaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqaba GcdaWadaqaauaabeqaceaaaeaacaWH1oWaaSbaaSqaaiaaigdaaeqa aaGcbaGaaCiDamaaBaaaleaacaaIYaaabeaaaaaakiaawUfacaGLDb aacqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaCOtamaadmaa baqbaeqabiqaaaqaaiaahw7adaWgaaWcbaGaaGymaaqabaaakeaaca WH0bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaaa@5E76@

and finally, defining

N[ ε 1 t 2 ]=[ ε 2 t 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHobWaamWaaeaafaqabeGabaaaba GaaCyTdmaaBaaaleaacaaIXaaabeaaaOqaaiaahshadaWgaaWcbaGa aGOmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabe GabaaabaGaaCyTdmaaBaaaleaacaaIYaaabeaaaOqaaiabgkHiTiaa hshadaWgaaWcbaGaaGymaaqabaaaaaGccaGLBbGaayzxaaaaaa@41D0@

gives the required result.

 

 

 

 

5.5.13 Line load and Dislocation in an Infinite Anisotropic Solid

 

The figure illustrates the problem to be solved.  We consider an infinite, anisotropic, linear elastic solid, whose elastic properties will be characterized using the Stroh matrices A and B.

 

The solid contains a straight dislocation, with line direction e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaiodaaeqaaa aa@349D@ , perpendicular to the plane of the figure.  The dislocation has Burger’s vector b= b i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbGaeyypa0JaamOyamaaBaaale aacaWGPbaabeaakiaahwgadaWgaaWcbaGaamyAaaqabaaaaa@38CA@ .

 

At the same time, the solid is subjected to a line of force (with line direction extending out of the plane of the figure). The force per unit length acting on the solid will be denoted by  F= F i e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHgbGaeyypa0JaamOramaaBaaale aacaWGPbaabeaakiaahwgadaWgaaWcbaGaamyAaaqabaaaaa@3892@ .

 

The displacement and stress function can be expressed in terms of the Stroh matrices as

[ u φ ]= 1 2πi [ A A ¯ B B ¯ ][ λ 0 0 λ ¯ ][ B T A T B ¯ T A ¯ T ][ b F ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWH1b aabaGaaCOXdaaaaiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigda aeaacaaIYaGaeqiWdaNaamyAaaaadaWadaqaauaabeqaciaaaeaaca WHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeagaqeaaaaaiaa wUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaWH7oaabaGaaCimaa qaaiaahcdaaeaaceWH7oGbaebaaaaacaGLBbGaayzxaaWaamWaaeaa faqabeGacaaabaGaaCOqamaaCaaaleqabaGaamivaaaaaOqaaiaahg eadaahaaWcbeqaaiaadsfaaaaakeaaceWHcbGbaebadaahaaWcbeqa aiaadsfaaaaakeaaceWHbbGbaebadaahaaWcbeqaaiaadsfaaaaaaa GccaGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaGaaCOyaaqaaiaa hAeaaaaacaGLBbGaayzxaaaaaa@5517@

where λ=diag(ln( z 1 ),ln( z 2 ),ln( z 3 )) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH7oGaeyypa0JaamizaiaadMgaca WGHbGaam4zaiaacIcaciGGSbGaaiOBaiaacIcacaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaaiykaiaacYcaciGGSbGaaiOBaiaacIcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaacYcaciGGSbGaaiOBamaa bmaabaGaamOEamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaai aacMcaaaa@4B2F@ , where diag denotes a diagonal matrix, and

b= [ b 1 , b 2 , b 3 ] T F= [ F 1 , F 2 , F 3 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahkgacqGH9aqpcaGGBbGaamOyamaaBa aaleaacaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaaikdaaeqa aOGaaiilaiaadkgadaWgaaWcbaGaaG4maaqabaGccaGGDbWaaWbaaS qabeaacaWGubaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaahAeacqGH 9aqpcaGGBbGaamOramaaBaaaleaacaaIXaaabeaakiaacYcacaWGgb WaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadAeadaWgaaWcbaGaaG4m aaqabaGccaGGDbWaaWbaaSqabeaacaWGubaaaOGaaGPaVdaa@4F07@

 The solution can also be expressed as

u=2Re(Af)φ=2Re(Bf) t 2 =2Re(Bf') t 1 =2Re(BPf')f=λ( B T b+ A T F )/(2πi) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaaGOmaiGackfaca GGLbGaaiikaiaahgeacaWHMbGaaiykaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahA8acqGH9aqpca aIYaGaciOuaiaacwgacaGGOaGaaCOqaiaahAgacaGGPaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC iDamaaBaaaleaacaaIYaaabeaakiabg2da9iaaikdaciGGsbGaaiyz aiaacIcacaWHcbGaaCOzaiaacEcacaGGPaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahshadaWgaaWcbaGaaGymaaqa baGccqGH9aqpcqGHsislcaaIYaGaciOuaiaacwgacaGGOaGaaCOqai aahcfacaWHMbGaai4jaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahAgacq GH9aqpcaWH7oWaaeWaaeaacaWHcbWaaWbaaSqabeaacaWGubaaaOGa aCOyaiabgUcaRiaahgeadaahaaWcbeqaaiaadsfaaaGccaWHgbaaca GLOaGaayzkaaGaai4laiaacIcacaaIYaGaeqiWdaNaamyAaiaacMca aaa@9E7B@

 

 

Derivation:  We must show that the solution satisfies the following conditions:

1.      The displacement field for a dislocation with burgers vector b must satisfy u(r,θ=π)u(r,θ=π)=b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaaiikaiaadkhacaGGSaGaeq iUdeNaeyypa0JaeqiWdaNaaiykaiabgkHiTiaahwhacaGGOaGaamOC aiaacYcacqaH4oqCcqGH9aqpcqGHsislcqaHapaCcaGGPaGaeyypa0 JaaCOyaaaa@477F@  (this corresponds to taking a counterclockwise Burgers circuit around the dislocation, as described in Section 5.3.4).

2.      The resultant force exerted by the stresses acting on any contour surrounding the point force must balance the external force F.  For example, taking a circular contour with radius r centered at the origin, we see that

F i + π π σ ij n j rdθ=0 F i + π π ( ϕ i x 2 rcosθ+ ϕ i x 1 rsinθ )dθ =0 F i + π π ( ϕ i x 2 x 2 θ ϕ i x 1 x 1 θ )dθ =0 F i ( ϕ i (θ=π) ϕ i (θ=π) )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadAeadaWgaaWcbaGaamyAaa qabaGccqGHRaWkdaWdXbqaaiabeo8aZnaaBaaaleaacaWGPbGaamOA aaqabaGccaWGUbWaaSbaaSqaaiaadQgaaeqaaaqaaiabgkHiTiabec 8aWbqaaiabec8aWbqdcqGHRiI8aOGaamOCaiaadsgacqaH4oqCcqGH 9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGgbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaa8qCaeaada qadaqaaiabgkHiTmaalaaabaGaeyOaIyRaeqy1dy2aaSbaaSqaaiaa dMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaa GccaWGYbGaci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSYaaSaaaeaa cqGHciITcqaHvpGzdaWgaaWcbaGaamyAaaqabaaakeaacqGHciITca WG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaadkhaciGGZbGaaiyAaiaa c6gacqaH4oqCaiaawIcacaGLPaaacaWGKbGaeqiUdehaleaacqGHsi slcqaHapaCaeaacqaHapaCa0Gaey4kIipakiabg2da9iaaicdaaeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyO0H4 TaamOramaaBaaaleaacaWGPbaabeaakiabgUcaRmaapehabaWaaeWa aeaacqGHsisldaWcaaqaaiabgkGi2kabew9aMnaaBaaaleaacaWGPb aabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOWa aSaaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaey OaIyRaeqiUdehaaiabgkHiTmaalaaabaGaeyOaIyRaeqy1dy2aaSba aSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXa aabeaaaaGcdaWcaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqa baaakeaacqGHciITcqaH4oqCaaaacaGLOaGaayzkaaGaamizaiabeI 7aXbWcbaGaeyOeI0IaeqiWdahabaGaeqiWdahaniabgUIiYdGccqGH 9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAeadaWgaaWcbaGaamyA aaqabaGccqGHsisldaqadaqaaiabew9aMnaaBaaaleaacaWGPbaabe aakiaacIcacqaH4oqCcqGH9aqpcqaHapaCcaGGPaGaeyOeI0Iaeqy1 dy2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiabeI7aXjabg2da9iabgk HiTiabec8aWjaacMcaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaaa@F1BC@

3.      We can create the required solution using properties of log(z).  We try a solution of the form

[ u φ ]=[ A A ¯ B B ¯ ][ λ 0 0 λ ¯ ][ q q ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWH1b aabaGaaCOXdaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqa ciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeaga qeaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaWH7oaa baGaaCimaaqaaiaahcdaaeaaceWH7oGbaebaaaaacaGLBbGaayzxaa WaamWaaeaafaqabeGabaaabaGaaCyCaaqaaiqahghagaqeaaaaaiaa wUfacaGLDbaaaaa@479B@

where λ=diag(ln( z 1 ),ln( z 2 ),ln( z 3 )) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH7oGaeyypa0JaamizaiaadMgaca WGHbGaam4zaiaacIcaciGGSbGaaiOBaiaacIcacaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaaiykaiaacYcaciGGSbGaaiOBaiaacIcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaacYcaciGGSbGaaiOBamaa bmaabaGaamOEamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaai aacMcaaaa@4B2F@  and q is a vector to be determined.  Recall that we may write z=r e iθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG6bGaeyypa0JaamOCaiaadwgada ahaaWcbeqaaiaadMgacqaH4oqCaaaaaa@397D@ , whence log(z)=log(r)+iθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaciGGSbGaai4BaiaacEgacaGGOaGaam OEaiaacMcacqGH9aqpciGGSbGaai4BaiaacEgacaGGOaGaamOCaiaa cMcacqGHRaWkcaWGPbGaeqiUdehaaa@419A@ .  This, in turn, implies that log(z(r,π))log(z(r,π))=2πi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaciGGSbGaai4BaiaacEgacaGGOaGaam OEaiaacIcacaWGYbGaaiilaiabec8aWjaacMcacaGGPaGaeyOeI0Ia ciiBaiaac+gacaGGNbGaaiikaiaadQhacaGGOaGaamOCaiaacYcacq GHsislcqaHapaCcaGGPaGaaiykaiabg2da9iaaikdacqaHapaCcaWG Pbaaaa@4CD7@ . Therefore

[ b F ]=[ A A ¯ B B ¯ ][ λ(r,π)λ(r,π) 0 0 λ ¯ (r,π) λ ¯ (r,π) ][ q q ¯ ][ b F ]=[ A A ¯ B B ¯ ][ 2πiI 0 0 2πiI ][ q q ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWHIb aabaGaaCOraaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqa ciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeaga qeaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaWH7oGa aiikaiaadkhacaGGSaGaeqiWdaNaaiykaiabgkHiTiaahU7acaGGOa GaamOCaiaacYcacqGHsislcqaHapaCcaGGPaaabaGaaCimaaqaaiaa hcdaaeaaceWH7oGbaebacaGGOaGaamOCaiaacYcacqaHapaCcaGGPa GaeyOeI0IabC4UdyaaraGaaiikaiaadkhacaGGSaGaeyOeI0IaeqiW daNaaiykaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaceaaaeaaca WHXbaabaGabCyCayaaraaaaaGaay5waiaaw2faaiaaykW7caaMc8Ua aGPaVlaaykW7cqGHshI3caaMc8UaaGPaVlaaykW7caaMc8+aamWaae aafaqabeGabaaabaGaaCOyaaqaaiaahAeaaaaacaGLBbGaayzxaaGa eyypa0ZaamWaaeaafaqabeGacaaabaGaaCyqaaqaaiqahgeagaqeaa qaaiaahkeaaeaaceWHcbGbaebaaaaacaGLBbGaayzxaaWaamWaaeaa faqabeGacaaabaGaaGOmaiabec8aWjaadMgacaWHjbaabaGaaCimaa qaaiaahcdaaeaacqGHsislcaaIYaGaeqiWdaNaamyAaiaahMeaaaaa caGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaGaaCyCaaqaaiqahg hagaqeaaaaaiaawUfacaGLDbaaaaa@8A01@

4.      Recalling the orthogonality properties of A and B

[ B T A T B ¯ T A ¯ T ][ A A ¯ B B ¯ ]=[ I 0 0 I ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaciaaaeaacaWHcb WaaWbaaSqabeaacaWGubaaaaGcbaGaaCyqamaaCaaaleqabaGaamiv aaaaaOqaaiqahkeagaqeamaaCaaaleqabaGaamivaaaaaOqaaiqahg eagaqeamaaCaaaleqabaGaamivaaaaaaaakiaawUfacaGLDbaadaWa daqaauaabeqaciaaaeaacaWHbbaabaGabCyqayaaraaabaGaaCOqaa qaaiqahkeagaqeaaaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaauaa beqaciaaaeaacaWHjbaabaGaaCimaaqaaiaahcdaaeaacaWHjbaaaa Gaay5waiaaw2faaaaa@47DC@

we can solve for q

1 2πi [ B T A T B ¯ T A ¯ T ][ b F ]=[ q q ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaeq iWdaNaamyAaaaadaWadaqaauaabeqaciaaaeaacaWHcbWaaWbaaSqa beaacaWGubaaaaGcbaGaaCyqamaaCaaaleqabaGaamivaaaaaOqaai qahkeagaqeamaaCaaaleqabaGaamivaaaaaOqaaiqahgeagaqeamaa CaaaleqabaGaamivaaaaaaaakiaawUfacaGLDbaadaWadaqaauaabe qaceaaaeaacaWHIbaabaGaaCOraaaaaiaawUfacaGLDbaacqGH9aqp daWadaqaauaabeqaceaaaeaacaWHXbaabaGabCyCayaaraaaaaGaay 5waiaaw2faaaaa@495D@

giving

[ u φ ]= 1 2πi [ A A ¯ B B ¯ ][ λ 0 0 λ ¯ ][ B T A T B ¯ T A ¯ T ][ b F ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacaWH1b aabaGaaCOXdaaaaiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigda aeaacaaIYaGaeqiWdaNaamyAaaaadaWadaqaauaabeqaciaaaeaaca WHbbaabaGabCyqayaaraaabaGaaCOqaaqaaiqahkeagaqeaaaaaiaa wUfacaGLDbaadaWadaqaauaabeqaciaaaeaacaWH7oaabaGaaCimaa qaaiaahcdaaeaaceWH7oGbaebaaaaacaGLBbGaayzxaaWaamWaaeaa faqabeGacaaabaGaaCOqamaaCaaaleqabaGaamivaaaaaOqaaiaahg eadaahaaWcbeqaaiaadsfaaaaakeaaceWHcbGbaebadaahaaWcbeqa aiaadsfaaaaakeaaceWHbbGbaebadaahaaWcbeqaaiaadsfaaaaaaa GccaGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaGaaCOyaaqaaiaa hAeaaaaacaGLBbGaayzxaaaaaa@5517@

 

 

 

5.5.14 Line load and dislocation below the surface of an anisotropic half-space

 

The figure shows an anisotropic, linear elastic half-space.  The elastic properties of the solid are characterized by the Stroh matrices A, B and P defined in Section  5.5.2. The solid contains a dislocation with Burgers vector b and is also subjected to a linear load with force per unit length F at a point ( d 1 , d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGKbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaadsgadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@3626@ , while the surface of the solid is traction free.

 

The solution can be computed from the simplified Stroh representation

u=2Re(Af)φ=2Re(Bf) t 2 =2Re(Bf') t 1 =2Re(BPf') MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaaGOmaiGackfaca GGLbGaaiikaiaahgeacaWHMbGaaiykaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahA8acqGH9aqpca aIYaGaciOuaiaacwgacaGGOaGaaCOqaiaahAgacaGGPaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC iDamaaBaaaleaacaaIYaaabeaakiabg2da9iaaikdaciGGsbGaaiyz aiaacIcacaWHcbGaaCOzaiaacEcacaGGPaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahshadaWgaaWcbaGaaGymaaqa baGccqGH9aqpcqGHsislcaaIYaGaciOuaiaacwgacaGGOaGaaCOqai aahcfacaWHMbGaai4jaiaacMcaaaa@7CF9@

where

f=λ( z i )( B T b+ A T F) B 1 B ¯ λ( z ¯ i ) ¯ ( B ¯ T b+ A ¯ T F) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahAgacqGH9aqpcaWH7oGaaiikaiaadQ hadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaiikaiaahkeadaahaaWc beqaaiaadsfaaaGccaWHIbGaey4kaSIaaCyqamaaCaaaleqabaGaam ivaaaakiaahAeacaGGPaGaeyOeI0IaaCOqamaaCaaaleqabaGaeyOe I0IaaGymaaaakiqahkeagaqeamaanaaabaGaaC4UdiaacIcaceWG6b GbaebadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaiaacIcaceWHcbGb aebadaahaaWcbeqaaiaadsfaaaGccaWHIbGaey4kaSIabCyqayaara WaaWbaaSqabeaacaWGubaaaOGaaCOraiaacMcaaaa@500A@

and

λ( z i )= 1 2πi [ log( z 1 ( d 1 + p 1 d 2 )) 0 0 0 log( z 2 ( d 1 + p 2 d 2 )) 0 0 0 log( z 3 ( d 1 + p 3 d 2 )) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH7oGaaiikaiaadQhadaWgaaWcba GaamyAaaqabaGccaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOm aiabec8aWjaadMgaaaWaamWaaeaafaqabeWadaaabaGaciiBaiaac+ gacaGGNbGaaiikaiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHsisl caGGOaGaamizamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchada WgaaWcbaGaaGymaaqabaGccaWGKbWaaSbaaSqaaiaaikdaaeqaaOGa aiykaiaacMcaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaciGGSb Gaai4BaiaacEgacaGGOaGaamOEamaaBaaaleaacaaIYaaabeaakiab gkHiTiaacIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam iCamaaBaaaleaacaaIYaaabeaakiaadsgadaWgaaWcbaGaaGOmaaqa baGccaGGPaGaaiykaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai GacYgacaGGVbGaai4zaiaacIcacaWG6bWaaSbaaSqaaiaaiodaaeqa aOGaeyOeI0IaaiikaiaadsgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaamizamaaBaaaleaacaaI YaaabeaakiaacMcacaGGPaaaaaGaay5waiaaw2faaaaa@6FBF@

The first term in the expression for f will be recognized as the solution for a dislocation and point force in an infinite solid; the second term corrects this solution for the presence of the free surface.