5.5 Solutions to dynamic problems for isotropic linear elastic solids

 

Dynamic problems are even more difficult to solve than static problems.   Nevertheless, analytical solutions have been determined for a wide range of important problems.  There is not space here to do justice to the subject, but a few solutions will be listed to give a sense of the general features of solutions to dynamic problems.

 

 

 

5.5.1 Love potentials for dynamic solutions for isotropic solids

 

In this section we outline a general potential representation for 3D dynamic linear elasticity problems.  The technique is similar to the 3D  Papkovich-Neuber representation for static solutions outlined in Section 5.4.

 

The figure shows a generic problem of interest.  Assume that

 

· The solid has Young’s modulus E, mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .

 

· Define longitudinal and shear wave speeds (see Sect 4.4.5)

c L = E(1ν) ρ 0 (1+ν)(12ν) c s = E 2(1+ν) ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaki abg2da9maakaaabaWaaSaaaeaacaWGfbGaaiikaiaaigdacqGHsisl cqaH9oGBcaGGPaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaai ikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGHsisl caaIYaGaeqyVd4MaaiykaaaaaSqabaGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadogadaWgaaWcbaGaam4CaaqabaGccqGH9a qpdaGcaaqaamaalaaabaGaamyraaqaaiaaikdacaGGOaGaaGymaiab gUcaRiabe27aUjaacMcacqaHbpGCdaWgaaWcbaGaaGimaaqabaaaaa qabaaaaa@680F@

 

·         Body forces are neglected (a rather convoluted procedure exists for problems involving body force)

 

·         The solid is assumed to be at rest for t<0

 

·         Part of the boundary 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  is subjected to time dependent prescribed displacements u i * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaai Okaaaaaaa@33A3@

 

·         A second part of the boundary 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  is subjected to prescribed tractions t i * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaDaaaleaacaWGPbaabaGaai Okaaaaaaa@33A2@

 

 

The procedure can be summarized as follows:

 

1. Find a vector function Ψ i ( x 1 , x 2 , x 3 ,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiQdK1aaSbaaSqaaiaadMgaaeqaaO GaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaa BaaaleaacaaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaae qaaOGaaiilaiaadshacaGGPaaaaa@3DC2@   and a scalar function ϕ( x 1 , x 2 , x 3 ,t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaaiikaiaadIhadaWgaaWcba GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaa cYcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadshacaGGPa aaaa@3CD6@  which satisfy

Ψ i x i =0 2 Ψ i x j x j = 1 c s 2 2 Ψ i t 2 2 ϕ x k x k = 1 c L 2 2 ϕ t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqqHOoqwdaWgaa WcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaaaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaa aakiabfI6aznaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaamOAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadQ gaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaaiaadogadaqhaaWc baGaam4CaaqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccqqHOoqwdaWgaaWcbaGaamyAaaqabaaakeaacqGH ciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgk Gi2kaadIhadaWgaaWcbaGaam4AaaqabaGccqGHciITcaWG4bWaaSba aSqaaiaadUgaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaaiaado gadaqhaaWcbaGaamitaaqaaiaaikdaaaaaaOWaaSaaaeaacqGHciIT daahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITcaWG0bWaaW baaSqabeaacaaIYaaaaaaaaaa@9159@

as well as boundary conditions

ϕ x i + ijk Ψ k x j = u i * on  S 1 2 ϕ x i x j n j + 1 2 ilk 2 Ψ k x l x j + jlk 2 Ψ k x l x i n j + ν n i 12ν 2 ϕ x k x k = (1+ν) E t i * on  S 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kabew9aMb qaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaey4kaSIa eyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGcdaWcaaqaai abgkGi2kabfI6aznaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaa dIhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0JaamyDamaaDaaale aacaWGPbaabaGaaiOkaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aab+gacaqGUbGaaeiiaiaadofadaWgaaWcbaGaaGymaaqabaaakeaa daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaai abgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWa aSbaaSqaaiaadQgaaeqaaaaakiaad6gadaWgaaWcbaGaamOAaaqaba GccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeyic I48aaSbaaSqaaiaadMgacaWGSbGaam4AaaqabaGcdaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiabfI6aznaaBaaaleaacaWGRbaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaGccqGHci ITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRiabgIGiopaa BaaaleaacaWGQbGaamiBaiaadUgaaeqaaOWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccqqHOoqwdaWgaaWcbaGaam4Aaaqabaaa keaacqGHciITcaWG4bWaaSbaaSqaaiaadYgaaeqaaOGaeyOaIyRaam iEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaacaWGUbWa aSbaaSqaaiaadQgaaeqaaOGaey4kaSYaaSaaaeaacqaH9oGBcaWGUb WaaSbaaSqaaiaadMgaaeqaaaGcbaGaaGymaiabgkHiTiaaikdacqaH 9oGBaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvp GzaeaacqGHciITcaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaeyOaIyRa amiEamaaBaaaleaacaWGRbaabeaaaaGccqGH9aqpdaWcaaqaaiaacI cacaaIXaGaey4kaSIaeqyVd4MaaiykaaqaaiaadweaaaGaamiDamaa DaaaleaacaWGPbaabaGaaiOkaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaab+gacaqGUbGaaeiiaiaadofadaWgaaWcbaGa aGOmaaqabaaaaaa@700B@

and initial conditions Ψ i =ϕ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiQdK1aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0Jaeqy1dyMaeyypa0JaaGimaaaa@3821@ .

 

2. Calculate displacements from the formula

u i = ϕ x i + ijk Ψ k x j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9maalaaabaGaeyOaIyRaeqy1dygabaGaeyOaIyRaamiEamaa BaaaleaacaWGPbaabeaaaaGccqGHRaWkcqGHiiIZdaWgaaWcbaGaam yAaiaadQgacaWGRbaabeaakmaalaaabaGaeyOaIyRaeuiQdK1aaSba aSqaaiaadUgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQb aabeaaaaaaaa@47DA@

 

3. Calculate stresses from the formula

(1+ν) E σ ij = 2 ϕ x i x j + 1 2 ilk 2 Ψ k x l x j + jlk 2 Ψ k x l x i + ν δ ij 12ν 2 ϕ x k x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaGGOaGaaGymaiabgUcaRi abe27aUjaacMcaaeaacaWGfbaaaiabeo8aZnaaBaaaleaacaWGPbGa amOAaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG Omaaaakiabew9aMbqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqa baGccqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacqGHiiIZdaWgaaWc baGaamyAaiaadYgacaWGRbaabeaakmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaeuiQdK1aaSbaaSqaaiaadUgaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaWGSbaabeaakiabgkGi2kaadIhada WgaaWcbaGaamOAaaqabaaaaOGaey4kaSIaeyicI48aaSbaaSqaaiaa dQgacaWGSbGaam4AaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabfI6aznaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi 2kaadIhadaWgaaWcbaGaamiBaaqabaGccqGHciITcaWG4bWaaSbaaS qaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGa eqyVd4MaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaaig dacqGHsislcaaIYaGaeqyVd4gaamaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaBaaaleaaca WGRbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaam4Aaaqabaaaaaaa @8280@

 

You can easily show that this solution satisfies the equations of motion for an elastic solid, by substituting the formula for displacements into the Cauchy-Navier equation

1 12ν 2 u k x k x i + 2 u i x k x k = ρ 0 μ 2 u i t 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaaGymaiabgk HiTiaaikdacqaH9oGBaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccaWG1bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaWGRbaabeaakiabgkGi2kaadIhadaWgaaWcba Gaam4AaaqabaaaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaakeaacqaH8oqBaaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOa IyRaamiDamaaCaaaleqabaGaaGOmaaaaaaaaaa@5B25@

The details are left as an exercise.   More importantly, one can also show that the representation is complete, i.e. all dynamic solutions can be derived from some appropriate combination of potentials.

 

 

 

5.5.2 Pressure suddenly applied to the surface of a spherical cavity in an infinite solid

 

The figure below shows a spherical cavity with radius a in an infinite elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  The solid is at rest for t<0.   A time t=0, a pressure p is applied to the surface of the hole, and thereafter held fixed.

 


 

The solution is generated by Love potentials

Ψ i =0ϕ= (1+ν) a 3 p 2ER 1 2(1ν) e αs sin βs+γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiQdK1aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqaHvpGzcqGH9aqpcaaMc8UaeyOeI0YaaSaaaeaa caGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaWGHbWaaWbaaSqabe aacaaIZaaaaOGaamiCaaqaaiaaikdacaWGfbGaamOuaaaadaGadaqa aiaaigdacqGHsisldaGcaaqaaiaaikdacaGGOaGaaGymaiabgkHiTi abe27aUjaacMcaaSqabaGccaWGLbWaaWbaaSqabeaacqGHsislcqaH XoqycaWGZbaaaOGaci4CaiaacMgacaGGUbWaaeWaaeaacqaHYoGyca WGZbGaey4kaSIaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaayzFaaaa aa@74CE@

where

α= 12ν 1ν β= 12ν 1ν γ= cot 1 12ν R= x k x k s= ( c L tR+a)/aRa< c L t 0Ra> c L t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHXoqycqGH9aqpdaWcaaqaai aaigdacqGHsislcaaIYaGaeqyVd4gabaGaaGymaiabgkHiTiabe27a UbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOSdiMaeyypa0Za aSaaaeaadaGcaaqaaiaaigdacqGHsislcaaIYaGaeqyVd4galeqaaa GcbaGaaGymaiabgkHiTiabe27aUbaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqaHZoWzcqGH9aqpciGGJbGaai4BaiaacshadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGcaaqaaiaaigdacqGHsislcaaIYaGaeqyVd4 galeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadkfacqGH9aqpdaGcaaqaaiaadIhada WgaaWcbaGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaqa baaakeaacaWGZbGaeyypa0ZaaiqaaeaafaqabeGabaaabaGaaiikai aadogadaWgaaWcbaGaamitaaqabaGccaWG0bGaeyOeI0IaamOuaiab gUcaRiaadggacaGGPaGaai4laiaadggacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam OuaiabgkHiTiaadggacqGH8aapcaWGJbWaaSbaaSqaaiaadYeaaeqa aOGaamiDaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadk facqGHsislcaWGHbGaeyOpa4Jaam4yamaaBaaaleaacaWGmbaabeaa kiaadshaaaaacaGL7baacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7aaaa@24B5@

The displacements and stresses follow as

u i = (1+ν) a 3 p x i 2E R 3 1 2(1ν) e αs sin βs+γ βRcot βs+γ αR a +1 σ ij = a 3 p 2 R 3 3 x i x j R 2 δ ij 1 2(1ν) e αs sin βs+γ βRcot βs+γ αR a +1 + ap 2R x i x j R 2 + ν δ ij 12ν 2(1ν) e αs sin(βs+γ) α 2 β 2 2βαcot(βs+γ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaaGPaVpaalaaabaGaaiikaiaaigdacqGHRaWkcqaH 9oGBcaGGPaGaamyyamaaCaaaleqabaGaaG4maaaakiaadchacaWG4b WaaSbaaSqaaiaadMgaaeqaaaGcbaGaaGOmaiaadweacaWGsbWaaWba aSqabeaacaaIZaaaaaaakmaacmaabaGaaGymaiabgkHiTmaakaaaba GaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaWcbeaakiaa dwgadaahaaWcbeqaaiabgkHiTiabeg7aHjaadohaaaGcciGGZbGaai yAaiaac6gadaqadaqaaiabek7aIjaadohacqGHRaWkcqaHZoWzaiaa wIcacaGLPaaadaqadaqaamaalaaabaGaeqOSdiMaamOuaiGacogaca GGVbGaaiiDamaabmaabaGaeqOSdiMaam4CaiabgUcaRiabeo7aNbGa ayjkaiaawMcaaiabgkHiTiabeg7aHjaadkfaaeaacaWGHbaaaiabgU caRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baaaeaacqaHdpWC daWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaeyOeI0YaaSaaae aacaWGHbWaaWbaaSqabeaacaaIZaaaaOGaamiCaaqaaiaaikdacaWG sbWaaWbaaSqabeaacaaIZaaaaaaakmaabmaabaGaaG4mamaalaaaba GaamiEamaaBaaaleaacaWGPbaabeaakiaadIhadaWgaaWcbaGaamOA aaqabaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTi abes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaa daGadaqaaiaaigdacqGHsisldaGcaaqaaiaaikdacaGGOaGaaGymai abgkHiTiabe27aUjaacMcaaSqabaGccaWGLbWaaWbaaSqabeaacqGH sislcqaHXoqycaWGZbaaaOGaci4CaiaacMgacaGGUbWaaeWaaeaacq aHYoGycaWGZbGaey4kaSIaeq4SdCgacaGLOaGaayzkaaWaaeWaaeaa daWcaaqaaiabek7aIjaadkfaciGGJbGaai4Baiaacshadaqadaqaai abek7aIjaadohacqGHRaWkcqaHZoWzaiaawIcacaGLPaaacqGHsisl cqaHXoqycaWGsbaabaGaamyyaaaacqGHRaWkcaaIXaaacaGLOaGaay zkaaaacaGL7bGaayzFaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabgUcaRmaalaaabaGaamyyaiaadchaaeaacaaIYaGaamOuaaaa daqadaqaamaalaaabaGaamiEamaaBaaaleaacaWGPbaabeaakiaadI hadaWgaaWcbaGaamOAaaqabaaakeaacaWGsbWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaeqyVd4MaeqiTdq2aaSbaaSqaai aadMgacaWGQbaabeaaaOqaaiaaigdacqGHsislcaaIYaGaeqyVd4ga aaGaayjkaiaawMcaamaakaaabaGaaGOmaiaacIcacaaIXaGaeyOeI0 IaeqyVd4MaaiykaaWcbeaakiaadwgadaahaaWcbeqaaiabgkHiTiab eg7aHjaadohaaaGcciGGZbGaaiyAaiaac6gacaGGOaGaeqOSdiMaam 4CaiabgUcaRiabeo7aNjaacMcadaGadaqaamaabmaabaGaeqySde2a aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaeqOSdi2aaWbaaSqabeaaca aIYaaaaaGccaGLOaGaayzkaaGaeyOeI0IaaGOmaiabek7aIjabeg7a HjGacogacaGGVbGaaiiDaiaacIcacqaHYoGycaWGZbGaey4kaSIaeq 4SdCMaaiykaaGaay5Eaiaaw2haaaaaaa@0718@

The radial and hoop stresses at several time intervals are plotted below.


 

 

Observe that

 

1. A wave front propagates out from the cavity at the longitudinal wave speed c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaaa a@32C5@ ;

 

2. Unlike the simple 2D wave problems discussed in Section 4.4, the stress is not constant behind the front.  Instead, each point in the solid experiences a damped oscillation in displacement and stress that eventually decays to the static solution;

 

3. Both the radial and hoop stress reverse sign as the wave passes by.  For this reason dynamic loading can cause failures to occur in very unexpected places;

 

4. The maximum stress induced by dynamic loading substantially exceeds the static solution. 

 

 

 

5.5.3 Rayleigh waves

 

A Rayleigh wave is a special type of wave which propagates near the surface of an elastic solid.  Assume that

 

· The solid is an isotropic, linear elastic material with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@ , Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@

 

· The solid has shear wave speed   c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGZbaabeaaaa a@32EC@  and longitudinal wave speed c L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGmbaabeaaaa a@32C5@

 

· The surface is free of tractions

 

· A Rayleigh wave with wavelength λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  propagates in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction, as shown below

 

 


 

The displacement and stress due can be derived from Love potentials

ϕ= U 0 ( k 2 + β T 2 ) β L ( k 2 β T 2 ) exp β L x 2 exp ik( x 1 c R t) Ψ k = 2ik U 0 δ k3 ( k 2 β T 2 ) exp β T x 2 exp ik( x 1 c R t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHvpGzcqGH9aqpdaWcaaqaai aadwfadaWgaaWcbaGaaGimaaqabaGccaGGOaGaam4AamaaCaaaleqa baGaaGOmaaaakiabgUcaRiabek7aInaaDaaaleaacaWGubaabaGaaG OmaaaakiaacMcaaeaacqaHYoGydaWgaaWcbaGaamitaaqabaGccaGG OaGaam4AamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabek7aInaaDa aaleaacaWGubaabaGaaGOmaaaakiaacMcaaaGaciyzaiaacIhacaGG WbWaaeWaaeaacqGHsislcqaHYoGydaWgaaWcbaGaamitaaqabaGcca WG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaciyzaiaa cIhacaGGWbWaaeWaaeaacaWGPbGaam4AaiaacIcacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGsbaabeaa kiaadshacaGGPaaacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8oabaGaeuiQdK1aaSbaaSqaaiaadUgaaeqaaOGaeyypa0ZaaSaaae aacaaIYaGaamyAaiaadUgacaWGvbWaaSbaaSqaaiaaicdaaeqaaOGa eqiTdq2aaSbaaSqaaiaadUgacaaIZaaabeaaaOqaaiaacIcacaWGRb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaeqOSdi2aa0baaSqaaiaa dsfaaeaacaaIYaaaaOGaaiykaaaaciGGLbGaaiiEaiaacchadaqada qaaiabgkHiTiabek7aInaaBaaaleaacaWGubaabeaakiaadIhadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaciGGLbGaaiiEaiaacc hadaqadaqaaiaadMgacaWGRbGaaiikaiaadIhadaWgaaWcbaGaaGym aaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaadkfaaeqaaOGaamiDai aacMcaaiaawIcacaGLPaaaaaaa@9BC9@

where i= 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyAaiabg2da9maakaaabaGaeyOeI0 IaaGymaaWcbeaaaaa@3497@ , U 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaaIWaaabeaaaa a@32A0@  is the amplitude of the vertical displacement at the free surface, k=2π/λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaaikdacqaHapaCca GGVaGaeq4UdWgaaa@37B6@  is the wavenumber

β L =k 1 c R 2 / c L 2 β T =k 1 c R 2 / c s 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaadYeaaeqaaO Gaeyypa0Jaam4AamaakaaabaGaaGymaiabgkHiTiaadogadaqhaaWc baGaamOuaaqaaiaaikdaaaGccaGGVaGaam4yamaaDaaaleaacaWGmb aabaGaaGOmaaaaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeqOSdi2aaSbaaSqaaiaadsfaaeqaaOGaeyypa0Ja am4AamaakaaabaGaaGymaiabgkHiTiaadogadaqhaaWcbaGaamOuaa qaaiaaikdaaaGccaGGVaGaam4yamaaDaaaleaacaWGZbaabaGaaGOm aaaaaeqaaaaa@60F8@

and c R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGsbaabeaaaa a@32CB@  is the Rayleigh wave speed, which is the positive real root of

2 c R 2 c s 2 2 4 1 (12ν) 2(1ν) c R 2 c s 2 1/2 1 c R 2 c s 2 1/2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIYaGaeyOeI0YaaSaaae aacaWGJbWaa0baaSqaaiaadkfaaeaacaaIYaaaaaGcbaGaam4yamaa DaaaleaacaWGZbaabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaI0aWaaeWaaeaacaaIXaGaeyOe I0YaaSaaaeaacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPa aabaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaadaWc aaqaaiaadogadaqhaaWcbaGaamOuaaqaaiaaikdaaaaakeaacaWGJb Waa0baaSqaaiaadohaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGymaiaac+cacaaIYaaaaOWaaeWaaeaacaaIXaGaey OeI0YaaSaaaeaacaWGJbWaa0baaSqaaiaadkfaaeaacaaIYaaaaaGc baGaam4yamaaDaaaleaacaWGZbaabaGaaGOmaaaaaaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiabg2da9iaa icdaaaa@5F4D@

This equation can easily be solved for c R / c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGsbaabeaaki aac+cacaWGJbWaaSbaaSqaaiaadohaaeqaaaaa@3594@  with a symbolic manipulation program, which will most likely return 6 roots.  The root of interest lies in the range 0.65< c R / c s <1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiaac6cacaaI2aGaaGynaiabgY da8iaadogadaWgaaWcbaGaamOuaaqabaGccaGGVaGaam4yamaaBaaa leaacaWGZbaabeaakiabgYda8iaaigdaaaa@3B4C@  for 1<ν<0.5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGymaiabgYda8iabe27aUj abgYda8iaaicdacaGGUaGaaGynaaaa@3873@ . The solution can be approximated by c R / c s =0.8750.2ν0.05 (ν+0.25) 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGsbaabeaaki aac+cacaWGJbWaaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGimaiaa c6cacaaI4aGaaG4naiaaiwdacqGHsislcaaIWaGaaiOlaiaaikdacq aH9oGBcqGHsislcaaIWaGaaiOlaiaaicdacaaI1aGaaiikaiabe27a UjabgUcaRiaaicdacaGGUaGaaGOmaiaaiwdacaGGPaWaaWbaaSqabe aacaaIZaaaaaaa@4AB5@  with an error of less than 0.6% over the full range of Poisson ratio.

 

The nonzero components of displacement and stress follow as

u 1 = U 0 ik ( k 2 β T 2 ) β L exp ik( x 1 c R t) ( k 2 + β T 2 )exp β L x 2 2 β L β T exp β T x 2 u 2 = U 0 ( k 2 β T 2 ) exp ik( x 1 c R t) 2 k 2 exp β T x 2 ( k 2 + β T 2 )exp β L x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaSaaaeaacaWGvbWaaSbaaSqaaiaaicdaaeqaaOGa amyAaiaadUgaaeaacaGGOaGaam4AamaaCaaaleqabaGaaGOmaaaaki abgkHiTiabek7aInaaDaaaleaacaWGubaabaGaaGOmaaaakiaacMca cqaHYoGydaWgaaWcbaGaamitaaqabaaaaOGaciyzaiaacIhacaGGWb WaaeWaaeaacaWGPbGaam4AaiaacIcacaWG4bWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGsbaabeaakiaadshaca GGPaaacaGLOaGaayzkaaGaaGPaVpaacmaabaGaaiikaiaadUgadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcqaHYoGydaqhaaWcbaGaamivaa qaaiaaikdaaaGccaGGPaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGH sislcqaHYoGydaWgaaWcbaGaamitaaqabaGccaWG4bWaaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaGOmaiabek7aInaa BaaaleaacaWGmbaabeaakiabek7aInaaBaaaleaacaWGubaabeaaki GacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaeqOSdi2aaSbaaSqa aiaadsfaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkai aawMcaaaGaay5Eaiaaw2haaaqaaiaadwhadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpdaWcaaqaaiaadwfadaWgaaWcbaGaaGimaaqabaaake aacaGGOaGaam4AamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabek7a InaaDaaaleaacaWGubaabaGaaGOmaaaakiaacMcaaaGaciyzaiaacI hacaGGWbWaaeWaaeaacaWGPbGaam4AaiaacIcacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGsbaabeaaki aadshacaGGPaaacaGLOaGaayzkaaGaaGPaVpaacmaabaGaaGOmaiaa dUgadaahaaWcbeqaaiaaikdaaaGcciGGLbGaaiiEaiaacchadaqada qaaiabgkHiTiabek7aInaaBaaaleaacaWGubaabeaakiaadIhadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHsislcaGGOaGaam 4AamaaCaaaleqabaGaaGOmaaaakiabgUcaRiabek7aInaaDaaaleaa caWGubaabaGaaGOmaaaakiaacMcaciGGLbGaaiiEaiaacchadaqada qaaiabgkHiTiabek7aInaaBaaaleaacaWGmbaabeaakiaadIhadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baaaa aa@B1C3@

σ 11 = U 0 Eexp ik( x 1 c R t) ( k 2 β T 2 )(1+ν)(12ν) β L k 2 ν( β L 2 + β T 2 )(1ν)( k 2 + β T 2 ) exp β L x 2 +2 k 2 β T β L (12ν)exp β T x 2 σ 22 = U 0 Eexp ik( x 1 c R t) ( k 2 β T 2 )(1+ν)(12ν) β L ( k 2 + β T 2 ) (1ν) β L 2 ν k 2 exp β L x 2 2 k 2 β T β L (12ν)exp β T x 2 σ 12 = i U 0 kE( k 2 + β T 2 ) ( k 2 β T 2 )(1+ν) exp ik( x 1 c R t) exp β T x 2 exp β L x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGvbWaaSbaaSqaaiaaicda aeqaaOGaamyraiGacwgacaGG4bGaaiiCamaabmaabaGaamyAaiaadU gacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadoga daWgaaWcbaGaamOuaaqabaGccaWG0bGaaiykaaGaayjkaiaawMcaaa qaaiaacIcacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaeqOS di2aa0baaSqaaiaadsfaaeaacaaIYaaaaOGaaiykaiaacIcacaaIXa Gaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOeI0IaaGOmaiab e27aUjaacMcacqaHYoGydaWgaaWcbaGaamitaaqabaaaaOWaaiqaae aacaWGRbWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaacqaH9oGBcaGG OaGaeqOSdi2aa0baaSqaaiaadYeaaeaacaaIYaaaaOGaey4kaSIaeq OSdi2aa0baaSqaaiaadsfaaeaacaaIYaaaaOGaaiykaiabgkHiTiaa cIcacaaIXaGaeyOeI0IaeqyVd4MaaiykaiaacIcacaWGRbWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaeqOSdi2aa0baaSqaaiaadsfaaeaa caaIYaaaaOGaaiykaaGaay5waiaaw2faaiGacwgacaGG4bGaaiiCam aabmaabaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaadYeaaeqaaOGaamiE amaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5Eaaaaba GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVpaaciaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaIYa Gaam4AamaaCaaaleqabaGaaGOmaaaakiabek7aInaaBaaaleaacaWG ubaabeaakiabek7aInaaBaaaleaacaWGmbaabeaakiaacIcacaaIXa GaeyOeI0IaaGOmaiabe27aUjaacMcaciGGLbGaaiiEaiaacchadaqa daqaaiabgkHiTiabek7aInaaBaaaleaacaWGubaabeaakiaadIhada WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaaw2haaaqaaiab eo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaai aadwfadaWgaaWcbaGaaGimaaqabaGccaWGfbGaciyzaiaacIhacaGG WbWaaeWaaeaacaWGPbGaam4AaiaacIcacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaWGsbaabeaakiaadsha caGGPaaacaGLOaGaayzkaaaabaGaaiikaiaadUgadaahaaWcbeqaai aaikdaaaGccqGHsislcqaHYoGydaqhaaWcbaGaamivaaqaaiaaikda aaGccaGGPaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaaiikai aaigdacqGHsislcaaIYaGaeqyVd4Maaiykaiabek7aInaaBaaaleaa caWGmbaabeaaaaGcdaGabaqaaiaacIcacaWGRbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaeqOSdi2aa0baaSqaaiaadsfaaeaacaaIYaaa aOGaaiykamaadmaabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPa GaeqOSdi2aa0baaSqaaiaadYeaaeaacaaIYaaaaOGaeyOeI0IaeqyV d4Maam4AamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiGacw gacaGG4bGaaiiCamaabmaabaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaa dYeaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaaGaay5EaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVpaaciaabaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHsislcaaIYaGaam4AamaaCaaaleqabaGaaGOmaaaakiabek7a InaaBaaaleaacaWGubaabeaakiabek7aInaaBaaaleaacaWGmbaabe aakiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaciGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTiabek7aInaaBaaaleaacaWGub aabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa aiaaw2haaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGccq GH9aqpdaWcaaqaaiaadMgacaWGvbWaaSbaaSqaaiaaicdaaeqaaOGa am4AaiaadweacaGGOaGaam4AamaaCaaaleqabaGaaGOmaaaakiabgU caRiabek7aInaaDaaaleaacaWGubaabaGaaGOmaaaakiaacMcaaeaa caGGOaGaam4AamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabek7aIn aaDaaaleaacaWGubaabaGaaGOmaaaakiaacMcacaGGOaGaaGymaiab gUcaRiabe27aUjaacMcaaaGaciyzaiaacIhacaGGWbWaaeWaaeaaca WGPbGaam4AaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOe I0Iaam4yamaaBaaaleaacaWGsbaabeaakiaadshacaGGPaaacaGLOa GaayzkaaWaaiWaaeaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHi Tiabek7aInaaBaaaleaacaWGubaabeaakiaadIhadaWgaaWcbaGaaG OmaaqabaaakiaawIcacaGLPaaacqGHsislciGGLbGaaiiEaiaaccha daqadaqaaiabgkHiTiabek7aInaaBaaaleaacaWGmbaabeaakiaadI hadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL 9baaaaaa@C34F@

You can use either the real or imaginary part of these expressions for the displacement and stress fields (they are identical, except for a phase difference). Of course, if you choose to take the real part of one of the functions, you must take the real part for all the others as well. Note that substituting x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdaaaa@348F@  in the expression for σ 22 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaaaaa@3447@  and setting σ 22 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaaicdaaaa@3611@  yields the equation for the Rayleigh wave speed, so the boundary condition σ 22 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaaicdaaaa@3611@  is satisfied.  The variations with depth of stress amplitude and displacement amplitude are plotted below.


 

Important features of this solution are

 

1. The wave is confined to a layer near the surface with thickness about twice the wavelength. 

 

2. The horizontal and vertical components of displacement are 90 degrees out of phase.  Material particles therefore describe elliptical orbits as the wave passes by.

 

3. The speed of the wave is independent of its wavelength MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  that is to say, the wave is non-dispersive.

 

4. Rayleigh waves are exploited in a range of engineering applications, including surface acoustic wave devices; touch sensors; and miniature linear motors.  They are also observed in earthquakes, although these waves are observed to be dispersive, because of density variations of the earth’s surface.

 

 

 

5.5.4 Love waves

 

Love waves are a second form of surface wave, somewhat similar to Rayleigh waves, which propagate through a thin elastic layer bonded to the surface of an elastic half space, as shown in the figure Love waves involve motion perpendicular to the plane of the figure.

 

Assume that

 

· The layer has thickness H, shear modulus μ f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadAgaaeqaaa aa@33AD@  and shear wave speed c sf MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGZbGaamOzaa qabaaaaa@33D7@

 

· The substrate has shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and shear wave speed c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGZbaabeaaaa a@32EC@

 

· The wave speeds satisfy c sf < c s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGZbGaamOzaa qabaGccqGH8aapcaWGJbWaaSbaaSqaaiaadohaaeqaaaaa@36F1@  

 

The displacement and stress associated with a harmonic Love wave with wavelength λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  which propagates in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction can be derived from Love potentials

Ψ k = U 0 μ f γ δ k1 exp(β x 2 ) β μβsinγH+ μ f γcosγH exp(ik( x 1 ct)) x 2 >0 U 0 δ k1 μβcos(γ x 2 )+ μ f γsin(γ x 2 ) γ μβsinγH+ μ f γcosγH exp(ik( x 1 ct)) x 2 <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiQdK1aaSbaaSqaaiaadUgaaeqaaO Gaeyypa0ZaaiqaaeaafaqabeGabaaabaWaaSaaaeaacqGHsislcaWG vbWaaSbaaSqaaiaaicdaaeqaaOGaeqiVd02aaSbaaSqaaiaadAgaae qaaOGaeq4SdCMaeqiTdq2aaSbaaSqaaiaadUgacaaIXaaabeaakiGa cwgacaGG4bGaaiiCaiaacIcacqGHsislcqaHYoGycaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaiykaaqaaiabek7aInaabmaabaGaeqiVd0Ma eqOSdiMaci4CaiaacMgacaGGUbGaeq4SdCMaamisaiabgUcaRiabeY 7aTnaaBaaaleaacaWGMbaabeaakiabeo7aNjGacogacaGGVbGaai4C aiabeo7aNjaadIeaaiaawIcacaGLPaaaaaGaciyzaiaacIhacaGGWb GaaiikaiaadMgacaWGRbGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislcaWGJbGaamiDaiaacMcacaGGPaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaamiEamaaBaaaleaacaaIYaaabeaakiabg6da+iaaicdaaeaada WcaaqaaiaadwfadaWgaaWcbaGaaGimaaqabaGccqaH0oazdaWgaaWc baGaam4AaiaaigdaaeqaaOWaaeWaaeaacqaH8oqBcqaHYoGyciGGJb Gaai4BaiaacohacaGGOaGaeq4SdCMaamiEamaaBaaaleaacaaIYaaa beaakiaacMcacqGHRaWkcqaH8oqBdaWgaaWcbaGaamOzaaqabaGccq aHZoWzciGGZbGaaiyAaiaac6gacaGGOaGaeq4SdCMaamiEamaaBaaa leaacaaIYaaabeaakiaacMcaaiaawIcacaGLPaaaaeaacqaHZoWzda qadaqaaiabeY7aTjabek7aIjGacohacaGGPbGaaiOBaiabeo7aNjaa dIeacqGHRaWkcqaH8oqBdaWgaaWcbaGaamOzaaqabaGccqaHZoWzci GGJbGaai4BaiaacohacqaHZoWzcaWGibaacaGLOaGaayzkaaaaaiGa cwgacaGG4bGaaiiCaiaacIcacaWGPbGaam4AaiaacIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yaiaadshacaGGPaGaaiyk aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyipaWJa aGimaaaaaiaawUhaaaaa@EE18@

where U 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaaIWaaabeaaaa a@32A0@  is the amplitude of the vertical displacement at the free surface, k=2π/λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaaikdacqaHapaCca GGVaGaeq4UdWgaaa@37B6@  is the wavenumber;

β=k 1 c 2 / c s 2 γ=k c 2 / c sf 2 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0Jaam4Aamaakaaaba GaaGymaiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaGccaGGVaGa am4yamaaDaaaleaacaWGZbaabaGaaGOmaaaaaeqaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeq4SdCMaeyypa0Jaam4AamaakaaabaGaam4yam aaCaaaleqabaGaaGOmaaaakiaac+cacaWGJbWaa0baaSqaaiaadoha caWGMbaabaGaaGOmaaaakiabgkHiTiaaigdaaSqabaaaaa@59C0@

and c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaaaa@31C8@  is the wave speed (also known as the phase velocity) of the wave, which is given by the positive real roots of

tan kH c 2 c sf 2 1 μ μ f 1 c 2 / c s 2 c 2 / c sf 2 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiDaiaacggacaGGUbWaaiWaaeaaca WGRbGaamisamaakaaabaWaaSaaaeaacaWGJbWaaWbaaSqabeaacaaI YaaaaaGcbaGaam4yamaaDaaaleaacaWGZbGaamOzaaqaaiaaikdaaa aaaOGaeyOeI0IaaGymaaWcbeaaaOGaay5Eaiaaw2haaiabgkHiTmaa laaabaGaeqiVd0gabaGaeqiVd02aaSbaaSqaaiaadAgaaeqaaaaakm aalaaabaWaaOaaaeaacaaIXaGaeyOeI0Iaam4yamaaCaaaleqabaGa aGOmaaaakiaac+cacaWGJbWaa0baaSqaaiaadohaaeaacaaIYaaaaa qabaaakeaadaGcaaqaaiaadogadaahaaWcbeqaaiaaikdaaaGccaGG VaGaam4yamaaDaaaleaacaWGZbGaamOzaaqaaiaaikdaaaGccqGHsi slcaaIXaaaleqaaaaakiabg2da9iaaicdaaaa@55A1@

 

 

This relationship is very unlike the equations for wave speeds in unbounded or semi-infinite solids, and leads to a number of counter-intuitive results.   Note that

 

1. The wave speed depends on its wavelength.  A wave with these properties is said to be dispersive, because a pulse consisting of a spectrum of harmonic waves tends to spread out;

 

2. The wave speed is always faster than the shear wave speed of the layer, but less than the wave speed in the substrate;

 

3. If a wave with wavenumber k 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaaIWaaabeaaaa a@32B6@  propagates at speed c, then waves with wavenumber k n = k 0 +nπ/H c 2 / c sf 2 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaki abg2da9iaadUgadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGUbGa eqiWdaNaai4laiaadIeadaGcaaqaaiaadogadaahaaWcbeqaaiaaik daaaGccaGGVaGaam4yamaaDaaaleaacaWGZbGaamOzaaqaaiaaikda aaGccqGHsislcaaIXaaaleqaaaaa@4300@  where n is any integer, also propagate at the same speed.   These waves are associated with different propagation modes for the wave.  Each propagation mode has a characteristic displacement distribution through the thickness of the layer, as discussed below.

 

4. A wave with a particular wave number can propagate at several different speeds, depending on the mode.  The number of modes that can exist at a particular wave number increases with the wave number.  You can see this in the plot of wave speed MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@ v- wave number below.

 

 

5. Dispersive wave motion is often characterized by relating the frequency of the wave to its wave number, rather than by relating wave speed to wave number.   The (angular) frequency is related to wave number and wave speed by the usual formula ω=ck MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyypa0Jaam4yaiaadUgaaa a@358B@ .  Substituting this result into the equation for wave speed yields the Dispersion Relation for the wave

tan (ωH/ c sf ) 2 (kH) 2 μ μ f (kH) 2 (ωH/ c s ) 2 (ωH/ c sf ) 2 (kH) 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiDaiaacggacaGGUbWaaiWaaeaada GcaaqaaiaacIcacqaHjpWDcaWGibGaai4laiaadogadaWgaaWcbaGa am4CaiaadAgaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaacIcacaWGRbGaamisaiaacMcadaahaaWcbeqaaiaaikdaaaaa beaaaOGaay5Eaiaaw2haaiabgkHiTmaalaaabaGaeqiVd0gabaGaeq iVd02aaSbaaSqaaiaadAgaaeqaaaaakmaalaaabaWaaOaaaeaacaGG OaGaam4AaiaadIeacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0 IaaiikaiabeM8a3jaadIeacaGGVaGaam4yamaaBaaaleaacaWGZbaa beaakiaacMcadaahaaWcbeqaaiaaikdaaaaabeaaaOqaamaakaaaba GaaiikaiabeM8a3jaadIeacaGGVaGaam4yamaaBaaaleaacaWGZbGa amOzaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaai ikaiaadUgacaWGibGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaaaa kiabg2da9iaaicdaaaa@6531@

 

The nonzero displacement component is

u 3 = U 0 μβsin(γ x 2 ) μ f γcos(γ x 2 ) μβsinγH+ μ f γcosγH exp(ik( x 1 ct)) x 2 <0 U 0 μ f γexp(β x 2 ) μβsinγH+ μ f γcosγH exp(ik( x 1 ct)) x 2 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9maaceaabaqbaeqabiqaaaqaamaalaaabaGaeyOeI0Iaamyv amaaBaaaleaacaaIWaaabeaakmaabmaabaGaeqiVd0MaeqOSdiMaci 4CaiaacMgacaGGUbGaaiikaiabeo7aNjaadIhadaWgaaWcbaGaaGOm aaqabaGccaGGPaGaeyOeI0IaeqiVd02aaSbaaSqaaiaadAgaaeqaaO Gaeq4SdCMaci4yaiaac+gacaGGZbGaaiikaiabeo7aNjaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaaacaGLOaGaayzkaaaabaWaaeWaae aacqaH8oqBcqaHYoGyciGGZbGaaiyAaiaac6gacqaHZoWzcaWGibGa ey4kaSIaeqiVd02aaSbaaSqaaiaadAgaaeqaaOGaeq4SdCMaci4yai aac+gacaGGZbGaeq4SdCMaamisaaGaayjkaiaawMcaaaaaciGGLbGa aiiEaiaacchacaGGOaGaamyAaiaadUgacaGGOaGaamiEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadogacaWG0bGaaiykaiaacMcacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamiEamaaBaaaleaacaaIYaaabeaakiabgYda8iaaicda aeaadaWcaaqaaiaadwfadaWgaaWcbaGaaGimaaqabaGccqaH8oqBda WgaaWcbaGaamOzaaqabaGccqaHZoWzciGGLbGaaiiEaiaacchacaGG OaGaeyOeI0IaeqOSdiMaamiEamaaBaaaleaacaaIYaaabeaakiaacM caaeaadaqadaqaaiabeY7aTjabek7aIjGacohacaGGPbGaaiOBaiab eo7aNjaadIeacqGHRaWkcqaH8oqBdaWgaaWcbaGaamOzaaqabaGccq aHZoWzciGGJbGaai4BaiaacohacqaHZoWzcaWGibaacaGLOaGaayzk aaaaaiGacwgacaGG4bGaaiiCaiaacIcacaWGPbGaam4AaiaacIcaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yaiaadshacaGG PaGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGOmaaqa baGccqGH+aGpcaaIWaaaaaGaay5Eaaaaaa@E307@

The nonzero stresses in the layer can be determined from σ 3i = μ f u 3 / x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaWGPb aabeaakiabg2da9iabeY7aTnaaBaaaleaacaWGMbaabeaakiabgkGi 2kaadwhadaWgaaWcbaGaaG4maaqabaGccaGGVaGaeyOaIyRaamiEam aaBaaaleaacaWGPbaabeaaaaa@3FE4@ , but the calculation is so trivial the result will not be written out here.  The wave speed is plotted as a function of wave number in the graph below, for the particular case μ= μ f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maeyypa0JaeqiVd02aaSbaaS qaaiaadAgaaeqaaaaa@3669@ , c s / c sf =2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGZbaabeaaki aac+cacaWGJbWaaSbaaSqaaiaadohacaWGMbaabeaakiabg2da9iaa ikdaaaa@386C@ .   The displacement amplitude a function of depth is shown for several modes is shown below on the right.   

 


 

 

 

5.5.5 Elastic waves in waveguides

 

The surface layer discussed in the preceding section is an example of a waveguide: it is a structure which causes waves to propagate in a particular direction, as a result of the confining effect of its geometry.

 

The figure shows a much simpler example of a waveguide: it is a thin sheet of material, with thickness H and infinite length in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  and x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  directions.  The strip can guide three types of wave:

 

1. Transverse waves, which propagate in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction with particle motion in the x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@  direction;

 

2. Flexural waves, which propagate in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction with particle motion in the x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@  direction;

 

3. Longitudinal waves, which propagate in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction with particle motion in the x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@  direction.

 

The solutions for cases 2 and 3 are lengthy, but the solution for case 1 is simple, and can be used to illustrate the general features of waves in waveguides.  For transverse waves:

 

1. The wave can be any member of the following family of possible displacement distributions

u 3 = U n sin 2 (πn/2)sin(nπ x 2 /2H)+ cos 2 (πn/2)cos(nπ x 2 /2H) exp(ik( x 1 ct)) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaadwfadaWgaaWcbaGaamOBaaqabaGcdaGadaqaaiGacoha caGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaacIcacqaHapaCca WGUbGaai4laiaaikdacaGGPaGaci4CaiaacMgacaGGUbGaaiikaiaa d6gacqaHapaCcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaaik dacaWGibGaaiykaiabgUcaRiGacogacaGGVbGaai4CamaaCaaaleqa baGaaGOmaaaakiaacIcacqaHapaCcaWGUbGaai4laiaaikdacaGGPa Gaci4yaiaac+gacaGGZbGaaiikaiaad6gacqaHapaCcaWG4bWaaSba aSqaaiaaikdaaeqaaOGaai4laiaaikdacaWGibGaaiykaaGaay5Eai aaw2haaiGacwgacaGG4bGaaiiCaiaacIcacaWGPbGaam4AaiaacIca caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yaiaadshaca GGPaGaaiykaaaa@6DA4@

where n=0,1,2…, and you can use either the real or imaginary part as the solution. This displacement represents a harmonic wave that has wavenumber k=2π/λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaaikdacqaHapaCca GGVaGaeq4UdWgaaa@37B6@  where λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  is the wavelength in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction, which propagates in the x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  direction with speed c.  The variation of displacement with x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@  at any fixed value of x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  is a standing wave with wavelength H/n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamisaiaac+cacaWGUbaaaa@3353@  and angular frequency ω=kc MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyypa0Jaam4Aaiaadogaaa a@358B@ . Each value of n corresponds to a different propagation mode.

 

2. The speed of wave propagation (usually referred to as the phase velocity of the wave)  satisfies

c 2 c s 2 = nπ 2kH 2 +1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGJbWaaWbaaSqabeaaca aIYaaaaaGcbaGaam4yamaaDaaaleaacaWGZbaabaGaaGOmaaaaaaGc cqGH9aqpdaqadaqaamaalaaabaGaamOBaiabec8aWbqaaiaaikdaca WGRbGaamisaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIXaaaaa@3FF6@

 

3. The wave speeds for modes with n>0 depend on the wave number: i.e. the waves are dispersive;

 

4. There are an infinite number of possible wave speeds for each wave number.  Each wave speed is associated with a particular propagation mode n.

 

5. The formula for wave speed can be re-written as an equation relating the angular frequency ω=kc MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyypa0Jaam4Aaiaadogaaa a@358B@  to the wave number k

ωH c s 2 = nπ 2 2 + kH 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiabeM8a3jaadI eaaeaacaWGJbWaa0baaSqaaiaadohaaeaaaaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaeWaaeaadaWcaaqaai aad6gacqaHapaCaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgUcaRmaabmaabaGaam4AaiaadIeaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaaaa@442C@

This is called the dispersion relation for the wave.

 

6. Dispersive waves have a second wave speed associated with them called the Group Velocity.  This wave speed is defined as the slope of the dispersion relation c g =dω/dk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGNbaabeaaki abg2da9iaadsgacqaHjpWDcaGGVaGaamizaiaadUgaaaa@3932@  (in contrast, the phase velocity is c=ω/k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabg2da9iabeM8a3jaac+caca WGRbaaaa@363E@  ).  For the waveguide considered here

c g = dω dk = c s kH (nπ/2) 2 + k 2 H 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGNbaabeaaki abg2da9maalaaabaGaamizaiabeM8a3bqaaiaadsgacaWGRbaaaiab g2da9maalaaabaGaam4yamaaBaaaleaacaWGZbaabeaakiaadUgaca WGibaabaWaaOaaaeaacaGGOaGaamOBaiabec8aWjaac+cacaaIYaGa aiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadUgadaahaaWcbe qaaiaaikdaaaGccaWGibWaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa @486E@

The group velocity, like the phase velocity, depends on the propagation mode and the wave number.  The group velocity has two physical interpretations (i) it is the speed at which the energy in a harmonic wave propagates along the waveguide; and (ii) it is the propagation speed of an amplitude modulated wave of the form

u 3 = U 0 cos(Δk x 1 Δωt)sin(k x 1 ωt) = U 0 sin (k+Δk) x 1 (ω+Δω)t +sin (kΔk) x 1 (ωΔω)t /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaaiodaae qaaOGaeyypa0JaamyvamaaBaaaleaacaaIWaaabeaakiGacogacaGG VbGaai4CaiaacIcacqqHuoarcaWGRbGaamiEamaaBaaaleaacaaIXa aabeaakiabgkHiTiabfs5aejabeM8a3jaadshacaGGPaGaci4Caiaa cMgacaGGUbGaaiikaiaadUgacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaeqyYdCNaamiDaiaacMcaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGH9aqpcaWGvbWaaSbaaSqaaiaaicdaae qaaOWaaiWaaeaaciGGZbGaaiyAaiaac6gadaWadaqaaiaacIcacaWG RbGaey4kaSIaeuiLdqKaam4AaiaacMcacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaaiikaiabeM8a3jabgUcaRiabfs5aejabeM8a 3jaacMcacaWG0baacaGLBbGaayzxaaGaey4kaSIaci4CaiaacMgaca GGUbWaamWaaeaacaGGOaGaam4AaiabgkHiTiabfs5aejaadUgacaGG PaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaacIcacqaHjp WDcqGHsislcqqHuoarcqaHjpWDcaGGPaGaamiDaaGaay5waiaaw2fa aaGaay5Eaiaaw2haaiaac+cacaaIYaaaaaa@894D@

where Δk<<k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaam4AaiabgYda8iabgYda8i aadUgaaaa@362E@  and Δω<<ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyYdCNaeyipaWJaeyipaW JaeqyYdChaaa@37E8@  are the wave number and frequency of the modulation, and k,ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AaiaacYcacqaHjpWDaaa@344D@  are the wavenumber and frequency of the carrier wave.   The carrier wave propagates with speed c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaaaa@31C8@ , while the modulation (which can be regarded as a `group’ of wavelets) propagates at speed c g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGNbaabeaaaa a@32E0@ .  Note that for a non-dispersive wave, the group and phase velocities are the same.