5.6 Energy methods for solving static linear elasticity problems

 

You may recall that energy methods can often be used to simplify complex problems.  For example, to find the equilibrium configuration of a discrete system, you would begin by identifying a suitable set of generalize coordinates q i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacaWGPbaabeaaaa a@32EF@ , and then express the potential energy in terms of these: V( q i ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWGXbWaaSbaaSqaai aadMgaaeqaaOGaaiykaaaa@352D@ .  The equilibrium values of the generalized coordinates could then be determined from the condition that the potential energy is stationary at equilibrium: this gives a set of equations V/ q i =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamOvaiaac+cacqGHciITca WGXbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaGimaaaa@3913@  that could be solved for q i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacaWGPbaabeaaaa a@32EF@ .

 

In this section, we will develop an analogous procedure for solving boundary value problems in linear elasticity.  Our generalized coordinates will be the displacement field u i (x) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWH4bGaaiykaaaa@3557@ .  We will find an expression for the potential energy of an elastic solid in terms of u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@ , and then show that the potential energy is stationary if the solid is in equilibrium.  We will find, further, that the potential energy is not only stationary, but is always a minimum, implying that equilibrium configurations in linear elasticity problems are always stable.  (This is because the approximations made in setting up the equations of linear elasticity preclude any possibility of buckling).  This principle will be referred to as the Principle of Minimum Potential Energy

 

The main application of the principle is to generate approximate solutions to linear elastic boundary value problems.  Indeed, the principle will form the basis of the Finite Element Method in linear elasticity.

 

 

 

5.6.1 Definition of the potential energy of a linear elastic solid under static loading

 

In the following, we consider a generic static boundary value problem in linear elasticity, as shown in the figure.

 

As always, we assume that we are given:

 

1. The shape of the solid in its unloaded condition R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaaaa@31B7@

 

2. The initial stress field in the solid (we will take this to be zero)

 

3. The elastic constants for the solid C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  and its mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@

 

4. The thermal expansion coefficients for the solid, and temperature change from the initial configuration ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaaaa@331E@

 

5. A body force distribution b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CB@  (per unit mass) acting on the solid

 

6. Boundary conditions, specifying displacements u * (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiykaaaa@351D@  on a portion 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  or tractions on a portion 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  of the boundary of R

 

 

Kinematically Admissible Displacement Fields

 

A ‘kinematically admissible displacement field’ v i (x) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki aacIcacaWH4bGaaiykaaaa@3558@  is any displacement field with the following properties:

 

1. v i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaaa a@32F4@  is continuous everywhere within the solid

 

2. v i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaaa a@32F4@  is differentiable everywhere within the solid, so that a strain field may be computed as

ε ^ ij = 1 2 v i x j + v j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaa aaa@47DB@

 

3. v i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaaa a@32F4@  satisfies boundary conditions anywhere that displacements are prescribed, i.e. v(x)= u * (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWH4bGaaiykaiabg2 da9iaahwhadaahaaWcbeqaaiaacQcaaaGccaGGOaGaaCiEaiaacMca aaa@397C@  on the portion 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  on the boundary.

 

 

Note that v is not necessarily the actual displacement in the solid MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it is just an arbitrary displacement field which satisfies any displacement boundary conditions.  You can think of it as a possible displacement field that the solid could adopt.  Out of all these possible displacement fields, it will actually select the one that minimizes the potential energy.

 

The kinematically admissible displacement field can also be thought of as a system of generalized coordinates in the context of analytical mechanics.  Recall that, to use a set of generalized coordinates in Lagranges equations, you must make sure that the system of coordinates satisfies all the constraints.  Similarly, to be admissible, our displacement field must satisfy constraints on the boundary. 

 

 

Definition of Potential Energy of an Elastic Solid

 

Next, we will define the potential energy of a solid.  The definition may look a bit strange, because it seems to give different values for potential energy depending on whether it is subjected to prescribed forces or displacements.  This is true.  But who cares, as long as the definition is useful?

 

For any kinematically admissible displacement field v, the potential energy is

V(v)= V U(v) dV V ρ 0 b i v i dV 2 R t i v i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWH2bGaaiykaiabg2 da9maapefabaGaamyvaiaacIcacaWH2bGaaiykaaWcbaGaamOvaaqa b0Gaey4kIipakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacqaHbpGCda WgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGa amODamaaBaaaleaacaWGPbaabeaaaeaacaWGwbaabeqdcqGHRiI8aO GaamizaiaadAfacqGHsisldaWdrbqaaiaadshadaWgaaWcbaGaamyA aaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaS qaaiabgkGi2oaaBaaameaacaaIYaaabeaaliaadkfaaeqaniabgUIi Ydaaaa@5635@

where

U(v)= 1 2 C ijkl ε ^ ij α ij ΔT ε ^ kl α kl ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWH2bGaaiykaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4qamaaBaaaleaacaWG PbGaamOAaiaadUgacaWGSbaabeaakmaabmaabaGafqyTduMbaKaada WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqa aiaadMgacaWGQbaabeaakiabfs5aejaadsfaaiaawIcacaGLPaaada qadaqaaiqbew7aLzaajaWaaSbaaSqaaiaadUgacaWGSbaabeaakiab gkHiTiabeg7aHnaaBaaaleaacaWGRbGaamiBaaqabaGccqqHuoarca WGubaacaGLOaGaayzkaaaaaa@53C4@

is the strain energy density associated with the kinematically admissible displacement field. You can interpret the three terms in the formula for V as the strain energy stored inside the solid; the work done by body forces; and the work done by surface tractions. For the particular case of an isotropic material, with ΔT=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaiabg2da9iaaicdaaa a@34DE@ , we see that

U(v)= E 2 1+ν ε ^ ij ε ^ ij + ν 12ν ε ^ kk ε ^ mm MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWH2bGaaiykaiabg2 da9maalaaabaGaamyraaqaaiaaikdadaqadaqaaiaaigdacqGHRaWk cqaH9oGBaiaawIcacaGLPaaaaaWaaeWaaeaacuaH1oqzgaqcamaaBa aaleaacaWGPbGaamOAaaqabaGccuaH1oqzgaqcamaaBaaaleaacaWG PbGaamOAaaqabaGccqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigdacq GHsislcaaIYaGaeqyVd4gaaiqbew7aLzaajaWaaSbaaSqaaiaadUga caWGRbaabeaakiqbew7aLzaajaWaaSbaaSqaaiaad2gacaWGTbaabe aaaOGaayjkaiaawMcaaaaa@530C@

 

 

 

5.6.2 The principle of stationary and minimum potential energy.

 

Let v be any kinematically admissible displacement field.  Let u be the actual displacement field MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  i.e. the one that satisfies the equilibrium equations within the solid as well as all the boundary conditions.  We will show the following:

 

1. V(v) is stationary (i.e. a local minimum, maximum or inflexion point) for v=u.

 

2. V(v) is a global minimum for v=u.

 

 

As a preliminary step, recall that the actual displacement field satisfies the following equations

ε ij = 1 2 u i x j + u j x i σ ij = C ijkl ( ε kl α kl ΔT) σ ij x i + ρ 0 b j =0 u i = u i * on 1 R σ ij n i = t j * on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaamaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7aeaacqaHdpWCdaWgaaWcbaGaamyA aiaadQgaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiaacIcacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadUgacaWGSbaabe aakiabfs5aejaadsfacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVdqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaamOyamaaBaaaleaacaWGQbaabeaakiabg2da9iaaicdacaaMc8oa baGaamyDamaaBaaaleaacaWGPbaabeaakiabg2da9iaadwhadaqhaa WcbaGaamyAaaqaaiaacQcaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGVbGaaeOBaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOaIy7aaSbaaSqaaiaaig daaeqaaOGaamOuaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVdqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWG UbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamiDamaaDaaaleaaca WGQbaabaGaaiOkaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gaca qGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHciITdaWgaaWc baGaaGOmaaqabaGccaWGsbaaaaa@FB22@

Next, re-write the kinematically admissible displacement field in terms of u as

v i = u i +δ u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaH0oaz caWG1bWaaSbaaSqaaiaadMgaaeqaaaaa@3ABD@

where δ u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaWGPb aabeaaaaa@3498@  is the difference between the kinematically admissible field and the correct equilibrium field.  Observe that

v i = u i * u i = u i * on  1 R δ u i =0on  1 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG2bWaaSbaaSqaaiaadMgaae qaaOGaeyypa0JaamyDamaaDaaaleaacaWGPbaabaGaaiOkaaaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadwhadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG1b Waa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca qGVbGaaeOBaiaabccacqGHciITdaWgaaWcbaGaaGymaaqabaGccaWG sbaabaGaeyO0H4TaeqiTdqMaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Baiaa b6gacaqGGaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaOGaamOuaaaaaa@B5E7@

i.e. the difference between the kinematically admissible field and the actual field is zero wherever displacements are prescribed.

 

Now, note that V(v) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWH2bGaaiykaaaa@3412@  can be expressed in terms of u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@  and δ u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaWGPb aabeaaaaa@3499@  as

V u+δu =V(u)+δV+ 1 2 δ 2 V MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaabmaabaGaaCyDaiabgUcaRi abes7aKjaahwhaaiaawIcacaGLPaaacqGH9aqpcaWGwbGaaiikaiaa hwhacaGGPaGaey4kaSIaeqiTdqMaamOvaiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaGaeqiTdq2aaWbaaSqabeaacaaIYaaaaOGaamOv aaaa@453C@

where

δV= V C ijkl ε ij α ij ΔT δ ε kl dV V b i δ u i dV 2 R t i δ u i dA δ 2 V= V C ijkl δ ε ij δ ε kl ε ij = 1 2 u i x j + u j x i δ ε ij = 1 2 δ u i x j + δ u j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH0oazcaWGwbGaeyypa0JaaG PaVlaaykW7daWdrbqaaiaadoeadaWgaaWcbaGaamyAaiaadQgacaWG RbGaamiBaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGPbGaam OAaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGaamyAaiaadQgaaeqa aOGaeuiLdqKaamivaaGaayjkaiaawMcaaiabes7aKjabew7aLnaaBa aaleaacaWGRbGaamiBaaqabaGccaWGKbGaamOvaaWcbaGaamOvaaqa b0Gaey4kIipakiabgkHiTmaapefabaGaamOyamaaBaaaleaacaWGPb aabeaakiabes7aKjaadwhadaWgaaWcbaGaamyAaaqabaaabaGaamOv aaqab0Gaey4kIipakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0b WaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaacaWG PbaabeaakiaadsgacaWGbbaaleaacqGHciITdaWgaaadbaGaaGOmaa qabaWccaWGsbaabeqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacqaH0oazdaahaaWc beqaaiaaikdaaaGccaWGwbGaeyypa0Zaa8quaeaacaWGdbWaaSbaaS qaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOGaeqiTdqMaeqyTdu2a aSbaaSqaaiaadMgacaWGQbaabeaakiabes7aKjabew7aLnaaBaaale aacaWGRbGaamiBaaqabaaabaGaamOvaaqab0Gaey4kIipaaOqaaiab ew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaamaabmaabaWaaSaaaeaacqGHciITcaWG1bWa aSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGQbaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaae qaaaaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes7aKjabew7aLnaa BaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaigdaae aacaaIYaaaamaabmaabaWaaSaaaeaacqGHciITcqaH0oazcaWG1bWa aSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGQbaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabes7aKjaadwha daWgaaWcbaGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaai aadMgaaeqaaaaaaOGaayjkaiaawMcaaaaaaa@EC25@

To see this, simply substitute into the definition of the potential energy

V(v)= V U(u+δu) dV V b i ( u i +δ u i ) dV 2 R t i ( u i +δ u i )dA = V 1 2 C ijkl ε ij α ij ΔT+δ ε ij ε kl α kl ΔT+δ ε kl dV V b i ( u i +δ u i ) dV 2 R t i ( u i +δ u i )dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbGaaiikaiaahAhacaGGPa Gaeyypa0Zaa8quaeaacaWGvbGaaiikaiaahwhacqGHRaWkcqaH0oaz caaMc8UaaCyDaiaacMcaaSqaaiaadAfaaeqaniabgUIiYdGccaWGKb GaamOvaiabgkHiTmaapefabaGaamOyamaaBaaaleaacaWGPbaabeaa kiaacIcacaWG1bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeqiTdq MaamyDamaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadAfaaeqa niabgUIiYdGccaWGKbGaamOvaiabgkHiTmaapefabaGaamiDamaaBa aaleaacaWGPbaabeaakiaacIcacaWG1bWaaSbaaSqaaiaadMgaaeqa aOGaey4kaSIaeqiTdqMaamyDamaaBaaaleaacaWGPbaabeaakiaacM cacaWGKbGaamyqaaWcbaGaeyOaIy7aaSbaaWqaaiaaikdaaeqaaSGa amOuaaqab0Gaey4kIipaaOqaaiabg2da9maapefabaWaaSaaaeaaca aIXaaabaGaaGOmaaaacaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4A aiaadYgaaeqaaOWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadMgacaWGQbaabeaa kiabfs5aejaadsfacqGHRaWkcqaH0oazcqaH1oqzdaWgaaWcbaGaam yAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacqaH1oqzdaWg aaWcbaGaam4AaiaadYgaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaai aadUgacaWGSbaabeaakiabfs5aejaadsfacqGHRaWkcqaH0oazcqaH 1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaGccaGLOaGaayzkaaGaam izaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHsisldaWdrbqa aiaadkgadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamyDamaaBaaale aacaWGPbaabeaakiabgUcaRiabes7aKjaadwhadaWgaaWcbaGaamyA aaqabaGccaGGPaaaleaacaWGwbaabeqdcqGHRiI8aOGaamizaiaadA facqGHsisldaWdrbqaaiaadshadaWgaaWcbaGaamyAaaqabaGccaGG OaGaamyDamaaBaaaleaacaWGPbaabeaakiabgUcaRiabes7aKjaadw hadaWgaaWcbaGaamyAaaqabaGccaGGPaGaamizaiaadgeaaSqaaiab gkGi2oaaBaaameaacaaIYaaabeaaliaadkfaaeqaniabgUIiYdaaaa a@B817@

Multiply everything out and use the condition that C ijkl = C klij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B53@  to get the result stated.

 

Now, to show that V(v) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWH2bGaaiykaaaa@3412@  is stationary at v=u, we need to show that δV=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvaiabg2da9iaaicdaaa a@351F@ .  This means that, if we add any small change δu MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCyDaaaa@3382@  to the actual displacement field u, the change in potential energy will be zero, to first order in δu MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCyDaaaa@3382@ .

 

To show this, note that

C ijkl ε ij α ij ΔT = σ kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakmaabmaabaGaeqyTdu2aaSbaaSqaaiaadMga caWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOAaa qabaGccqqHuoarcaWGubaacaGLOaGaayzkaaGaeyypa0Jaeq4Wdm3a aSbaaSqaaiaadUgacaWGSbaabeaaaaa@4692@

Next, note that

σ kl δ ε kl = σ kl 1 2 δ u k x l + δ u l x k = 1 2 σ lk δ u k x l + 1 2 σ kl δ u l x k = σ kl δ u l x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGSb aabeaakiabes7aKjabew7aLnaaBaaaleaacaWGRbGaamiBaaqabaGc cqGH9aqpcqaHdpWCdaWgaaWcbaGaam4AaiaadYgaaeqaaOWaaSaaae aacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaeyOaIyRaeqiT dqMaamyDamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadIhada WgaaWcbaGaamiBaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaH 0oazcaWG1bWaaSbaaSqaaiaadYgaaeqaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacaWGRbaabeaaaaaakiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaaigdaaeaacaaIYaaaaiabeo8aZnaaBaaaleaacaWGSbGaam 4AaaqabaGcdaWcaaqaaiabgkGi2kabes7aKjaadwhadaWgaaWcbaGa am4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadYgaaeqaaa aakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeq4Wdm3aaSba aSqaaiaadUgacaWGSbaabeaakmaalaaabaGaeyOaIyRaeqiTdqMaam yDamaaBaaaleaacaWGSbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaam4AaaqabaaaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadUgaca WGSbaabeaakmaalaaabaGaeyOaIyRaeqiTdqMaamyDamaaBaaaleaa caWGSbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaam4Aaaqaba aaaaaa@8047@

where we have used the fact that σ kl = σ lk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGSb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGSbGaam4Aaaqabaaa aa@398F@  (angular momentum balance).  Rewrite this as

σ ij δ u j x i = x i σ ij δ u j σ ij x i δ u j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakmaalaaabaGaeyOaIyRaeqiTdqMaamyDamaaBaaaleaacaWG QbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaO Gaeyypa0ZaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqa aiaadMgaaeqaaaaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaadMgaca WGQbaabeaakiabes7aKjaaykW7caWG1bWaaSbaaSqaaiaadQgaaeqa aaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacqGHciITcqaHdpWCda WgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaWGPbaabeaaaaGccqaH0oazcaaMc8UaamyDamaaBaaaleaaca WGQbaabeaaaaa@5D2C@

Substitute back into the expression for δV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvaaaa@335F@  and rearrange to see that

δV= V x i σ ij δ u j dV V σ ij x i + ρ 0 b j δ u j dV 2 R t i δ u i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvaiabg2da9iaaykW7ca aMc8+aa8quaeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWg aaWcbaGaamyAaaqabaaaaOWaaeWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaacaWGQbaabeaa aOGaayjkaiaawMcaaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRi I8aOGaeyOeI0Yaa8quaeaadaqadaqaamaalaaabaGaeyOaIyRaeq4W dm3aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhada WgaaWcbaGaamyAaaqabaaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaa icdaaeqaaOGaamOyamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caaiabes7aKjaadwhadaWgaaWcbaGaamOAaaqabaaabaGaamOvaaqa b0Gaey4kIipakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0bWaaS baaSqaaiaadMgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaacaWGPbaa beaakiaadsgacaWGbbaaleaacqGHciITdaWgaaadbaGaaGOmaaqaba WccaWGsbaabeqdcqGHRiI8aaaa@720E@

Now, recall the equations of equilibrium

σ ij x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaaGimaaaa@4110@

so that the second term vanishes.  Apply the divergence theorem to express the first integral as a surface integral

V x i σ ij δ u j dV= A σ ij δ u j n i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOWaaeWaaeaacqaH dpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdqMaamyDamaaBa aaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadsgacaWGwbGaeyyp a0Zaa8quaeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeq iTdqMaamyDamaaBaaaleaacaWGQbaabeaaaeaacaWGbbaabeqdcqGH RiI8aaWcbaGaamOvaaqab0Gaey4kIipakiaad6gadaWgaaWcbaGaam yAaaqabaGccaWGKbGaamyqaaaa@5353@

Recall that δ u i =0on  1 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaWGPb aabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaab+gacaqGUbGaaeii aiabgkGi2oaaBaaaleaacaaIXaaabeaakiaadkfaaaa@3F2C@ , and note that

A dA = 1 R dA + 2 R dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGKbGaamyqaaWcbaGaam yqaaqab0Gaey4kIipakiabg2da9maapefabaGaamizaiaadgeaaSqa aiabgkGi2oaaBaaameaacaaIXaaabeaaliaadkfaaeqaniabgUIiYd GccqGHRaWkdaWdrbqaaiaadsgacaWGbbaaleaacqGHciITdaWgaaad baGaaGOmaaqabaWccaWGsbaabeqdcqGHRiI8aaaa@45ED@

because either tractions or displacements (but not both) must be prescribed on every point on the boundary. 

 

Therefore

V x i σ ij δ u j dV= A σ ij δ u j n i dA= 1 R σ ij n i δ u j dA + 2 R σ ij n i δ u j dA = 2 R σ ij n i δ u j dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWcaaqaaiabgkGi2cqaai abgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOWaaeWaaeaacqaH dpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdqMaamyDamaaBa aaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaadsgacaWGwbGaeyyp a0Zaa8quaeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeq iTdqMaamyDamaaBaaaleaacaWGQbaabeaaaeaacaWGbbaabeqdcqGH RiI8aaWcbaGaamOvaaqab0Gaey4kIipakiaad6gadaWgaaWcbaGaam yAaaqabaGccaWGKbGaamyqaiabg2da9maapefabaGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakiaad6gadaWgaaWcbaGaamyAaaqaba GccqaH0oazcaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaamizaiaadgea aSqaaiabgkGi2oaaBaaameaacaaIXaaabeaaliaadkfaaeqaniabgU IiYdGccqGHRaWkdaWdrbqaaiabeo8aZnaaBaaaleaacaWGPbGaamOA aaqabaGccaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamyDam aaBaaaleaacaWGQbaabeaakiaadsgacaWGbbaaleaacqGHciITdaWg aaadbaGaaGOmaaqabaWccaWGsbaabeqdcqGHRiI8aOGaeyypa0Zaa8 quaeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaa BaaaleaacaWGPbaabeaakiabes7aKjaadwhadaWgaaWcbaGaamOAaa qabaGccaWGKbGaamyqaaWcbaGaeyOaIy7aaSbaaWqaaiaaikdaaeqa aSGaamOuaaqab0Gaey4kIipaaaa@88E5@

Finally, recall that

σ ij n i = t j on  2 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaab+gacaqGUbGaaeii aiabgkGi2oaaBaaaleaacaaIYaaabeaakiaadkfaaaa@4F13@

and substitute back into the expression for δV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvaaaa@335F@  to see that

δV= 2 R σ ji n j t i δ u i dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvaiabg2da9iaaykW7ca aMc8+aa8quaeaadaqadaqaaiabeo8aZnaaBaaaleaacaWGQbGaamyA aaqabaGccaWGUbWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamiDam aaBaaaleaacaWGPbaabeaakiabes7aKjaadwhadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaacaWGKbGaamyqaaWcbaGaeyOaIy7aaS baaWqaaiaaikdaaeqaaSGaamOuaaqab0Gaey4kIipakiabg2da9iaa icdaaaa@4EB3@

This proves that V(v) is stationary at v=u, as stated.

 

Finally, we wish to show that V(v) is a minimum at v=u.  This is easy.  Note that we have proved that

V v =V(u)+ 1 2 δ 2 V δ 2 V= V C ijkl δ ε ij δ ε kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbWaaeWaaeaacaWH2baaca GLOaGaayzkaaGaeyypa0JaamOvaiaacIcacaWH1bGaaiykaiabgUca RmaalaaabaGaaGymaaqaaiaaikdaaaGaeqiTdq2aaWbaaSqabeaaca aIYaaaaOGaamOvaaqaaiabes7aKnaaCaaaleqabaGaaGOmaaaakiaa dAfacqGH9aqpdaWdrbqaaiaadoeadaWgaaWcbaGaamyAaiaadQgaca WGRbGaamiBaaqabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaeqiTdqMaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabe aaaeaacaWGwbaabeqdcqGHRiI8aaaaaa@5564@

Note that

1 2 C ijlk δ ε kl δ ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaaca WGdbWaaSbaaSqaaiaadMgacaWGQbGaamiBaiaadUgaaeqaaOGaeqiT dqMaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabeaakiabes7aKjabew 7aLnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@41DA@

is the strain energy density associated with a strain δ ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@3634@ .  Strain energy density must always be positive or zero, so that

V v V(u) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaabmaabaGaaCODaaGaayjkai aawMcaaiabgwMiZkaadAfacaGGOaGaaCyDaiaacMcaaaa@393A@

 

 

 

5.6.3 Uniaxial compression of a cylinder solved by energy methods

 

Consider a cylindrical bar subjected to a uniform pressure p on one end, and supported on a rigid, frictionless base, as shown in the figure.  Neglect temperature changes.  Determine the displacement field in the bar.

 

We will solve this problem using energy methods.  We will guess a displacement field of the form

v 1 = λ 1 x 1 , v 2 =λ 2 x 2 v 3 = λ 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaki abg2da9iabeU7aSnaaBaaaleaacaaMc8UaaGymaaqabaGccaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaadAhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaH7oaBcaaMc8 +aaSbaaSqaaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaWgaaWcbaGaaG4maaqa baGccqGH9aqpcqaH7oaBdaWgaaWcbaGaaGPaVlaaiodaaeqaaOGaam iEamaaBaaaleaacaaIZaaabeaaaaa@71C6@

This satisfies the boundary conditions on the bottom face of the cylinder, so it is a kinematically admissible displacement field.  The coefficients λ i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaa aa@33AD@  are to be determined, by minimizing the potential energy.  The strains follow as

ε 11 = λ 1 ε 22 = λ 2 ε 33 = λ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeU7aSnaaBaaaleaacaaIXaaabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyTdu 2aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabeU7aSnaaBaaa leaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzdaWgaaWcbaGaaG4m aiaaiodaaeqaaOGaeyypa0Jaeq4UdW2aaSbaaSqaaiaaiodaaeqaaa aa@619E@

with all other strain components zero.  The strain energy density is

U= E 2 1+ν λ 1 2 + λ 2 2 + λ 3 2 + ν 12ν λ 1 + λ 2 + λ 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaaykW7caaMc8Uaeyypa0ZaaS aaaeaacaWGfbaabaGaaGOmamaabmaabaGaaGymaiabgUcaRiabe27a UbGaayjkaiaawMcaaaaadaGadaqaaiabeU7aSnaaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiabeU7aSnaaDaaaleaacaaIYaaabaGa aGOmaaaakiabgUcaRiabeU7aSnaaDaaaleaacaaIZaaabaGaaGOmaa aakiabgUcaRmaalaaabaGaeqyVd4gabaGaaGymaiabgkHiTiaaikda cqaH9oGBaaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccq GHRaWkcqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH7oaB daWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaakiaawUhacaGL9baaaaa@5D5F@

The boundary conditions are

 

1. On the bottom of the cylinder v 2 =0, t 1 = t 3 =0 v i t i =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamiDamaaBaaaleaacaaIXaaabeaakiabg2da9iaadshada WgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeyO0H4TaaGPaVlaaykW7caaMc8UaaG PaVlaadAhadaWgaaWcbaGaamyAaaqabaGccaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaeyypa0JaaGimaaaa@5CE1@

 

2. On the sides of the cylinder, t i =0 v i t i =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaki abg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaeyO0H4TaaGPa VlaaykW7caaMc8UaamODamaaBaaaleaacaWGPbaabeaakiaadshada WgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaaaaa@47E2@  

 

3. On the top of the cylinder v 2 (L)= λ 2 L t 2 =p, t 1 = t 3 =0 v i t i =p λ 2 L MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIYaaabeaaki aacIcacaWGmbGaaiykaiabg2da9iabeU7aSnaaBaaaleaacaaIYaaa beaakiaadYeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamiDamaaBaaaleaacaaIYaaabeaa kiabg2da9iabgkHiTiaadchacaGGSaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamiDamaaBaaaleaa caaIXaaabeaakiabg2da9iaadshadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3caWG2bWaaSbaaS qaaiaadMgaaeqaaOGaamiDamaaBaaaleaacaWGPbaabeaakiabg2da 9iabgkHiTiaadchacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaWGmb aaaa@80D4@

 

 

Substitute into the expression for strain energy density to see that

V(v)= V E 2 1+ν λ 1 2 + λ 2 2 + λ 3 2 + ν 12ν λ 1 + λ 2 + λ 3 2 dV A λ 2 L(p) = ALE 2 1+ν λ 1 2 + λ 2 2 + λ 3 2 + ν 12ν λ 1 + λ 2 + λ 3 2 +A λ 2 Lp MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbGaaiikaiaahAhacaGGPa Gaeyypa0Zaa8quaeaadaWcaaqaaiaadweaaeaacaaIYaWaaeWaaeaa caaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaaamaacmaabaGaeq 4UdW2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeq4UdW2a a0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaeq4UdW2aa0baaS qaaiaaiodaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaH9oGBaeaa caaIXaGaeyOeI0IaaGOmaiabe27aUbaadaqadaqaaiabeU7aSnaaBa aaleaacaaIXaaabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaa beaakiabgUcaRiabeU7aSnaaBaaaleaacaaIZaaabeaaaOGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haaiaadsga caWGwbGaeyOeI0Yaa8quaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqaba GccaWGmbGaaiikaiabgkHiTiaadchacaGGPaaaleaacaWGbbaabeqd cqGHRiI8aaWcbaGaamOvaaqab0Gaey4kIipaaOqaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8 +aaSaaaeaacaWGbbGaamitaiaadweaaeaacaaIYaWaaeWaaeaacaaI XaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaaamaacmaabaGaeq4UdW 2aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaeq4UdW2aa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaeq4UdW2aa0baaSqaai aaiodaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaH9oGBaeaacaaI XaGaeyOeI0IaaGOmaiabe27aUbaadaqadaqaaiabeU7aSnaaBaaale aacaaIXaaabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaa kiabgUcaRiabeU7aSnaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haaiabgUcaRiaa dgeacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaWGmbGaamiCaaaaaa@B6C1@

Now, the actual displacement field minimizes V.  This requires

V λ 1 = V λ 2 = V λ 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbaabaGaey OaIyRaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaaakiabg2da9maalaaa baGaeyOaIyRaamOvaaqaaiabgkGi2kabeU7aSnaaBaaaleaacaaIYa aabeaaaaGccqGH9aqpdaWcaaqaaiabgkGi2kaadAfaaeaacqGHciIT cqaH7oaBdaWgaaWcbaGaaG4maaqabaaaaOGaeyypa0JaaGimaaaa@47C2@

Evaluate the derivatives to see that

ALE 2 1+ν 2 λ 1 + 2ν 12ν λ 1 + λ 2 + λ 3 =0 ALE 2 1+ν 2 λ 2 + 2ν 12ν λ 1 + λ 2 + λ 3 +ALp=0 ALE 2 1+ν 2 λ 3 + 2ν 12ν λ 1 + λ 2 + λ 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadgeacaWGmbGaam yraaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIca caGLPaaaaaWaaiWaaeaacaaIYaGaeq4UdW2aaSbaaSqaaiaaigdaae qaaOGaey4kaSYaaSaaaeaacaaIYaGaeqyVd4gabaGaaGymaiabgkHi TiaaikdacqaH9oGBaaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHRaWk cqaH7oaBdaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaiaawU hacaGL9baacqGH9aqpcaaIWaaabaWaaSaaaeaacaWGbbGaamitaiaa dweaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOa GaayzkaaaaamaacmaabaGaaGOmaiabeU7aSnaaBaaaleaacaaIYaaa beaakiabgUcaRmaalaaabaGaaGOmaiabe27aUbqaaiaaigdacqGHsi slcaaIYaGaeqyVd4gaamaabmaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaey4kaS Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaacaGL 7bGaayzFaaGaey4kaSIaamyqaiaadYeacaWGWbGaeyypa0JaaGimaa qaamaalaaabaGaamyqaiaadYeacaWGfbaabaGaaGOmamaabmaabaGa aGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaadaGadaqaaiaaik dacqaH7oaBdaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaaiaa ikdacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaadaqada qaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeU7aSnaa BaaaleaacaaIYaaabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iaaicda aaaa@9AB2@

It is easy to solve these equations to see that

λ 1 =p/E λ 2 = λ 3 =νp/E MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaeyOeI0IaamiCaiaac+cacaWGfbGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaeq4U dW2aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeqyVd4MaamiCaiaac+ cacaWGfbaaaa@55F0@

 

This is, of course, the exact solution, which is reassuring.  Notice that we never had to calculate stresses or worry about equilibrium MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the variational principle takes care of all that for us.

 

Let us solve the same problem, but this time with displacement boundary conditions on the top of the cylinder, as shown in the figure.

 

The cylinder has unstretched length L and is stretched between frictionless grips to length L+h.  This time, the kinematically admissible displacement field must satisfy boundary conditions on both top and bottom surface of the cylinder.   Therefore, we choose

v 1 = λ 1 x 1 , v 2 =h x 2 /L v 3 = λ 3 x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaki abg2da9iabeU7aSnaaBaaaleaacaaMc8UaaGymaaqabaGccaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaadAhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGObGaamiEam aaBaaaleaacaaIYaaabeaakiaac+cacaWGmbGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamODamaaBaaaleaacaaIZaaabeaakiabg2da9iabeU7a SnaaBaaaleaacaaMc8UaaG4maaqabaGccaWG4bWaaSbaaSqaaiaaio daaeqaaaaa@7006@

Proceeding as before, we now find that the potential energy is

V(v)= ALE 2 1+ν λ 1 2 + h 2 L 2 + λ 3 2 + ν 12ν λ 1 + h L + λ 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWH2bGaaiykaiaayk W7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8+aaSaaaeaacaWGbbGa amitaiaadweaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4 gacaGLOaGaayzkaaaaamaacmaabaGaeq4UdW2aa0baaSqaaiaaigda aeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGObWaaWbaaSqabeaaca aIYaaaaaGcbaGaamitamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWk cqaH7oaBdaqhaaWcbaGaaG4maaqaaiaaikdaaaGccqGHRaWkdaWcaa qaaiabe27aUbqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaamaabmaa baGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaSaaaeaaca WGObaabaGaamitaaaacqGHRaWkcqaH7oaBdaWgaaWcbaGaaG4maaqa baaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUhaca GL9baaaaa@6569@

Note that this time there is no contribution to the potential energy from the tractions on the top of the cylinder, because now the displacement is prescribed there, instead of the pressure.  Minimizing the potential energy as before

ALE 2 1+ν 2 λ 1 + 2ν 12ν λ 1 + h L + λ 3 =0 ALE 2 1+ν 2 λ 3 + 2ν 12ν λ 1 + h L + λ 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadgeacaWGmbGaam yraaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIca caGLPaaaaaWaaiWaaeaacaaIYaGaeq4UdW2aaSbaaSqaaiaaigdaae qaaOGaey4kaSYaaSaaaeaacaaIYaGaeqyVd4gabaGaaGymaiabgkHi TiaaikdacqaH9oGBaaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqGHRaWkdaWcaaqaaiaadIgaaeaacaWGmbaaaiabgUcaRiab eU7aSnaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaGaay5Eai aaw2haaiabg2da9iaaicdaaeaadaWcaaqaaiaadgeacaWGmbGaamyr aaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcaca GLPaaaaaWaaiWaaeaacaaIYaGaeq4UdW2aaSbaaSqaaiaaiodaaeqa aOGaey4kaSYaaSaaaeaacaaIYaGaeqyVd4gabaGaaGymaiabgkHiTi aaikdacqaH9oGBaaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqa baGccqGHRaWkdaWcaaqaaiaadIgaaeaacaWGmbaaaiabgUcaRiabeU 7aSnaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaaaGaay5Eaiaa w2haaiabg2da9iaaicdaaaaa@7374@

Solve these equations to conclude that

λ 1 = λ 3 =ν h L MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOe I0IaeqyVd42aaSaaaeaacaWGObaabaGaamitaaaaaaa@3CAA@

Again, this is the exact solution.

 

 

 

5.6.4 Variational derivation of the beam equations

 

Variational methods can be used to solve boundary value problems exactly, as described in the preceding section.   The real power of variational methods, however, is to provide a systematic way to find approximate solutions to boundary value problems. 

 

We will illustrate this by re-deriving the equations governing beam bending theory using the principle of minimum potential energy.

 


 

Consider a slender rod with rectangular cross section, subjected to uniform pressure q(x) on its top surface, as shown above.  Assume that the rod is an isotropic, linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3297@ . The boundary conditions at the ends of the bar will be left unspecified for the time being.

 


 

We proceed by approximating the strain field within the bar.  The figure above shows the deflected beam. We will suppose that the strains at any given cross section are completely characterized by the local curvature of the beam, so that at a given cross section x

ε 11 = ( x 2 y 0 ) R( x 1 ) ε 22 = ε 33 =ν ε 11 ε 12 = ε 13 = ε 23 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9maalaaabaGaeyOeI0IaaiikaiaadIhadaWgaaWc baGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaiykaaqaaiaadkfacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaacMcaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpcqaH 1oqzdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0JaeyOeI0Iaeq yVd4MaeqyTdu2aaSbaaSqaaiaaigdacaaIXaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzdaWgaaWcba GaaGymaiaaikdaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaaigda caaIZaaabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaG4maa qabaGccqGH9aqpcaaIWaaaaa@728B@

Here, y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaa a@32C3@  is the height of a fiber in the beam whose length is unchanged:  y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaa a@32C3@  must be determined as part of the solution.

 

The displacement and strain fields are therefore completely characterized by y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaa a@32C3@  and R(x). Rather than solve for R, we will approximate the curvature at x by the second derivative of the vertical deflection w, so that

ε 11 = ( x 2 y 0 ) R( x 1 ) ( x 2 y 0 ) d 2 w( x 1 ) d x 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9maalaaabaGaeyOeI0IaaiikaiaadIhadaWgaaWc baGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaiykaaqaaiaadkfacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaacMcaaaGaeyisISRaeyOeI0IaaiikaiaadIhadaWgaaWcbaGaaG OmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaiyk amaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadEhacaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacMcaaeaacaWGKbGaamiE amaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOmaaaaaaaaaa@5326@

 

Now, we want to find w(x) and  y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaa a@32C3@  that will best approximate the actual displacement field within the bar.  We will do this by choosing w and  y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaa a@32C3@  so as to minimize the potential energy of the solid.

 

Begin by computing the potential energy.  It is straightforward to show that the strain energy density is

ϕ= 1 2 E ( x 2 y 0 ) d 2 w( x 1 ) d x 1 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOmaaaacaWGfbWaaiWaaeaacaGGOaGaamiEamaaBaaaleaa caaIYaaabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGimaaqabaGcca GGPaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam4Daiaa cIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiaadsgaca WG4bWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaa aOGaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaaaaa@4934@

Hence

V(w, y 0 )= 0 L A 1 2 E ( x 2 y 0 ) d 2 w( x 1 ) d x 1 2 2 dAd x 1 0 L bq( x 1 )w( x 1 )dx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWG3bGaaiilaiaadM hadaWgaaWcbaGaaGimaaqabaGccaGGPaGaeyypa0Zaa8qCaeaadaWd rbqaaaWcbaGaamyqaaqab0Gaey4kIipaaSqaaiaaicdaaeaacaWGmb aaniabgUIiYdGcdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadweadaGa daqaaiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaam yEamaaBaaaleaacaaIWaaabeaakiaacMcadaWcaaqaaiaadsgadaah aaWcbeqaaiaaikdaaaGccaWG3bGaaiikaiaadIhadaWgaaWcbaGaaG ymaaqabaGccaGGPaaabaGaamizaiaadIhadaWgaaWcbaGaaGymaaqa baGcdaahaaWcbeqaaiaaikdaaaaaaaGccaGL7bGaayzFaaWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadgeacaaMc8UaaGPaVlaadsgacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Yaa8qCaeaacaWGIbGaam yCaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadEha caGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacaWGKbGaam iEaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIipaaaa@6C1C@

Here, we have neglected the small additional deflection of the beam surface due to ε 22 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaikdacaaIYa aabeaaaaa@342A@

 

We now wish to minimize V with respect to w and  y 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaaa a@32C3@ .  Do the latter first:

V(w, y 0 ) y 0 = 0 L A E ( x 2 y 0 ) d 2 w( x 1 ) d x 1 2 dAd x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbGaaiikai aadEhacaGGSaGaamyEamaaBaaaleaacaaIWaaabeaakiaacMcaaeaa cqGHciITcaWG5bWaaSbaaSqaaiaaicdaaeqaaaaakiabg2da9maape habaWaa8quaeaaaSqaaiaadgeaaeqaniabgUIiYdaaleaacaaIWaaa baGaamitaaqdcqGHRiI8aOGaamyramaacmaabaGaaiikaiaadIhada WgaaWcbaGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaicda aeqaaOGaaiykamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaki aadEhacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcaaeaa caWGKbGaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaG OmaaaaaaaakiaawUhacaGL9baadaahaaWcbeqaaaaakiaadsgacaWG bbGaaGPaVlaaykW7caWGKbGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdaaaa@6035@

which is evidently satisfied for any w by choosing

y 0 = 1 A A x 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaaIWaaabeaaki abg2da9maalaaabaGaaGymaaqaaiaadgeaaaWaa8quaeaacaWG4bWa aSbaaSqaaiaaikdaaeqaaaqaaiaadgeaaeqaniabgUIiYdGccaaMc8 Uaamizaiaadgeaaaa@3D92@

This is the usual expression for the position of the neutral axis of a beam. We can now simplify our expression for potential energy by defining

I= 1 A A ( x 2 y 0 ) 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysaiabg2da9maalaaabaGaaGymaa qaaiaadgeaaaWaa8quaeaacaGGOaGaamiEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadMhadaWgaaWcbaGaaGimaaqabaGccaGGPaWaaW baaSqabeaacaaIYaaaaaqaaiaadgeaaeqaniabgUIiYdGccaaMc8Ua amizaiaadgeaaaa@4199@

so that

V(w)= 0 L 1 2 EI d 2 w( x 1 ) d x 1 2 2 d x 1 0 L bq( x 1 )w( x 1 )d x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWG3bGaaiykaiabg2 da9maapehabaaaleaacaaIWaaabaGaamitaaqdcqGHRiI8aOWaaSaa aeaacaaIXaaabaGaaGOmaaaacaWGfbGaamysamaacmaabaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam4DaiaacIcacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiaadsgacaWG4bWaaSbaaS qaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eaiaa w2haamaaCaaaleqabaGaaGOmaaaakiaaykW7caWGKbGaamiEamaaBa aaleaacaaIXaaabeaakiabgkHiTmaapehabaGaamOyaiaadghacaGG OaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacaWG3bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaamizaiaadIhadaWg aaWcbaGaaGymaaqabaaabaGaaGimaaqaaiaadYeaa0Gaey4kIipaaa a@5EBB@

 

 

Now turn to the more difficult problem of finding w that will minimise V.  To do this, let us calculate the change in V when w MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Daaaa@31DB@  is changed slightly to w+δw MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DaiabgUcaRiabes7aKjaadEhaaa a@355E@

V(w+δw)V(w)= 0 L 1 2 EI d 2 w( x 1 ) d x 1 2 + d 2 δw( x 1 ) d x 1 2 2 d x 1 0 L bq( x 1 ) w( x 1 )+δw( x 1 ) d x 1 0 L 1 2 EI d 2 w( x 1 ) d x 1 2 2 d x 1 0 L bq( x 1 )w( x 1 )d x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbGaaiikaiaadEhacqGHRa WkcqaH0oazcaWG3bGaaiykaiabgkHiTiaadAfacaGGOaGaam4Daiaa cMcacqGH9aqpdaWdXbqaaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIi pakmaalaaabaGaaGymaaqaaiaaikdaaaGaamyraiaadMeadaGadaqa amaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadEhacaGGOa GaamiEamaaBaaaleaacaaIXaaabeaakiaacMcaaeaacaWGKbGaamiE amaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqaH0oaz caWG3bGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaaaba GaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaa ikdaaaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaaIYaaaaOGaaG PaVlaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Yaa8qC aeaacaWGIbGaamyCaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaiykamaacmaabaGaam4DaiaacIcacaWG4bWaaSbaaSqaaiaaigda aeqaaOGaaiykaiabgUcaRiabes7aKjaadEhacaGGOaGaamiEamaaBa aaleaacaaIXaaabeaakiaacMcaaiaawUhacaGL9baacaWGKbGaamiE amaaBaaaleaacaaIXaaabeaaaeaacaaIWaaabaGaamitaaqdcqGHRi I8aaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0Yaa8qCae aaaSqaaiaaicdaaeaacaWGmbaaniabgUIiYdGcdaWcaaqaaiaaigda aeaacaaIYaaaaiaadweacaWGjbWaaiWaaeaadaWcaaqaaiaadsgada ahaaWcbeqaaiaaikdaaaGccaWG3bGaaiikaiaadIhadaWgaaWcbaGa aGymaaqabaGccaGGPaaabaGaamizaiaadIhadaWgaaWcbaGaaGymaa qabaGcdaahaaWcbeqaaiaaikdaaaaaaaGccaGL7bGaayzFaaWaaWba aSqabeaacaaIYaaaaOGaaGPaVlaadsgacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0Yaa8qCaeaacaWGIbGaamyCaiaacIcacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaiykaiaadEhacaGGOaGaamiEamaaBa aaleaacaaIXaaabeaakiaacMcacaWGKbGaamiEamaaBaaaleaacaaI XaaabeaaaeaacaaIWaaabaGaamitaaqdcqGHRiI8aaaaaa@EBE9@

Expand this out to see that

V(w+δw)V(w)= 0 L EI d 2 w( x 1 ) d x 1 2 d 2 δw( x 1 ) d x 1 2 d x 1 0 L bq( x 1 )δw( x 1 )d x 1 + 0 L 1 2 EI d 2 δw( x 1 ) d x 1 2 2 d x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbGaaiikaiaadEhacqGHRa WkcqaH0oazcaWG3bGaaiykaiabgkHiTiaadAfacaGGOaGaam4Daiaa cMcacqGH9aqpdaWdXbqaaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIi pakiaadweacaWGjbWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaa aOGaam4DaiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa qaaiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaa caaIYaaaaaaakmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaki abes7aKjaadEhacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaa cMcaaeaacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaale qabaGaaGOmaaaaaaGccaaMc8UaamizaiaadIhadaWgaaWcbaGaaGym aaqabaGccqGHsisldaWdXbqaaiaadkgacaWGXbGaaiikaiaadIhada WgaaWcbaGaaGymaaqabaGccaGGPaGaeqiTdqMaam4DaiaacIcacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadsgacaWG4bWaaSbaaS qaaiaaigdaaeqaaaqaaiaaicdaaeaacaWGmbaaniabgUIiYdaakeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSYaa8qCaeaa aSqaaiaaicdaaeaacaWGmbaaniabgUIiYdGcdaWcaaqaaiaaigdaae aacaaIYaaaaiaadweacaWGjbWaaiWaaeaadaWcaaqaaiaadsgadaah aaWcbeqaaiaaikdaaaGccqaH0oazcaWG3bGaaiikaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGPaaabaGaamizaiaadIhadaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaiaaikdaaaaaaaGccaGL7bGaayzFaa WaaWbaaSqabeaacaaIYaaaaOGaaGPaVlaadsgacaWG4bWaaSbaaSqa aiaaigdaaeqaaaaaaa@D117@

Now, if V(w) is a minimum, then

0 L EI d 2 w( x 1 ) d x 1 2 d 2 δw( x 1 ) d x 1 2 d x 1 0 L bq( x 1 )δw( x 1 )d x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaaaSqaaiaaicdaaeaacaWGmb aaniabgUIiYdGccaWGfbGaamysamaalaaabaGaamizamaaCaaaleqa baGaaGOmaaaakiaadEhacaGGOaGaamiEamaaBaaaleaacaaIXaaabe aakiaacMcaaeaacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaakmaa CaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiaadsgadaahaaWcbeqaai aaikdaaaGccqaH0oazcaWG3bGaaiikaiaadIhadaWgaaWcbaGaaGym aaqabaGccaGGPaaabaGaamizaiaadIhadaWgaaWcbaGaaGymaaqaba GcdaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaadsgacaWG4bWaaSba aSqaaiaaigdaaeqaaOGaeyOeI0Yaa8qCaeaacaWGIbGaamyCaiaacI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabes7aKjaadEha caGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacaWGKbGaam iEamaaBaaaleaacaaIXaaabeaaaeaacaaIWaaabaGaamitaaqdcqGH RiI8aOGaeyypa0JaaGimaaaa@64E7@

We are none the wiser as a result of this exercise, but if we integrate the first integral by parts twice, we find that

EI d 2 w d x 1 2 dδw d x 1 0 L d d x 1 (EI d 2 w d x 1 2 )δw 0 L + 0 L EI d 4 w( x 1 ) d x 1 4 bq( x 1 ) δwd x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGfbGaamysamaalaaaba GaamizamaaCaaaleqabaGaaGOmaaaakiaadEhaaeaacaWGKbGaamiE amaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOmaaaaaaGcda WcaaqaaiaadsgacqaH0oazcaWG3baabaGaamizaiaadIhadaWgaaWc baGaaGymaaqabaaaaaGccaGLBbGaayzxaaWaa0baaSqaaiaaicdaae aacaWGmbaaaOGaeyOeI0YaamWaaeaadaWcaaqaaiaadsgaaeaacaWG KbGaamiEamaaBaaaleaacaaIXaaabeaaaaGccaGGOaGaamyraiaadM eadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG3baabaGa amizaiaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaik daaaaaaOGaaiykaiabes7aKjaadEhaaiaawUfacaGLDbaadaqhaaWc baGaaGimaaqaaiaadYeaaaGccqGHRaWkdaWdXbqaaaWcbaGaaGimaa qaaiaadYeaa0Gaey4kIipakmaabmaabaGaamyraiaadMeadaWcaaqa aiaadsgadaahaaWcbeqaaiaaisdaaaGccaWG3bGaaiikaiaadIhada WgaaWcbaGaaGymaaqabaGccaGGPaaabaGaamizaiaadIhadaWgaaWc baGaaGymaaqabaGcdaahaaWcbeqaaiaaisdaaaaaaOGaeyOeI0Iaam OyaiaadghacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca caaMc8oacaGLOaGaayzkaaGaeqiTdqMaam4DaiaadsgacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@78D5@

 

Since this is zero for any δw MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaam4Daaaa@3380@  we conclude that

EI d 4 w( x 1 ) d x 1 4 bq( x 1 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeadaWcaaqaaiaadsgada ahaaWcbeqaaiaaisdaaaGccaWG3bGaaiikaiaadIhadaWgaaWcbaGa aGymaaqabaGccaGGPaaabaGaamizaiaadIhadaWgaaWcbaGaaGymaa qabaGcdaahaaWcbeqaaiaaisdaaaaaaOGaeyOeI0IaamOyaiaadgha caGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacqGH9aqpca aIWaaaaa@4445@

to ensure that the third term in this expression vanishes.  This gives us the required governing equation for w.  However, we still need to deal with the first two boundary terms.

 

There are several ways to prescribe boundary conditions on the ends of the beam to ensure that V is stationary.

 

1. We may prescribe w and its first derivative.  In this case the variation in w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Daaaa@31DC@  must satisfy δw=dδw/dx=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaam4Daiabg2da9iaadsgacq aH0oazcaWG3bGaai4laiaadsgacaWG4bGaeyypa0JaaGimaaaa@3C6A@  to ensure that w is a kinematically admissible displacement.  The boundary terms are zero under these conditions

 

2. Prescribe only the value of w. In this case we must ensure that δw=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaam4Daiabg2da9iaaicdaaa a@3540@  on the end of the beam. The  second boundary term is automatically zero.  To ensure that the first boundary term is zero we must set

d 2 w d x 1 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaOGaam4DaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqa aOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaaicdacaaMc8oaaa@3ADC@

to ensure that V is stationary.  We know from elementary strength of materials courses that this is equivalent to the condition that the shear force vanishes on the end of the beam.

3. Prescribe only the value of dw/dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhacaGGVaGaamizaiaadI haaaa@355E@ .  In this case, we must ensure that dδw/dx=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabes7aKjaadEhacaGGVaGaam izaiaadIhacqGH9aqpcaaIWaaaaa@38C3@  so that w+δw MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DaiabgUcaRiabes7aKjaadEhaaa a@355F@  is a kinematically admissible displacement.  The first boundary term vanishes; while the second boundary term is zero if we choose

d d x 1 EI d 2 w d x 1 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaadI hadaWgaaWcbaGaaGymaaqabaaaaOWaaeWaaeaacaWGfbGaamysamaa laaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadEhaaeaacaWGKb GaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOmaaaa aaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaGPaVdaa@41CD@

This is equivalent to setting the bending moment to zero at the end of the beam.

 

Clearly, one could extend this procedure to account for tractions acting on the ends of the beam.  The details are left as an exercise.  A nice feature of the variational approach that we followed here is that the appropriate boundary conditions follow naturally from the variational principle (indeed, the boundary conditions are called `natural’ boundary conditions).  This turns out to be particularly helpful in setting up approximate theories of plates and shells, where the boundary conditions can be very difficult to determine consistently using any other method.

 

 

 

5.6.5 Energy methods for calculating stiffness

 

Energy methods can also be used to calculate an upper bound to the stiffness of a structure or a component.

A spring is an example of an elastic solid.  Recall that if you apply a force P to a spring, it deflects by an amount Δ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqeaaa@3245@ , in proportion to P.  The stiffness k is defined so that

k=P/Δ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaadcfacaGGVaGaeu iLdqeaaa@35C3@

If you apply a load P to any stable elastic structure (except one which contains two or more contacting surfaces, or if the forces are too large for linear elasticity theory to be applicable), the point where you apply the load will deflect by a distance that is proportional to the applied load.  For example, for the cantilever beam shown below the end deflection is

Δ= P L 3 2E a 3 b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeyypa0ZaaSaaaeaacaWGqb GaamitamaaCaaaleqabaGaaG4maaaaaOqaaiaaikdacaWGfbGaamyy amaaCaaaleqabaGaaG4maaaakiaadkgaaaaaaa@3A3C@

The stiffness of the beam is therefore k=P/Δ=2E a 3 b/ L 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaadcfacaGGVaGaeu iLdqKaeyypa0JaaGOmaiaadweacaWGHbWaaWbaaSqabeaacaaIZaaa aOGaamOyaiaac+cacaWGmbWaaWbaaSqabeaacaaIZaaaaaaa@3D7E@

 


 

To get an upper bound to the stiffness of a structure, one can merely guess its deformed shape, then apply the principle of minimum potential energy.

 

For example, for the beam problem, we might guess that the beam deforms into a circular shape, with unknown radius R, as shown below

 


 

The deflection at the end of the beam is approximately

Δ=R R 2 L 2 L 2 2R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeyypa0JaamOuaiabgkHiTm aakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadYea daahaaWcbeqaaiaaikdaaaaabeaakiabgIKi7oaalaaabaGaamitam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGsbaaaaaa@3EB2@

From the preceding section, we know that the potential energy of a beam is

V(w)= 0 L 1 2 EI d 2 w( x 1 ) d x 1 2 2 d x 1 0 L bq( x 1 )w( x 1 )d x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWG3bGaaiykaiabg2 da9maapehabaaaleaacaaIWaaabaGaamitaaqdcqGHRiI8aOWaaSaa aeaacaaIXaaabaGaaGOmaaaacaWGfbGaamysamaacmaabaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam4DaiaacIcacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiaadsgacaWG4bWaaSbaaS qaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eaiaa w2haamaaCaaaleqabaGaaGOmaaaakiaaykW7caWGKbGaamiEamaaBa aaleaacaaIXaaabeaakiabgkHiTmaapehabaGaamOyaiaadghacaGG OaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMcacaWG3bGaaiikai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaamizaiaadIhadaWg aaWcbaGaaGymaaqabaaabaGaaGimaaqaaiaadYeaa0Gaey4kIipaaa a@5EBB@

Here, q( x 1 )=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiykaiabg2da9iaaicdaaaa@36DC@ , but we need to account for the potential energy of the load P.  Recall that the potential energy of a constant force is PΔ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Iaamiuaiabfs5aebaa@3407@ . Recall also that d 2 w/d x 2 1/R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaCaaaleqabaGaaGOmaaaaki aadEhacaGGVaGaamizaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH ijYUcaaIXaGaai4laiaadkfaaaa@3B39@ . Thus

V(R)= 0 L 1 2 EI R 2 d x 1 PΔ= 1 2 EI R 2 LP L 2 2R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaacIcacaWGsbGaaiykaiabg2 da9maapehabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiaa dweacaWGjbaabaGaamOuamaaCaaaleqabaGaaGOmaaaaaaaabaGaaG imaaqaaiaadYeaa0Gaey4kIipakiaaykW7caWGKbGaamiEamaaBaaa leaacaaIXaaabeaakiabgkHiTiaadcfacqqHuoarcaaMc8UaaGPaVl aaykW7cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaalaaabaGa amyraiaadMeaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakiaadY eacqGHsislcaWGqbWaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGOmaiaadkfaaaaaaa@55F6@

Choose R to minimize the potential energy

V R =0 EI R 3 L+P L 2 2 R 2 =0R= 2EI PL MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbaabaGaey OaIyRaamOuaaaacqGH9aqpcaaIWaGaeyO0H4TaeyOeI0YaaSaaaeaa caWGfbGaamysaaqaaiaadkfadaahaaWcbeqaaiaaiodaaaaaaOGaam itaiabgUcaRiaadcfadaWcaaqaaiaadYeadaahaaWcbeqaaiaaikda aaaakeaacaaIYaGaamOuamaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGHshI3caWGsbGaeyypa0ZaaS aaaeaacaaIYaGaamyraiaadMeaaeaacaWGqbGaamitaaaaaaa@5FC9@

so that

Δ= L 2 2R = L 3 4EI Pk 4EI L 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeyypa0ZaaSaaaeaacaWGmb WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadkfaaaGaeyypa0Za aSaaaeaacaWGmbWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGinaiaadw eacaWGjbaaaiaadcfacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabgkDiElaadUgacqGHKjYOdaWcaaqaaiaais dacaWGfbGaamysaaqaaiaadYeadaahaaWcbeqaaiaaiodaaaaaaaaa @5233@

For comparison, the exact solution is k=3EI/ L 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaaiodacaWGfbGaam ysaiaac+cacaWGmbWaaWbaaSqabeaacaaIZaaaaaaa@3798@