5.7 The Reciprocal Theorem and applications

 

The reciprocal theorem is a distant cousin of the principle of minimum potential energy, and is a particularly useful tool.  It is the basis for a computational method in linear elasticity called the boundary element method; it can often be used to extract information concerning solutions to a boundary value problem without having to solve the problem in detail;  and can occasionally be used to find the full solution MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for example, the reciprocal theorem provides a way to compute fields for arbitrarily shaped dislocation loops in an infinite solid.

 

 

 

5.7.1 Statement and proof of the reciprocal theorem

                                                      

The reciprocal theorem relates two solutions for the same elastic solid, when subjected to different loads. 


 

 

To this end, consider the following scenario

 

1. An elastic solid which occupies some region V with boundary S, as shown above. The outward normal to the boundary is specified by a unit vector n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaaaa@31D7@ .  The properties of the solid are characterized by the tensor of elastic moduli C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@ .  The solid is free of stress when unloaded, and temperature changes are neglected.

 

2. When subjected to body forces b A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyamaaCaaaleqabaGaamyqaaaaaa a@32BE@  (per unit mass) together with prescribed displacements u *A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaiaadg eaaaaaaa@337F@  on portion S 1A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaamyqaa qabaaaaa@3365@  of its boundary, and tractions   t *A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaiaadg eaaaaaaa@337E@  on portion S 2A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaGaamyqaa qabaaaaa@3366@ , a state of static equilibrium is established in the solid with displacements, strains and stresses u i A , ε ij A , σ ij A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yqaaaakiaacYcacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG bbaaaOGaaiilaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaadg eaaaaaaa@3E39@

 

3. When subjected to body forces b B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyamaaCaaaleqabaGaamOqaaaaaa a@32BF@  together with prescribed displacements u *B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaiaadk eaaaaaaa@3380@  on portion S 1B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaGaamOqaa qabaaaaa@3366@  of its boundary, and tractions  t *B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaiaadk eaaaaaaa@337F@  on portion S 2B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaGaamOqaa qabaaaaa@3367@ , the solid experiences a static state u i B , ε ij B , σ ij B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam OqaaaakiaacYcacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG cbaaaOGaaiilaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaadk eaaaaaaa@3E3C@

 

 

The reciprocal theorem relates the two solutions through

S n i σ ij A u j B dA + V ρ 0 b i A u i B dV = S n i σ ij B u j A dA + V ρ 0 b i B u i A dV = V σ ij A ε ij B dV = V σ ij B ε ij A dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaa kiaadwhadaqhaaWcbaGaamOAaaqaaiaadkeaaaGccaWGKbGaamyqaa WcbaGaam4uaaqab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWGPbaabaGaam yqaaaakiaadwhadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWGKbGa amOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGaam OBamaaBaaaleaacaWGPbaabeaakiabeo8aZnaaDaaaleaacaWGPbGa amOAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadQgaaeaacaWGbb aaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGHRaWk daWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaqhaa WcbaGaamyAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadMgaaeaa caWGbbaaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccq GH9aqpdaWdrbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaa dgeaaaGccqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGcbaaaO GaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWd rbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaadkeaaaGccq aH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaaaOGaamizaiaa dAfaaSqaaiaadAfaaeqaniabgUIiYdaaaa@8971@

 

 

 Derivation:

 

Start by showing that σ ij A ε ij B = σ ij B ε ij A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamyqaaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dkeaaaGccqGH9aqpcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaca WGcbaaaOGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaa aaa@441A@ .  To see this, note that σ ij A ε ij B = C ijkl ε kl B ε ij A = C klij ε kl B ε ij A = σ ij B ε ij A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamyqaaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dkeaaaGccqGH9aqpcaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4Aai aadYgaaeqaaOGaeqyTdu2aa0baaSqaaiaadUgacaWGSbaabaGaamOq aaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadgeaaaGccq GH9aqpcaWGdbWaaSbaaSqaaiaadUgacaWGSbGaamyAaiaadQgaaeqa aOGaeqyTdu2aa0baaSqaaiaadUgacaWGSbaabaGaamOqaaaakiabew 7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadgeaaaGccqGH9aqpcqaH dpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGcbaaaOGaeqyTdu2aa0 baaSqaaiaadMgacaWGQbaabaGaamyqaaaaaaa@61AC@ , where we have used the symmetry relation C ijkl = C klij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B54@ .

 

To prove the rest, recall that

 

1. The divergence theorem requires that

S n i σ ij u j dA = V ( σ ij u j ) x i dV = V σ ij x i u j + σ ij u j x i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadwha daWgaaWcbaGaamOAaaqabaGccaWGKbGaamyqaaWcbaGaam4uaaqab0 Gaey4kIipakiabg2da9maapefabaWaaSaaaeaacqGHciITcaGGOaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadwhadaWgaaWcba GaamOAaaqabaGccaGGPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaki abg2da9maapefabaWaaeWaaeaadaWcaaqaaiabgkGi2kabeo8aZnaa BaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaadMgaaeqaaaaakiaadwhadaWgaaWcbaGaamOAaaqabaGccqGH RaWkcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacq GHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaacaWGKbGaam OvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@6E49@

 

2. Any pair of strains and displacement are related by ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaey4kaS IaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+cacaWG4bWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaa a@462C@

 

3. The stress tensor is symmetric, so that σ ij u j / x i = σ ij ( u j / x i + u i / x j )/2= σ ij ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabgkGi2kaadwhadaWgaaWcbaGaamOAaaqabaGccaGGVaGa eyOaIyRaamiEamaaBaaaleaacaWGPbaabeaakiabg2da9iabeo8aZn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGOaGaeyOaIyRaamyDamaa BaaaleaacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaai aadMgaaeqaaOGaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGPbaa beaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaai ykaiaac+cacaaIYaGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWG Qbaabeaakiabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@5D05@

 

4. Both stress states satisfy the equilibrium equation σ ij / x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyam aaBaaaleaacaWGQbaabeaakiabg2da9iaaicdaaaa@41B4@ . Consequently, collecting together the volume integrals gives

S n i σ ij u j dA + V ρ 0 b j u j dV = V σ ij x i + ρ 0 b j u j + σ ij ε ij dV = V σ ij ε ij dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadwha daWgaaWcbaGaamOAaaqabaGccaWGKbGaamyqaaWcbaGaam4uaaqab0 Gaey4kIipakiabgUcaRmaapefabaGaeqyWdi3aaSbaaSqaaiaaicda aeqaaOGaamOyamaaBaaaleaacaWGQbaabeaakiaadwhadaWgaaWcba GaamOAaaqabaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipa kiabg2da9maapefabaWaaeWaaeaadaWadaqaamaalaaabaGaeyOaIy Raeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaa dIhadaWgaaWcbaGaamyAaaqabaaaaOGaey4kaSIaeqyWdi3aaSbaaS qaaiaaicdaaeqaaOGaamOyamaaBaaaleaacaWGQbaabeaaaOGaay5w aiaaw2faaiaadwhadaWgaaWcbaGaamOAaaqabaGccqGHRaWkcqaHdp WCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqyTdu2aaSbaaSqaaiaa dMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadsgacaWGwbaaleaaca WGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacqaHdpWCdaWgaaWc baGaamyAaiaadQgaaeqaaOGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaaa@7A6B@

 

5. Note that this result applies to any equilibrium stress field and pair of compatible strain and displacements MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the stresses need not be related to the strains.  Consequently, this result can be applied to pairs of stress and displacement

S n i σ ij A u j B dA + V ρ 0 b i A u i B dV = S n i σ ij B u j A dA + V ρ 0 b i B u i A dV = V σ ij A ε ij B dV = V σ ij B ε ij A dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaa kiaadwhadaqhaaWcbaGaamOAaaqaaiaadkeaaaGccaWGKbGaamyqaa WcbaGaam4uaaqab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWGPbaabaGaam yqaaaakiaadwhadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWGKbGa amOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGaam OBamaaBaaaleaacaWGPbaabeaakiabeo8aZnaaDaaaleaacaWGPbGa amOAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadQgaaeaacaWGbb aaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGHRaWk daWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaqhaa WcbaGaamyAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadMgaaeaa caWGbbaaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccq GH9aqpdaWdrbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaa dgeaaaGccqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGcbaaaO GaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWd rbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaadkeaaaGccq aH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaaaOGaamizaiaa dAfaaSqaaiaadAfaaeqaniabgUIiYdaaaa@8971@

 

 

 

5.7.2 Simple example using the reciprocal theorem

 

The reciprocal theorem can often be used to extract average measures of deformation or stress in an elastic solution.  As an example, consider the following problem:  An elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  occupies a volume V with surface S, as shown in the figure.  The solid is subjected to a distribution of traction t i ( x j ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaiykaaaa@3678@  on its surface.  The traction exerts zero resultant force and moment on the solid, i.e.

S t i dA =0, S ijk x j t k dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWG0bWaaSbaaSqaaiaadM gaaeqaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGH 9aqpcaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVpaapefabaGaeyicI48aaSbaaSqaaiaa dMgacaWGQbGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaadQgaaeqaaO GaamiDamaaBaaaleaacaWGRbaabeaakiaadsgacaWGbbaaleaacaWG tbaabeqdcqGHRiI8aOGaeyypa0JaaGimaaaa@578E@

As a result, a state of static equilibrium with displacement, strain and stress u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  is developed in the solid.   Show that the volume change of the solid can be calculated as

ΔV= 12ν E S x i t i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamOvaiabg2da9maalaaaba GaaGymaiabgkHiTiaaikdacqaH9oGBaeaacaWGfbaaamaapefabaGa amiEamaaBaaaleaacaWGPbaabeaakiaadshadaWgaaWcbaGaamyAaa qabaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@422B@

Derivation:

 

1. Note that if we were able to determine the full displacement field in the solid, the volume change could be calculated as

ΔV= S u i n i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamOvaiabg2da9maapefaba GaamyDamaaBaaaleaacaWGPbaabeaakiaad6gadaWgaaWcbaGaamyA aaqabaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@3D2D@

If you don’t see this result immediately on geometric grounds it can be derived by first calculating the total volume change by integrating the dilatation over the volume of the solid and then applying the divergence theorem

ΔV= V ε kk dV = V u k / x k dV = S u k n k dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamOvaiabg2da9maapefaba GaeqyTdu2aaSbaaSqaaiaadUgacaWGRbaabeaakiaadsgacaWGwbaa leaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacqGHciITca WG1bWaaSbaaSqaaiaadUgaaeqaaOGaai4laiabgkGi2kaadIhadaWg aaWcbaGaam4AaaqabaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey 4kIipakiabg2da9maapefabaGaamyDamaaBaaaleaacaWGRbaabeaa kiaad6gadaWgaaWcbaGaam4AaaqabaGccaWGKbGaamOvaaWcbaGaam 4uaaqab0Gaey4kIipaaaa@54B7@

 

2. Note that we can make one of the terms in the reciprocal theorem reduce to this formula by choosing state A to be the actual displacement, stress and strain in the solid, and choosing state B to be a uniform stress with unit magnitude σ ij B = δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamOqaaaakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaamOA aaqabaaaaa@3A32@ . This stress is clearly an equilibrium field, for zero body force. The corresponding strains and displacements follow as

ε ij B = 12ν E δ ij u i B = 12ν E x i + c i + ijk ω j x k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaGaamOqaaaakiabg2da9maalaaabaGaaGymaiabgkHiTiaaikda cqaH9oGBaeaacaWGfbaaaiabes7aKnaaBaaaleaacaWGPbGaamOAaa qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG1bWaa0baaSqaaiaadM gaaeaacaWGcbaaaOGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaaGOm aiabe27aUbqaaiaadweaaaGaamiEamaaBaaaleaacaWGPbaabeaaki abgUcaRiaadogadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqGHiiIZ daWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiabeM8a3naaBaaale aacaWGQbaabeaakiaadIhadaWgaaWcbaGaam4Aaaqabaaaaa@69FE@

where c i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGPbaabeaaaa a@32E2@  and ω j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaadQgaaeqaaa aa@33C8@  represent an arbitrary infinitesimal displacement and rotation.

 

3. Substituting into the reciprocal theorem, recalling that the stresses satisfy the boundary condition σ ij n i = t j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaaaa@39E7@ , and using the equilibrium equations for the traction then yields

S n i σ ij u j B dA = S n i δ ij u j dA ΔV= S n i u i dA = S t i 12ν E x i + c i + ijk ω j x k dA = 12ν E S x i t i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaaaaOGaamyD amaaDaaaleaacaWGQbaabaGaamOqaaaakiaadsgacaWGbbaaleaaca WGtbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacaWGUbWaaSbaaSqa aiaadMgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaki aadwhadaqhaaWcbaGaamOAaaqaaaaakiaadsgacaWGbbaaleaacaWG tbaabeqdcqGHRiI8aOGaeyO0H4TaeuiLdqKaamOvaiabg2da9maape fabaGaamOBamaaBaaaleaacaWGPbaabeaakiaadwhadaqhaaWcbaGa amyAaaqaaaaakiaadsgacaWGbbaaleaacaWGtbaabeqdcqGHRiI8aO Gaeyypa0Zaa8quaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOWaaeWa aeaadaWcaaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gabaGaamyraa aacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaam4yamaaBaaa leaacaWGPbaabeaakiabgUcaRiabgIGiopaaBaaaleaacaWGPbGaam OAaiaadUgaaeqaaOGaeqyYdC3aaSbaaSqaaiaadQgaaeqaaOGaamiE amaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaadsgacaWGbb aaleaacaWGtbaabeqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaaIXaGa eyOeI0IaaGOmaiabe27aUbqaaiaadweaaaWaa8quaeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOGaamiDamaaBaaaleaacaWGPbaabeaakiaa dsgacaWGbbaaleaacaWGtbaabeqdcqGHRiI8aaaa@882A@

 

 

 

5.7.3 Formulas relating internal and boundary values of field quantities

 

The reciprocal theorem also gives a useful relationship between the values of stress and displacement in the interior and on the boundary of the solid, which can be stated as follows.  Suppose that a linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  is loaded on its boundary (with no body force) so as to induce a static equilibrium displacement, strain and stress field u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  in the solid.  Define the following functions

U i (k) (x)= (1+ν) 8πE(1ν)R x k x i R 2 +(34ν) δ ik Σ ij (k) (x)= 1 8π(1ν) R 2 3 x k x i x j R 3 +(12ν) δ ik x j + δ jk x i δ ij x k R Ω ij (kq) (x)= E 8π(1 ν 2 ) R 3 3 δ kq x i x j R 2 + 3ν δ ik x q x j + δ iq x k x j + δ jk x i x q + δ jq x i x k R 2 15 x i x j x k x q R 4 + (12ν) δ ik δ jq + δ jk δ iq 16ν+2 ν 2 12ν δ ij δ kq 3 x k x q δ ij R 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGvbWaa0baaSqaaiaadMgaae aacaGGOaGaam4AaiaacMcaaaGccaGGOaGaaCiEaiaacMcacqGH9aqp daWcaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaqaaiaaiI dacqaHapaCcaWGfbGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGa amOuaaaadaGadaqaamaalaaabaGaamiEamaaBaaaleaacaWGRbaabe aakiaadIhadaWgaaWcbaGaamyAaaqabaaakeaacaWGsbWaaWbaaSqa beaacaaIYaaaaaaakiabgUcaRiaacIcacaaIZaGaeyOeI0IaaGinai abe27aUjaacMcacqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaaGc caGL7bGaayzFaaaabaGaeu4Odm1aa0baaSqaaiaadMgacaWGQbaaba GaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacaGGPaGaeyypa0Za aSaaaeaacqGHsislcaaIXaaabaGaaGioaiabec8aWjaacIcacaaIXa GaeyOeI0IaeqyVd4MaaiykaiaadkfadaahaaWcbeqaaiaaikdaaaaa aOWaaiqaaeaadaWcaaqaaiaaiodacaWG4bWaaSbaaSqaaiaadUgaae qaaOGaamiEamaaBaaaleaacaWGPbaabeaakiaadIhadaWgaaWcbaGa amOAaaqabaaakeaacaWGsbWaaWbaaSqabeaacaaIZaaaaaaaaOGaay 5EaaWaaiGaaeaacqGHRaWkcaGGOaGaaGymaiabgkHiTiaaikdacqaH 9oGBcaGGPaWaaSaaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadUgaae qaaOGaamiEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabes7aKnaa BaaaleaacaWGQbGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaadMgaae qaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa dIhadaWgaaWcbaGaam4AaaqabaaakeaacaWGsbaaaaGaayzFaaaaba GaeuyQdC1aa0baaSqaaiaadMgacaWGQbaabaGaaiikaiaadUgacaWG XbGaaiykaaaakiaacIcacaWH4bGaaiykaiabg2da9maalaaabaGaey OeI0IaamyraaqaaiaaiIdacqaHapaCcaGGOaGaaGymaiabgkHiTiab e27aUnaaCaaaleqabaGaaGOmaaaakiaacMcacaWGsbWaaWbaaSqabe aacaaIZaaaaaaakmaaceaabaWaaSaaaeaacaaIZaGaeqiTdq2aaSba aSqaaiaadUgacaWGXbaabeaakiaadIhadaWgaaWcbaGaamyAaaqaba GccaWG4bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaamOuamaaCaaaleqa baGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaiodacqaH9oGBdaqada qaaiabes7aKnaaBaaaleaacaWGPbGaam4AaaqabaGccaWG4bWaaSba aSqaaiaadghaaeqaaOGaamiEamaaBaaaleaacaWGQbaabeaakiabgU caRiabes7aKnaaBaaaleaacaWGPbGaamyCaaqabaGccaWG4bWaaSba aSqaaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGQbaabeaakiabgU caRiabes7aKnaaBaaaleaacaWGQbGaam4AaaqabaGccaWG4bWaaSba aSqaaiaadMgaaeqaaOGaamiEamaaBaaaleaacaWGXbaabeaakiabgU caRiabes7aKnaaBaaaleaacaWGQbGaamyCaaqabaGccaWG4bWaaSba aSqaaiaadMgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaaaOGaay jkaiaawMcaaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaaGccaGL 7baaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeyOeI0IaaGymaiaaiwdadaWcaaqaaiaadIhadaWgaa WcbaGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaamiE amaaBaaaleaacaWGRbaabeaakiaadIhadaWgaaWcbaGaamyCaaqaba aakeaacaWGsbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRiaaykW7 caaMc8+aaiGaaeaacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBca GGPaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaOGa eqiTdq2aaSbaaSqaaiaadQgacaWGXbaabeaakiabgUcaRiabes7aKn aaBaaaleaacaWGQbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyA aiaadghaaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXa GaeyOeI0IaaGOnaiabe27aUjabgUcaRiaaikdacqaH9oGBdaahaaWc beqaaiaaikdaaaaakeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaada qadaqaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqaH0oaz daWgaaWcbaGaam4AaiaadghaaeqaaOGaeyOeI0YaaSaaaeaacaaIZa GaamiEamaaBaaaleaacaWGRbaabeaakiaadIhadaWgaaWcbaGaamyC aaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaam OuamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaiaaw2ha aaaaaa@73DC@

You may recognize the first two of these functions represent the displacements and stresses induced at a point x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  by a point force of unit magnitude acting in the e k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGRbaabeaaaa a@32EA@  direction at the origin of an infinite solid.

 

The displacement and stress at an interior point in the solid can be calculated from the following formulas 

u k (ξ)= S σ ij n i U j (k) (xξ)d A x S n i Σ ij (k) (xξ) u j d A x σ kq (ξ)= S σ ij n i Σ jq (k) (xξ)d A x + S n i Ω ij (kq) (xξ) u j d A x MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadUgaae qaaOGaaiikaiaah67acaGGPaGaeyypa0Zaa8quaeaacqaHdpWCdaWg aaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaaBaaaleaacaWGPbaabe aaaeaacaWGtbaabeqdcqGHRiI8aOGaamyvamaaDaaaleaacaWGQbaa baGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+o GaaiykaiaadsgacaWGbbWaaSbaaSqaaiaahIhaaeqaaOGaeyOeI0Ya a8quaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadofaaeqani abgUIiYdGccqqHJoWudaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGa am4AaiaacMcaaaGccaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGaam yDamaaBaaaleaacaWGQbaabeaakiaadsgacaWGbbWaaSbaaSqaaiaa hIhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGXbaabeaaki aacIcacaWH+oGaaiykaiabg2da9iabgkHiTmaapefabaGaeq4Wdm3a aSbaaSqaaiaadMgacaWGQbaabeaakiaad6gadaWgaaWcbaGaamyAaa qabaaabaGaam4uaaqab0Gaey4kIipakiabfo6atnaaDaaaleaacaWG QbGaamyCaaqaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaey OeI0IaaCOVdiaacMcacaWGKbGaamyqamaaBaaaleaacaWH4baabeaa kiabgUcaRmaapefabaGaamOBamaaBaaaleaacaWGPbaabeaaaeaaca WGtbaabeqdcqGHRiI8aOGaeuyQdC1aa0baaSqaaiaadMgacaWGQbaa baGaaiikaiaadUgacaWGXbGaaiykaaaakiaacIcacaWH4bGaeyOeI0 IaaCOVdiaacMcacaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaamizaiaa dgeadaWgaaWcbaGaaCiEaaqabaaaaaa@965C@

Here, d A x MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaCiEaa qabaaaaa@33BC@  denotes that the integral is taken with respect to x, holding ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  fixed.

 

At first sight this appears to give an exact formula for the displacement and stress in any 3D solid subjected to prescribed tractions and displacement on its boundary.  In fact this is not the case, because you need to know both tractions and displacements on the boundary to evaluate the formula, whereas the boundary conditions only specify one or the other.  The main application of this formula is a numerical technique for solving elasticity problems known as the ‘boundary element method.’  The idea is simple: the unknown values of traction and displacement on the boundary are first calculated by letting the interior point ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdGhaaa@32A3@  approach the boundary, and solving the resulting integral equation.   Then, the formulas are used to calculate field quantities at interior points.

 

Derivation: These formulas are a consequence of the reciprocal theorem, as follows

 

1. Start with the reciprocal theorem:

S n i σ ij A u j B dA + V ρ 0 b i A u i B dA = S n i σ ij B u j A dA + V ρ 0 b i B u i A dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaa kiaadwhadaqhaaWcbaGaamOAaaqaaiaadkeaaaGccaWGKbGaamyqaa WcbaGaam4uaaqab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWGPbaabaGaam yqaaaakiaadwhadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWGKbGa amyqaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGaam OBamaaBaaaleaacaWGPbaabeaakiabeo8aZnaaDaaaleaacaWGPbGa amOAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadQgaaeaacaWGbb aaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGHRaWk daWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaqhaa WcbaGaamyAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadMgaaeaa caWGbbaaaOGaamizaiaadgeaaSqaaiaadAfaaeqaniabgUIiYdaaaa@6B18@

 

2. For state A we choose the actual stress, strain and displacement in the solid.  For state B, we choose the displacement and stress fields induced by a Dirac Delta distribution of body force located at position ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@ .  The body force  vector associated with a force acting in the e k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGRbaabeaaaa a@32EA@  direction will be denoted by ρ 0 b i (k) δ(xξ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaamOyamaaDaaaleaacaWGPbaabaGaaiikaiaadUgacaGGPaaaaOGa eqiTdqMaaiikaiaahIhacqGHsislcaWH+oGaaiykaaaa@3E1B@ , and has the property that

V ρ 0 b i (k) δ(xξ) u i (x)d V x = u k (ξ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHbpGCdaWgaaWcbaGaaG imaaqabaGccaWGIbWaa0baaSqaaiaadMgaaeaacaGGOaGaam4Aaiaa cMcaaaGccqaH0oazcaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGaam yDamaaBaaaleaacaWGPbaabeaakiaacIcacaWH4bGaaiykaiaadsga caWGwbWaaSbaaSqaaiaahIhaaeqaaaqaaiaadAfaaeqaniabgUIiYd GccqGH9aqpcaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaah67a caGGPaaaaa@4E70@

The stress and displacement induced by this body force can be calculated by shifting the origin in the point force solution given in Section 5.4.3.  Substituting into the reciprocal theorem immediately yields the formula for displacements.

 

3. The formula for stress follows by differentiating the displacement with respect to ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  to calculate the strain, and then substituting the strain into the elastic stress-strain equation and simplifying the result.

 

 

 

 

5.7.4 Classical Solutions for displacement and stress due to a 3D dislocation loop in an infinite solid

 

The reciprocal theorem can also be used to calculate the displacement and stress induced by an arbitrarily shaped 3D dislocation loop in an infinite solid.  The concept of a dislocation in a crystal was introduced in Section 5.3.4.  A three-dimensional dislocation in an elastic solid can be constructed as follows:

 

1. Consider an infinite solid with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  Assume that the solid is initially stress free.

 

2. Introduce a bounded, simply connected surface S inside the solid (see the figure above)  Denote the edge of this surface by a curve C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this curve will correspond to the dislocation line.   The direction of the line will be denoted by a unit vector τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@  tangent to the curve.  There are, of course, two possible choices for this direction. Either one can be used.   The normal to S will be denoted by a unit vector m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBaaaa@31D6@ , which must be chosen so that the curve C encircles m in a counterclockwise sense when traveling in direction τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@ .

 

3. Create an imaginary cut on S, so that the two sides of the cut are free to move independently.  In the derivation below, the two sides of the cut will be denoted by S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , chosen so that the unit vector m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBaaaa@31D6@  points from S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  to S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ .

 

4. Hold S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  fixed, displace S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  by the burgers vector b, and weld the two sides of the cut back together.  Remove the constraint on S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ .

 

 

This procedure creates a displacement field that is consistent with the Burger’s circuit convention described in Section 5.3.4.  To see this, suppose that a crystal lattice is embedded within the elastic solid.  Perform a Burgers circuit around the curve C. Start the circuit on S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ , encircle the curve according to the right hand screw convention with respect to the line sense τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@ , and end at S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ .   The end of the circuit is displaced by a distance b from the start, so that b i = u i u i + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiabgkHiTaaakiabgkHi TiaadwhadaqhaaWcbaGaamyAaaqaaiabgUcaRaaaaaa@3AE1@ .

 

The displacement and stress due to the dislocation loop can be calculated from

u k (x)= S m i Σ ij (k) (xξ) b j d A ξ σ pq (ξ)= E 2(1+ν) C pij Σ im (q) (xξ)+ qij Σ im (p) (xξ)+ 2ν δ pq 12ν kij Σ mi (k) (xξ) b m τ j d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadUgaae qaaOGaaiikaiaahIhacaGGPaGaeyypa0Zaa8quaeaacaWGTbWaaSba aSqaaiaadMgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMgacaWGQbaaba GaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+oGa aiykaiaadkgadaWgaaWcbaGaamOAaaqabaGccaWGKbGaamyqamaaBa aaleaacaWH+oaabeaaaeaacaWGtbaabeqdcqGHRiI8aaGcbaGaeq4W dm3aaSbaaSqaaiaadchacaWGXbaabeaakiaacIcacaWH+oGaaiykai abg2da9maalaaabaGaamyraaqaaiaaikdacaGGOaGaaGymaiabgUca Riabe27aUjaacMcaaaWaa8quaeaadaqadaqaaiabgIGiopaaBaaale aacaWGWbGaamyAaiaadQgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMga caWGTbaabaGaaiikaiaadghacaGGPaaaaOGaaiikaiaahIhacqGHsi slcaWH+oGaaiykaiabgUcaRiabgIGiopaaBaaaleaacaWGXbGaamyA aiaadQgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMgacaWGTbaabaGaai ikaiaadchacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+oGaaiyk aiabgUcaRmaalaaabaGaaGOmaiabe27aUjabes7aKnaaBaaaleaaca WGWbGaamyCaaqabaaakeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaa cqGHiiIZdaWgaaWcbaGaam4AaiaadMgacaWGQbaabeaakiabfo6atn aaDaaaleaacaWGTbGaamyAaaqaaiaacIcacaWGRbGaaiykaaaakiaa cIcacaWH4bGaeyOeI0IaaCOVdiaacMcaaiaawIcacaGLPaaaaSqaai aadoeaaeqaniabgUIiYdGccaWGIbWaaSbaaSqaaiaad2gaaeqaaOGa eqiXdq3aaSbaaSqaaiaadQgaaeqaaOGaamizaiaadohadaWgaaWcba GaaCOVdaqabaaaaaa@9F3A@

where Σ ij (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aa0baaSqaaiaadMgacaWGQb aabaGaaiikaiaadUgacaGGPaaaaaaa@36B7@  is defined in Section 5.8.3, and ijk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4Aaaqabaaaaa@355D@  is the permutation symbol.  The symbols d A ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgeadaWgaaWcbaGaaCOVda qabaaaaa@3405@   d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadohadaWgaaWcbaGaaCOVda qabaaaaa@3437@  denotes that ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  is varied when evaluating the surface or line integral.  These results are also often expressed in the more compact form

u k (x)= 1 8π S m k b j x j + m j b k x j + ν b j m j 1ν x k 2 R(xξ) x i x i b i m j 1ν 3 R(xξ) x i x j x k d A ξ σ pq (x)= E 16π(1+ν) C imp b m τ q + imq b m τ p 3 R(xξ) x i x j x j d s ξ + E 8π(1 ν 2 ) C b m imk τ k 3 R(xξ) x i x p x q δ pq 3 R(xξ) x i x j x j d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadUgaae qaaOGaaiikaiaahIhacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGioaiabec8aWbaadaWdrbqaamaacmaabaWaamWaaeaacaWGTbWaaS baaSqaaiaadUgaaeqaaOGaamOyamaaBaaaleaacaWGQbaabeaakmaa laaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabe aaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadQgaaeqaaOGaamOyamaa BaaaleaacaWGRbaabeaakmaalaaabaGaeyOaIylabaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqaaiabe27a UjaadkgadaWgaaWcbaGaamOAaaqabaGccaWGTbWaaSbaaSqaaiaadQ gaaeqaaaGcbaGaaGymaiabgkHiTiabe27aUbaadaWcaaqaaiabgkGi 2cqaaiabgkGi2kaadIhadaWgaaWcbaGaam4AaaqabaaaaaGccaGLBb GaayzxaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG sbGaaiikaiaahIhacqGHsislcaWH+oGaaiykaaqaaiabgkGi2kaadI hadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaa dMgaaeqaaaaakiabgkHiTmaalaaabaGaamOyamaaBaaaleaacaWGPb aabeaakiaad2gadaWgaaWcbaGaamOAaaqabaaakeaacaaIXaGaeyOe I0IaeqyVd4gaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIZaaaaO GaamOuaiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGHciIT caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaale aacaWGQbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaam4Aaaqabaaa aaGccaGL7bGaayzFaaGaamizaiaadgeadaWgaaWcbaGaaCOVdaqaba aabaGaam4uaaqab0Gaey4kIipaaOqaaiabeo8aZnaaBaaaleaacaWG WbGaamyCaaqabaGccaGGOaGaaCiEaiaacMcacqGH9aqpdaWcaaqaai aadweaaeaacaaIXaGaaGOnaiabec8aWjaacIcacaaIXaGaey4kaSIa eqyVd4MaaiykaaaadaWdrbqaamaabmaabaWaamWaaeaacqGHiiIZda WgaaWcbaGaamyAaiaad2gacaWGWbaabeaakiaadkgadaWgaaWcbaGa amyBaaqabaGccqaHepaDdaWgaaWcbaGaamyCaaqabaGccqGHRaWkcq GHiiIZdaWgaaWcbaGaamyAaiaad2gacaWGXbaabeaakiaadkgadaWg aaWcbaGaamyBaaqabaGccqaHepaDdaWgaaWcbaGaamiCaaqabaaaki aawUfacaGLDbaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG4maaaa kiaadkfacaGGOaGaaCiEaiabgkHiTiaah67acaGGPaaabaGaeyOaIy RaamiEamaaBaaaleaacaWGPbaabeaakiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaa aaaOGaayjkaiaawMcaaaWcbaGaam4qaaqab0Gaey4kIipakiaadsga caWGZbWaaSbaaSqaaiaah67aaeqaaaGcbaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabgUcaRiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVpaalaaabaGaamyraaqaaiaaiIdacqaHapaC caGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaki aacMcaaaWaa8quaeaadaqadaqaaiaadkgadaWgaaWcbaGaamyBaaqa baGccqGHiiIZdaWgaaWcbaGaamyAaiaad2gacaWGRbaabeaakiabes 8a0naaBaaaleaacaWGRbaabeaakmaadmaabaWaaSaaaeaacqGHciIT daahaaWcbeqaaiaaiodaaaGccaWGsbGaaiikaiaahIhacqGHsislca WH+oGaaiykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGc cqGHciITcaWG4bWaaSbaaSqaaiaadchaaeqaaOGaeyOaIyRaamiEam aaBaaaleaacaWGXbaabeaaaaGccqGHsislcqaH0oazdaWgaaWcbaGa amiCaiaadghaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaio daaaGccaWGsbGaaiikaiaahIhacqGHsislcaWH+oGaaiykaaqaaiab gkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaS baaSqaaiaadQgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaaakiaawUfacaGLDbaaaiaawIcacaGLPaaaaSqaaiaadoeaae qaniabgUIiYdGccaWGKbGaam4CamaaBaaaleaacaWH+oaabeaaaaaa @509B@

where R(xξ)= x k ξ k x k ξ k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiaacIcacaWH4bGaeyOeI0IaaC OVdiaacMcacqGH9aqpdaGcaaqaamaabmaabaGaamiEamaaBaaaleaa caWGRbaabeaakiabgkHiTiabe67a4naaBaaaleaacaWGRbaabeaaaO GaayjkaiaawMcaamaabmaabaGaamiEamaaBaaaleaacaWGRbaabeaa kiabgkHiTiabe67a4naaBaaaleaacaWGRbaabeaaaOGaayjkaiaawM caaaWcbeaaaaa@466D@

 

 

Derivation:

 

1. Start with the reciprocal theorem

S n i σ ij A u j B dA + V ρ 0 b i A u i B dV = S n i σ ij B u j A dA + V ρ 0 b i B u i A dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaa kiaadwhadaqhaaWcbaGaamOAaaqaaiaadkeaaaGccaWGKbGaamyqaa WcbaGaam4uaaqab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWGPbaabaGaam yqaaaakiaadwhadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWGKbGa amOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGaam OBamaaBaaaleaacaWGPbaabeaakiabeo8aZnaaDaaaleaacaWGPbGa amOAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadQgaaeaacaWGbb aaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGHRaWk daWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaqhaa WcbaGaamyAaaqaaiaadkeaaaGccaWG1bWaa0baaSqaaiaadMgaaeaa caWGbbaaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdaaaa@6B42@

 

2. For state A, choose the actual stress and displacement in the solid containing the dislocation loop.   For state B, choose the stress, strain and displacement induced by a Dirac delta distribution of body force acting in the e k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWGRbaabeaaaa a@32EA@  direction at position ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  in the solid.  The displacements and stresses due to a Dirac delta distribution of body force are denoted by the functions U i (k) (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaadUgacaGGPaaaaOGaaiikaiaahIhacaGGPaaaaa@3782@  and Σ ij (k) (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aa0baaSqaaiaadMgacaWGQb aabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacaGGPaaaaa@391B@  defined in the preceding section.

 

3. When evaluating the reciprocal theorem, the two sides of the cut are treated as separate surfaces. Substituting into the reciprocal theorem and using the properties of the delta distribution gives

S+ n i + σ ij U j (k) (xξ)d A x + S n i σ ij U j (k) (xξ)d A x = S+ n i + Σ ij (k) (xξ) u j + d A x + S n i Σ ij (k) (xξ) u j d A x + u i (ξ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiaad6gadaqhaaWcba GaamyAaaqaaiabgUcaRaaakiabeo8aZnaaBaaaleaacaWGPbGaamOA aaqabaGccaWGvbWaa0baaSqaaiaadQgaaeaacaGGOaGaam4AaiaacM caaaGccaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGaamizaiaadgea daWgaaWcbaGaaCiEaaqabaaabaGaam4uaiabgUcaRaqab0Gaey4kIi pakiabgUcaRmaapefabaGaamOBamaaDaaaleaacaWGPbaabaGaeyOe I0caaOGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadwfada qhaaWcbaGaamOAaaqaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH 4bGaeyOeI0IaaCOVdiaacMcacaWGKbGaamyqamaaBaaaleaacaWH4b aabeaaaeaacaWGtbGaeyOeI0cabeqdcqGHRiI8aaGcbaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maapefabaGaamOBam aaDaaaleaacaWGPbaabaGaey4kaScaaOGaeu4Odm1aa0baaSqaaiaa dMgacaWGQbaabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacq GHsislcaWH+oGaaiykaiaadwhadaqhaaWcbaGaamOAaaqaaiabgUca RaaakiaadsgacaWGbbWaaSbaaSqaaiaahIhaaeqaaaqaaiaadofacq GHRaWkaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiaad6gadaqhaaWc baGaamyAaaqaaiabgkHiTaaakiabfo6atnaaDaaaleaacaWGPbGaam OAaaqaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaeyOeI0Ia aCOVdiaacMcacaWG1bWaa0baaSqaaiaadQgaaeaacqGHsislaaGcca WGKbGaamyqamaaBaaaleaacaWH4baabeaaaeaacaWGtbGaeyOeI0ca beqdcqGHRiI8aOGaey4kaSIaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWH+oGaaiykaaaaaa@B728@

where n + =m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaey4kaScaaO Gaeyypa0JaeyOeI0IaaCyBaaaa@35D9@  and n =m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaeyOeI0caaO Gaeyypa0JaaCyBaaaa@34F7@  denote the outward normals to the two sides of the cut, and u i ± MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaey ySaelaaaaa@34E3@  denote the limiting values of the displacement field for the dislocation solution on the two sides of the cut.

 

4. Substituting for n, collecting together the surface integrals and noting that σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  and U i (k) (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaadUgacaGGPaaaaOGaaiikaiaahIhacaGGPaaaaa@3782@  are continuous across S gives

0= S m i Σ ij (k) (xξ)( u j u j + ) d A x + u k (ξ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabg2da9maapefabaGaamyBam aaBaaaleaacaWGPbaabeaakiabfo6atnaaDaaaleaacaWGPbGaamOA aaqaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaeyOeI0IaaC OVdiaacMcacaGGOaGaamyDamaaDaaaleaacaWGQbaabaGaeyOeI0ca aOGaeyOeI0IaamyDamaaDaaaleaacaWGQbaabaGaey4kaScaaOGaai ykaaWcbaGaam4uaaqab0Gaey4kIipakiaadsgacaWGbbWaaSbaaSqa aiaahIhaaeqaaOGaey4kaSIaamyDamaaBaaaleaacaWGRbaabeaaki aacIcacaWH+oGaaiykaaaa@5333@

Finally, noting that u i u i + = b i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaey OeI0caaOGaeyOeI0IaamyDamaaDaaaleaacaWGPbaabaGaey4kaSca aOGaeyypa0JaamOyamaaBaaaleaacaWGPbaabeaaaaa@3AE1@  (the burgers vector is the displacement of a material point at the end of the burgers circuit as seen from a point at the start) and that Σ ij (k) (xξ)= Σ ij (k) (ξx) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aa0baaSqaaiaadMgacaWGQb aabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH +oGaaiykaiabg2da9iabgkHiTiabfo6atnaaDaaaleaacaWGPbGaam OAaaqaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH+oGaeyOeI0Ia aCiEaiaacMcaaaa@47B6@  yields the formula for displacements.

 

5. To calculate the stress, start by differentiating the displacement to see that

u k x l = S x l m i Σ ij (k) (xξ) b j d A ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadUgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGSbaa beaaaaGccqGH9aqpdaWdrbqaamaalaaabaGaeyOaIylabaGaeyOaIy RaamiEamaaBaaaleaacaWGSbaabeaaaaGccaWGTbWaaSbaaSqaaiaa dMgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMgacaWGQbaabaGaaiikai aadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+oGaaiykaiaa dkgadaWgaaWcbaGaamOAaaqabaaabaGaam4uaaqab0Gaey4kIipaki aadsgacaWGbbWaaSbaaSqaaiaah67aaeqaaaaa@52D6@

 

6. Next, observe that this can be expressed as an integral around the dislocation line

u k x l = C lij Σ im (k) (xξ) b m τ j d A ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadUgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGSbaa beaaaaGccqGH9aqpdaWdrbqaaiabgIGiopaaBaaaleaacaWGSbGaam yAaiaadQgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMgacaWGTbaabaGa aiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+oGaai ykaiaadkgadaWgaaWcbaGaamyBaaqabaaabaGaam4qaaqab0Gaey4k Iipakiabes8a0naaBaaaleaacaWGQbaabeaakiaadsgacaWGbbWaaS baaSqaaiaah67aaeqaaaaa@5327@

To see this, recall Stoke’s theorem, which states that

S npj F j ξ p m n d A ξ = C F j τ j d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqGHiiIZdaWgaaWcbaGaam OBaiaadchacaWGQbaabeaakmaalaaabaGaeyOaIyRaamOramaaBaaa leaacaWGQbaabeaaaOqaaiabgkGi2kabe67a4naaBaaaleaacaWGWb aabeaaaaGccaWGTbWaaSbaaSqaaiaad6gaaeqaaOGaamizaiaadgea daWgaaWcbaGaaCOVdaqabaGccqGH9aqpdaWdrbqaaiaadAeadaWgaa WcbaGaamOAaaqabaGccqaHepaDdaWgaaWcbaGaamOAaaqabaGccaWG KbGaam4CamaaBaaaleaacaWH+oaabeaaaeaacaWGdbaabeqdcqGHRi I8aaWcbaGaam4uaaqab0Gaey4kIipaaaa@51D5@

for any differentiable vector field F j (ξ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGQbaabeaaki aacIcacaWH+oGaaiykaaaa@3573@ , integrated over a surface S with normal m that is bounded by curve C. Apply this to the line integral, use npj lij = δ nl δ pi δ ni δ pl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaad6gacaWGWb GaamOAaaqabaGccqGHiiIZdaWgaaWcbaGaamiBaiaadMgacaWGQbaa beaakiabg2da9iabes7aKnaaBaaaleaacaWGUbGaamiBaaqabaGccq aH0oazdaWgaaWcbaGaamiCaiaadMgaaeqaaOGaeyOeI0IaeqiTdq2a aSbaaSqaaiaad6gacaWGPbaabeaakiabes7aKnaaBaaaleaacaWGWb GaamiBaaqabaaaaa@4ADC@ , note that Σ im k / ξ i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeu4Odm1aa0baaSqaaiaadM gacaWGTbaabaGaam4Aaaaakiaac+cacqGHciITcqaH+oaEdaWgaaWc baGaamyAaaqabaGccqGH9aqpcaaIWaaaaa@3D91@  because Σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odmfaaa@3264@  is a static equilibrium stress field, and finally note that Σ ij (k) / x l = Σ ij (k) / ξ l MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeu4Odm1aa0baaSqaaiaadM gacaWGQbaabaGaaiikaiaadUgacaGGPaaaaOGaai4laiabgkGi2kaa dIhadaWgaaWcbaGaamiBaaqabaGccqGH9aqpcqGHsislcqGHciITcq qHJoWudaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaam4AaiaacMca aaGccaGGVaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaadYgaaeqaaaaa@4A97@ .

 

7. Finally, calculate the stress using the elastic stress-strain equation

σ pq = E 2(1+ν) δ pk δ ql + δ qk δ pl u k ξ l + Eν (1+ν)(12ν) δ pq u k ξ k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadchacaWGXb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaikdacaGGOaGaaGym aiabgUcaRiabe27aUjaacMcaaaWaaeWaaeaacqaH0oazdaWgaaWcba GaamiCaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadghacaWGSbaa beaakiabgUcaRiabes7aKnaaBaaaleaacaWGXbGaam4AaaqabaGccq aH0oazdaWgaaWcbaGaamiCaiaadYgaaeqaaaGccaGLOaGaayzkaaWa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadUgaaeqaaaGcbaGaey OaIyRaeqOVdG3aaSbaaSqaaiaadYgaaeqaaaaakiabgUcaRmaalaaa baGaamyraiabe27aUbqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykaiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaGaeqiT dq2aaSbaaSqaaiaadchacaWGXbaabeaakmaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kabe67a4naaBaaa leaacaWGRbaabeaaaaaaaa@6E9B@

 

8. The alternative forms for the displacement and stress follow by noting that

U i (k) (x)= (1+ν) 4πE δ ik 2 R x j x j 1 2(1ν) 2 R x i x k Σ ij (k) (x)= 1 8π δ ik x j + δ jk x i + ν δ ij 1ν x k 2 R x n x n 1 1ν 3 R x i x j x k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGvbWaa0baaSqaaiaadMgaae aacaGGOaGaam4AaiaacMcaaaGccaGGOaGaaCiEaiaacMcacqGH9aqp daWcaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaaqaaiaais dacqaHapaCcaWGfbaaamaacmaabaGaeqiTdq2aaSbaaSqaaiaadMga caWGRbaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaamOuaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGccqGH ciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgkHiTmaalaaaba GaaGymaaqaaiaaikdacaGGOaGaaGymaiabgkHiTiabe27aUjaacMca aaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGsbaaba GaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaakiabgkGi2kaadIha daWgaaWcbaGaam4AaaqabaaaaaGccaGL7bGaayzFaaaabaGaeu4Odm 1aa0baaSqaaiaadMgacaWGQbaabaGaaiikaiaadUgacaGGPaaaaOGa aiikaiaahIhacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGioai abec8aWbaadaGadaqaamaadmaabaGaeqiTdq2aaSbaaSqaaiaadMga caWGRbaabeaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBa aaleaacaWGQbaabeaaaaGccqGHRaWkcqaH0oazdaWgaaWcbaGaamOA aiaadUgaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaS baaSqaaiaadMgaaeqaaaaakiabgUcaRmaalaaabaGaeqyVd4MaeqiT dq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaaigdacqGHsislcq aH9oGBaaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqa aiaadUgaaeqaaaaaaOGaay5waiaaw2faamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamOuaaqaaiabgkGi2kaadIhadaWgaaWc baGaamOBaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaad6gaaeqaaa aakiabgkHiTmaalaaabaGaaGymaaqaaiaaigdacqGHsislcqaH9oGB aaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaiodaaaGccaWGsbaaba GaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaakiabgkGi2kaadIha daWgaaWcbaGaamOAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadU gaaeqaaaaaaOGaay5Eaiaaw2haaaaaaa@B151@