5.8 Energetics of Dislocations in Elastic Solids

 

Dislocations play a crucial role in determining the response of crystalline materials to stress.  For example, plastic flow in ductile metals occurs as a result of dislocation motion; dislocation emission from a crack tip can determine whether a material is ductile or brittle; and stress induced dislocation nucleation plays a critical role in semiconductor devices.

 

Dislocations tend to move through a crystal in response to stress.  The goal of this and following sections is to derive some results that can be used to predict this motion.

 

 

 

5.8.1 Classical solution for potential energy of an isolated dislocation loop in an infinite solid

 

In this section, derive an equation for the energy of an isolated dislocation loop with burgers vector b in an infinite solid (see below)


 

 

The energy can be calculated using the following expressions:

V D = E 32π(1+ν) C C 2 R(xξ) x p x p b i b j τ i (x) τ j (ξ)d s x d s ξ + E 16π(1 ν 2 ) C C ikl jmn b k b m 2 R(xξ) x i x j τ l (x) τ n (ξ)d s x d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbWaaWbaaSqabeaacaWGeb GaeyOhIukaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaG4maiaaikda cqaHapaCcaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaWaa8qvae aadaWdvbqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amOuaiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGHciITca WG4bWaaSbaaSqaaiaadchaaeqaaOGaeyOaIyRaamiEamaaBaaaleaa caWGWbaabeaaaaGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOyam aaBaaaleaacaWGQbaabeaakiabes8a0naaBaaaleaacaWGPbaabeaa kiaacIcacaWH4bGaaiykaiabes8a0naaBaaaleaacaWGQbaabeaaki aacIcacaWH+oGaaiykaiaadsgacaWGZbWaaSbaaSqaaiaahIhaaeqa aaqaaiaadoeaaeqaniablgH7rlabgUIiYdaaleaacaWGdbaabeqdcq WIr4E0cqGHRiI8aOGaamizaiaadohadaWgaaWcbaGaaCOVdaqabaGc caaMc8UaaGPaVdqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8Uaey4kaSYaaSaaaeaacaWGfbaabaGaaGymaiaaiAdacqaHapaCca GGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaa cMcaaaWaa8qvaeaadaWdvbqaaiabgIGiopaaBaaaleaacaWGPbGaam 4AaiaadYgaaeqaaOGaeyicI48aaSbaaSqaaiaadQgacaWGTbGaamOB aaqabaGccaWGIbWaaSbaaSqaaiaadUgaaeqaaOGaamOyamaaBaaale aacaWGTbaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aOGaamOuaiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGHci ITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaa leaacaWGQbaabeaaaaGccqaHepaDdaWgaaWcbaGaamiBaaqabaGcca GGOaGaaCiEaiaacMcacqaHepaDdaWgaaWcbaGaamOBaaqabaGccaGG OaGaaCOVdiaacMcacaWGKbGaam4CamaaBaaaleaacaWH4baabeaaki aadsgacaWGZbWaaSbaaSqaaiaah67aaeqaaaqaaiaadoeaaeqaniab lgH7rlabgUIiYdaaleaacaWGdbaabeqdcqWIr4E0cqGHRiI8aaaaaa@C8B2@

Here, R(xξ)= x k ξ k x k ξ k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiaacIcacaWH4bGaeyOeI0IaaC OVdiaacMcacqGH9aqpdaGcaaqaamaabmaabaGaamiEamaaBaaaleaa caWGRbaabeaakiabgkHiTiabe67a4naaBaaaleaacaWGRbaabeaaaO GaayjkaiaawMcaamaabmaabaGaamiEamaaBaaaleaacaWGRbaabeaa kiabgkHiTiabe67a4naaBaaaleaacaWGRbaabeaaaOGaayjkaiaawM caaaWcbeaaaaa@466D@  and the integral is taken around the dislocation line twice.  In the first integral, ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  is held fixed, and x MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaaaa@31E1@  varies with position around the dislocation line; then ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  is varied for the second line integral.

 

 

 

Difficulties with evaluating the potential energy in the classical solution: In practice, this is a purely formal result MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  in the classical solution, the energy of a dislocation is always infinite.   You can see this clearly using the solution for a straight dislocation in an infinite solid given in Section 5.3.4.  Consider a pure edge dislocation, with line direction parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis and burgers vector b= b 1 e 1 + b 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaadkgadaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaaWcbaGaaGOmaa qabaaaaa@3B19@  at the origin of an infinite solid, as shown in the figure. The stress field near the dislocation is given (in polar coordinates) by  

σ rr = σ θθ = E( b 1 sinθ b 2 cosθ) 4π(1 ν 2 )r σ rθ = E( b 1 cosθ+ b 2 sinθ) 4π(1 ν 2 )r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7a XbqabaGccqGH9aqpcqGHsisldaWcaaqaaiaadweacaGGOaGaamOyam aaBaaaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeI7aXjab gkHiTiaadkgadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4Baiaaco hacqaH4oqCcaGGPaaabaGaaGinaiabec8aWjaacIcacaaIXaGaeyOe I0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaiaadkhaaaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7aeaacqaHdpWCdaWgaaWcbaGaamOCaiabeI7aXb qabaGccqGH9aqpdaWcaaqaaiaadweacaGGOaGaamOyamaaBaaaleaa caaIXaaabeaakiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiaadk gadaWgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqC caGGPaaabaGaaGinaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaiaadkhaaaaaaaa@85D1@

 

The strain energy density distribution around the dislocation follows as

U= 1+ν 2E σ rr 2 + σ θθ 2 +2 σ rθ 2 ν σ rr + σ θθ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9maalaaabaGaaGymai abgUcaRiabe27aUbqaaiaaikdacaWGfbaaamaacmaabaWaaeWaaeaa cqaHdpWCdaqhaaWcbaGaamOCaiaadkhaaeaacaaIYaaaaOGaey4kaS Iaeq4Wdm3aa0baaSqaaiabeI7aXjabeI7aXbqaaiaaikdaaaGccqGH RaWkcaaIYaGaeq4Wdm3aa0baaSqaaiaadkhacqaH4oqCaeaacaaIYa aaaaGccaGLOaGaayzkaaGaeyOeI0IaeqyVd42aaeWaaeaacqaHdpWC daWgaaWcbaGaamOCaiaadkhaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaS qaaiabeI7aXjabeI7aXbqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaakiaawUhacaGL9baaaaa@5D5C@

We can use this to calculate the total strain energy in an annular region around the dislocation, with inner radius a, and outer radius b, as shown on the right. The result is

V= a b 0 2π U(r,θ)rdθdr = E( b 1 2 + b 2 2 ) 8π(1 ν 2 ) log b a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9maapehabaWaa8qCae aacaWGvbGaaiikaiaadkhacaGGSaGaeqiUdeNaaiykaiaadkhacaWG KbGaeqiUdeNaamizaiaadkhaaSqaaiaaicdaaeaacaaIYaGaeqiWda haniabgUIiYdGccqGH9aqpdaWcaaqaaiaadweacaGGOaGaamOyamaa DaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadkgadaqhaaWcba GaaGOmaaqaaiaaikdaaaGccaGGPaaabaGaaGioaiabec8aWjaacIca caaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaa aaciGGSbGaai4BaiaacEgadaqadaqaamaalaaabaGaamOyaaqaaiaa dggaaaaacaGLOaGaayzkaaaaleaacaWGHbaabaGaamOyaaqdcqGHRi I8aaaa@5F4A@

Taking a0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgkziUkaaicdaaaa@346D@  gives an infinite energy, because the strain energy density varies as 1/ r 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaac+cacaWGYbWaaWbaaSqabe aacaaIYaaaaaaa@342E@  near the dislocation core.

 

Various ways to avoid this problem have been proposed.   The simplest approach is to neglect the strain energy in a tubular region with small radius r 0 b /4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIWaaabeaaki abgIKi7oaaemaabaGaaCOyaaGaay5bSlaawIa7aiaac+cacaaI0aaa aa@39F6@  surrounding the dislocation, on the grounds that the elastic solution does not accurately characterize the atomic-scale deformation near the dislocation core. This works for straight dislocations, but is not easy to apply to 3D dislocation loops.   A more satisfactory approach is described in the next section.

 

 

Application to a circular prismatic dislocation loop As an example, we attempt to apply the general formula to calculate the energy of a circular dislocation loop, with radius a, which lies in the ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@36C6@  plane, and has a burgers vector b=b e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iaadkgacaWHLbWaaS baaSqaaiaaiodaaeqaaaaa@358F@  that is perpendicular to the plane of the loop.  For this case, the contour integral for the potential energy reduces to

V D = Ea b 2 8(1 ν 2 ) 0 2π 1+cosθ 2 2(1cosθ) dθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9maalaaabaGaamyraiaadggacaWGIbWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGioaiaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWdXbqaamaalaaabaGa aGymaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaikdada GcaaqaaiaaikdacaGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai4C aiabeI7aXjaacMcaaSqabaaaaOGaamizaiabeI7aXbWcbaGaaGimaa qaaiaaikdacqaHapaCa0Gaey4kIipaaaa@56D2@

(To see this, note that the result of the integral with respect to x must be independent of ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdaaa@322A@  by symmetry). As expected, the integral is divergent.  In the classical theory, the energy of the loop is estimated by truncating the integral around the singularity, so that

V D = Ea b 2 8(1 ν 2 ) r/a 2πr/a 1+cosθ 2 2(1cosθ) dθ Ea b 2 4(1 ν 2 ) log 4a r 1 +Ο (ρ/a) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9maalaaabaGaamyraiaadggacaWGIbWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGioaiaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWdXbqaamaalaaabaGa aGymaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaikdada GcaaqaaiaaikdacaGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai4C aiabeI7aXjaacMcaaSqabaaaaOGaamizaiabeI7aXbWcbaGaamOCai aac+cacaWGHbaabaGaaGOmaiabec8aWjabgkHiTiaadkhacaGGVaGa amyyaaqdcqGHRiI8aOGaeyisIS7aaSaaaeaacaWGfbGaamyyaiaadk gadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aGaaiikaiaaigdacqGH sislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaacmaaba GaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqaaiaaisdacaWGHbaa baGaamOCaaaaaiaawIcacaGLPaaacqGHsislcaaIXaaacaGL7bGaay zFaaGaey4kaSIaeu4Nd8Kaaiikaiabeg8aYjaac+cacaWGHbGaaiyk amaaCaaaleqabaGaaGOmaaaaaaa@7ABA@

where r is a small cut-off distance.  This is somewhat similar to the core cutoff radius r 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIWaaabeaaaa a@32BD@ , but the relationship between r 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaaIWaaabeaaaa a@32BD@  and r is not clear.

 

A Circular glide loop, which has burgers vector b (with magnitude b) in the plane of the loop, has energy

V D = Ea b 2 (2ν) 4(1 ν 2 ) log 4a r 2 +Ο (ρ/a) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9iabgIKi7oaalaaabaGaamyraiaadggacaWGIbWa aWbaaSqabeaacaaIYaaaaOGaaiikaiaaikdacqGHsislcqaH9oGBca GGPaaabaGaaGinaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqa beaacaaIYaaaaOGaaiykaaaadaGadaqaaiGacYgacaGGVbGaai4zam aabmaabaWaaSaaaeaacaaI0aGaamyyaaqaaiaadkhaaaaacaGLOaGa ayzkaaGaeyOeI0IaaGOmaaGaay5Eaiaaw2haaiabgUcaRiabf+5apj aacIcacqaHbpGCcaGGVaGaamyyaiaacMcadaahaaWcbeqaaiaaikda aaaaaa@5878@

 

 

 

Derivation of the solution for the energy of a 3D dislocation loop

 

1. Let [ u i (ξ), ε pq (ξ), σ pq (ξ)] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaWgaaWcbaGaamyAaa qabaGccaGGOaGaaCOVdiaacMcacaGGSaGaeqyTdu2aaSbaaSqaaiaa dchacaWGXbaabeaakiaacIcacaWH+oGaaiykaiaacYcacqaHdpWCda WgaaWcbaGaamiCaiaadghaaeqaaOGaaiikaiaah67acaGGPaGaaiyx aaaa@45B3@  denote the displacement, strain and stress induced by the dislocation loop.   The total potential energy of the solid can be calculated by integrating the strain energy density over the volume of the solid

V D = V 1 2 σ ij ε ij dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqyTdu2aaSbaaS qaaiaadMgacaWGQbaabeaakiaadsgacaWGwbaaleaacaWGwbaabeqd cqGHRiI8aaaa@4332@

 

2. The potential energy can also be expressed in terms of the displacement field in the solid, as

V D = V 1 2 σ ij u i x j dV = 1 2 V ( σ ij u i ) x j u i ( σ ij ) x j dV = 1 2 V ( σ ij u i ) x j dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacqGHci ITcaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaa BaaaleaacaWGQbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOvaaqab0 Gaey4kIipakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8qu aeaadaWcaaqaaiabgkGi2kaacIcacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaOGaamyDamaaBaaaleaacaWGPbaabeaakiaacMcaaeaa cqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgkHiTiaadw hadaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiabgkGi2kaacIcacqaH dpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiykaaqaaiabgkGi2k aadIhadaWgaaWcbaGaamOAaaqabaaaaOGaamizaiaadAfaaSqaaiaa dAfaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYa aaamaapefabaWaaSaaaeaacqGHciITcaGGOaGaeq4Wdm3aaSbaaSqa aiaadMgacaWGQbaabeaakiaadwhadaWgaaWcbaGaamyAaaqabaGcca GGPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccaWG KbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@7B62@

where we have used the symmetry of σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  and recalled that the stress field satisfies the equilibrium equation σ ij / x j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaOGaeyypa0JaaGimaaaa@3C17@

 

3. Applying the divergence theorem, and taking into account the discontinuity in u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@  across S,

V D = 1 2 S σ ij ( m j ) u i + dA + 1 2 S σ ij m j u i dA = 1 2 S σ ij m j b i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8quaeaa cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiikaiabgkHiTi aad2gadaWgaaWcbaGaamOAaaqabaGccaGGPaGaamyDamaaDaaaleaa caWGPbaabaGaey4kaScaaOGaamizaiaadgeaaSqaaiaadofaaeqani abgUIiYdGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapefa baGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaad2gadaWgaa WcbaGaamOAaaqabaGccaWG1bWaa0baaSqaaiaadMgaaeaacqGHsisl aaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipakiabg2da9m aalaaabaGaaGymaaqaaiaaikdaaaWaa8quaeaacqaHdpWCdaWgaaWc baGaamyAaiaadQgaaeqaaOGaamyBamaaBaaaleaacaWGQbaabeaaki aadkgadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaam4u aaqab0Gaey4kIipaaaa@665B@

 

4. Next, we substitute the expression given in Section 5.8.4 for σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  and reverse the order of integration

V D = E 32π(1+ν) C S imp b m τ q + imq b m τ p 3 R(xξ) x i x j x j m p b q d A x d s ξ + E 16π(1 ν 2 ) C S b m imk τ k 3 R(xξ) x i x p x q δ pq 3 R(xξ) x i x j x j m p b q d A x d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbWaaWbaaSqabeaacaWGeb GaeyOhIukaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaG4maiaaikda cqaHapaCcaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaWaa8quae aadaWdrbqaamaabmaabaWaamWaaeaacqGHiiIZdaWgaaWcbaGaamyA aiaad2gacaWGWbaabeaakiaadkgadaWgaaWcbaGaamyBaaqabaGccq aHepaDdaWgaaWcbaGaamyCaaqabaGccqGHRaWkcqGHiiIZdaWgaaWc baGaamyAaiaad2gacaWGXbaabeaakiaadkgadaWgaaWcbaGaamyBaa qabaGccqaHepaDdaWgaaWcbaGaamiCaaqabaaakiaawUfacaGLDbaa daWcaaqaaiabgkGi2oaaCaaaleqabaGaaG4maaaakiaadkfacaGGOa GaaCiEaiabgkHiTiaah67acaGGPaaabaGaeyOaIyRaamiEamaaBaaa leaacaWGPbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqaba GccqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaaaOGaayjkaiaa wMcaaiaad2gadaWgaaWcbaGaamiCaaqabaGccaWGIbWaaSbaaSqaai aadghaaeqaaOGaamizaiaadgeadaWgaaWcbaGaaCiEaaqabaaabaGa am4uaaqab0Gaey4kIipaaSqaaiaadoeaaeqaniabgUIiYdGccaWGKb Gaam4CamaaBaaaleaacaWH+oaabeaaaOqaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaey4kaSIaaGPaVlaaykW7daWcaaqaaiaadweaaeaacaaIXaGaaGOn aiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaaca aIYaaaaOGaaiykaaaadaWdrbqaamaapefabaWaaeWaaeaacaWGIbWa aSbaaSqaaiaad2gaaeqaaOGaeyicI48aaSbaaSqaaiaadMgacaWGTb Gaam4AaaqabaGccqaHepaDdaWgaaWcbaGaam4AaaqabaGcdaWadaqa amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIZaaaaOGaamOuaiaacI cacaWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGHciITcaWG4bWaaSba aSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGWbaabe aakiabgkGi2kaadIhadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0Ia eqiTdq2aaSbaaSqaaiaadchacaWGXbaabeaakmaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIZaaaaOGaamOuaiaacIcacaWH4bGaeyOeI0Ia aCOVdiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaakiabgkGi2kaadIha daWgaaWcbaGaamOAaaqabaaaaaGccaGLBbGaayzxaaaacaGLOaGaay zkaaaaleaacaWGtbaabeqdcqGHRiI8aaWcbaGaam4qaaqab0Gaey4k Iipakiaad2gadaWgaaWcbaGaamiCaaqabaGccaWGIbWaaSbaaSqaai aadghaaeqaaOGaamizaiaadgeadaWgaaWcbaGaaCiEaaqabaGccaWG KbGaam4CamaaBaaaleaacaWH+oaabeaaaaaa@DE65@

 

5. Finally, the surface integrals in this expression can be transformed into a contour integral around C by means of Stoke’s theorem

S npj F j x p m n d A x = C F j τ j d s x MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqGHiiIZdaWgaaWcbaGaam OBaiaadchacaWGQbaabeaakmaalaaabaGaeyOaIyRaamOramaaBaaa leaacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiCaa qabaaaaOGaamyBamaaBaaaleaacaWGUbaabeaakiaadsgacaWGbbWa aSbaaSqaaiaahIhaaeqaaOGaeyypa0Zaa8quaeaacaWGgbWaaSbaaS qaaiaadQgaaeqaaOGaeqiXdq3aaSbaaSqaaiaadQgaaeqaaOGaamiz aiaadohadaWgaaWcbaGaaCiEaaqabaaabaGaam4qaaqab0Gaey4kIi paaSqaaiaadofaaeqaniabgUIiYdaaaa@507D@

After some tedious index manipulations, this gives the required result.

 

 

 

5.8.2 Non-singular dislocation theory

 

The infinite potential energy associated with the classical description of a dislocation is unphysical, and highly unsatisfactory.  A straightforward approach to avoiding this difficulty was proposed by Cai et al, Journal of the Mechanics and Physics of Solids, 54, 561-587, (2006).

 

In the classical solution, the dislocation core is localized at a single point in space, which leads to an infinite energy.  In practice, dislocation cores are distributed over a small, but finite, area as indicated in the figure. (The TEM micrograph was kindly provided by Prof. David Paine from Brown University).

 

This effect can be modeled approximately by using the classical solution to construct a distributed dislocation core.  To this end, we suppose that the burgers vector of the dislocation can be represented by a distribution bβ(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabek7aIjaacIcacaWH4bGaai ykaaaa@35C6@ , which must be chosen to satisfy

b(x)=b V β(ξx)d V ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiaacIcacaWH4bGaaiykaiabg2 da9iaahkgadaWdrbqaaiabek7aIjaacIcacaWH+oGaeyOeI0IaaCiE aiaacMcacaWGKbGaamOvamaaBaaaleaacaWH+oaabeaaaeaacaWGwb aabeqdcqGHRiI8aaaa@429B@

where the volume integral extends over the entire infinite solid.  In principle, β(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaaiikaiaahIhacaGGPaaaaa@34DB@  could be constructed to give an accurate description of the atomic-scale strain field in the immediate neighborhood of the dislocation core, but this is difficult to do, and is not the main intent of the theory.  Instead, β(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaaiikaiaahIhacaGGPaaaaa@34DB@  is selected to make the expressions for the energy and stress field of the dislocation as simple as possible.  It is particularly convenient to choose β(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaaiikaiaahIhacaGGPaaaaa@34DB@  to satisfy

R ρ (xξ)= V V R(yz)β(zξ)β(yx)d V z d V y R(x)= x k x k R ρ (x)= x k x k + ρ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGsbWaaSbaaSqaaiabeg8aYb qabaGccaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGaeyypa0Zaa8qu aeaadaWdrbqaaiaadkfacaGGOaGaaCyEaiabgkHiTiaahQhacaGGPa GaeqOSdiMaaiikaiaahQhacqGHsislcaWH+oGaaiykaiabek7aIjaa cIcacaWH5bGaeyOeI0IaaCiEaiaacMcacaWGKbGaamOvamaaBaaale aacaWH6baabeaakiaadsgacaWGwbWaaSbaaSqaaiaahMhaaeqaaaqa aiaadAfaaeqaniabgUIiYdaaleaacaWGwbaabeqdcqGHRiI8aOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVdqaaiaadkfacaGGOaGaaCiEaiaacMcacqGH9aqpdaGcaa qaaiaadIhadaWgaaWcbaGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaa dUgaaeqaaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGsbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaaCiEai aacMcacqGH9aqpdaGcaaqaaiaadIhadaWgaaWcbaGaam4AaaqabaGc caWG4bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaeqyWdi3aaWbaaS qabeaacaaIYaaaaaqabaaaaaa@93F1@

where ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  is a small characteristic length, comparable to the dimensions of the dislocation core. The required distribution cannot be calculated exactly, but is closely approximated by

β(x) 15 8π 1m ρ 1 3 x k x k / ρ 1 2 +1 7/2 + m ρ 2 3 x k x k / ρ 2 2 +1 7/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaaiikaiaahIhacaGGPaGaey isIS7aaSaaaeaacaaIXaGaaGynaaqaaiaaiIdacqaHapaCaaWaaiWa aeaadaWcaaqaaiaaigdacqGHsislcaWGTbaabaGaeqyWdi3aa0baaS qaaiaaigdaaeaacaaIZaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaa dUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaakiaac+cacqaHbp GCdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaI3aGaai4laiaaikdaaaaaaOGaey 4kaSYaaSaaaeaacaWGTbaabaGaeqyWdi3aa0baaSqaaiaaikdaaeaa caaIZaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaam iEamaaBaaaleaacaWGRbaabeaakiaac+cacqaHbpGCdaqhaaWcbaGa aGOmaaqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaW baaSqabeaacaaI3aGaai4laiaaikdaaaaaaaGccaGL7bGaayzFaaaa aa@641C@

with ρ 1 =0.9038ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaaGimaiaac6cacaaI5aGaaGimaiaaiodacaaI4aGaeqyW dihaaa@3ABF@ , ρ 2 =0.5451ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaaGimaiaac6cacaaI1aGaaGinaiaaiwdacaaIXaGaeqyW dihaaa@3ABB@ , m=0.6575 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabg2da9iaaicdacaGGUaGaaG OnaiaaiwdacaaI3aGaaGynaaaa@3743@ .  The distribution can also be shown to satisfy

V β(xξ)β(ξ)dV = 15 8π ρ 3 x k x k + ρ 2 7/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHYoGycaGGOaGaaCiEai abgkHiTiaah67acaGGPaGaeqOSdiMaaiikaiaah67acaGGPaGaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaai aaigdacaaI1aaabaGaaGioaiabec8aWbaadaWcaaqaaiabeg8aYnaa CaaaleqabaGaaG4maaaaaOqaamaabmaabaGaamiEamaaBaaaleaaca WGRbaabeaakiaadIhadaWgaaWcbaGaam4AaaqabaGccqGHRaWkcqaH bpGCdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiaaiEdacaGGVaGaaGOmaaaaaaaaaa@53DD@

 

Nonsingular energy: The expression for the energy of a dislocation loop then reduces to

V D = E 32π(1+ν) C C 2 R ρ x p x p b i b j τ i (x) τ j (ξ)d s x d s ξ + E 16π(1 ν 2 ) C C ikl jmn b k b m 2 R ρ x i x j τ l (x) τ n (ξ)d s x d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbWaaWbaaSqabeaacaWGeb GaeyOhIukaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaG4maiaaikda cqaHapaCcaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaWaa8qvae aadaWdvbqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amOuamaaBaaaleaacqaHbpGCaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaWGWbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamiCaaqa baaaaOGaamOyamaaBaaaleaacaWGPbaabeaakiaadkgadaWgaaWcba GaamOAaaqabaGccqaHepaDdaWgaaWcbaGaamyAaaqabaGccaGGOaGa aCiEaiaacMcacqaHepaDdaWgaaWcbaGaamOAaaqabaGccaGGOaGaaC OVdiaacMcacaWGKbGaam4CamaaBaaaleaacaWH4baabeaaaeaacaWG dbaabeqdcqWIr4E0cqGHRiI8aaWcbaGaam4qaaqab0GaeSyeUhTaey 4kIipakiaadsgacaWGZbWaaSbaaSqaaiaah67aaeqaaOGaaGPaVlaa ykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUca RmaalaaabaGaamyraaqaaiaaigdacaaI2aGaeqiWdaNaaiikaiaaig dacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaa pufabaWaa8qvaeaacqGHiiIZdaWgaaWcbaGaamyAaiaadUgacaWGSb aabeaakiabgIGiopaaBaaaleaacaWGQbGaamyBaiaad6gaaeqaaOGa amOyamaaBaaaleaacaWGRbaabeaakiaadkgadaWgaaWcbaGaamyBaa qabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadkfa daWgaaWcbaGaeqyWdihabeaaaOqaaiabgkGi2kaadIhadaWgaaWcba GaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa kiabes8a0naaBaaaleaacaWGSbaabeaakiaacIcacaWH4bGaaiykai abes8a0naaBaaaleaacaWGUbaabeaakiaacIcacaWH+oGaaiykaiaa dsgacaWGZbWaaSbaaSqaaiaahIhaaeqaaOGaamizaiaadohadaWgaa WcbaGaaCOVdaqabaaabaGaam4qaaqab0GaeSyeUhTaey4kIipaaSqa aiaadoeaaeqaniablgH7rlabgUIiYdaaaaa@C37D@

This is virtually identical to the classical singular solution, except that the derivatives of R ρ (x)= x k x k + ρ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacqaHbpGCaeqaaO GaaiikaiaahIhacaGGPaGaeyypa0ZaaOaaaeaacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaakiabgUcaRi abeg8aYnaaCaaaleqabaGaaGOmaaaaaeqaaaaa@3EEE@  are bounded everywhere, so the integral is finite.

 

 

Nonsingular Stress: The stress due to the dislocation loop can be expressed in terms of a function Β ρ (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOKdi0aaSbaaSqaaiabeg8aYbqaba GccaGGOaGaaCiEaiaacMcaaaa@3692@ , defined as

Β ρ (x)= V R(y)β(yx)d V y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOKdi0aaSbaaSqaaiabeg8aYbqaba GccaGGOaGaaCiEaiaacMcacqGH9aqpdaWdrbqaaiaadkfacaGGOaGa aCyEaiaacMcacqaHYoGycaGGOaGaaCyEaiabgkHiTiaahIhacaGGPa GaamizaiaadAfadaWgaaWcbaGaaCyEaaqabaaabaGaamOvaaqab0Ga ey4kIipaaaa@46BF@

This function cannot be calculated exactly, but can be estimated using the approximation to β(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaaiikaiaahIhacaGGPaaaaa@34DB@  as

Β ρ (x)=(1m) x k x k + ρ 1 2 +m x k x k + ρ 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOKdi0aaSbaaSqaaiabeg8aYbqaba GccaGGOaGaaCiEaiaacMcacqGH9aqpcaGGOaGaaGymaiabgkHiTiaa d2gacaGGPaWaaOaaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaam iEamaaBaaaleaacaWGRbaabeaakiabgUcaRiabeg8aYnaaDaaaleaa caaIXaaabaGaaGOmaaaaaeqaaOGaey4kaSIaamyBamaakaaabaGaam iEamaaBaaaleaacaWGRbaabeaakiaadIhadaWgaaWcbaGaam4Aaaqa baGccqGHRaWkcqaHbpGCdaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabe aaaaa@4EA1@

The stress field then becomes

σ pq (x)= E 16π(1+ν) C imp b m τ q + imq b m τ p 3 Β ρ (xξ) x i x j x j d s ξ + E 8π(1 ν 2 ) C b m imk τ k 3 Β ρ (xξ) x i x p x q δ pq 3 Β ρ (xξ) x i x j x j d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamiCai aadghaaeqaaOGaaiikaiaahIhacaGGPaGaeyypa0ZaaSaaaeaacaWG fbaabaGaaGymaiaaiAdacqaHapaCcaGGOaGaaGymaiabgUcaRiabe2 7aUjaacMcaaaWaa8quaeaadaqadaqaamaadmaabaGaeyicI48aaSba aSqaaiaadMgacaWGTbGaamiCaaqabaGccaWGIbWaaSbaaSqaaiaad2 gaaeqaaOGaeqiXdq3aaSbaaSqaaiaadghaaeqaaOGaey4kaSIaeyic I48aaSbaaSqaaiaadMgacaWGTbGaamyCaaqabaGccaWGIbWaaSbaaS qaaiaad2gaaeqaaOGaeqiXdq3aaSbaaSqaaiaadchaaeqaaaGccaGL BbGaayzxaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaiodaaaGccq qHsoGqdaWgaaWcbaGaeqyWdihabeaakiaacIcacaWH4bGaeyOeI0Ia aCOVdiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaakiabgkGi2kaadIha daWgaaWcbaGaamOAaaqabaaaaaGccaGLOaGaayzkaaaaleaacaWGdb aabeqdcqGHRiI8aOGaamizaiaadohadaWgaaWcbaGaaCOVdaqabaaa keaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabgUcaRiaaykW7caaMc8+aaSaaaeaacaWGfbaabaGaaG ioaiabec8aWjaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaa caaIYaaaaOGaaiykaaaadaWdrbqaamaabmaabaGaamOyamaaBaaale aacaWGTbaabeaakiabgIGiopaaBaaaleaacaWGPbGaamyBaiaadUga aeqaaOGaeqiXdq3aaSbaaSqaaiaadUgaaeqaaOWaamWaaeaadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaG4maaaakiabfk5acnaaBaaaleaa cqaHbpGCaeqaaOGaaiikaiaahIhacqGHsislcaWH+oGaaiykaaqaai abgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWa aSbaaSqaaiaadchaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGXb aabeaaaaGccqGHsislcqaH0oazdaWgaaWcbaGaamiCaiaadghaaeqa aOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaiodaaaGccqqHsoGqda WgaaWcbaGaeqyWdihabeaakiaacIcacaWH4bGaeyOeI0IaaCOVdiaa cMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIy RaamiEamaaBaaaleaacaWGQbaabeaakiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaaaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaale aacaWGdbaabeqdcqGHRiI8aOGaamizaiaadohadaWgaaWcbaGaaCOV daqabaaaaaa@DD0A@

Alternatively, one may calculate exactly a modified stress measure, defined as

σ pq (ρ) (x)= V σ pq (ξ)β(ξx)d V ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadchacaWGXb aabaGaaiikaiabeg8aYjaacMcaaaGccaGGOaGaaCiEaiaacMcacqGH 9aqpdaWdrbqaaiabeo8aZnaaBaaaleaacaWGWbGaamyCaaqabaGcca GGOaGaaCOVdiaacMcacqaHYoGycaGGOaGaaCOVdiabgkHiTiaahIha caGGPaGaamizaiaadAfadaWgaaWcbaGaaCOVdaqabaaabaGaamOvaa qab0Gaey4kIipaaaa@4E4B@

This stress measure is particularly convenient for calculating the force tending to make a dislocation move, as shown in a subsequent section.  In addition, σ pq (ρ) (x) σ pq (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadchacaWGXb aabaGaaiikaiabeg8aYjaacMcaaaGccaGGOaGaaCiEaiaacMcacqGH ijYUcqaHdpWCdaWgaaWcbaGaamiCaiaadghaaeqaaOGaaiikaiaahI hacaGGPaaaaa@4227@  except very close to the core of a dislocation.   It is straightforward to show that

σ pq (ρ) (x)= E 16π(1+ν) C imp b m τ q + imq b m τ p 3 R ρ (xξ) x i x j x j d s ξ + E 8π(1 ν 2 ) C b m imk τ k 3 R ρ (xξ) x i x p x q δ pq 3 R ρ (xξ) x i x j x j d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaqhaaWcbaGaamiCai aadghaaeaacaGGOaGaeqyWdiNaaiykaaaakiaacIcacaWH4bGaaiyk aiabg2da9maalaaabaGaamyraaqaaiaaigdacaaI2aGaeqiWdaNaai ikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaaamaapefabaWaaeWaaeaa daWadaqaaiabgIGiopaaBaaaleaacaWGPbGaamyBaiaadchaaeqaaO GaamOyamaaBaaaleaacaWGTbaabeaakiabes8a0naaBaaaleaacaWG XbaabeaakiabgUcaRiabgIGiopaaBaaaleaacaWGPbGaamyBaiaadg haaeqaaOGaamOyamaaBaaaleaacaWGTbaabeaakiabes8a0naaBaaa leaacaWGWbaabeaaaOGaay5waiaaw2faamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIZaaaaOGaamOuamaaBaaaleaacqaHbpGCaeqaaOGa aiikaiaahIhacqGHsislcaWH+oGaaiykaaqaaiabgkGi2kaadIhada WgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaakiaawI cacaGLPaaaaSqaaiaadoeaaeqaniabgUIiYdGccaWGKbGaam4Camaa BaaaleaacaWH+oaabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey 4kaSYaaSaaaeaacaWGfbaabaGaaGioaiabec8aWjaacIcacaaIXaGa eyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWdrb qaamaabmaabaGaamOyamaaBaaaleaacaWGTbaabeaakiabgIGiopaa BaaaleaacaWGPbGaamyBaiaadUgaaeqaaOGaeqiXdq3aaSbaaSqaai aadUgaaeqaaOWaamWaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aG4maaaakiaadkfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWH4b GaeyOeI0IaaCOVdiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaa dMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGWbaabeaakiabgk Gi2kaadIhadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0IaeqiTdq2a aSbaaSqaaiaadchacaWGXbaabeaakmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIZaaaaOGaamOuamaaBaaaleaacqaHbpGCaeqaaOGaaiik aiaahIhacqGHsislcaWH+oGaaiykaaqaaiabgkGi2kaadIhadaWgaa WcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqa aOGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaakiaawUfaca GLDbaaaiaawIcacaGLPaaaaSqaaiaadoeaaeqaniabgUIiYdGccaWG KbGaam4CamaaBaaaleaacaWH+oaabeaaaaaa@E00E@

where R ρ (x)= x k x k + ρ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacqaHbpGCaeqaaO GaaiikaiaahIhacaGGPaGaeyypa0ZaaOaaaeaacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaakiabgUcaRi abeg8aYnaaCaaaleqabaGaaGOmaaaaaeqaaaaa@3EEE@ , as before. 

 

 

Nonsingular energy of circular dislocation loops.  It is straightforward to calculate the energy of a circular dislocation loop.  Cai et al Journal of the Mechanics and Physics of Solids, 54, 561-587, (2006) give:

 

· Prismatic Loop: (b perpendicular to loop)

V D = Ea b 2 4(1 ν 2 ) log 8a ρ 1 +Ο (ρ/a) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabg2da9maalaaabaGaamyraiaadggacaWGIbWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGinaiaacIcacaaIXaGaeyOeI0IaeqyVd4 2aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaGadaqaaiGacYgacaGG VbGaai4zamaabmaabaWaaSaaaeaacaaI4aGaamyyaaqaaiabeg8aYb aaaiaawIcacaGLPaaacqGHsislcaaIXaaacaGL7bGaayzFaaGaey4k aSIaeu4Nd8Kaaiikaiabeg8aYjaac+cacaWGHbGaaiykamaaCaaale qabaGaaGOmaaaaaaa@52D9@

 

· Glide Loop: (b in the plane of the loop):

V D Ea b 2 8(1+ν) 2ν 1ν log 8a r 2 1 2 +Ο (ρ/a) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaakiabgIKi7oaalaaabaGaamyraiaadggacaWGIbWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGioaiaacIcacaaIXaGaey4kaSIaeqyVd4 MaaiykaaaadaGadaqaamaalaaabaGaaGOmaiabgkHiTiabe27aUbqa aiaaigdacqGHsislcqaH9oGBaaWaamWaaeaaciGGSbGaai4BaiaacE gadaqadaqaamaalaaabaGaaGioaiaadggaaeaacaWGYbaaaaGaayjk aiaawMcaaiabgkHiTiaaikdaaiaawUfacaGLDbaacqGHsisldaWcaa qaaiaaigdaaeaacaaIYaaaaaGaay5Eaiaaw2haaiabgUcaRiabf+5a pjaacIcacqaHbpGCcaGGVaGaamyyaiaacMcadaahaaWcbeqaaiaaik daaaaaaa@5CF9@

 

 

 

5.8.3 Energy of a dislocation loop in a stressed, finite elastic solid

 

The figure shows a dislocation loop in an elastic solid.  Assume that:

 

1. The solid is an isotropic, homogeneous, linear elastic material with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@

 

2. The solid contains a dislocation, which is characterized by the loop C, and the burgers vector b for the dislocation, following the conventions described in the preceding section.  As before, we can imagine creating the dislocation loop by cutting the crystal over some surface S, and displacing the two material surfaces adjacent to the cut by the burgers vector.  Figure 5.65 shows the dislocation loop to be completely contained within the solid, but this is not necessary MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the surface S could intersect the exterior boundary of the solid, in which case the dislocation line C would start and end on the solid’s surface.

 

3. Part of the boundary of the solid 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  is subjected to a prescribed displacement, while the remainder 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  is subjected to a prescribed traction.  Note that there is some ambiguity in specifying the prescribed displacement.  In some problems, the solid contains a dislocation before it is loaded: if so, displacements are measured relative to the solid with traction free boundary, but containing a dislocation.  In other problems, the dislocation may be nucleated during deformation.  In this case, displacements are measured with respect to the initial, stress free and undislocated solid.  In the discussion to follow, we consider only the latter case.

 

 

To express the potential energy in a useful form, it is helpful to define several measures of stress and strain in the solid, as follows:

 

1. The actual fields in the loaded solid containing the dislocation will be denoted by [ u i , ε ij , σ ij ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa cYcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiyxaaaa@3DAE@ .  Note that u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@  is measured with respect to a stress-free solid, which contains no dislocations.  The displacement is discontinuous across S.

 

2. The fields induced by the applied loading in an un-dislocated solid will be denoted by [ u i * , ε ij * , σ ij * ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaacQcaaaGccaGGSaGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaa baGaaiOkaaaakiaacYcacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaae aacaGGQaaaaOGaaiyxaaaa@3FBB@  (see the figure) The displacement field u i * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaai Okaaaaaaa@33A3@  is continuous.

 

3. The fields in a solid containing a dislocation, but with 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  traction free, and with zero displacement on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  will be denoted by [ u i D , ε ij D , σ ij D ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaadseaaaGccaGGSaGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaa baGaamiraaaakiaacYcacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaae aacaWGebaaaOGaaiyxaaaa@400C@  (see the figure). The fields in an infinite solid containing a dislocation with line C and burgers vector b will be denoted by [ u i D , ε ij D , σ ij D ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaadseacqGHEisPaaGccaGGSaGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamiraiabg6HiLcaakiaacYcacqaHdpWCdaqhaaWcba GaamyAaiaadQgaaeaacaWGebGaeyOhIukaaOGaaiyxaaaa@445F@ .  If the dislocation line terminates on the solid’s surface, any convenient procedure can be used to close the loop when deriving the infinte solid solution, but the fields will depend on this choice.

 

 

4. The difference between the fields for a dislocation in a bounded solid and the solution for a dislocation in an infinite solid will be denoted by

[ u i I = u i D u i D , ε ij I = ε ij D ε ij D , σ ij I = σ ij D σ ij D ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaadMeaaaGccqGH9aqpcaWG1bWaa0baaSqaaiaadMgaaeaacaWG ebaaaOGaeyOeI0IaamyDamaaDaaaleaacaWGPbaabaGaamiraiabg6 HiLcaakiaacYcacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG jbaaaOGaeyypa0JaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam iraaaakiabgkHiTiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dseacqGHEisPaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamysaaaakiabg2da9iabeo8aZnaaDaaaleaacaWGPbGaamOA aaqaaiaadseaaaGccqGHsislcqaHdpWCdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGebGaeyOhIukaaOGaaiyxaaaa@625F@

 

The potential energy of the solid can be expressed as

V= V D + V D* + V * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9iaadAfadaahaaWcbe qaaiaadseaaaGccqGHRaWkcaWGwbWaaWbaaSqabeaacaWGebGaaiOk aaaakiabgUcaRiaadAfadaahaaWcbeqaaiaacQcaaaaaaa@3A9F@

Where

 

· V D = S 1 2 σ ij D b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraaaaki abg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWC daqhaaWcbaGaamyAaiaadQgaaeaacaWGebaaaOGaamOyamaaBaaale aacaWGPbaabeaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaWGKbGa amyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@42DB@  is the strain energy of the dislocation itself

 

· V D* = S σ ij * b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaacQ caaaGccqGH9aqpdaWdrbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOA aaqaaiaacQcaaaGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamyBam aaBaaaleaacaWGQbaabeaakiaadsgacaWGbbaaleaacaWGtbaabeqd cqGHRiI8aaaa@41E7@  is the work done to introduce the dislocation into the externally applied stress

 

· V * = R 1 2 σ ij * ε ij * dV 2R t i u i * dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaaiOkaaaaki abg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWC daqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGaeqyTdu2aa0baaS qaaiaadMgacaWGQbaabaGaaiOkaaaakiaadsgacaWGwbaaleaacaWG sbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWG0bWaaSbaaSqaai aadMgaaeqaaOGaamyDamaaDaaaleaacaWGPbaabaGaaiOkaaaakiaa dsgacaWGbbaaleaacqGHciITcaaIYaGaamOuaaqab0Gaey4kIipaaa a@4FD3@  is the potential energy of the applied loads

 

 

The strain energy of the dislocation can also be expressed as a sum of two terms:

V D = V D + V I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraaaaki abg2da9iaadAfadaahaaWcbeqaaiaadseacqGHEisPaaGccqGHRaWk caWGwbWaaWbaaSqabeaacaWGjbaaaaaa@39C5@

where

 

· V D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaaaaa@3422@  is the energy of a dislocation with line C in an infinite solid, which can be calculated using the expressions in 5.8.2.

 

·    V I = S σ ij I b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamysaaaaki abg2da9maapefabaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGa amysaaaakiaadkgadaWgaaWcbaGaamyAaaqabaGccaWGTbWaaSbaaS qaaiaadQgaaeqaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIi Ydaaaa@415E@  is the change in potential energy due to the presence of boundaries in the solid. 

 

 

If the classical approach is used to represent the burgers vector of the dislocation, the energy is infinite, because V D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaaaaa@3422@  contains a contribution from the singular dislocation core.  The remaining terms are all bounded.  The simplest way to avoid this unsatisfactory behavior is to estimate V D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiabg6 HiLcaaaaa@3422@  using the non-singular dislocation theory presented in 5.8.2, but use the classical expressions for all the remaining terms.   This is not completely consistent, because in a rigorous non-singular dislocation theory all the terms should be computed by taking a convolution integral with the burgers vector distribution.   However, provided the solid is large compared with the dislocation core, the error in the approximate result is negligible.

 

 

Derivation

 

1. The potential energy of the solid is given by the usual expression

V= R 1 2 σ ij ε ij dV 2R t i u i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9maapefabaWaaSaaae aacaaIXaaabaGaaGOmaaaacqaHdpWCdaWgaaWcbaGaamyAaiaadQga aeqaaOGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaadsgaca WGwbaaleaacaWGsbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWG 0bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGPbaabe aakiaadsgacaWGbbaaleaacqGHciITcaaIYaGaamOuaaqab0Gaey4k Iipaaaa@4CE1@

 

2. The total stress consists of the dislocation fields, together with the externally applied fields, so that

V= R 1 2 σ ij D + σ ij * ε ij D + ε ij * dV 2R t i u i D + u i * dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9maapefabaWaaSaaae aacaaIXaaabaGaaGOmaaaadaWadaqaaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiaadseaaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaam yAaiaadQgaaeaacaGGQaaaaaGccaGLBbGaayzxaaWaamWaaeaacqaH 1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGebaaaOGaey4kaSIaeq yTdu2aa0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaaaOGaay5waiaa w2faaiaadsgacaWGwbaaleaacaWGsbaabeqdcqGHRiI8aOGaeyOeI0 Yaa8quaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG 1bWaa0baaSqaaiaadMgaaeaacaWGebaaaOGaey4kaSIaamyDamaaDa aaleaacaWGPbaabaGaaiOkaaaaaOGaayjkaiaawMcaaiaadsgacaWG bbaaleaacqGHciITcaaIYaGaamOuaaqab0Gaey4kIipaaaa@630D@

 

3. This expression can be re-written as

V= R 1 2 σ ij D u i D x j + σ ij * u i D x j + 1 2 σ ij * ε ij * dV 2R t i u i D + u i * dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9maapefabaWaaeWaae aadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiaadseaaaGcdaWcaaqaaiabgkGi2kaadwhadaqhaa WcbaGaamyAaaqaaiaadseaaaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadQgaaeqaaaaakiabgUcaRiabeo8aZnaaDaaaleaacaWGPbGaam OAaaqaaiaacQcaaaGcdaWcaaqaaiabgkGi2kaadwhadaqhaaWcbaGa amyAaaqaaiaadseaaaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQ gaaeqaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeq4W dm3aa0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaakiabew7aLnaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaaakiaawIcacaGLPaaacaWG KbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipakiabgkHiTmaapefaba GaamiDamaaBaaaleaacaWGPbaabeaakmaabmaabaGaamyDamaaDaaa leaacaWGPbaabaGaamiraaaakiabgUcaRiaadwhadaqhaaWcbaGaam yAaaqaaiaacQcaaaaakiaawIcacaGLPaaacaWGKbGaamyqaaWcbaGa eyOaIyRaaGOmaiaadkfaaeqaniabgUIiYdaaaa@7206@

To see this, note that σ ij D ε ij D = σ ij D ( u i D / x j ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dseaaaGccqGH9aqpcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaca WGebaaaOGaaiikaiabgkGi2kaadwhadaqhaaWcbaGaamyAaaqaaiaa dseaaaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaki aacMcaaaa@498C@  from the symmetry of σ ij D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraaaaaaa@3576@  and the strain-displacement relations, and that σ ij D ε ij * = C ijkl ε kl D ε ij * = σ ij * ε ij D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa cQcaaaGccqGH9aqpcaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4Aai aadYgaaeqaaOGaeqyTdu2aa0baaSqaaiaadUgacaWGSbaabaGaamir aaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaaGccq GH9aqpcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGa eqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiraaaaaaa@52A1@  because of the symmetry of the elasticity tensor C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@ .

 

4. The terms involving ( u i D / x j ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabgkGi2kaadwhadaqhaaWcba GaamyAaaqaaiaadseaaaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaa caWGQbaabeaakiaacMcaaaa@3AC2@  can now be integrated by parts, by writing, for example

σ ij D ( u i D / x j )=( σ ij D u i D )/ x j u i ( σ ij D / x j )=( σ ij D u i D )/ x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraaaakiaacIcacqGHciITcaWG1bWaa0baaSqaaiaadMga aeaacaWGebaaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOAaa qabaGccaGGPaGaeyypa0JaeyOaIyRaaiikaiabeo8aZnaaDaaaleaa caWGPbGaamOAaaqaaiaadseaaaGccaWG1bWaa0baaSqaaiaadMgaae aacaWGebaaaOGaaiykaiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaa dQgaaeqaaOGaeyOeI0IaamyDamaaBaaaleaacaWGPbaabeaakiaacI cacqGHciITcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGebaa aOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGccaGGPa Gaeyypa0JaeyOaIyRaaiikaiabeo8aZnaaDaaaleaacaWGPbGaamOA aaqaaiaadseaaaGccaWG1bWaa0baaSqaaiaadMgaaeaacaWGebaaaO Gaaiykaiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa @6D0D@

because σ ij D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraaaaaaa@3576@  is an equilibrium stress field.  Using this result, applying the divergence theorem, and taking into account the discontinuity in the displacement field across S gives

R 1 2 σ ij D u i D x j dV= S+ 1 2 σ ij D u i D+ ( m j )dA + S 1 2 σ ij D u i D m j dA + R 1 2 σ ij D u i D n j dA = S 1 2 σ ij D b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaalaaabaGaaGymaa qaaiaaikdaaaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamir aaaakmaalaaabaGaeyOaIyRaamyDamaaDaaaleaacaWGPbaabaGaam iraaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGa amizaiaadAfacqGH9aqpdaWdrbqaamaalaaabaGaaGymaaqaaiaaik daaaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamiraaaakiaa dwhadaqhaaWcbaGaamyAaaqaaiaadseacqGHRaWkaaGccaGGOaGaey OeI0IaamyBamaaBaaaleaacaWGQbaabeaakiaacMcacaWGKbGaamyq aaWcbaGaam4uaiabgUcaRaqab0Gaey4kIipakiabgUcaRmaapefaba WaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWCdaqhaaWcbaGaamyA aiaadQgaaeaacaWGebaaaOGaamyDamaaDaaaleaacaWGPbaabaGaam iraiabgkHiTaaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaWGKbGa amyqaaWcbaGaam4uaiabgkHiTaqab0Gaey4kIipakiabgUcaRmaape fabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWCdaqhaaWcbaGa amyAaiaadQgaaeaacaWGebaaaOGaamyDamaaDaaaleaacaWGPbaaba Gaamiraaaakiaad6gadaWgaaWcbaGaamOAaaqabaGccaWGKbGaamyq aaWcbaGaeyOaIyRaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqani abgUIiYdaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0Za a8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeo8aZnaaDaaale aacaWGPbGaamOAaaqaaiaadseaaaGccaWGIbWaaSbaaSqaaiaadMga aeqaaOGaamyBamaaBaaaleaacaWGQbaabeaakiaadsgacaWGbbaale aacaWGtbaabeqdcqGHRiI8aaaaaa@C727@

where we have noted that σ ij D n j u i D =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraaaakiaad6gadaWgaaWcbaGaamOAaaqabaGccaWG1bWa a0baaSqaaiaadMgaaeaacaWGebaaaOGaeyypa0JaaGimaaaa@3C40@  on the exterior boundary of the solid, and that u i u i + = b i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaey OeI0caaOGaeyOeI0IaamyDamaaDaaaleaacaWGPbaabaGaey4kaSca aOGaeyypa0JaamOyamaaBaaaleaacaWGPbaabeaaaaa@3AE1@ .  A similar procedure gives

R σ ij * u i D x j dV= S σ ij * b i m j dA + R σ ij * n j u i D dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaqhaaWcbaGaam yAaiaadQgaaeaacaGGQaaaaOWaaSaaaeaacqGHciITcaWG1bWaa0ba aSqaaiaadMgaaeaacaWGebaaaaGcbaGaeyOaIyRaamiEamaaBaaale aacaWGQbaabeaaaaGccaWGKbGaamOvaiabg2da9maapefabaGaeq4W dm3aa0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaakiaadkgadaWgaa WcbaGaamyAaaqabaGccaWGTbWaaSbaaSqaaiaadQgaaeqaaOGaamiz aiaadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaai abeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaaGccaWGUbWa aSbaaSqaaiaadQgaaeqaaOGaamyDamaaDaaaleaacaWGPbaabaGaam iraaaakiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8 aaWcbaGaamOuaaqab0Gaey4kIipaaaa@6155@

Finally, substituting this result back into the expression for V and noting σ ij * n j = t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaaiOkaaaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqp caWG0bWaaSbaaSqaaiaadMgaaeqaaaaa@3A96@  on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  and u i D =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam iraaaakiabg2da9iaaicdaaaa@3588@  on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  gives the required result.

 

 

 

5.8.4 Energy of two interacting dislocation loops

 

Consider two dislocation loops in an infinite elastic solid, as shown below. 

 


 

 

Assume that

 

1. The solid is an isotropic, homogeneous, linear elastic material with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@

 

2. The dislocations can be characterized by surfaces, contours and burger’s vectors [ S 1 , C 1 , b (1) ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadofadaWgaaWcbaGaaGymaa qabaGccaGGSaGaam4qamaaBaaaleaacaaIXaaabeaakiaacYcacaWH IbWaaWbaaSqabeaacaGGOaGaaGymaiaacMcaaaGccaGGDbaaaa@3AB8@  and [ S 2 , C 2 , b (2) ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadofadaWgaaWcbaGaaGOmaa qabaGccaGGSaGaam4qamaaBaaaleaacaaIYaaabeaakiaacYcacaWH IbWaaWbaaSqabeaacaGGOaGaaGOmaiaacMcaaaGccaGGDbaaaa@3ABB@ .

 

 

 

The total potential energy of the solid can be calculated from the following expressions

V= V D1 + V D1D2 + V D2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9iaadAfadaahaaWcbe qaaiaadseacaaIXaaaaOGaey4kaSIaamOvamaaCaaaleqabaGaamir aiaaigdacaWGebGaaGOmaaaakiabgUcaRiaadAfadaahaaWcbeqaai aadseacaaIYaaaaaaa@3DC3@

where

 

· V D1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaaig daaaaaaa@336C@  and V D2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaaik daaaaaaa@336D@  are the energies of the two dislocation loops in isolation, which can be computed from the formulas in 5.8.1 (or 5.8.2 if you need a non-singular expression)

 

· V D1D2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaaig dacaWGebGaaGOmaaaaaaa@34F1@  is an `interaction energy,’ which can be thought of as the work done to introduce dislocation 2 into the stress field associated with dislocation 1 (or vice-versa).  The interaction energy is given by

V D1D2 = E 16π(1+ν) C2 C1 2 R x p x p b i (1) b j (2) τ i (1) (x) τ j (2) (ξ)d s x d s ξ E 16π(1+ν) C2 C1 ijq mnq b i (1) b j (2) 2 R x k x k τ m (1) (x) τ n (2) (ξ)d s x d s ξ + E 8π(1 ν 2 ) C2 C1 ikl jmn b k (1) b m (2) 2 R x i x j τ l (1) (x) τ n (2) (ξ)d s x d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbWaaWbaaSqabeaacaWGeb GaaGymaiaadseacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGymaiaaiAdacqaHapaCcaGGOaGaaGymaiabgUcaRiabe27aUjaacM caaaWaa8qvaeaadaWdvbqaamaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaOGaamOuaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamiCaa qabaGccqGHciITcaWG4bWaaSbaaSqaaiaadchaaeqaaaaakiaadkga daqhaaWcbaGaamyAaaqaaiaacIcacaaIXaGaaiykaaaakiaadkgada qhaaWcbaGaamOAaaqaaiaacIcacaaIYaGaaiykaaaakiabes8a0naa DaaaleaacaWGPbaabaGaaiikaiaaigdacaGGPaaaaOGaaiikaiaahI hacaGGPaGaeqiXdq3aa0baaSqaaiaadQgaaeaacaGGOaGaaGOmaiaa cMcaaaGccaGGOaGaaCOVdiaacMcacaWGKbGaam4CamaaBaaaleaaca WH4baabeaaaeaacaWGdbGaaGymaaqab0GaeSyeUhTaey4kIipaaSqa aiaadoeacaaIYaaabeqdcqWIr4E0cqGHRiI8aOGaamizaiaadohada WgaaWcbaGaaCOVdaqabaGccaaMc8UaaGPaVdqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0Ya aSaaaeaacaWGfbaabaGaaGymaiaaiAdacqaHapaCcaGGOaGaaGymai abgUcaRiabe27aUjaacMcaaaWaa8qvaeaadaWdvbqaaiabgIGiopaa BaaaleaacaWGPbGaamOAaiaadghaaeqaaOGaeyicI48aaSbaaSqaai aad2gacaWGUbGaamyCaaqabaGccaWGIbWaa0baaSqaaiaadMgaaeaa caGGOaGaaGymaiaacMcaaaGccaWGIbWaa0baaSqaaiaadQgaaeaaca GGOaGaaGOmaiaacMcaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaadkfaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadUgaae qaaOGaeyOaIyRaamiEamaaBaaaleaacaWGRbaabeaaaaGccqaHepaD daqhaaWcbaGaamyBaaqaaiaacIcacaaIXaGaaiykaaaakiaacIcaca WH4bGaaiykaiabes8a0naaDaaaleaacaWGUbaabaGaaiikaiaaikda caGGPaaaaOGaaiikaiaah67acaGGPaGaamizaiaadohadaWgaaWcba GaaCiEaaqabaGccaWGKbGaam4CamaaBaaaleaacaWH+oaabeaaaeaa caWGdbGaaGymaaqab0GaeSyeUhTaey4kIipaaSqaaiaadoeacaaIYa aabeqdcqWIr4E0cqGHRiI8aaGcbaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqGHRaWkdaWcaaqaaiaadweaaeaacaaI4aGaeqiW daNaaiikaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa GccaGGPaaaamaapufabaWaa8qvaeaacqGHiiIZdaWgaaWcbaGaamyA aiaadUgacaWGSbaabeaakiabgIGiopaaBaaaleaacaWGQbGaamyBai aad6gaaeqaaOGaamOyamaaDaaaleaacaWGRbaabaGaaiikaiaaigda caGGPaaaaOGaamOyamaaDaaaleaacaWGTbaabaGaaiikaiaaikdaca GGPaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG sbaabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaakiabgkGi2k aadIhadaWgaaWcbaGaamOAaaqabaaaaOGaeqiXdq3aa0baaSqaaiaa dYgaaeaacaGGOaGaaGymaiaacMcaaaGccaGGOaGaaCiEaiaacMcacq aHepaDdaqhaaWcbaGaamOBaaqaaiaacIcacaaIYaGaaiykaaaakiaa cIcacaWH+oGaaiykaiaadsgacaWGZbWaaSbaaSqaaiaahIhaaeqaaO GaamizaiaadohadaWgaaWcbaGaaCOVdaqabaaabaGaam4qaiaaigda aeqaniablgH7rlabgUIiYdaaleaacaWGdbGaaGOmaaqab0GaeSyeUh Taey4kIipaaaaa@34B7@

Although this integral is bounded (provided the dislocation lines only meet at discrete points), it is sometimes convenient to replace R(x)= x k x k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaiaacIcacaWH4bGaaiykaiabg2 da9maakaaabaGaamiEamaaBaaaleaacaWGRbaabeaakiaadIhadaWg aaWcbaGaam4Aaaqabaaabeaaaaa@3963@  by R ρ (x)= x k x k + ρ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacqaHbpGCaeqaaO GaaiikaiaahIhacaGGPaGaeyypa0ZaaOaaaeaacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaakiabgUcaRi abeg8aYnaaCaaaleqabaGaaGOmaaaaaeqaaaaa@3EEE@  for a non-singular treatment of dislocations.

 

 

 

HEALTH WARNING: Notice that the expression for the interaction energy is very similar to the formula for the self-energy of a dislocation loop, except that (i) it contains an extra term (which vanishes if b (1) = b (2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaCaaaleqabaGaaiikaiaaig dacaGGPaaaaOGaeyypa0JaamOyamaaCaaaleqabaGaaiikaiaaikda caGGPaaaaaaa@3841@  ), and (ii) the integrals in the interaction energy are twice those in the self-energy.  The latter is an endless source of confusion.

 

 

 

Derivation: We can regard the two interacting dislocations as a special case of a dislocation loop subjected to an applied stress:  one dislocation generates the ‘applied stress,’ which influences the second dislocation.  The total potential energy follows as V= V D + V D* + V * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9iaadAfadaahaaWcbe qaaiaadseaaaGccqGHRaWkcaWGwbWaaWbaaSqabeaacaWGebGaaiOk aaaakiabgUcaRiaadAfadaahaaWcbeqaaiaacQcaaaaaaa@3A9F@ , where V D = V D1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraaaaki abg2da9iaadAfadaahaaWcbeqaaiaadseacaaIXaaaaaaa@364D@ , V * = V D2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaaiOkaaaaki abg2da9iaadAfadaahaaWcbeqaaiaadseacaaIYaaaaaaa@3633@  are the potential energies of the two isolated dislocations, and V D* = V D1D2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaacQ caaaGccqGH9aqpcaWGwbWaaWbaaSqabeaacaWGebGaaGymaiaadsea caaIYaaaaaaa@3880@  is the interaction energy.  We have that

V D1D2 = S1 σ ij D2 b i (1) m j (1) dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaaig dacaWGebGaaGOmaaaakiabg2da9maapefabaGaeq4Wdm3aa0baaSqa aiaadMgacaWGQbaabaGaamiraiaaikdaaaGccaWGIbWaa0baaSqaai aadMgaaeaacaGGOaGaaGymaiaacMcaaaGccaWGTbWaa0baaSqaaiaa dQgaaeaacaGGOaGaaGymaiaacMcaaaGccaWGKbGaamyqaaWcbaGaam 4uaiaaigdaaeqaniabgUIiYdaaaa@4935@

where σ ij D2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamiraiaaikdaaaaaaa@3632@  is the stress induced by dislocation 2.  We can express this stress in terms of a line integral around dislocation 2.  Finally, the surface integral over S1 can reduced to a contour integral around dislocation 1 by applying Stokes theorem.

 

 

 

5.8.5 Driving force for dislocation motion MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B8@  The Peach-Koehler formula

 

If a dislocation is subjected to stress, it tends to move through the crystal.  This motion is the mechanism for plastic flow in a crystalline solid, as discussed in Section 3.7.12.

 

The tendency of a dislocation to move can be quantified by a force.  This force needs to be interpreted carefully: it is not a mechanical force (in the sense of Newtonian mechancics) that induces motion of a material particle, but rather a generalized force (in the sense of Lagrangean mechanics) that causes a rearrangement of atoms around the dislocation core.   It is sometimes known as a `configurational force’

 

The generalized force for dislocation motion is defined as follows.

 

1. Consider an elastic solid, which contains a dislocation loop. The loop is characterized by a curve C, the tangent vector τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@ , and the burgers vector b. As usual, we can imagine creating the dislocation loop by cutting the crystal over some surface S that is bounded by C, and displacing the two material surfaces adjacent to the cut by the burgers vector. 

 

2. Suppose that the dislocation moves, so that a point at x(s) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiaacIcacaWGZbGaaiykaaaa@3431@  on C advances to a new position x(s)+δa(s)n(s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiaacIcacaWGZbGaaiykaiabgU caRiabes7aKjaadggacaGGOaGaam4CaiaacMcacaWHUbGaaiikaiaa dohacaGGPaaaaa@3D38@ , where n(s) is a unit vector normal to C, as shown in the figure (in the figure, the dislocation moves in a single plane, but this is not necessary).

 

3. As the dislocation moves, the potential energy of the solid changes by an amount δV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvaaaa@3360@ .  This change of energy provides the driving force for dislocation motion.

 

4. The driving force is defined as a vector function of arc-length around the dislocation F(s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOraiaacIcacaWGZbGaaiykaaaa@3400@ , whose direction is perpendicular to C, and which satisfies

δV= C F(s)n(s)δa(s)ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaeqiTdqMaamOvaiabg2da9m aapefabaGaaCOraiaacIcacaWGZbGaaiykaiabgwSixlaah6gacaGG OaGaam4CaiaacMcacqaH0oazcaWGHbGaaiikaiaadohacaGGPaGaam izaiaadohaaSqaaiaadoeaaeqaniabgUIiYdaaaa@47D4@

for all possible choices of n(s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiaacIcacaWGZbGaaiykaaaa@3428@  and δa(s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyyaiaacIcacaWGZbGaai ykaaaa@35BC@  (the change in energy is negative because the displacement is in the same direction as the force).

 

 

The Peach-Koehler formula states that the driving force for dislocation motion can be computed from the following formula

F i (s)= ijk σ jm (s) b m τ k (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbaabeaaki aacIcacaWGZbGaaiykaiabg2da9iabgIGiopaaBaaaleaacaWGPbGa amOAaiaadUgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadQgacaWGTbaabe aakiaacIcacaWGZbGaaiykaiaadkgadaWgaaWcbaGaamyBaaqabaGc cqaHepaDdaWgaaWcbaGaam4AaaqabaGccaGGOaGaam4CaiaacMcaaa a@4823@

where σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  is the total stress acting on the dislocation at a point s along the curve C (the stress includes contributions from the dislocation itself, as well as stresses generated by external loading on the solid).

 

The Peach-Koehler equation is meaningless without further discussion, because the classical solution predicts that the stress acting on the dislocation line is infinite.   To avoid this, we need to partition the stress according to its various origins, as described in Section 5.8.3.

 

1. We assume that the dislocation loop lies within an elastic solid, which is subjected to some external loading.  The external fields subject part of the boundary of the solid 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  to a prescribed displacement; and the remainder of the boundary 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  to a prescribed traction, as shown in the figure.

 

2. The actual fields in the loaded solid containing the dislocation will be denoted by [ u i , ε ij , σ ij ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa cYcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiyxaaaa@3DAE@ .

 

3. The fields induced by the applied loading in an un-dislocated solid  will be denoted by [ u i * , ε ij * , σ ij * ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaacQcaaaGccaGGSaGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaa baGaaiOkaaaakiaacYcacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaae aacaGGQaaaaOGaaiyxaaaa@3FBB@ .

 

4. The fields in a solid containing a dislocation, but with 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  traction free, and with zero displacement on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  will be denoted by [ u i D , ε ij D , σ ij D ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaadseaaaGccaGGSaGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaa baGaamiraaaakiaacYcacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaae aacaWGebaaaOGaaiyxaaaa@400C@

 

5. The fields in an infinite solid containing a dislocation with line C and burgers vector b will be denoted by [ u i D , ε ij D , σ ij D ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaadseacqGHEisPaaGccaGGSaGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamiraiabg6HiLcaakiaacYcacqaHdpWCdaqhaaWcba GaamyAaiaadQgaaeaacaWGebGaeyOhIukaaOGaaiyxaaaa@445F@ .  If the dislocation line terminates on the solid’s surface, any convenient procedure can be used to close the loop when deriving the infinte solid solution, but the fields will depend on this choice.

6. The difference between the fields for a dislocation in a bounded solid and the solution for a dislocation in an infinite solid will be denoted by

[ u i I = u i D u i D , ε ij I = ε ij D ε ij D , σ ij I = σ ij D σ ij D ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiaadMeaaaGccqGH9aqpcaWG1bWaa0baaSqaaiaadMgaaeaacaWG ebaaaOGaeyOeI0IaamyDamaaDaaaleaacaWGPbaabaGaamiraiabg6 HiLcaakiaacYcacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG jbaaaOGaeyypa0JaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam iraaaakiabgkHiTiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dseacqGHEisPaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamysaaaakiabg2da9iabeo8aZnaaDaaaleaacaWGPbGaamOA aaqaaiaadseaaaGccqGHsislcqaHdpWCdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGebGaeyOhIukaaOGaaiyxaaaa@625F@

 

 

The Peach-Koehler force can then be divided into contributions from three sources:

F i (s)= F i D (s)+ F i I (s)+ F i * (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbaabeaaki aacIcacaWGZbGaaiykaiabg2da9iaadAeadaqhaaWcbaGaamyAaaqa aiaadseacqGHEisPaaGccaGGOaGaam4CaiaacMcacqGHRaWkcaWGgb Waa0baaSqaaiaadMgaaeaacaWGjbaaaOGaaiikaiaadohacaGGPaGa ey4kaSIaamOramaaDaaaleaacaWGPbaabaGaaiOkaaaakiaacIcaca WGZbGaaiykaaaa@4863@

Where

 

1. F i D (s)= ijk σ jm D (s) b m τ k (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbaabaGaam iraiabg6HiLcaakiaacIcacaWGZbGaaiykaiabg2da9iabgIGiopaa BaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaeq4Wdm3aa0baaSqaai aadQgacaWGTbaabaGaamiraiabg6HiLcaakiaacIcacaWGZbGaaiyk aiaadkgadaWgaaWcbaGaamyBaaqabaGccqaHepaDdaWgaaWcbaGaam 4AaaqabaGccaGGOaGaam4CaiaacMcaaaa@4C99@  is the `self-force’ of the dislocation, i.e. the force exerted by the stresses generated by the dislocation itself.   This force always acts so as to reduce the length of the dislocation line.  In the classical solution, this force is infinite.  The procedure described in Section  5.8.2 can be used to remove the singularity MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  in this case the stress in the Peach-Koehler formula should be calculated using the expression 

σ pq D (x)= E 16π(1+ν) C imp b m τ q + imq b m τ p 3 R ρ (xξ) x i x j x j d s ξ + E 8π(1 ν 2 ) C b m imk τ k 3 R ρ (xξ) x i x p x q δ pq 3 R ρ (xξ) x i x j x j d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaqhaaWcbaGaamiCai aadghaaeaacaWGebGaeyOhIukaaOGaaiikaiaahIhacaGGPaGaeyyp a0ZaaSaaaeaacaWGfbaabaGaaGymaiaaiAdacqaHapaCcaGGOaGaaG ymaiabgUcaRiabe27aUjaacMcaaaWaa8quaeaadaqadaqaamaadmaa baGaeyicI48aaSbaaSqaaiaadMgacaWGTbGaamiCaaqabaGccaWGIb WaaSbaaSqaaiaad2gaaeqaaOGaeqiXdq3aaSbaaSqaaiaadghaaeqa aOGaey4kaSIaeyicI48aaSbaaSqaaiaadMgacaWGTbGaamyCaaqaba GccaWGIbWaaSbaaSqaaiaad2gaaeqaaOGaeqiXdq3aaSbaaSqaaiaa dchaaeqaaaGccaGLBbGaayzxaaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaaiodaaaGccaWGsbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGa aCiEaiabgkHiTiaah67acaGGPaaabaGaeyOaIyRaamiEamaaBaaale aacaWGPbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGc cqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaaaOGaayjkaiaawM caaaWcbaGaam4qaaqab0Gaey4kIipakiaadsgacaWGZbWaaSbaaSqa aiaah67aaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVpaalaaabaGaamyraaqaaiaaiIdacqaHapaCcaGGOaGaaGymaiab gkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaa8quae aadaqadaqaaiaadkgadaWgaaWcbaGaamyBaaqabaGccqGHiiIZdaWg aaWcbaGaamyAaiaad2gacaWGRbaabeaakiabes8a0naaBaaaleaaca WGRbaabeaakmaadmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa iodaaaGccaWGsbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaaCiEai abgkHiTiaah67acaGGPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamiCaaqabaGccqGHci ITcaWG4bWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTiabes7aKnaa BaaaleaacaWGWbGaamyCaaqabaGcdaWcaaqaaiabgkGi2oaaCaaale qabaGaaG4maaaakiaadkfadaWgaaWcbaGaeqyWdihabeaakiaacIca caWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGHciITcaWG4bWaaSbaaS qaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaa kiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaaGccaGLBbGaay zxaaaacaGLOaGaayzkaaaaleaacaWGdbaabeqdcqGHRiI8aOGaamiz aiaadohadaWgaaWcbaGaaCOVdaqabaaaaaa@F96A@

where R ρ (x)= x k x k + ρ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacqaHbpGCaeqaaO GaaiikaiaahIhacaGGPaGaeyypa0ZaaOaaaeaacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGRbaabeaakiabgUcaRi abeg8aYnaaCaaaleqabaGaaGOmaaaaaeqaaaaa@3EEE@ .   Note that, if the dislocation remains straight, the total length of the dislocation line does not change as the dislocation moves.  In this case, the self-force is zero.  In 2D descriptions of dislocation motion, therefore, the core singularity has no effect MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this is why it has been possible to live with the classical dislocation fields for so long.

 

2. F i I (s)= ijk σ jm I (s) b m τ k (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbaabaGaam ysaaaakiaacIcacaWGZbGaaiykaiabg2da9iabgIGiopaaBaaaleaa caWGPbGaamOAaiaadUgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaca WGTbaabaGaamysaaaakiaacIcacaWGZbGaaiykaiaadkgadaWgaaWc baGaamyBaaqabaGccqaHepaDdaWgaaWcbaGaam4AaaqabaGccaGGOa Gaam4CaiaacMcaaaa@49C1@  is a force generated by stress associated with the solid’s boundaries.  These are generally non-singular.  This force is often referred to as the ‘image force’

 

3. F i * (s)= ijk σ jm * (s) b m τ k (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbaabaGaai OkaaaakiaacIcacaWGZbGaaiykaiabg2da9iabgIGiopaaBaaaleaa caWGPbGaamOAaiaadUgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaca WGTbaabaGaaiOkaaaakiaacIcacaWGZbGaaiykaiaadkgadaWgaaWc baGaamyBaaqabaGccqaHepaDdaWgaaWcbaGaam4AaaqabaGccaGGOa Gaam4CaiaacMcaaaa@4981@  is the force exerted on the dislocation by externally applied loading.  This, too, is generally nonsingular

 

 

 

Derivation:  The following expression for the total energy of a dislocation in an elastic solid was derived in Section 5.8.3.

V= V D + V D* + V * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiabg2da9iaadAfadaahaaWcbe qaaiaadseaaaGccqGHRaWkcaWGwbWaaWbaaSqabeaacaWGebGaaiOk aaaakiabgUcaRiaadAfadaahaaWcbeqaaiaacQcaaaaaaa@3A9F@

where

· V D = S 1 2 σ ij D b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraaaaki abg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWC daqhaaWcbaGaamyAaiaadQgaaeaacaWGebaaaOGaamOyamaaBaaale aacaWGPbaabeaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaWGKbGa amyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@42DB@  is the strain energy of the dislocation itself

 

· V D* = S σ ij * b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaacQ caaaGccqGH9aqpdaWdrbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOA aaqaaiaacQcaaaGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamyBam aaBaaaleaacaWGQbaabeaakiaadsgacaWGbbaaleaacaWGtbaabeqd cqGHRiI8aaaa@41E7@  is the work done to introduce the dislocation into the externally applied stress

 

 

· V * = R 1 2 σ ij * ε ij * dV 2 R t i u i * dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaaiOkaaaaki abg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWC daqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaaaOGaeqyTdu2aa0baaS qaaiaadMgacaWGQbaabaGaaiOkaaaakiaadsgacaWGwbaaleaacaWG sbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWG0bWaaSbaaSqaai aadMgaaeqaaOGaamyDamaaDaaaleaacaWGPbaabaGaaiOkaaaakiaa dsgacaWGbbaaleaacqGHciITdaWgaaadbaGaaGOmaaqabaWccaWGsb aabeqdcqGHRiI8aaaa@500B@  is the potential energy of the applied loads

 

 

We wish to calculate the change in potential energy resulting from a small change in area δS MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaam4uaaaa@335D@  as the dislocation line advances by a small distance δa(s)n(s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyyaiaacIcacaWGZbGaai ykaiaah6gacaGGOaGaam4CaiaacMcaaaa@3904@ , as shown in Fig. 5.70. <Figure 5.70 near here> We consider each term in the potential energy

 

1. The last term is independent of S, and therefore δ V * =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvamaaCaaaleqabaGaai Okaaaakiabg2da9iaaicdaaaa@3605@ .

 

2. The change in V D* MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraiaacQ caaaaaaa@335F@  follows as   δ V D* = δS σ ij * b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvamaaCaaaleqabaGaam iraiaacQcaaaGccqGH9aqpdaWdrbqaaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiaacQcaaaGccaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaamyBamaaBaaaleaacaWGQbaabeaakiaadsgacaWGbbaaleaacqaH 0oazcaWGtbaabeqdcqGHRiI8aaaa@4531@ , where δS MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaam4uaaaa@335D@  is the increment in area swept by the dislocation.  Note that an area element swept by the advancing dislocation line can be expressed as mdA=δan×τds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBaiaadsgacaWGbbGaeyypa0Jaeq iTdqMaamyyaiaaykW7caaMc8UaaCOBaiabgEna0kaahs8acaWGKbGa am4Caaaa@406B@ , so we can write

δ V D* = C σ ij * b i jkl n k τ l δa(s)ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvamaaCaaaleqabaGaam iraiaacQcaaaGccqGH9aqpdaWdrbqaaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiaacQcaaaGccaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48aaSbaaSqaaiaadQgacaWGRbGaamiBaaqabaGccaWGUbWa aSbaaSqaaiaadUgaaeqaaOGaeqiXdq3aaSbaaSqaaiaadYgaaeqaaO GaeqiTdqMaamyyaiaacIcacaWGZbGaaiykaiaadsgacaWGZbaaleaa caWGdbaabeqdcqGHRiI8aaaa@5002@

 

3. The change in V D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaCaaaleqabaGaamiraaaaaa a@32B1@  can be written as

δ V D = S 1 2 δ σ ij D b i m j dA + δS 1 2 σ ij D b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvamaaCaaaleqabaGaam iraaaakiabg2da9maapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa cqaH0oazcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGebaaaO GaamOyamaaBaaaleaacaWGPbaabeaakiaad2gadaWgaaWcbaGaamOA aaqabaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipakiabgU caRmaapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWCdaqh aaWcbaGaamyAaiaadQgaaeaacaWGebaaaOGaamOyamaaBaaaleaaca WGPbaabeaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaWGKbGaamyq aaWcbaGaeqiTdqMaam4uaaqab0Gaey4kIipaaaa@57D0@

To calculate the change in stress δ σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@3651@  arising from the motion of the dislocation line, recall that the displacement and stress due to the dislocation loop can be calculated from the expression

u k (x)= S m i Σ ij (k) (xξ) b j d A ξ σ pq D = C pqkl u k x l = C pqkl S m i x l Σ ij (k) (xξ) b j d A ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bWaaSbaaSqaaiaadUgaae qaaOGaaiikaiaahIhacaGGPaGaeyypa0Zaa8quaeaacaWGTbWaaSba aSqaaiaadMgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMgacaWGQbaaba GaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+oGa aiykaiaadkgadaWgaaWcbaGaamOAaaqabaGccaWGKbGaamyqamaaBa aaleaacaWH+oaabeaaaeaacaWGtbaabeqdcqGHRiI8aOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7aeaacqaHdpWCdaqhaaWcbaGaamiCaiaadghaae aacaWGebaaaOGaeyypa0Jaam4qamaaBaaaleaacaWGWbGaamyCaiaa dUgacaWGSbaabeaakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaaca WGRbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaa aOGaeyypa0Jaam4qamaaBaaaleaacaWGWbGaamyCaiaadUgacaWGSb aabeaakmaapefabaGaamyBamaaBaaaleaacaWGPbaabeaakmaalaaa baGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaWGSbaabeaaaa GccqqHJoWudaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaam4Aaiaa cMcaaaGccaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGaamOyamaaBa aaleaacaWGQbaabeaakiaadsgacaWGbbWaaSbaaSqaaiaah67aaeqa aaqaaiaadofaaeqaniabgUIiYdaaaaa@9B5A@

where Σ ij (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aa0baaSqaaiaadMgacaWGQb aabaGaaiikaiaadUgacaGGPaaaaaaa@36B7@  is the stress due to a point force in the (bounded) elastic solid.  The change in stress therefore follows as

δ σ pq = C pqkl C x l Σ ij (k) (xξ) b j jkl n k τ l δa(s)d s ξ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeq4Wdm3aaSbaaSqaaiaadc hacaWGXbaabeaakiabg2da9iaadoeadaWgaaWcbaGaamiCaiaadgha caWGRbGaamiBaaqabaGcdaWdrbqaamaalaaabaGaeyOaIylabaGaey OaIyRaamiEamaaBaaaleaacaWGSbaabeaaaaGccqqHJoWudaqhaaWc baGaamyAaiaadQgaaeaacaGGOaGaam4AaiaacMcaaaGccaGGOaGaaC iEaiabgkHiTiaah67acaGGPaGaamOyamaaBaaaleaacaWGQbaabeaa kiabgIGiopaaBaaaleaacaWGQbGaam4AaiaadYgaaeqaaOGaamOBam aaBaaaleaacaWGRbaabeaakiabes8a0naaBaaaleaacaWGSbaabeaa kiabes7aKjaadggacaGGOaGaam4CaiaacMcacaWGKbGaam4CamaaBa aaleaacaWH+oaabeaaaeaacaWGdbaabeqdcqGHRiI8aaaa@627F@

This shows that

δ V D = 1 2 S C pqkl C x l Σ ij (k) (xξ) b j jkl n k τ l δa(s)d s ξ dA + δS 1 2 σ ij D b i m j dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvamaaCaaaleqabaGaam iraaaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8quaeaa caWGdbWaaSbaaSqaaiaadchacaWGXbGaam4AaiaadYgaaeqaaOWaa8 quaeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGa amiBaaqabaaaaOGaeu4Odm1aa0baaSqaaiaadMgacaWGQbaabaGaai ikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislcaWH+oGaaiyk aiaadkgadaWgaaWcbaGaamOAaaqabaGccqGHiiIZdaWgaaWcbaGaam OAaiaadUgacaWGSbaabeaakiaad6gadaWgaaWcbaGaam4AaaqabaGc cqaHepaDdaWgaaWcbaGaamiBaaqabaGccqaH0oazcaWGHbGaaiikai aadohacaGGPaGaamizaiaadohadaWgaaWcbaGaaCOVdaqabaaabaGa am4qaaqab0Gaey4kIipakiaaykW7caaMc8UaamizaiaadgeaaSqaai aadofaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaamaalaaabaGaaGym aaqaaiaaikdaaaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaam iraaaakiaadkgadaWgaaWcbaGaamyAaaqabaGccaWGTbWaaSbaaSqa aiaadQgaaeqaaOGaamizaiaadgeaaSqaaiabes7aKjaadofaaeqani abgUIiYdaaaa@7B9A@

Reversing the order of integration in the first integral and using the expression for σ pq MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadchacaWGXb aabeaaaaa@34BA@  then gives

δ V D = δS σ ij D b i m j dA = C σ ij D b i jkl n k τ l δa(s)ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamOvamaaCaaaleqabaGaam iraaaakiabg2da9maapefabaGaeq4Wdm3aa0baaSqaaiaadMgacaWG QbaabaGaamiraaaakiaadkgadaWgaaWcbaGaamyAaaqabaGccaWGTb WaaSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeaaSqaaiabes7aKjaa dofaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiabeo8aZnaaDaaale aacaWGPbGaamOAaaqaaiaadseaaaGccaWGIbWaaSbaaSqaaiaadMga aeqaaOGaeyicI48aaSbaaSqaaiaadQgacaWGRbGaamiBaaqabaGcca WGUbWaaSbaaSqaaiaadUgaaeqaaOGaeqiXdq3aaSbaaSqaaiaadYga aeqaaOGaeqiTdqMaamyyaiaacIcacaWGZbGaaiykaiaadsgacaWGZb aaleaacaWGdbaabeqdcqGHRiI8aaaa@5FB7@

 

4. Finally, combining the results of (3) and (4) and noting that ijk = jik MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccqGH9aqpcqGHsislcqGHiiIZdaWgaaWcbaGaamOA aiaadMgacaWGRbaabeaaaaa@3BD7@  then gives

δV= C kjl σ ij D + σ ij * b i τ l n k δa(s)ds = C F(s)n(s)δa(s)ds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaeqiTdqMaamOvaiabg2da9m aapefabaGaeyicI48aaSbaaSqaaiaadUgacaWGQbGaamiBaaqabaGc daWadaqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaadseaaa GccqGHRaWkcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaaa aaGccaGLBbGaayzxaaGaamOyamaaBaaaleaacaWGPbaabeaakiabes 8a0naaBaaaleaacaWGSbaabeaakiaad6gadaWgaaWcbaGaam4Aaaqa baGccqaH0oazcaWGHbGaaiikaiaadohacaGGPaGaamizaiaadohaaS qaaiaadoeaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiaahAeacaGG OaGaam4CaiaacMcacqGHflY1caWHUbGaaiikaiaadohacaGGPaGaeq iTdqMaamyyaiaacIcacaWGZbGaaiykaiaadsgacaWGZbaaleaacaWG dbaabeqdcqGHRiI8aaaa@6A46@

This has to hold for all possible δa(s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyyaiaacIcacaWGZbGaai ykaaaa@35BC@ , which shows that F i (s)= ijk σ jm (s) b m τ k (s) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbaabeaaki aacIcacaWGZbGaaiykaiabg2da9iabgIGiopaaBaaaleaacaWGPbGa amOAaiaadUgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadQgacaWGTbaabe aakiaacIcacaWGZbGaaiykaiaadkgadaWgaaWcbaGaamyBaaqabaGc cqaHepaDdaWgaaWcbaGaam4AaaqabaGccaGGOaGaam4CaiaacMcaaa a@4823@  as required.