Chapter 5

 

Analytical techniques and solutions for linear elastic solids

 

 

 

5.8 The Reciprocal Theorem and applications

 

The reciprocal theorem is a distant cousin of the principle of minimum potential energy, and is a particularly useful tool.  It is the basis for a computational method in linear elasticity called the boundary element method; it can often be used to extract information concerning solutions to a boundary value problem without having to solve the problem in detail;  and can occasionally be used to find the full solution MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  for example, the reciprocal theorem provides a way to compute fields for arbitrarily shaped dislocation loops in an infinite solid.

 

 

5.8.1 Statement and proof of the reciprocal theorem

                                                      

The reciprocal theorem relates two solutions for the same elastic solid, when subjected to different loads.  To this end, consider the following scenario

  1. An elastic solid which occupies some region V with boundary S. The outward normal to the boundary is specified by a unit vector n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHUbaaaa@33BD@ .  The properties of the solid are characterized by the tensor of elastic moduli C ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3778@  and mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaa a@330E@ .  The solid is free of stress when unloaded, and temperature changes are neglected.
  2. When subjected to body forces b A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbWaaWbaaSqabeaacaWGbbaaaa aa@34A4@  (per unit mass) together with prescribed displacements u *A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bWaaWbaaSqabeaacaGGQaGaam yqaaaaaaa@3565@  on portion S 1A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdacaWGbb aabeaaaaa@354B@  of its boundary, and tractions  t *A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH0bWaaWbaaSqabeaacaGGQaGaam yqaaaaaaa@3564@  on portion S 2A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaikdacaWGbb aabeaaaaa@354C@ , a state of static equilibrium is established in the solid with displacements, strains and stresses u i A , ε ij A , σ ij A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaa0baaSqaaiaadMgaaeaaca WGbbaaaOGaaiilaiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dgeaaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaam yqaaaaaaa@401F@
  3. When subjected to body forces b B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbWaaWbaaSqabeaacaWGcbaaaa aa@34A5@  together with prescribed displacements u *B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bWaaWbaaSqabeaacaGGQaGaam Oqaaaaaaa@3566@  on portion S 1B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdacaWGcb aabeaaaaa@354C@  of its boundary, and tractions  t *B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH0bWaaWbaaSqabeaacaGGQaGaam Oqaaaaaaa@3565@  on portion S 2B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaikdacaWGcb aabeaaaaa@354D@ , the solid experiences a static state u i B , ε ij B , σ ij B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaa0baaSqaaiaadMgaaeaaca WGcbaaaOGaaiilaiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dkeaaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaam Oqaaaaaaa@4022@

 

The reciprocal theorem relates the two solutions through

S n i σ ij A u j B dA + V ρ 0 b i A u i B dV = S n i σ ij B u j A dA + V ρ 0 b i B u i A dV = V σ ij A ε ij B dV = V σ ij B ε ij A dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaad6gadaWgaaWcbaGaam yAaaqabaGccqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaa aOGaamyDamaaDaaaleaacaWGQbaabaGaamOqaaaakiaadsgacaWGbb aaleaacaWGtbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbpGC daWgaaWcbaGaaGimaaqabaGccaWGIbWaa0baaSqaaiaadMgaaeaaca WGbbaaaOGaamyDamaaDaaaleaacaWGPbaabaGaamOqaaaakiaadsga caWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaaca WGUbWaaSbaaSqaaiaadMgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMga caWGQbaabaGaamOqaaaakiaadwhadaqhaaWcbaGaamOAaaqaaiaadg eaaaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipakiabgUca RmaapefabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaDa aaleaacaWGPbaabaGaamOqaaaakiaadwhadaqhaaWcbaGaamyAaaqa aiaadgeaaaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaki abg2da9maapefabaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGa amyqaaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadkeaaa GccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maa pefabaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamOqaaaaki abew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadgeaaaGccaWGKbGa amOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@8B58@

 

 Derivation:

Start by showing that σ ij A ε ij B = σ ij B ε ij A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGbbaaaOGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGa amOqaaaakiabg2da9iabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaai aadkeaaaGccqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaa aaaa@4600@ .  To see this, note that σ ij A ε ij B = C ijkl ε kl B ε ij A = C klij ε kl B ε ij A = σ ij B ε ij A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGbbaaaOGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGa amOqaaaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRb GaamiBaaqabaGccqaH1oqzdaqhaaWcbaGaam4AaiaadYgaaeaacaWG cbaaaOGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaaki abg2da9iaadoeadaWgaaWcbaGaam4AaiaadYgacaWGPbGaamOAaaqa baGccqaH1oqzdaqhaaWcbaGaam4AaiaadYgaaeaacaWGcbaaaOGaeq yTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamyqaaaakiabg2da9iab eo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaadkeaaaGccqaH1oqzda qhaaWcbaGaamyAaiaadQgaaeaacaWGbbaaaaaa@6392@ , where we have used the symmetry relation C ijkl = C klij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaWGRbGa amiBaiaadMgacaWGQbaabeaaaaa@3D3A@ .

To prove the rest, recall that

1.      The divergence theorem requires that

S n i σ ij u j dA = V ( σ ij u j ) x i dV = V ( σ ij x i u j + σ ij u j x i )dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamOBamaaBaaaleaacaWGPb aabeaakiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWG1bWa aSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeaaSqaaiaadofaaeqani abgUIiYdGccqGH9aqpdaWdrbqaamaalaaabaGaeyOaIyRaaiikaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWG1bWaaSbaaSqaai aadQgaaeqaaOGaaiykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyA aaqabaaaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccq GH9aqpdaWdrbqaamaabmaabaWaaSaaaeaacqGHciITcqaHdpWCdaWg aaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaale aacaWGPbaabeaaaaGccaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaey4k aSIaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakmaalaaabaGaey OaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaamizaiaadA faaSqaaiaadAfaaeqaniabgUIiYdaaaa@6DD1@

2.      Any pair of strains and displacement are related by ε ij =( u i / x j + u j / x i )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0ZaaeWaaeaacqGHciITcaWG1bWaaSbaaSqaaiaa dMgaaeqaaOGaai4laiaadIhadaWgaaWcbaGaamOAaaqabaGccqGHRa WkcqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaai4laiaadIha daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaGGVaGaaGOmaa aa@4812@

3.      The stress tensor is symmetric, so that σ ij u j / x i = σ ij ( u j / x i + u i / x j )/2= σ ij ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaai4laiab gkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcqaHdpWCda WgaaWcbaGaamyAaiaadQgaaeqaaOGaaiikaiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiabgUcaRiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqa baGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaakiaacM cacaGGVaGaaGOmaiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOA aaqabaGccqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@5C8D@

4.      Both stress states satisfy the equilibrium equation σ ij /d x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGH RaWkcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaai aadQgaaeqaaOGaeyypa0JaaGimaaaa@3F59@ . Consequently, collecting together the volume integrals gives

S n i σ ij u j dA + V ρ 0 b j u j dV = V ( [ σ ij x i + ρ 0 b j ] u j + σ ij ε ij )dV = V σ ij ε ij dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamOBamaaBaaaleaacaWGPb aabeaakiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWG1bWa aSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeaaSqaaiaadofaaeqani abgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaa beaakiaadkgadaWgaaWcbaGaamOAaaqabaGccaWG1bWaaSbaaSqaai aadQgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGc cqGH9aqpdaWdrbqaamaabmaabaWaamWaaeaadaWcaaqaaiabgkGi2k abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgUcaRiabeg8aYnaaBaaale aacaaIWaaabeaakiaadkgadaWgaaWcbaGaamOAaaqabaaakiaawUfa caGLDbaacaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeq4Wdm 3aaSbaaSqaaiaadMgacaWGQbaabeaakiabew7aLnaaBaaaleaacaWG PbGaamOAaaqabaaakiaawIcacaGLPaaacaWGKbGaamOvaaWcbaGaam Ovaaqab0Gaey4kIipakiabg2da9maapefabaGaeq4Wdm3aaSbaaSqa aiaadMgacaWGQbaabeaakiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@79F3@

5.      Note that this result applies to any equilibrium stress field and pair of compatible strain and displacements MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  the stresses need not be related to the strains.  Consequently, this result can be applied to pairs of stress and displacement

S n i σ ij A u j B dA + V ρ 0 b i A u i B dV = V σ ij A ε ij B dV = V σ ij B ε ij A dV = S n i σ ij B u j A dA + V ρ 0 b i B u i A dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaad6gadaWgaaWcbaGaam yAaaqabaGccqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaa aOGaamyDamaaDaaaleaacaWGQbaabaGaamOqaaaakiaadsgacaWGbb aaleaacaWGtbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbpGC daWgaaWcbaGaaGimaaqabaGccaWGIbWaa0baaSqaaiaadMgaaeaaca WGbbaaaOGaamyDamaaDaaaleaacaWGPbaabaGaamOqaaaakiaadsga caWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacq aHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaaaOGaeqyTdu2a a0baaSqaaiaadMgacaWGQbaabaGaamOqaaaakiaadsgacaWGwbaale aacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacqaHdpWCdaqh aaWcbaGaamyAaiaadQgaaeaacaWGcbaaaOGaeqyTdu2aa0baaSqaai aadMgacaWGQbaabaGaamyqaaaakiaadsgacaWGwbaaleaacaWGwbaa beqdcqGHRiI8aOGaeyypa0Zaa8quaeaacaWGUbWaaSbaaSqaaiaadM gaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaamOqaaaa kiaadwhadaqhaaWcbaGaamOAaaqaaiaadgeaaaGccaWGKbGaamyqaa WcbaGaam4uaaqab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaOGaamOyamaaDaaaleaacaWGPbaabaGaam OqaaaakiaadwhadaqhaaWcbaGaamyAaaqaaiaadgeaaaGccaWGKbGa amOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@8B58@

 

 

 

5.8.2 Simple example using the reciprocal theorem

 

The reciprocal theorem can often be used to extract average measures of deformation or stress in an elastic solution.  As an example, consider the following problem:  An elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@  occupies a volume V with surface S.   The solid is subjected to a distribution of traction t i ( x j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaWgaaWcbaGaamyAaaqabaGcca GGOaGaamiEamaaBaaaleaacaWGQbaabeaakiaacMcaaaa@3600@  on its surface.  The traction exerts zero resultant force and moment on the solid, i.e.

S t i dA =0, S ijk x j t k dA =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaamiDamaaBaaaleaacaWGPb aabeaakiaadsgacaWGbbaaleaacaWGtbaabeqdcqGHRiI8aOGaeyyp a0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7daWdrbqaaiabgIGiopaaBaaaleaacaWG PbGaamOAaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWGQbaabeaaki aadshadaWgaaWcbaGaam4AaaqabaGccaWGKbGaamyqaaWcbaGaam4u aaqab0Gaey4kIipakiabg2da9iaaicdaaaa@5716@

As a result, a state of static equilibrium with displacement, strain and stress u i , ε ij , σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaGcca GGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcacqaH dpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3B6C@  is developed in the solid.   Show that the volume change of the solid can be calculated as

ΔV= 12ν E S x i t i dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHuoarcaWGwbGaeyypa0ZaaSaaae aacaaIXaGaeyOeI0IaaGOmaiabe27aUbqaaiaadweaaaWaa8quaeaa caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaamiDamaaBaaaleaacaWGPb aabeaakiaadsgacaWGbbaaleaacaWGtbaabeqdcqGHRiI8aaaa@4411@

Derivation:

1.      Note that if we were able to determine the full displacement field in the solid, the volume change could be calculated as

ΔV= S u i n i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadAfacqGH9aqpdaWdrbqaai aadwhadaWgaaWcbaGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaadMga aeqaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdaaaa@3CB5@

If you don’t see this result immediately on geometric grounds it can be derived by first calculating the total volume change by integrating the dilatation over the volume of the solid and then applying the divergence theorem

ΔV= V ε kk dV = V u k / x k dV = S u k n k dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadAfacqGH9aqpdaWdrbqaai abew7aLnaaBaaaleaacaWGRbGaam4AaaqabaGccaWGKbGaamOvaaWc baGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGaeyOaIyRaam yDamaaBaaaleaacaWGRbaabeaakiaac+cacqGHciITcaWG4bWaaSba aSqaaiaadUgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgU IiYdGccqGH9aqpdaWdrbqaaiaadwhadaWgaaWcbaGaam4AaaqabaGc caWGUbWaaSbaaSqaaiaadUgaaeqaaOGaamizaiaadgeaaSqaaiaado faaeqaniabgUIiYdaaaa@542A@

2.      Note that we can make one of the terms in the reciprocal theorem reduce to this formula by choosing state A to be the actual displacement, stress and strain in the solid, and choosing state B to be a uniform stress with unit magnitude σ ij B = δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaa qaaiaadkeaaaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQga aeqaaaaa@39BA@ . This stress is clearly an equilibrium field, for zero body force. The corresponding strains and displacements follow as

ε ij B = 12ν E δ ij u i B = 12ν E x i + c i + ijk ω j x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaDaaaleaacaWGPbGaamOAaa qaaiaadkeaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHsislcaaIYaGa eqyVd4gabaGaamyraaaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaae qaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyDamaaDaaaleaacaWGPb aabaGaamOqaaaakiabg2da9maalaaabaGaaGymaiabgkHiTiaaikda cqaH9oGBaeaacaWGfbaaaiaadIhadaWgaaWcbaGaamyAaaqabaGccq GHRaWkcaWGJbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeyicI48a aSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccqaHjpWDdaWgaaWcba GaamOAaaqabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaaa@6986@

where c i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadogadaWgaaWcbaGaamyAaaqabaaaaa@326A@  and ω j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3naaBaaaleaacaWGQbaabeaaaa a@3350@  represent an arbitrary infinitesimal displacement and rotation.

3.      Substituting into the reciprocal theorem, recalling that the stresses satisfy the boundary condition σ ij n i = t j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamOBamaaBaaaleaacaWGPbaabeaakiabg2da9iaadsha daWgaaWcbaGaamOAaaqabaaaaa@3BCD@ , and using the equilibrium equations for the traction then yields

S n i σ ij u j B dA = S n i δ ij u j dA ΔV= S n i u i dA = S t i ( 12ν E x i + c i + ijk ω j x k )dA = 12ν E S x i t i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaad6gadaWgaaWcbaGaam yAaaqabaGccqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaaaGccaWG 1bWaa0baaSqaaiaadQgaaeaacaWGcbaaaOGaamizaiaadgeaaSqaai aadofaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiaad6gadaWgaaWc baGaamyAaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaO GaamyDamaaDaaaleaacaWGQbaabaaaaOGaamizaiaadgeaaSqaaiaa dofaaeqaniabgUIiYdGccqGHshI3cqqHuoarcaWGwbGaeyypa0Zaa8 quaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaDaaaleaa caWGPbaabaaaaOGaamizaiaadgeaaSqaaiaadofaaeqaniabgUIiYd GccqGH9aqpdaWdrbqaaiaadshadaWgaaWcbaGaamyAaaqabaGcdaqa daqaamaalaaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaeaacaWGfb aaaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGJbWaaSba aSqaaiaadMgaaeqaaOGaey4kaSIaeyicI48aaSbaaSqaaiaadMgaca WGQbGaam4AaaqabaGccqaHjpWDdaWgaaWcbaGaamOAaaqabaGccaWG 4bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaamizaiaadg eaaSqaaiaadofaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaaiaaigda cqGHsislcaaIYaGaeqyVd4gabaGaamyraaaadaWdrbqaaiaadIhada WgaaWcbaGaamyAaaqabaGccaWG0bWaaSbaaSqaaiaadMgaaeqaaOGa amizaiaadgeaaSqaaiaadofaaeqaniabgUIiYdaaaa@8A10@

 

 

 

5.8.3 Formulas relating internal and boundary values of field quantities

 

The reciprocal theorem also gives a useful relationship between the values of stress and displacement in the interior and on the boundary of the solid, which can be stated as follows.  Suppose that a linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@  is loaded on its boundary (with no body force) so as to induce a static equilibrium displacement, strain and stress field u i , ε ij , σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO Gaaiilaiabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccaGGSaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3DCA@  in the solid.  Define the following functions

U i (k) (x)= (1+ν) 8πE(1ν)R { x k x i R 2 +(34ν) δ ik } Σ ij (k) (x)= 1 8π(1ν) R 2 { 3 x k x i x j R 3 +(12ν) δ ik x j + δ jk x i δ ij x k R } Ω ij (kq) (x)= E 8π(1 ν 2 ) R 3 { 3 δ kq x i x j R 2 + 3ν( δ ik x q x j + δ iq x k x j + δ jk x i x q + δ jq x i x k ) R 2 15 x i x j x k x q R 4 + (12ν)( δ ik δ jq + δ jk δ iq ) 16ν+2 ν 2 12ν ( δ ij δ kq 3 x k x q δ ij R 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadwfadaqhaaWcbaGaamyAaa qaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaaiykaiabg2da 9maalaaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaabaGaaG ioaiabec8aWjaadweacaGGOaGaaGymaiabgkHiTiabe27aUjaacMca caWGsbaaamaacmaabaWaaSaaaeaacaWG4bWaaSbaaSqaaiaadUgaae qaaOGaamiEamaaBaaaleaacaWGPbaabeaaaOqaaiaadkfadaahaaWc beqaaiaaikdaaaaaaOGaey4kaSIaaiikaiaaiodacqGHsislcaaI0a GaeqyVd4Maaiykaiabes7aKnaaBaaaleaacaWGPbGaam4Aaaqabaaa kiaawUhacaGL9baaaeaacqqHJoWudaqhaaWcbaGaamyAaiaadQgaae aacaGGOaGaam4AaiaacMcaaaGccaGGOaGaaCiEaiaacMcacqGH9aqp daWcaaqaaiabgkHiTiaaigdaaeaacaaI4aGaeqiWdaNaaiikaiaaig dacqGHsislcqaH9oGBcaGGPaGaamOuamaaCaaaleqabaGaaGOmaaaa aaGcdaGabaqaamaalaaabaGaaG4maiaadIhadaWgaaWcbaGaam4Aaa qabaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaamiEamaaBaaaleaa caWGQbaabeaaaOqaaiaadkfadaahaaWcbeqaaiaaiodaaaaaaaGcca GL7baadaGacaqaaiabgUcaRiaacIcacaaIXaGaeyOeI0IaaGOmaiab e27aUjaacMcadaWcaaqaaiabes7aKnaaBaaaleaacaWGPbGaam4Aaa qabaGccaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeqiTdq2a aSbaaSqaaiaadQgacaWGRbaabeaakiaadIhadaWgaaWcbaGaamyAaa qabaGccqGHsislcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa amiEamaaBaaaleaacaWGRbaabeaaaOqaaiaadkfaaaaacaGL9baaae aacqqHPoWvdaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaam4Aaiaa dghacaGGPaaaaOGaaiikaiaahIhacaGGPaGaeyypa0ZaaSaaaeaacq GHsislcaWGfbaabaGaaGioaiabec8aWjaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaiaadkfadaahaaWcbe qaaiaaiodaaaaaaOWaaiqaaeaadaWcaaqaaiaaiodacqaH0oazdaWg aaWcbaGaam4AaiaadghaaeqaaOGaamiEamaaBaaaleaacaWGPbaabe aakiaadIhadaWgaaWcbaGaamOAaaqabaaakeaacaWGsbWaaWbaaSqa beaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaG4maiabe27aUnaabm aabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGRbaabeaakiaadIhadaWg aaWcbaGaamyCaaqabaGccaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaey 4kaSIaeqiTdq2aaSbaaSqaaiaadMgacaWGXbaabeaakiaadIhadaWg aaWcbaGaam4AaaqabaGccaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaey 4kaSIaeqiTdq2aaSbaaSqaaiaadQgacaWGRbaabeaakiaadIhadaWg aaWcbaGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaadghaaeqaaOGaey 4kaSIaeqiTdq2aaSbaaSqaaiaadQgacaWGXbaabeaakiaadIhadaWg aaWcbaGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaadUgaaeqaaaGcca GLOaGaayzkaaaabaGaamOuamaaCaaaleqabaGaaGOmaaaaaaGccqGH sislcaaIXaGaaGynamaalaaabaGaamiEamaaBaaaleaacaWGPbaabe aakiaadIhadaWgaaWcbaGaamOAaaqabaGccaWG4bWaaSbaaSqaaiaa dUgaaeqaaOGaamiEamaaBaaaleaacaWGXbaabeaaaOqaaiaadkfada ahaaWcbeqaaiaaisdaaaaaaaGccaGL7baaaeaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH RaWkcaaMc8UaaGPaVpaaciaabaGaaiikaiaaigdacqGHsislcaaIYa GaeqyVd4MaaiykamaabmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWG Rbaabeaakiabes7aKnaaBaaaleaacaWGQbGaamyCaaqabaGccqGHRa WkcqaH0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaOGaeqiTdq2aaSba aSqaaiaadMgacaWGXbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaala aabaGaaGymaiabgkHiTiaaiAdacqaH9oGBcqGHRaWkcaaIYaGaeqyV d42aaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiabgkHiTiaaikdacq aH9oGBaaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqa aOGaeqiTdq2aaSbaaSqaaiaadUgacaWGXbaabeaakiabgkHiTmaala aabaGaaG4maiaadIhadaWgaaWcbaGaam4AaaqabaGccaWG4bWaaSba aSqaaiaadghaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aaaOqaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzk aaaacaGL9baaaaaa@C2E8@

You may recognize the first two of these functions represent the displacements and stresses induced at a point x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@34DD@  by a point force of unit magnitude acting in the e k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaadUgaaeqaaa aa@34D0@  direction at the origin of an infinite solid.

 

The displacement and stress at an interior point in the solid can be calculated from the following formulas 

u k (ξ)= S σ ij n i U j (k) (xξ)d A x S n i Σ ij (k) (xξ) u j d A x σ kq (ξ)= S σ ij n i Σ jq (k) (xξ)d A x + S n i Ω ij (kq) (xξ) u j d A x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadwhadaWgaaWcbaGaam4Aaa qabaGccaGGOaGaaCOVdiaacMcacqGH9aqpdaWdrbqaaiabeo8aZnaa BaaaleaacaWGPbGaamOAaaqabaGccaWGUbWaaSbaaSqaaiaadMgaae qaaaqaaiaadofaaeqaniabgUIiYdGccaWGvbWaa0baaSqaaiaadQga aeaacaGGOaGaam4AaiaacMcaaaGccaGGOaGaaCiEaiabgkHiTiaah6 7acaGGPaGaamizaiaadgeadaWgaaWcbaGaaCiEaaqabaGccqGHsisl daWdrbqaaiaad6gadaWgaaWcbaGaamyAaaqabaaabaGaam4uaaqab0 Gaey4kIipakiabfo6atnaaDaaaleaacaWGPbGaamOAaaqaaiaacIca caWGRbGaaiykaaaakiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaca WG1bWaaSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeadaWgaaWcbaGa aCiEaaqabaaakeaacqaHdpWCdaWgaaWcbaGaam4AaiaadghaaeqaaO Gaaiikaiaah67acaGGPaGaeyypa0JaeyOeI0Yaa8quaeaacqaHdpWC daWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaaBaaaleaacaWGPb aabeaaaeaacaWGtbaabeqdcqGHRiI8aOGaeu4Odm1aa0baaSqaaiaa dQgacaWGXbaabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacq GHsislcaWH+oGaaiykaiaadsgacaWGbbWaaSbaaSqaaiaahIhaaeqa aOGaey4kaSYaa8quaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaaqaai aadofaaeqaniabgUIiYdGccqqHPoWvdaqhaaWcbaGaamyAaiaadQga aeaacaGGOaGaam4AaiaadghacaGGPaaaaOGaaiikaiaahIhacqGHsi slcaWH+oGaaiykaiaadwhadaWgaaWcbaGaamOAaaqabaGccaWGKbGa amyqamaaBaaaleaacaWH4baabeaaaaaa@9842@

Here, d A x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamyqamaaBaaaleaacaWH4b aabeaaaaa@35A2@  denotes that the integral is taken with respect to x, holding ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH+oaaaa@3410@  fixed.

 

At first sight this appears to give an exact formula for the displacement and stress in any 3D solid subjected to prescribed tractions and displacement on its boundary.  In fact this is not the case, because you need to know both tractions and displacements on the boundary to evaluate the formula, whereas the boundary conditions only specify one or the other.  The main application of this formula is a numerical technique for solving elasticity problems known as the ‘boundary element method.’  The idea is simple: the unknown values of traction and displacement on the boundary are first calculated by letting the interior point ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH+oaEaaa@3489@  approach the boundary, and solving the resulting integral equation.   Then, the formulas are used to calculate field quantities at interior points.

 

Derivation: These formulas are a consequence of the reciprocal theorem, as follows

1.      Start with the reciprocal theorem:

S n i σ ij A u j B dA + V ρ 0 b i A u i B dA = S n i σ ij B u j A dA + V ρ 0 b i B u i A dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaad6gadaWgaaWcbaGaam yAaaqabaGccqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaa aOGaamyDamaaDaaaleaacaWGQbaabaGaamOqaaaakiaadsgacaWGbb aaleaacaWGtbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbpGC daWgaaWcbaGaaGimaaqabaGccaWGIbWaa0baaSqaaiaadMgaaeaaca WGbbaaaOGaamyDamaaDaaaleaacaWGPbaabaGaamOqaaaakiaadsga caWGbbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaaca WGUbWaaSbaaSqaaiaadMgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMga caWGQbaabaGaamOqaaaakiaadwhadaqhaaWcbaGaamOAaaqaaiaadg eaaaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipakiabgUca RmaapefabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaDa aaleaacaWGPbaabaGaamOqaaaakiaadwhadaqhaaWcbaGaamyAaaqa aiaadgeaaaGccaWGKbGaamyqaaWcbaGaamOvaaqab0Gaey4kIipaaa a@6CFE@

2.      For state A we choose the actual stress, strain and displacement in the solid.  For state B, we choose the displacement and stress fields induced by a Dirac Delta distribution of body force located at position ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH+oaaaa@3410@ .  The body force  vector associated with a force acting in the e k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaadUgaaeqaaa aa@34D0@  direction will be denoted by ρ 0 b i (k) δ(xξ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaWGIbWaa0baaSqaaiaadMgaaeaacaGGOaGaam4AaiaacMcaaaGc cqaH0oazcaGGOaGaaCiEaiabgkHiTiaah67acaGGPaaaaa@4001@ , and has the property that

V ρ 0 b i (k) δ(xξ) u i (x)d V x = u k (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiabeg8aYnaaBaaaleaaca aIWaaabeaakiaadkgadaqhaaWcbaGaamyAaaqaaiaacIcacaWGRbGa aiykaaaakiabes7aKjaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaca WG1bWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaahIhacaGGPaGaamiz aiaadAfadaWgaaWcbaGaaCiEaaqabaaabaGaamOvaaqab0Gaey4kIi pakiabg2da9iaadwhadaWgaaWcbaGaam4AaaqabaGccaGGOaGaaCOV diaacMcaaaa@5056@

The stress and displacement induced by this body force can be calculated by shifting the origin in the point force solution given in Section 5.4.3.  Substituting into the reciprocal theorem immediately yields the formula for displacements.

3.      The formula for stress follows by differentiating the displacement with respect to ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH+oaaaa@3410@  to calculate the strain, and then substituting the strain into the elastic stress-strain equation and simplifying the result.

 

 

 

5.8.4 Classical Solutions for displacement and stress due to a 3D dislocation loop in an infinite solid

 

The reciprocal theorem can also be used to calculate the displacement and stress induced by an arbitrarily shaped 3D dislocation loop in an infinite solid.  The concept of a dislocation in a crystal was introduced in Section 5.3.4.  A three-dimensional dislocation in an elastic solid can be constructed as follows:

1.      Consider an infinite solid with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3152@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3240@ .  Assume that the solid is initially stress free.

2.      Introduce a bounded, simply connected surface S inside the solid.   Denote the edge of this surface by a curve C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  this curve will correspond to the dislocation line.   The direction of the line will be denoted by a unit vector τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8aaaa@31D8@  tangent to the curve.  There are, of course, two possible choices for this direction. Either one can be used.   The normal to S will be denoted by a unit vector m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gaaaa@317E@ , which must be chosen so that the curve C encircles m in a counterclockwise sense when traveling in direction ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah67aaaa@31D2@ .

3.      Create an imaginary cut on S, so that the two sides of the cut are free to move independently.  In the derivation below, the two sides of the cut will be denoted by S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@326F@  and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@327A@ , chosen so that the unit vector m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gaaaa@317E@  points from S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@327A@  to S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@326F@ .

4.      Hold S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@326F@  fixed, displace S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@327A@  by the burgers vector b, and weld the two sides of the cut back together.  Remove the constraint on S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@326F@ .

This procedure creates a displacement field that is consistent with the Burger’s circuit convention described in Section 5.3.4.  To see this, suppose that a crystal lattice is embedded within the elastic solid.  Perform a Burgers circuit around the curve C. Start the circuit on S + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgUcaRaaaaa a@326F@ , encircle the curve according to the right hand screw convention with respect to the line sense τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8aaaa@31D8@ , and end at S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaahaaWcbeqaaiabgkHiTaaaaa a@327A@ .   The end of the circuit is displaced by a distance b from the start, so that b i = u i u i + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamyDamaaDaaaleaacaWGPbaabaGaeyOeI0caaOGaeyOe I0IaamyDamaaDaaaleaacaWGPbaabaGaey4kaScaaaaa@3CC7@ .

 

The displacement and stress due to the dislocation loop can be calculated from

u k (x)= S m i Σ ij (k) (xξ) b j d A ξ σ pq (ξ)= E 2(1+ν) C ( pij Σ im (q) (xξ)+ qij Σ im (p) (xξ)+ 2ν δ pq 12ν kij Σ mi (k) (xξ) ) b m τ j d s ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyDamaaBaaaleaacaWGRbaabe aakiaacIcacaWH4bGaaiykaiabg2da9maapefabaGaamyBamaaBaaa leaacaWGPbaabeaakiabfo6atnaaDaaaleaacaWGPbGaamOAaaqaai aacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaeyOeI0IaaCOVdiaa cMcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeadaWgaa WcbaGaaCOVdaqabaaabaGaam4uaaqab0Gaey4kIipaaOqaaiabeo8a ZnaaBaaaleaacaWGWbGaamyCaaqabaGccaGGOaGaaCOVdiaacMcacq GH9aqpdaWcaaqaaiaadweaaeaacaaIYaGaaiikaiaaigdacqGHRaWk cqaH9oGBcaGGPaaaamaapefabaWaaeWaaeaacqGHiiIZdaWgaaWcba GaamiCaiaadMgacaWGQbaabeaakiabfo6atnaaDaaaleaacaWGPbGa amyBaaqaaiaacIcacaWGXbGaaiykaaaakiaacIcacaWH4bGaeyOeI0 IaaCOVdiaacMcacqGHRaWkcqGHiiIZdaWgaaWcbaGaamyCaiaadMga caWGQbaabeaakiabfo6atnaaDaaaleaacaWGPbGaamyBaaqaaiaacI cacaWGWbGaaiykaaaakiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMca cqGHRaWkdaWcaaqaaiaaikdacqaH9oGBcqaH0oazdaWgaaWcbaGaam iCaiaadghaaeqaaaGcbaGaaGymaiabgkHiTiaaikdacqaH9oGBaaGa eyicI48aaSbaaSqaaiaadUgacaWGPbGaamOAaaqabaGccqqHJoWuda qhaaWcbaGaamyBaiaadMgaaeaacaGGOaGaam4AaiaacMcaaaGccaGG OaGaaCiEaiabgkHiTiaah67acaGGPaaacaGLOaGaayzkaaaaleaaca WGdbaabeqdcqGHRiI8aOGaamOyamaaBaaaleaacaWGTbaabeaakiab es8a0naaBaaaleaacaWGQbaabeaakiaadsgacaWGZbWaaSbaaSqaai aah67aaeqaaaaaaa@9EE2@

where Σ ij (k) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfo6atnaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGRbGaaiykaaaaaaa@365F@  is defined in Section 5.8.3, and ijk MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgIGiopaaBaaaleaacaWGPbGaamOAai aadUgaaeqaaaaa@3505@  is the permutation symbol.  The symbols d A ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGbbWaaSbaaSqaaiaah67aae qaaaaa@33AD@   d s ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGZbWaaSbaaSqaaiaah67aae qaaaaa@33DF@  denotes that ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah67aaaa@31B2@  is varied when evaluating the surface or line integral.  These results are also often expressed in the more compact form

u k (x)= 1 8π S { [ m k b j x j + m j b k x j + ν b j m j 1ν x k ] 2 R(xξ) x i x i b i m j 1ν 3 R(xξ) x i x j x k }d A ξ σ pq (x)= E 16π(1+ν) C ( [ imp b m τ q + imq b m τ p ] 3 R(xξ) x i x j x j ) d s ξ + E 8π(1 ν 2 ) C ( b m imk τ k [ 3 R(xξ) x i x p x q δ pq 3 R(xξ) x i x j x j ] ) d s ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyDamaaBaaaleaacaWGRbaabe aakiaacIcacaWH4bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaa iIdacqaHapaCaaWaa8quaeaadaGadaqaamaadmaabaGaamyBamaaBa aaleaacaWGRbaabeaakiaadkgadaWgaaWcbaGaamOAaaqabaGcdaWc aaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqaba aaaOGaey4kaSIaamyBamaaBaaaleaacaWGQbaabeaakiaadkgadaWg aaWcbaGaam4AaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadI hadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYaaSaaaeaacqaH9oGB caWGIbWaaSbaaSqaaiaadQgaaeqaaOGaamyBamaaBaaaleaacaWGQb aabeaaaOqaaiaaigdacqGHsislcqaH9oGBaaWaaSaaaeaacqGHciIT aeaacqGHciITcaWG4bWaaSbaaSqaaiaadUgaaeqaaaaaaOGaay5wai aaw2faamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamOu aiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGHciITcaWG4b WaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaaaaGccqGHsisldaWcaaqaaiaadkgadaWgaaWcbaGaamyAaa qabaGccaWGTbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaaGymaiabgkHi Tiabe27aUbaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG4maaaaki aadkfacaGGOaGaaCiEaiabgkHiTiaah67acaGGPaaabaGaeyOaIyRa amiEamaaBaaaleaacaWGPbaabeaakiabgkGi2kaadIhadaWgaaWcba GaamOAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadUgaaeqaaaaa aOGaay5Eaiaaw2haaiaadsgacaWGbbWaaSbaaSqaaiaah67aaeqaaa qaaiaadofaaeqaniabgUIiYdaakeaacqaHdpWCdaWgaaWcbaGaamiC aiaadghaaeqaaOGaaiikaiaahIhacaGGPaGaeyypa0ZaaSaaaeaaca WGfbaabaGaaGymaiaaiAdacqaHapaCcaGGOaGaaGymaiabgUcaRiab e27aUjaacMcaaaWaa8quaeaadaqadaqaamaadmaabaGaeyicI48aaS baaSqaaiaadMgacaWGTbGaamiCaaqabaGccaWGIbWaaSbaaSqaaiaa d2gaaeqaaOGaeqiXdq3aaSbaaSqaaiaadghaaeqaaOGaey4kaSIaey icI48aaSbaaSqaaiaadMgacaWGTbGaamyCaaqabaGccaWGIbWaaSba aSqaaiaad2gaaeqaaOGaeqiXdq3aaSbaaSqaaiaadchaaeqaaaGcca GLBbGaayzxaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaiodaaaGc caWGsbGaaiikaiaahIhacqGHsislcaWH+oGaaiykaaqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqa aiaadQgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaa aakiaawIcacaGLPaaaaSqaaiaadoeaaeqaniabgUIiYdGccaWGKbGa am4CamaaBaaaleaacaWH+oaabeaaaOqaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqGHRaWkcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daWcaaqaaiaadweaaeaacaaI4aGaeqiWdaNa aiikaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGcca GGPaaaamaapefabaWaaeWaaeaacaWGIbWaaSbaaSqaaiaad2gaaeqa aOGaeyicI48aaSbaaSqaaiaadMgacaWGTbGaam4AaaqabaGccqaHep aDdaWgaaWcbaGaam4AaaqabaGcdaWadaqaamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIZaaaaOGaamOuaiaacIcacaWH4bGaeyOeI0IaaC OVdiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa eyOaIyRaamiEamaaBaaaleaacaWGWbaabeaakiabgkGi2kaadIhada WgaaWcbaGaamyCaaqabaaaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaa dchacaWGXbaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIZa aaaOGaamOuaiaacIcacaWH4bGaeyOeI0IaaCOVdiaacMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBa aaleaacaWGQbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqa baaaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaaleaacaWGdbaabe qdcqGHRiI8aOGaamizaiaadohadaWgaaWcbaGaaCOVdaqabaaaaaa@5043@

where R(xξ)= ( x k ξ k )( x k ξ k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGsbGaaiikaiaahIhacqGHsislca WH+oGaaiykaiabg2da9maakaaabaWaaeWaaeaacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaadUgaaeqaaa GccaGLOaGaayzkaaWaaeWaaeaacaWG4bWaaSbaaSqaaiaadUgaaeqa aOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaay zkaaaaleqaaaaa@4853@

 

 

Derivation:

1.      Start with the reciprocal theorem

S n i σ ij A u j B dA + V ρ 0 b i A u i B dV = S n i σ ij B u j A dA + V ρ 0 b i B u i A dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaad6gadaWgaaWcbaGaam yAaaqabaGccqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGbbaa aOGaamyDamaaDaaaleaacaWGQbaabaGaamOqaaaakiaadsgacaWGbb aaleaacaWGtbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbpGC daWgaaWcbaGaaGimaaqabaGccaWGIbWaa0baaSqaaiaadMgaaeaaca WGbbaaaOGaamyDamaaDaaaleaacaWGPbaabaGaamOqaaaakiaadsga caWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaaca WGUbWaaSbaaSqaaiaadMgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadMga caWGQbaabaGaamOqaaaakiaadwhadaqhaaWcbaGaamOAaaqaaiaadg eaaaGccaWGKbGaamyqaaWcbaGaam4uaaqab0Gaey4kIipakiabgUca RmaapefabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaDa aaleaacaWGPbaabaGaamOqaaaakiaadwhadaqhaaWcbaGaamyAaaqa aiaadgeaaaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaa a@6D28@

2.      For state A, choose the actual stress and displacement in the solid containing the dislocation loop.   For state B, choose the stress, strain and displacement induced by a Dirac delta distribution of body force acting in the e k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaadUgaaeqaaa aa@34D0@  direction at position ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah67aaaa@31D2@  in the solid.  The displacements and stresses due to a Dirac delta distribution of body force are denoted by the functions U i (k) (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaqhaaWcbaGaamyAaaqaaiaacI cacaWGRbGaaiykaaaakiaacIcacaWH4bGaaiykaaaa@372A@  and Σ ij (k) (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfo6atnaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaaiykaaaa@38C3@  defined in the preceding section.

3.      When evaluating the reciprocal theorem, the two sides of the cut are treated as separate surfaces. Substituting into the reciprocal theorem and using the properties of the delta distribution gives

S+ n i + σ ij U j (k) (xξ)d A x + S n i σ ij U j (k) (xξ)d A x = S+ n i + Σ ij (k) (xξ) u j + d A x + S n i Σ ij (k) (xξ) u j d A x + u i (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdrbqaaiaad6gadaqhaaWcbaGaam yAaaqaaiabgUcaRaaakiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGccaWGvbWaa0baaSqaaiaadQgaaeaacaGGOaGaam4AaiaacMcaaa GccaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGaamizaiaadgeadaWg aaWcbaGaaCiEaaqabaaabaGaam4uaiabgUcaRaqab0Gaey4kIipaki abgUcaRmaapefabaGaamOBamaaDaaaleaacaWGPbaabaGaeyOeI0ca aOGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadwfadaqhaa WcbaGaamOAaaqaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGa eyOeI0IaaCOVdiaacMcacaWGKbGaamyqamaaBaaaleaacaWH4baabe aaaeaacaWGtbGaeyOeI0cabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaa caWGUbWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqqHJoWudaqhaa WcbaGaamyAaiaadQgaaeaacaGGOaGaam4AaiaacMcaaaGccaGGOaGa aCiEaiabgkHiTiaah67acaGGPaGaamyDamaaDaaaleaacaWGQbaaba Gaey4kaScaaOGaamizaiaadgeadaWgaaWcbaGaaCiEaaqabaaabaGa am4uaiabgUcaRaqab0Gaey4kIipakiabgUcaRmaapefabaGaamOBam aaDaaaleaacaWGPbaabaGaeyOeI0caaOGaeu4Odm1aa0baaSqaaiaa dMgacaWGQbaabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacq GHsislcaWH+oGaaiykaiaadwhadaqhaaWcbaGaamOAaaqaaiabgkHi TaaakiaadsgacaWGbbWaaSbaaSqaaiaahIhaaeqaaaqaaiaadofacq GHsislaeqaniabgUIiYdGccqGHRaWkcaWG1bWaaSbaaSqaaiaadMga aeqaaOGaaiikaiaah67acaGGPaaaaa@9715@

where n + =m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gadaahaaWcbeqaaiabgUcaRaaaki abg2da9iabgkHiTiaah2gaaaa@3581@  and n =m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gadaahaaWcbeqaaiabgkHiTaaaki abg2da9iaah2gaaaa@349F@  denote the outward normals to the two sides of the cut, and u i ± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaqhaaWcbaGaamyAaaqaaiabgg laXcaaaaa@348B@  denote the limiting values of the displacement field for the dislocation solution on the two sides of the cut.

4.      Substituting for n, collecting together the surface integrals and noting that σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3454@  and U i (k) (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfadaqhaaWcbaGaamyAaaqaaiaacI cacaWGRbGaaiykaaaakiaacIcacaWH4bGaaiykaaaa@372A@  are continuous across S gives

0= S m i Σ ij (k) (xξ)( u j u j + ) d A x + u k (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaaIWaGaeyypa0Zaa8quaeaacaWGTb WaaSbaaSqaaiaadMgaaeqaaOGaeu4Odm1aa0baaSqaaiaadMgacaWG QbaabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaahIhacqGHsislca WH+oGaaiykaiaacIcacaWG1bWaa0baaSqaaiaadQgaaeaacqGHsisl aaGccqGHsislcaWG1bWaa0baaSqaaiaadQgaaeaacqGHRaWkaaGcca GGPaaaleaacaWGtbaabeqdcqGHRiI8aOGaamizaiaadgeadaWgaaWc baGaaCiEaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaadUgaaeqaaO Gaaiikaiaah67acaGGPaaaaa@5519@

Finally, noting that u i u i + = b i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaqhaaWcbaGaamyAaaqaaiabgk HiTaaakiabgkHiTiaadwhadaqhaaWcbaGaamyAaaqaaiabgUcaRaaa kiabg2da9iaadkgadaWgaaWcbaGaamyAaaqabaaaaa@3A89@  (the burgers vector is the displacement of a material point at the end of the burgers circuit as seen from a point at the start) and that Σ ij (k) (xξ)= Σ ij (k) (ξx) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHJoWudaqhaaWcbaGaamyAaiaadQ gaaeaacaGGOaGaam4AaiaacMcaaaGccaGGOaGaaCiEaiabgkHiTiaa h67acaGGPaGaeyypa0JaeyOeI0Iaeu4Odm1aa0baaSqaaiaadMgaca WGQbaabaGaaiikaiaadUgacaGGPaaaaOGaaiikaiaah67acqGHsisl caWH4bGaaiykaaaa@499C@  yields the formula for displacements.

5.      To calculate the stress, start by differentiating the displacement to see that

u k x l = S x l m i Σ ij (k) (xξ) b j d A ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2kaadwhadaWgaa WcbaGaam4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadYga aeqaaaaakiabg2da9maapefabaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4bWaaSbaaSqaaiaadYgaaeqaaaaakiaad2gadaWgaaWcbaGa amyAaaqabaGccqqHJoWudaqhaaWcbaGaamyAaiaadQgaaeaacaGGOa Gaam4AaiaacMcaaaGccaGGOaGaaCiEaiabgkHiTiaah67acaGGPaGa amOyamaaBaaaleaacaWGQbaabeaaaeaacaWGtbaabeqdcqGHRiI8aO GaamizaiaadgeadaWgaaWcbaGaaCOVdaqabaaaaa@54BC@

6.      Next, observe that this can be expressed as an integral around the dislocation line

u k x l = C lij Σ im (k) (xξ) b m τ j d A ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2kaadwhadaWgaa WcbaGaam4AaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadYga aeqaaaaakiabg2da9maapefabaGaeyicI48aaSbaaSqaaiaadYgaca WGPbGaamOAaaqabaGccqqHJoWudaqhaaWcbaGaamyAaiaad2gaaeaa caGGOaGaam4AaiaacMcaaaGccaGGOaGaaCiEaiabgkHiTiaah67aca GGPaGaamOyamaaBaaaleaacaWGTbaabeaaaeaacaWGdbaabeqdcqGH RiI8aOGaeqiXdq3aaSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeada WgaaWcbaGaaCOVdaqabaaaaa@550D@

To see this, recall Stoke’s theorem, which states that

S npj F j ξ p m n d A ξ = C F j τ j d s ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaeyicI48aaSbaaSqaaiaad6 gacaWGWbGaamOAaaqabaGcdaWcaaqaaiabgkGi2kaadAeadaWgaaWc baGaamOAaaqabaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaamiCaa qabaaaaOGaamyBamaaBaaaleaacaWGUbaabeaakiaadsgacaWGbbWa aSbaaSqaaiaah67aaeqaaOGaeyypa0Zaa8quaeaacaWGgbWaaSbaaS qaaiaadQgaaeqaaOGaeqiXdq3aaSbaaSqaaiaadQgaaeqaaOGaamiz aiaadohadaWgaaWcbaGaaCOVdaqabaaabaGaam4qaaqab0Gaey4kIi paaSqaaiaadofaaeqaniabgUIiYdaaaa@517D@

for any differentiable vector field F j (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaamOAaaqabaGcca GGOaGaaCOVdiaacMcaaaa@351B@  integrated over a surface S with normal m that is bounded by curve C. Apply this to the line integral, use npj lij = δ nl δ pi δ ni δ pl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgIGiopaaBaaaleaacaWGUbGaamiCai aadQgaaeqaaOGaeyicI48aaSbaaSqaaiaadYgacaWGPbGaamOAaaqa baGccqGH9aqpcqaH0oazdaWgaaWcbaGaamOBaiaadYgaaeqaaOGaeq iTdq2aaSbaaSqaaiaadchacaWGPbaabeaakiabgkHiTiabes7aKnaa BaaaleaacaWGUbGaamyAaaqabaGccqaH0oazdaWgaaWcbaGaamiCai aadYgaaeqaaaaa@4A84@ , note that Σ im k / ξ i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kabfo6atnaaDaaaleaacaWGPb GaamyBaaqaaiaadUgaaaGccaGGVaGaeyOaIyRaeqOVdG3aaSbaaSqa aiaadMgaaeqaaOGaeyypa0JaaGimaaaa@3D39@  because Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfo6atbaa@320C@  is a static equilibrium stress field, and finally note that Σ ij (k) / x l = Σ ij (k) / ξ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kabfo6atnaaDaaaleaacaWGPb GaamOAaaqaaiaacIcacaWGRbGaaiykaaaakiaac+cacqGHciITcaWG 4bWaaSbaaSqaaiaadYgaaeqaaOGaeyypa0JaeyOeI0IaeyOaIyRaeu 4Odm1aa0baaSqaaiaadMgacaWGQbaabaGaaiikaiaadUgacaGGPaaa aOGaai4laiabgkGi2kabe67a4naaBaaaleaacaWGSbaabeaaaaa@4A3F@ .

7.      Finally, calculate the stress using the elastic stress-strain equation

σ pq = E 2(1+ν) ( δ pk δ ql + δ qk δ pl ) u k ξ l + Eν (1+ν)(12ν) δ pq u k ξ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGWbGaamyCaa qabaGccqGH9aqpdaWcaaqaaiaadweaaeaacaaIYaGaaiikaiaaigda cqGHRaWkcqaH9oGBcaGGPaaaamaabmaabaGaeqiTdq2aaSbaaSqaai aadchacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGXbGaamiBaaqa baGccqGHRaWkcqaH0oazdaWgaaWcbaGaamyCaiaadUgaaeqaaOGaeq iTdq2aaSbaaSqaaiaadchacaWGSbaabeaaaOGaayjkaiaawMcaamaa laaabaGaeyOaIyRaamyDamaaBaaaleaacaWGRbaabeaaaOqaaiabgk Gi2kabe67a4naaBaaaleaacaWGSbaabeaaaaGccqGHRaWkdaWcaaqa aiaadweacqaH9oGBaeaacaGGOaGaaGymaiabgUcaRiabe27aUjaacM cacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaiabes7a KnaaBaaaleaacaWGWbGaamyCaaqabaGcdaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaam4AaaqabaaakeaacqGHciITcqaH+oaEdaWgaaWc baGaam4Aaaqabaaaaaaa@6E43@

8.      The alternative forms for the displacement and stress follow by noting that

U i (k) (x)= (1+ν) 4πE { δ ik 2 R x j x j 1 2(1ν) 2 R x i x k } Σ ij (k) (x)= 1 8π { [ δ ik x j + δ jk x i + ν δ ij 1ν x k ] 2 R x n x n 1 1ν 3 R x i x j x k } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadwfadaqhaaWcbaGaamyAaa qaaiaacIcacaWGRbGaaiykaaaakiaacIcacaWH4bGaaiykaiabg2da 9maalaaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaabaGaaG inaiabec8aWjaadweaaaWaaiWaaeaacqaH0oazdaWgaaWcbaGaamyA aiaadUgaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWGsbaabaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaakiab gkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaeyOeI0YaaSaaae aacaaIXaaabaGaaGOmaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aaaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadkfaae aacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiE amaaBaaaleaacaWGRbaabeaaaaaakiaawUhacaGL9baaaeaacqqHJo WudaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaam4AaiaacMcaaaGc caGGOaGaaCiEaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI4a GaeqiWdahaamaacmaabaWaamWaaeaacqaH0oazdaWgaaWcbaGaamyA aiaadUgaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaS baaSqaaiaadQgaaeqaaaaakiabgUcaRiabes7aKnaaBaaaleaacaWG QbGaam4AaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhada WgaaWcbaGaamyAaaqabaaaaOGaey4kaSYaaSaaaeaacqaH9oGBcqaH 0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaaGymaiabgkHiTi abe27aUbaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWc baGaam4AaaqabaaaaaGccaGLBbGaayzxaaWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccaWGsbaabaGaeyOaIyRaamiEamaaBaaa leaacaWGUbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamOBaaqaba aaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGymaiabgkHiTiabe27a UbaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG4maaaakiaadkfaae aacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiE amaaBaaaleaacaWGQbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaam 4AaaqabaaaaaGccaGL7bGaayzFaaaaaaa@B337@