5.9 Rayleigh-Ritz method for estimating natural frequency of an elastic solid

 

We conclude this chapter by describing an energy based method for estimating the natural frequency of vibration of an elastic solid.

 

 

 

5.9.1 Mode shapes and natural frequencies; orthogonality of mode shapes and Rayleighs Principle

 

It is helpful to review the definition of natural frequencies and mode shapes for a vibrating solid.  To this end, consider a representative elastic solid MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  say a slender beam that is free at both ends, as illustrated below.

 


 

 The physical significance of the mode shapes and natural frequencies of the vibrating beam can be visualized as follows:

 

1. Suppose that the beam is made to vibrate by bending it into some (fixed) deformed shape u i = u i (0) ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacIcacaaIWaGaaiyk aaaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadI hadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiEamaaBaaaleaacaaI ZaaabeaakiaacMcaaaa@40BC@ ; and then suddenly releasing it.   In general, the resulting motion of the beam will be very complicated, and may not even appear to be periodic.

 

2. However, there exists a set of special initial deflections u i (0) = U i (n) ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaai ikaiaaicdacaGGPaaaaOGaeyypa0JaamyvamaaDaaaleaacaWGPbaa baGaaiikaiaad6gacaGGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYca caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@42E9@ , which cause every point on the beam to experience simple harmonic motion at some (angular) frequency ω n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaa aa@33CC@ , so that the deflected shape has the form u i ( x k ,t)= U i (n) ( x k )cos ω n t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0JaamyvamaaDaaaleaacaWGPbaabaGaaiikaiaad6gaca GGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaGGPaGa ci4yaiaac+gacaGGZbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaam iDaaaa@47B2@ .

 

3. The special frequencies ω n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaa aa@33CC@  are called the natural frequencies of the system, and the special initial deflections U i (n) ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad6gacaGGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3DB1@  are called the mode shapes.  

 

4. A continuous system always has an infinite number of mode shapes and natural frequencies. The vibration frequencies and their modes are conventionally ordered as a sequence ω 1 , ω 2 , ω 3 ... MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeM8a3naaBaaaleaacaaIYaaabeaakiaacYcacqaHjpWD daWgaaWcbaGaaG4maaqabaGccaGGUaGaaiOlaiaac6caaaa@3C93@  with ω n+1 > ω n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gacqGHRa WkcaaIXaaabeaakiabg6da+iabeM8a3naaBaaaleaacaWGUbaabeaa aaa@3967@ .  The lowest frequency of vibration is denoted ω 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaa aa@3394@ . The mode shapes for the lowest natural frequencies tend to have a long wavelength; the wavelength decreases for higher frequency modes.  If you are curious, the exact mode shapes and natural frequencies for a vibrating beam are derived in Section 10.4.1.

 

5. In practice the lowest natural frequency of the system is of particular interest, since design specifications often prescribe a minimum allowable limit for the lowest natural frequency.

 

 

We will derive two important results below, which give a quick way to estimate the lowest natural frequency.  Consider a linear elastic solid with elastic moduli C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaiaadoeadaWgaaWcbaGaamyAaiaadQgaca WGRbGaamiBaaqabaaaaa@34BD@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaiabeg8aYbaa@31CB@ , which occupies a volume V and has a surface S.   A part of the surface S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaiaadofadaWgaaWcbaGaaGOmaaqabaaaaa@31CB@  may be prevented from moving (or subjected to some time-independent displacement).   Let U i (n) ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad6gacaGGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@3DB1@  be the displacements associated with the natural modes of vibration.  Then

 

1. The mode shapes are orthogonal, which means that the displacements associated with two different vibration modes U i (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaadUgacaGGPaaaaaaa@351E@  and U i (j) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaadQgacaGGPaaaaaaa@351D@  have the property that

V U i (k) ( x n ) U i (j) ( x n )dV=0(kj) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGvbWaa0baaSqaaiaadM gaaeaacaGGOaGaam4AaiaacMcaaaGccaGGOaGaamiEamaaBaaaleaa caWGUbaabeaakiaacMcaaSqaaiaadAfaaeqaniabgUIiYdGccaWGvb Waa0baaSqaaiaadMgaaeaacaGGOaGaamOAaiaacMcaaaGccaGGOaGa amiEamaaBaaaleaacaWGUbaabeaakiaacMcacaWGKbGaamOvaiabg2 da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caGGOaGaam4AaiabgcMi5kaadQgacaGGPaaaaa@6344@

 

2. We will prove Rayleigh’s principle, which can be stated as follows.  Let U ^ i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaajaWaaSbaaSqaaiaadMgaae qaaOGaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@366A@  denote any kinematically admissible displacement field (you can think of this as a guess for the mode shape), which must be differentiable, and must satisfy U ^ i ( x k )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaajaWaaSbaaSqaaiaadMgaae qaaOGaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaGGPaGaeyyp a0JaaGimaaaa@382A@  on S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@ .  Define measures of potential energy V ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaaaaa@31CB@  and kinetic energy T ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmivayaajaaaaa@31C9@  associated with U ^ i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaajaWaaSbaaSqaaiaadMgaae qaaOGaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaa@366A@  as

V ^ = V 1 2 C ijkl U ^ k x l U ^ i x j dV ω 2 T ^ = V 1 2 ρ ω 2 U ^ i U ^ i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaGaeyypa0Zaa8quaeaada WcaaqaaiaaigdaaeaacaaIYaaaaiaadoeadaWgaaWcbaGaamyAaiaa dQgacaWGRbGaamiBaaqabaGcdaWcaaqaaiabgkGi2kqadwfagaqcam aaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa amiBaaqabaaaaaqaaiaadAfaaeqaniabgUIiYdGcdaWcaaqaaiabgk Gi2kqadwfagaqcamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaa dIhadaWgaaWcbaGaamOAaaqabaaaaOGaamizaiaadAfacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH jpWDdaahaaWcbeqaaiaaikdaaaGcceWGubGbaKaacqGH9aqpdaWdrb qaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNaeqyYdC3aaWba aSqabeaacaaIYaaaaOGabmyvayaajaWaaSbaaSqaaiaadMgaaeqaaO GabmyvayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadAfaaeqaniab gUIiYdGccaWGKbGaamOvaaaa@6DA1@

Then

V ^ T ^ ω 1 2 ,and V ^ T ^ = ω 1 2 if and only if U ^ i = U i (1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaaceWGwbGbaKaaaeaaceWGub GbaKaaaaGaeyyzImRaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYaaa aOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabg gacaqGUbGaaeizaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7daWcaaqaaiqadAfagaqcaaqaaiqadsfagaqcaaaacqGH9a qpcqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caqGPbGaaeOzaiaabccacaqGHb GaaeOBaiaabsgacaqGGaGaae4Baiaab6gacaqGSbGaaeyEaiaabcca caqGPbGaaeOzaiaaykW7caaMc8UaaGPaVlaaykW7ceWGvbGbaKaada WgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGvbWaa0baaSqaaiaadMga aeaacaGGOaGaaGymaiaacMcaaaaaaa@788D@

The result is useful because the fundamental frequency can be estimated by approximating the mode shape in some convenient way, and minimizing V ^ / T ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaGaai4laiqadsfagaqcaa aa@3367@ .

 

 

 

Orthogonality of mode shapes

 

We consider a generic linear elastic solid, with elastic constants C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ . Note that

 

1. External forces do not influence the natural frequencies of a linear elastic solid, so we can assume that the body force acting on the interior of the solid is zero.

 

2. Part of the boundary S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@  may be subjected to prescribed displacements.  When estimating vibration frequencies, we can assume that the displacements are zero everywhere on S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@

 

3. The remainder of the boundary S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@  can be assumed to be traction free.

 

 

By definition the mode shapes and natural frequencies have the following properties:

 

1. The displacement field associated with this vibration mode is u i ( x k ,t)= U i (n) ( x k )cos ω n t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiilaiaadshacaGG PaGaeyypa0JaamyvamaaDaaaleaacaWGPbaabaGaaiikaiaad6gaca GGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaGGPaGa ci4yaiaac+gacaGGZbGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaam iDaaaa@47B2@

 

2. The displacement field must satisfy the equation of motion for a linear elastic solid given in Section 5.1.2, which can be expressed in terms of the mode shape and natural frequency as

C ijkl 2 u k x i x l =ρ 2 u j t 2 C ijkl 2 U k (n) x i x l +ρ ω n 2 U j (n) =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaWGRbaabeaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaa dYgaaeqaaaaakiabg2da9iabeg8aYnaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiab gkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caWGdbWa aSbaaSqaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGvbWaa0baaSqaaiaadUga aeaacaGGOaGaamOBaiaacMcaaaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGSbaabeaa aaGccqGHRaWkcqaHbpGCcqaHjpWDdaqhaaWcbaGaamOBaaqaaiaaik daaaGccaWGvbWaa0baaSqaaiaadQgaaeaacaGGOaGaamOBaiaacMca aaGccqGH9aqpcaaIWaaaaa@796E@

 

3. The mode shapes must satisfy U i (n) ( x k )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad6gacaGGPaaaaOGaaiikaiaadIhadaWgaaWcbaGaam4Aaaqa baGccaGGPaGaeyypa0JaaGimaaaa@3A67@  on S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@  to meet the displacement boundary condition, and C ijkl U k (n) / x l n i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakmaabmaabaGaeyOaIyRaamyvamaaDaaaleaa caWGRbaabaGaaiikaiaad6gacaGGPaaaaOGaai4laiabgkGi2kaadI hadaWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaacaWGUbWaaSba aSqaaiaadMgaaeqaaOGaeyypa0JaaGimaaaa@44EC@  on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@  to satisfy the traction free boundary condition.

 

 

Orthogonality of the mode shapes can be seen as follows.

 

1. Let  U i (m) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad2gacaGGPaaaaaaa@3520@  and U i (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad6gacaGGPaaaaaaa@3521@  be two mode shapes, with corresponding vibration frequencies ω m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad2gaaeqaaa aa@33CB@   and ω n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaa aa@33CC@ . Since both mode shapes satisfy the governing equations (item 2 above), it follows that

V C ijkl 2 U k (n) x i x l U j (m) +ρ ω n 2 U j (n) U j (m) dV=0 V C ijkl 2 U k (m) x i x l U j (n) +ρ ω m 2 U j (m) U j (n) dV=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaMc8+aa8quaeaadaqadaqaai aadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGcdaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwfadaqhaaWcba Gaam4AaaqaaiaacIcacaWGUbGaaiykaaaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadY gaaeqaaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGTbGa aiykaaaakiabgUcaRiabeg8aYjabeM8a3naaDaaaleaacaWGUbaaba GaaGOmaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGUbGa aiykaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGTbGaai ykaaaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Gaey4kIipakiaa dsgacaWGwbGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7aeaadaWdrbqaaiaaykW7daqadaqaai aadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGcdaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwfadaqhaaWcba Gaam4AaaqaaiaacIcacaWGTbGaaiykaaaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadY gaaeqaaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGUbGa aiykaaaakiabgUcaRiabeg8aYjabeM8a3naaDaaaleaacaWGTbaaba GaaGOmaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGTbGa aiykaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGUbGaai ykaaaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Gaey4kIipakiaa dsgacaWGwbGaeyypa0JaaGimaaaaaa@A897@

 

2. Next, we show that

V C ijkl 2 U k (n) x i x l U j (m) dV = V C ijkl 2 U k (m) x i x l U j (n) dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaapefabaGaam4qamaaBaaale aacaWGPbGaamOAaiaadUgacaWGSbaabeaakmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamyvamaaDaaaleaacaWGRbaabaGaai ikaiaad6gacaGGPaaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaaaOGaam yvamaaDaaaleaacaWGQbaabaGaaiikaiaad2gacaGGPaaaaOGaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaai aadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGcdaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwfadaqhaaWcba Gaam4AaaqaaiaacIcacaWGTbGaaiykaaaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaGccqGHciITcaWG4bWaaSbaaSqaaiaadY gaaeqaaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGUbGa aiykaaaaaeaacaWGwbaabeqdcqGHRiI8aOGaamizaiaadAfaaaa@6ADD@

To see this, integrate both sides of this expression by parts.  For example, for the left hand side,

V C ijkl 2 U k (n) x i x l U j (m) dV = V x i C ijkl U k (n) x l U j (m) dV V C ijkl U k (n) x l U j (n) x i dV = S C ijkl U k (n) x l U j (m) n i dA V C ijkl U k (n) x l U j (m) x i dV = V C ijkl U k (n) x l U j (m) x i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaMc8+aa8quaeaacaWGdbWaaS baaSqaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOWaaSaaaeaacqGH ciITdaahaaWcbeqaaiaaikdaaaGccaWGvbWaa0baaSqaaiaadUgaae aacaGGOaGaamOBaiaacMcaaaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaWGSbaabeaaaa GccaWGvbWaa0baaSqaaiaadQgaaeaacaGGOaGaamyBaiaacMcaaaGc caWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maape fabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaa dMgaaeqaaaaakmaabmaabaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakmaalaaabaGaeyOaIyRaamyvamaaDaaaleaa caWGRbaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacaWGSbaabeaaaaGccaWGvbWaa0baaSqaaiaadQgaaeaa caGGOaGaamyBaiaacMcaaaaakiaawIcacaGLPaaaaSqaaiaadAfaae qaniabgUIiYdGccaWGKbGaamOvaiabgkHiTmaapefabaGaam4qamaa BaaaleaacaWGPbGaamOAaiaadUgacaWGSbaabeaakmaalaaabaGaey OaIyRaamyvamaaDaaaleaacaWGRbaabaGaaiikaiaad6gacaGGPaaa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGSbaabeaaaaGcdaWcaa qaaiabgkGi2kaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGUbGa aiykaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaO GaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdaakeaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabg2da9maapefabaWaaeWaaeaacaWGdbWaaSbaaSqaaiaa dMgacaWGQbGaam4AaiaadYgaaeqaaOWaaSaaaeaacqGHciITcaWGvb Waa0baaSqaaiaadUgaaeaacaGGOaGaamOBaiaacMcaaaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiaadYgaaeqaaaaakiaadwfadaqhaaWcba GaamOAaaqaaiaacIcacaWGTbGaaiykaaaaaOGaayjkaiaawMcaaiaa d6gadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaam4uaa qab0Gaey4kIipakiabgkHiTmaapefabaGaam4qamaaBaaaleaacaWG PbGaamOAaiaadUgacaWGSbaabeaakmaalaaabaGaeyOaIyRaamyvam aaDaaaleaacaWGRbaabaGaaiikaiaad6gacaGGPaaaaaGcbaGaeyOa IyRaamiEamaaBaaaleaacaWGSbaabeaaaaGcdaWcaaqaaiabgkGi2k aadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGTbGaaiykaaaaaOqa aiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamizaiaadA faaSqaaiaadAfaaeqaniabgUIiYdaakeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0Jaey OeI0Yaa8quaeaacaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4Aaiaa dYgaaeqaaOWaaSaaaeaacqGHciITcaWGvbWaa0baaSqaaiaadUgaae aacaGGOaGaamOBaiaacMcaaaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadYgaaeqaaaaakmaalaaabaGaeyOaIyRaamyvamaaDaaaleaaca WGQbaabaGaaiikaiaad2gacaGGPaaaaaGcbaGaeyOaIyRaamiEamaa BaaaleaacaWGPbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOvaaqab0 Gaey4kIipaaaaa@95F2@

where we have used the divergence theorem, and noted that the integral over the surface of the solid is zero because of the boundary conditions for U i (m) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad2gacaGGPaaaaaaa@3520@  and U i (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad6gacaGGPaaaaaaa@3521@ .  An exactly similar argument shows that

V C ijkl 2 U k (m) x i x l U j (n) dV = V C ijkl U k (m) x l U j (n) x i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaapefabaGaam4qamaaBaaale aacaWGPbGaamOAaiaadUgacaWGSbaabeaakmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamyvamaaDaaaleaacaWGRbaabaGaai ikaiaad2gacaGGPaaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaakiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaaaOGaam yvamaaDaaaleaacaWGQbaabaGaaiikaiaad6gacaGGPaaaaOGaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpcqGHsislda WdrbqaaiaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqa baGcdaWcaaqaaiabgkGi2kaadwfadaqhaaWcbaGaam4AaaqaaiaacI cacaWGTbGaaiykaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiB aaqabaaaaOWaaSaaaeaacqGHciITcaWGvbWaa0baaSqaaiaadQgaae aacaGGOaGaamOBaiaacMcaaaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadMgaaeqaaaaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRi I8aaaa@6C58@

Recalling that C ijkl = C klij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B54@  shows the result.

 

3. Finally, orthogonality of the mode shapes follows by subtracting the second equation in (1) from the first, and using (2) to see that

ω n 2 ω m 2 V U j (n) U j (m) dV=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaabmaabaGaeqyYdC3aa0baaS qaaiaad6gaaeaacaaIYaaaaOGaeyOeI0IaeqyYdC3aa0baaSqaaiaa d2gaaeaacaaIYaaaaaGccaGLOaGaayzkaaWaa8quaeaadaqadaqaai aadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGUbGaaiykaaaakiaa dwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGTbGaaiykaaaaaOGaay jkaiaawMcaaaWcbaGaamOvaaqab0Gaey4kIipakiaadsgacaWGwbGa eyypa0JaaGimaaaa@4D18@

If m and n are two distinct modes with different natural frequencies, the mode shapes must be orthogonal.

 

 

Proof of Rayleigh’s principle

 

1. Note first that any kinematically admissible displacement field can be expressed as a linear combination of mode shapes as

U ^ i = n=1 α n U i (n) α m = V U ^ i U i (m) dV V U i (m) U i (m) dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaajaWaaSbaaSqaaiaadMgaae qaaOGaeyypa0ZaaabCaeaacqaHXoqydaWgaaWcbaGaamOBaaqabaGc caWGvbWaa0baaSqaaiaadMgaaeaacaGGOaGaamOBaiaacMcaaaaaba GaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHXoqy daWgaaWcbaGaamyBaaqabaGccqGH9aqpdaWcaaqaamaapefabaGabm yvayaajaWaaSbaaSqaaiaadMgaaeqaaOGaamyvamaaDaaaleaacaWG PbaabaGaaiikaiaad2gacaGGPaaaaOGaamizaiaadAfaaSqaaiaadA faaeqaniabgUIiYdaakeaadaWdrbqaaiaadwfadaqhaaWcbaGaamyA aaqaaiaacIcacaWGTbGaaiykaaaakiaadwfadaqhaaWcbaGaamyAaa qaaiaacIcacaWGTbGaaiykaaaakiaadsgacaWGwbaaleaacaWGwbaa beqdcqGHRiI8aaaaaaa@76B8@

To see the formula for the coefficients α m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaad2gaaeqaaa aa@339D@ , multiply both sides of the first equation by U i (m) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad2gacaGGPaaaaaaa@3520@ , integrate over the volume of the solid, and use the orthogonality of the mode shapes.

 

2. Secondly, note that the mode shapes satisfy

V C ijkl U k (m) x l U j (n) x i dV = ω m 2 V U j (m) U j (m) dVm=n 0mn MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaajaaWcaWGdbGcdaWgaaqcba CaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOWaaSaaaeaacqGHciIT caWGvbWaa0baaSqaaiaadUgaaeaacaGGOaGaamyBaiaacMcaaaaake aacqGHciITcaWG4bWaaSbaaSqaaiaadYgaaeqaaaaakmaalaaabaGa eyOaIyRaamyvamaaDaaaleaacaWGQbaabaGaaiikaiaad6gacaGGPa aaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccaWG KbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maaceaaba qbaeqabiqaaaqaaiabeM8a3naaDaaaleaacaWGTbaabaGaaGOmaaaa kmaapefabaWaaeWaaeaacaWGvbWaa0baaSqaaiaadQgaaeaacaGGOa GaamyBaiaacMcaaaGccaWGvbWaa0baaSqaaiaadQgaaeaacaGGOaGa amyBaiaacMcaaaaakiaawIcacaGLPaaaaSqaaiaadAfaaeqaniabgU IiYdGccaWGKbGaamOvaiaaykW7caaMc8UaaGPaVlaaykW7caWGTbGa eyypa0JaamOBaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaamyBaiabgcMi5kaad6gaaaaaca GL7baaaaa@BCBE@

To see this, note first that because U i (m) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaDaaaleaacaWGPbaabaGaai ikaiaad2gacaGGPaaaaaaa@3520@  satisfies the equation of motion, it follows that

V C ijkl 2 U k (m) x i x l U j (m) +ρ ω m 2 U j (m) U j (m) dV=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaapefabaWaaeWaaeaajaaWca WGdbGcdaWgaaqcbaCaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGvbWaa0baaS qaaiaadUgaaeaacaGGOaGaamyBaiaacMcaaaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaaca WGSbaabeaaaaGccaWGvbWaa0baaSqaaiaadQgaaeaacaGGOaGaamyB aiaacMcaaaGccqGHRaWkjaaWcqaHbpGCcqaHjpWDkmaaDaaaleaaca WGTbaabaGaaGOmaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIca caWGTbGaaiykaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcaca WGTbGaaiykaaaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Gaey4k IipakiaadsgacaWGwbGaeyypa0JaaGimaaaa@62C2@

Next, integrate the first term in this integral by parts (see step (2) in the poof of orthogonality of the mode shapes), and use the orthogonality of the mode shapes to see the result stated.

 

3. We may now expand the potential and kinetic energy measures V ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaaaaa@31CB@  and T ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmivayaajaaaaa@31C9@  in terms of sums of the mode shapes as follows

V ^ = V 1 2 C ijkl n=1 α n U j (n) x i m=1 α m U k (m) x l = 1 2 ρ m=1 ω m 2 α m 2 V U j (m) U j (m) dV T ^ = V ρ 2 n=1 α n U j (n) m=1 α m U j (m) dV= 1 2 ρ m=1 α m 2 V U j (m) U j (m) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWGwbGbaKaacqGH9aqpdaWdrb qaamaalaaabaGaaGymaaqaaiaaikdaaaGaam4qamaaBaaaleaacaWG PbGaamOAaiaadUgacaWGSbaabeaakmaabmaabaWaaabCaeaacqaHXo qydaWgaaWcbaGaamOBaaqabaGcdaWcaaqaaiabgkGi2kaadwfadaqh aaWcbaGaamOAaaqaaiaacIcacaWGUbGaaiykaaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaqaaiaad6gacqGH9aqpcaaI XaaabaGaeyOhIukaniabggHiLdaakiaawIcacaGLPaaaaSqaaiaadA faaeqaniabgUIiYdGcdaqadaqaamaaqahabaGaeqySde2aaSbaaSqa aiaad2gaaeqaaOWaaSaaaeaacqGHciITcaWGvbWaa0baaSqaaiaadU gaaeaacaGGOaGaamyBaiaacMcaaaaakeaacqGHciITcaWG4bWaaSba aSqaaiaadYgaaeqaaaaaaeaacaWGTbGaeyypa0JaaGymaaqaaiabg6 HiLcqdcqGHris5aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI XaaabaGaaGOmaaaacqaHbpGCdaaeWbqaaiabeM8a3naaDaaaleaaca WGTbaabaGaaGOmaaaakiabeg7aHnaaDaaaleaacaWGTbaabaGaaGOm aaaaaeaacaWGTbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aO Waa8quaeaadaqadaqaaiaadwfadaqhaaWcbaGaamOAaaqaaiaacIca caWGTbGaaiykaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcaca WGTbGaaiykaaaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Gaey4k IipakiaadsgacaWGwbaabaGabmivayaajaGaeyypa0Zaa8quaeaada Wcaaqaaiabeg8aYbqaaiaaikdaaaWaaeWaaeaadaaeWbqaaiabeg7a HnaaBaaaleaacaWGUbaabeaakiaadwfadaqhaaWcbaGaamOAaaqaai aacIcacaWGUbGaaiykaaaaaeaacaWGUbGaeyypa0JaaGymaaqaaiab g6HiLcqdcqGHris5aaGccaGLOaGaayzkaaaaleaacaWGwbaabeqdcq GHRiI8aOWaaeWaaeaadaaeWbqaaiabeg7aHnaaBaaaleaacaWGTbaa beaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIcacaWGTbGaaiykaa aaaeaacaWGTbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aaGc caGLOaGaayzkaaGaamizaiaadAfacqGH9aqpdaWcaaqaaiaaigdaae aacaaIYaaaaiabeg8aYnaaqahabaGaeqySde2aa0baaSqaaiaad2ga aeaacaaIYaaaaaqaaiaad2gacqGH9aqpcaaIXaaabaGaeyOhIukani abggHiLdGcdaWdrbqaamaabmaabaGaamyvamaaDaaaleaacaWGQbaa baGaaiikaiaad2gacaGGPaaaaOGaamyvamaaDaaaleaacaWGQbaaba Gaaiikaiaad2gacaGGPaaaaaGccaGLOaGaayzkaaaaleaacaWGwbaa beqdcqGHRiI8aaaaaa@C7F3@

where we have used the result given in step (2) and orthogonality of the mode shapes.

 

4. Finally, we know that ω m ω 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaSbaaSqaaiaad2gaaeqaaO GaeyyzImRaeqyYdC3aaSbaaSqaaiaaigdaaeqaaaaa@384F@  for m1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabgwMiZkaaigdaaaa@3453@ , which shows that

V ^ 1 2 ρ ω 1 2 m=1 α m 2 V U j (m) U j (m) dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaGaeyyzIm7aaSaaaeaaca aIXaaabaGaaGOmaaaacqaHbpGCcqaHjpWDdaqhaaWcbaGaaGymaaqa aiaaikdaaaGcdaaeWbqaaiabeg7aHnaaDaaaleaacaWGTbaabaGaaG OmaaaaaeaacaWGTbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5 aOWaa8quaeaadaqadaqaaiaadwfadaqhaaWcbaGaamOAaaqaaiaacI cacaWGTbGaaiykaaaakiaadwfadaqhaaWcbaGaamOAaaqaaiaacIca caWGTbGaaiykaaaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Gaey 4kIipakiaadsgacaWGwbaaaa@5343@

We see immediately that V ^ / T ^ ω 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOvayaajaGaai4laiqadsfagaqcai abgwMiZkabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaaaaa@389E@ , with equality if and only if α m =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaad2gaaeqaaO Gaeyypa0JaaGimaaaa@3567@  for m>1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabg6da+iaaigdaaaa@3395@

 

 

 

5.9.2 Estimate of natural frequency of vibration for a beam using Rayleigh-Ritz method

 

The figure below illustrates the problem to be solved: an initially straight beam has Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@ , and its cross-section has area A and moment of area I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysaaaa@31AE@ .  The left hand end of the beam is clamped, the right hand end is free.  We wish to estimate the lowest natural frequency of vibration.

 


 

The deformation of a beam can be characterized by the deflection w(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DaiaacIcacaWG4bGaaiykaaaa@3432@  of its neutral section.  The potential energy of the beam can be calculated from the formula derived in Section 5.6.4, while the kinetic energy measure T can be approximated by assuming the entire cross-section displaces with the mid-plane without rotation, which gives

V(w)= 0 L 1 2 EI d 2 w( x 3 ) d x 3 2 2 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbiqaaaDecaWGwbGaaiikaiaadEhacaGGPa Gaeyypa0Zaa8qCaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaadwea caWGjbWaaiWaaeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaa GccaWG3bGaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaaa baGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGcdaahaaWcbeqaai aaikdaaaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaaIYaaaaOGa aGPaVlaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiaaicdaae aacaWGmbaaniabgUIiYdaaaa@4E7C@     T(w)= 0 L 1 2 ρA w( x 3 ) 2 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbiqaaaDecaWGubGaaiikaiaadEhacaGGPa Gaeyypa0Zaa8qCaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8a YjaadgeadaGadaqaaiaadEhacaGGOaGaamiEamaaBaaaleaacaaIZa aabeaakiaacMcaaiaawUhacaGL9baadaahaaWcbeqaaiaaikdaaaGc caaMc8UaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaaGimaa qaaiaadYeaa0Gaey4kIipaaaa@49B0@

The natural frequency can be estimated by selecting a suitable approximation for the mode shape W ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaajaaaaa@31CC@ , and minimizing the ratio V/T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvaiaac+cacaWGubaaaa@3347@ , as follows:

 

1. Note that the mode shape must satisfy the boundary conditions W ^ =d W ^ /d x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaajaGaeyypa0JaamizaiqadE fagaqcaiaac+cacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaakiab g2da9iaaicdaaaa@39F1@ .  We could try a polynomial W ^ = x 1 2 +C x 1 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaajaGaeyypa0JaamiEamaaDa aaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadoeacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIZaaaaaaa@39C9@ , where C is a parameter that can be adjusted to get the best estimate for the natural frequency.

 

2. Substituting this estimate into the definitions of V and T and evaluating the integrals gives

V T = EI ρA L 4 420(1+3CL+3 C 2 L 2 ) (15 C 2 L 2 +35CL+21) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGwbaabaGaamivaaaacq GH9aqpdaWcaaqaaiaadweacaWGjbaabaGaeqyWdiNaamyqaiaadYea daahaaWcbeqaaiaaisdaaaaaaOWaaSaaaeaacaaI0aGaaGOmaiaaic dacaGGOaGaaGymaiabgUcaRiaaiodacaWGdbGaamitaiabgUcaRiaa iodacaWGdbWaaWbaaSqabeaacaaIYaaaaOGaamitamaaCaaaleqaba GaaGOmaaaakiaacMcaaeaacaGGOaGaaGymaiaaiwdacaWGdbWaaWba aSqabeaacaaIYaaaaOGaamitamaaCaaaleqabaGaaGOmaaaakiabgU caRiaaiodacaaI1aGaam4qaiaadYeacqGHRaWkcaaIYaGaaGymaiaa cMcaaaaaaa@52EE@

 

3. To get the best estimate for the natural frequency, we must minimize this expression with respect to C.  It is straightforward to show that the minimum value occurs for CL= 39 12 /15 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiaadYeacqGH9aqpdaqadaqaam aakaaabaGaaG4maiaaiMdaaSqabaGccqGHsislcaaIXaGaaGOmaaGa ayjkaiaawMcaaiaac+cacaaIXaGaaGynaaaa@3B3E@ . Substituting this value back into the results of step (2) gives

V T =12.48 EI ρA L 4 ω 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGwbaabaGaamivaaaacq GH9aqpcaaIXaGaaGOmaiaac6cacaaI0aGaaGioamaalaaabaGaamyr aiaadMeaaeaacqaHbpGCcaWGbbGaamitamaaCaaaleqabaGaaGinaa aaaaGccqGHLjYScqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaa@41C3@

 

4. For comparison, the formula for exact natural frequency of the lowest mode is derived in Section 10.4.1, and gives ω 2 =12.36EI/(ρA L 4 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaO Gaeyypa0JaaGymaiaaikdacaGGUaGaaG4maiaaiAdacaWGfbGaamys aiaac+cacaGGOaGaeqyWdiNaamyqaiaadYeadaahaaWcbeqaaiaais daaaGccaGGPaaaaa@403C@ .