Chapter 6
Solutions for Plastic Solids

 

 

 

Plasticity problems are much more difficult to solve than linear elastic problems.  In general, a numerical method must be used, as discussed in Chapters 7 and 8. Nevertheless, exact solutions can be found for some solids with simple shapes, and special tricks are available to find approximate solutions for plastically deforming solids.  In this chapter we derive solutions for spherically and axially symmetric solids subjected to internal pressure, which illustrate the general behavior of elastic-plastic solids subjected to loading, including the elastic limit, plastic collapse, and shakedown in solids subjected to cyclic loading.   We then discuss bounding theorems, which provide a quick way to estimate collapse loads and shakedown limits for plastic solids and structures.

 

 

 

6.1 Axially and spherically symmetric solutions to quasi-static elastic-plastic problems

 

In this section, we derive exact solutions to simple boundary value problems involving elastic-perfectly plastic solids.  The solutions are of interest primarily because they illustrate important general features of solids that are loaded beyond yield.  In particular, they illustrate the concepts of

 

1. The elastic limit MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this is the load required to initiate plastic flow in the solid.

 

2. The plastic collapse load MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  at this load the displacements in the solid become infinite.

 

3. Residual stress - if a solid is loaded beyond the elastic limit and then unloaded, a system of self-equilibrated stress is established in the material.

 

4. Shakedown - if an elastic-plastic solid is subjected to cyclic loading, and the maximum load during the cycle exceeds yield, then some plastic deformation must occur in the material during the first load cycle.  However, residual stresses are introduced in the solid, which may prevent plastic flow during subsequent cycles of load.  This process is known as `shakedown’ and the maximum load for which it can occur is known as the `shakedown limit.’  The shakedown limit is often substantially higher than the elastic limit, so the concept of shakedown can often be used to reduce the weight of a design.

 

5. Cyclic plasticity - for cyclic loads exceeding the shakedown limit, a region in the solid will be repeatedly plastically deformed.

 

 

 

6.1.1 Summary of governing equations

 

A representative problem is sketched below

 


 

 We are given the following information

 

1. The geometry of the solid

 

2. The constitutive law for the material (i.e. the elastic-plastic stress-strain equations)

 

3. The body force density b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E0@  (per unit mass) (if any)

 

4. The temperature distribution ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaaaa@331E@  (if any)

 

5. Prescribed boundary tractions t i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F2@  and/or boundary displacements u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@

 

In addition, to simplify the problem, we make the following assumptions

 

1. All displacements are small.  This means that we can use the infinitesimal strain tensor to characterize deformation; we do not need to distinguish between stress measures, and we do not need to distinguish between deformed and undeformed configurations of the solid when writing equilibrium equations and boundary conditions.

 

2. The material is an isotropic, elastic-perfectly plastic solid, with Young’s modulus E , Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3297@ ,  yield stress Y and mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@

 

3. We will neglect temperature changes.

 

 

With these assumptions, we need to solve for the displacement field u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@ , the strain field ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@348F@  and the stress field σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  satisfying the following equations:

· Displacement-strain relation ε ij = 1 2 u i x j + u j x i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@47C9@

 

· Incremental stress-strain relation

d ε ij =d ε ij e +d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadMga caWGQbaabaGaamyzaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@4288@

d ε ij e = 1+ν E d σ ij ν 1+ν d σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWk cqaH9oGBaeaacaWGfbaaamaabmaabaGaamizaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiabe27aUbqaaiaa igdacqGHRaWkcqaH9oGBaaGaamizaiabeo8aZnaaBaaaleaacaWGRb Gaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGc caGLOaGaayzkaaaaaa@506F@

d ε ij p = 0 3 2 S ij S ij <Y d ε ¯ p 3 2 S ij Y 3 2 S ij S ij =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpdaGabaqaauaabeqaceaaaeaa caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG4maaqaaiaaikda aaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaaaeqaaOGaeyipaWJaamywaaqaaiaadsga cuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG4maa qaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaaaOqaaiaadMfaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daGcaaqaamaalaaabaGaaG4maaqaaiaaikda aaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaaaeqaaOGaeyypa0JaamywaaaaaiaawUha aaaa@89B0@

where S ij = σ ij σ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0Iaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4295@

 

·         Equilibrium Equation σ ij x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caWGPbaabeaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaaGimaaaa@4110@  (static problems only MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  you need the acceleration terms for dynamic problems)

 

·         Traction boundary conditions σ ij n i = t j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaaaa@39E6@  on parts of the boundary where tractions are known.

 

·         Displacement boundary conditions u i = d i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadsgadaWgaaWcbaGaamyAaaqabaaaaa@3606@  on parts of the boundary where displacements are known.

 

 

 

6.1.2 Simplified equations for spherically symmetric problems

 

A representative spherically symmetric problem is illustrated in the figure. We consider a hollow, spherical solid, which is subjected to spherically symmetric loading (i.e. internal body forces, as well as tractions or displacements applied to the surface, are independent of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@ , and act in the radial direction only).  If the temperature of the sphere is non-uniform, it must also be spherically symmetric (a function of r only).

 

The solution is most conveniently expressed using a spherical-polar coordinate system, illustrated in Figure 6.2.  The general procedure for solving problems with spherical and cylindrical coordinates is complicated, and is discussed in detail in Chapter 10 in the context of modeling deformation in shells.  In this section, we summarize the special form of these equations for spherically symmetric problems.

 

As usual, a point in the solid is identified by its spherical-polar co-ordinates (r,θ,ϕ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ilaiabew9aMjaacMcaaaa@380E@ . All vectors and tensors are expressed as components in the Cartesian basis e r , e θ , e ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk haaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYca caWHLbWaaSbaaSqaaiabew9aMbqabaaakiaawUhacaGL9baaaaa@3C52@  shown in the figure.  For a spherically symmetric problem we have that

 

· Position Vector       x=r e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iaadkhacaWHLbWaaS baaSqaaiaadkhaaeqaaaaa@35EE@

 

· Displacement vector u=u(r) e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhacaGGOaGaam OCaiaacMcacaWHLbWaaSbaaSqaaiaadkhaaeqaaaaa@383E@

 

· Body force vector b= ρ 0 b(r) e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iabeg8aYnaaBaaale aacaaIWaaabeaakiaadkgacaGGOaGaamOCaiaacMcacaWHLbWaaSba aSqaaiaadkhaaeqaaaaa@3AC8@

 

 

Here, u r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaabmaabaGaamOCaaGaayjkai aawMcaaaaa@345A@  and b r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaabmaabaGaamOCaaGaayjkai aawMcaaaaa@3447@  are scalar functions. The stress and strain tensors (written as components in { e r , e θ , e ϕ } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaeqy1dygabeaakiaac2haaaa@3C20@  ) have the form

σ σ rr 0 0 0 σ θθ 0 0 0 σ ϕϕ ε ε rr 0 0 0 ε θθ 0 0 0 ε ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyyyIO7aamWaaeaafaqabe WadaaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabeo8aZnaaBaaaleaacqaH4o qCcqaH4oqCaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaaaaGccaGLBbGaay zxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzcq GHHjIUdaWadaqaauaabeqadmaaaeaacqaH1oqzdaWgaaWcbaGaamOC aiaadkhaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq yTdu2aaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacqaH1oqzdaWgaaWcbaGaeqy1dyMaeqy1dy gabeaaaaaakiaawUfacaGLDbaaaaa@7795@

and furthermore must satisfy σ θθ = σ ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaaaaa@3CCA@   ε θθ = ε ϕϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaH1oqzdaWgaaWcbaGaeqy1dyMaeqy1dyga beaaaaa@3C92@ . The tensor components have exactly the same physical interpretation as they did when we used a fixed { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39DF@  basis, except that the subscripts (1,2,3) have been replaced by (r,θ,z) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ilaiaadQhacaGGPaaaaa@3744@ .

 

For spherical symmetry, the governing equations reduce to

 

· Strain Displacement Relations ε rr = du dr ε ϕϕ = ε θθ = u r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaamizaiaadwhaaeaacaWGKbGaamOC aaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqaH1oqzdaWgaaWcbaGaeqy1dyMaeqy1dygabeaakiab g2da9iabew7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaeyypa0 ZaaSaaaeaacaWG1baabaGaamOCaaaaaaa@562A@

 

· Stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ Strain relations

 

In elastic region(s)

σ rr = E 1+ν 12ν (1ν) ε rr +ν ε θθ +ν ε ϕϕ σ θθ = σ ϕϕ = E 1+ν 12ν ε θθ +ν ε rr MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaWaaeWaaeaacaaI XaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey OeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaaadaGadaqaaiaacIca caaIXaGaeyOeI0IaeqyVd4Maaiykaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGHRaWkcqaH9oGBcqaH1oqzdaWgaaWcbaGaeqiU deNaeqiUdehabeaakiabgUcaRiabe27aUjabew7aLnaaBaaaleaacq aHvpGzcqaHvpGzaeqaaaGccaGL7bGaayzFaaaabaGaeq4Wdm3aaSba aSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcba Gaeqy1dyMaeqy1dygabeaakiabg2da9maalaaabaGaamyraaqaamaa bmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaamaabmaaba GaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaaWaaiWa aeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabgUcaRi abe27aUjabew7aLnaaBaaaleaacaWGYbGaamOCaaqabaaakiaawUha caGL9baaaaaa@8205@

σ θθ σ rr <Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacqaHdpWCdaWgaaWcbaGaeq iUdeNaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGYbGa amOCaaqabaaakiaawEa7caGLiWoacqGH8aapcaWGzbaaaa@401D@

In plastic region(s)

 

Yield criterion:   σ θθ σ rr =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacqaHdpWCdaWgaaWcbaGaeq iUdeNaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGYbGa amOCaaqabaaakiaawEa7caGLiWoacqGH9aqpcaWGzbaaaa@401F@

Strain partition:

d ε rr =d ε rr p +d ε rr e d ε ϕϕ =d ε ϕϕ p +d ε ϕϕ e d ε θθ =d ε θθ p +d ε θθ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadkha caWGYbaabaGaamiCaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamOCaiaadkhaaeaacaWGLbaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaamizaiabew7aLnaaBaaaleaacqaHvpGzcqaHvp GzaeqaaOGaeyypa0Jaamizaiabew7aLnaaDaaaleaacqaHvpGzcqaH vpGzaeaacaWGWbaaaOGaey4kaSIaamizaiabew7aLnaaDaaaleaacq aHvpGzcqaHvpGzaeaacaWGLbaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaamizaiabew7aLnaaBaaaleaacqaH4oqCcqaH4o qCaeqaaOGaeyypa0Jaamizaiabew7aLnaaDaaaleaacqaH4oqCcqaH 4oqCaeaacaWGWbaaaOGaey4kaSIaamizaiabew7aLnaaDaaaleaacq aH4oqCcqaH4oqCaeaacaWGLbaaaaaa@8269@

Elastic strain:

d ε rr e =d σ rr /Eν(d σ θθ +d σ ϕϕ )/E d ε θθ e =d ε ϕϕ e =d σ θθ (1ν)/Eνd σ rr /E MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aadkhacaWGYbaabaGaamyzaaaakiabg2da9iaadsgacqaHdpWCdaWg aaWcbaGaamOCaiaadkhaaeqaaOGaai4laiaadweacqGHsislcqaH9o GBcaGGOaGaamizaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqa aOGaey4kaSIaamizaiabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGzae qaaOGaaiykaiaac+cacaWGfbaabaGaamizaiabew7aLnaaDaaaleaa cqaH4oqCcqaH4oqCaeaacaWGLbaaaOGaeyypa0Jaamizaiabew7aLn aaDaaaleaacqaHvpGzcqaHvpGzaeaacaWGLbaaaOGaeyypa0Jaamiz aiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaaiikaiaaig dacqGHsislcqaH9oGBcaGGPaGaai4laiaadweacqGHsislcqaH9oGB caWGKbGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaakiaac+caca WGfbaaaaa@76D5@

Flow rule:         

d ε rr p =d ε ¯ p ( σ rr σ θθ )/Y d ε θθ p =d ε ϕϕ p =d ε ¯ p ( σ θθ σ rr )/(2Y) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aadkhacaWGYbaabaGaamiCaaaakiabg2da9iaadsgacuaH1oqzgaqe amaaCaaaleqabaGaamiCaaaakiaacIcacqaHdpWCdaWgaaWcbaGaam OCaiaadkhaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabeI7aXjab eI7aXbqabaGccaGGPaGaai4laiaadMfaaeaacaWGKbGaeqyTdu2aa0 baaSqaaiabeI7aXjabeI7aXbqaaiaadchaaaGccqGH9aqpcaWGKbGa eqyTdu2aa0baaSqaaiabew9aMjabew9aMbqaaiaadchaaaGccqGH9a qpcaWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaGccaGGOaGa eq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGHsislcqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGaaiykaiaac+cacaGGOaGa aGOmaiaadMfacaGGPaaaaaa@6C19@

 

· Equilibrium Equations

d σ rr dr + 1 r 2 σ rr σ θθ σ ϕϕ + ρ 0 b r =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgUcaRmaa laaabaGaaGymaaqaaiaadkhaaaWaaeWaaeaacaaIYaGaeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaakiabgkHiTiabeo8aZnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabew 9aMjabew9aMbqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVlabgUca Riabeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaam OCaaqabaGccqGH9aqpcaaIWaaaaa@57B3@

 

· Boundary Conditions

 

Prescribed Displacements u r (a)= g a u r (b)= g b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki aacIcacaWGHbGaaiykaiabg2da9iaadEgadaWgaaWcbaGaamyyaaqa baGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaamyDamaaBaaaleaacaWGYbaabeaakiaacIcacaWGIbGaaiykai abg2da9iaadEgadaWgaaWcbaGaamOyaaqabaaaaa@586F@

Prescribed Tractions σ rr (a)= t a σ rr (b)= t b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiaacIcacaWGHbGaaiykaiabg2da9iaadshadaWgaaWcbaGa amyyaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaaiikaiaadkgacaGGPaGaeyypa0JaamiDamaaBaaaleaacaWGIb aabeaaaaa@513C@

 

The equilibrium and strain-displacement equations can be derived following the procedure outlined in Section 4.1.2.  The stress-strain relations are derived by substituting the strain components into the general constitutive equation and simplifying the result.

 

Unlike the elastic solution discussed in Sect 4.1, there is no clean, direct and general method for integrating these equations.  Instead, solutions must be found using a combination of physical intuition and some algebraic tricks, as illustrated in the sections below.

 

 

 

6.1.3 Elastic-perfectly plastic hollow sphere subjected to monotonically increasing internal pressure

 

A pressurized spherical thick-walled sphere is illustrated in the figure.  Assume that

 

· The sphere is stress free before it is loaded

 

· No body forces act on the sphere

 

· The sphere has uniform temperature

 

· The inner surface r=a is subjected to (monotonically increasing) pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@

 

· The outer surface r=b is traction free

 

· Strains are infinitesimal

 

 

Solution:

 

(i) Preliminaries:

 

· The sphere first reaches yield (at r=a) at an internal pressure p a /Y=2(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGOmaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1D@

 

· For pressures in the range 2(1 a 3 / b 3 )/3< p a /Y<2log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaacIcacaaIXaGaeyOeI0Iaam yyamaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaa caaIZaaaaOGaaiykaiaac+cacaaIZaGaeyipaWJaamiCamaaBaaale aacaWGHbaabeaakiaac+cacaWGzbGaeyipaWJaaGOmaiGacYgacaGG VbGaai4zaiaacIcacaWGIbGaai4laiaadggacaGGPaaaaa@4784@  the region between r=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadggaaaa@33C3@  and r=c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadogaaaa@33C5@  deforms plastically; while the region between c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@  remains elastic, where c satisfies the equation p a /Y=2log(c/a)+ 2 3 (1 c 3 / b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGOmaiGacYgacaGGVbGaai4zaiaacIca caWGJbGaai4laiaadggacaGGPaGaey4kaSYaaSaaaeaacaaIYaaaba GaaG4maaaacaGGOaGaaGymaiabgkHiTiaadogadaahaaWcbeqaaiaa iodaaaGccaGGVaGaamOyamaaCaaaleqabaGaaG4maaaakiaacMcaaa a@46C4@

 

 

· At a pressure p a /Y=2log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGOmaiGacYgacaGGVbGaai4zaiaacIca caWGIbGaai4laiaadggacaGGPaaaaa@3CED@  the entire cylinder is plastic.  At this point the sphere collapses MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the displacements become infinitely large.

 

 

(ii) Solution in the plastic region a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@

u= 12ν E r 2Ylog(r/a) p a e r + Y 1ν c 3 E r 2 e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9maalaaabaWaaeWaae aacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiaa dweaaaGaamOCamaacmaabaGaaGOmaiaadMfaciGGSbGaai4BaiaacE gacaGGOaGaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWg aaWcbaGaamyyaaqabaaakiaawUhacaGL9baacaWHLbWaaSbaaSqaai aadkhaaeqaaOGaey4kaSYaaSaaaeaacaWGzbWaaeWaaeaacaaIXaGa eyOeI0IaeqyVd4gacaGLOaGaayzkaaGaam4yamaaCaaaleqabaGaaG 4maaaaaOqaaiaadweacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiaa hwgadaWgaaWcbaGaamOCaaqabaaaaa@5751@

σ rr =2Ylog(r/a) p a σ θθ = σ ϕϕ =2Ylog(r/a) p a +Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiik aiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWaaSbaaSqaai aadggaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacqaH4oqCcq aH4oqCaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiabew9aMjabew9a MbqabaGccqGH9aqpcaaIYaGaamywaiGacYgacaGGVbGaai4zaiaacI cacaWGYbGaai4laiaadggacaGGPaGaeyOeI0IaamiCamaaBaaaleaa caWGHbaabeaakiabgUcaRiaadMfaaaa@6A97@     

 

(iii) Solution in the elastic region c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@

u= Y c 3 3E b 3 r 2 2 12ν r 3 + 1+ν b 3 e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9maalaaabaGaamywai aadogadaahaaWcbeqaaiaaiodaaaaakeaacaaIZaGaamyraiaadkga daahaaWcbeqaaiaaiodaaaGccaWGYbWaaWbaaSqabeaacaaIYaaaaa aakmaacmaabaGaaGOmamaabmaabaGaaGymaiabgkHiTiaaikdacqaH 9oGBaiaawIcacaGLPaaacaWGYbWaaWbaaSqabeaacaaIZaaaaOGaey 4kaSYaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaGa amOyamaaCaaaleqabaGaaG4maaaaaOGaay5Eaiaaw2haaiaahwgada WgaaWcbaGaamOCaaqabaaaaa@4F23@

σ rr = 2Y c 3 3 b 3 1 b 3 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGOmaiaadMfacaWGJbWaaWbaaSqa beaacaaIZaaaaaGcbaGaaG4maiaadkgadaahaaWcbeqaaiaaiodaaa aaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGIbWaaWbaaSqa beaacaaIZaaaaaGcbaGaamOCamaaCaaaleqabaGaaG4maaaaaaaaki aawIcacaGLPaaaaaa@42F2@        

   σ θθ = σ ϕϕ = 2Y c 3 3 b 3 1+ b 3 2 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaakiabg2da9maalaaabaGaaGOmaiaadMfacaWGJbWaaWbaaSqabe aacaaIZaaaaaGcbaGaaG4maiaadkgadaahaaWcbeqaaiaaiodaaaaa aOWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGIbWaaWbaaSqabe aacaaIZaaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqaaiaaiodaaaaa aaGccaGLOaGaayzkaaaaaa@4BB0@

These results are plotted below. Displacements are shown for ν=0.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aIZaaaaa@35C7@ .

 


Derivation: By substituting the stresses for the elastic solution given in 4.1.4 into the Von-Mises yield criterion, we see that a pressurized elastic sphere first reaches yield at r=a. If the pressure is increased beyond yield we anticipate that a region a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@  will deform plastically, while a region c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@  remains elastic. We must find separate solutions in the plastic and elastic regions.

 

In the plastic region a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@

 

1. We anticipate that σ rr <0 σ θθ = σ ϕϕ >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabgYda8iaaicdacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWg aaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9iabeo8aZnaaBaaale aacqaHvpGzcqaHvpGzaeqaaOGaeyOpa4JaaGimaaaa@48DC@ . The yield criterion then gives σ θθ σ rr =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0Jaamywaaaa@3CFD@

 

2. Substituting this result into the equilibrium equation given in Sect 4.2.2 shows that

d σ rr dr + 1 r 2 σ rr σ θθ σ ϕϕ =0 d σ rr dr 2 Y r =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgUcaRmaa laaabaGaaGymaaqaaiaadkhaaaWaaeWaaeaacaaIYaGaeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaakiabgkHiTiabeo8aZnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabew 9aMjabew9aMbqabaaakiaawIcacaGLPaaacaaMc8Uaeyypa0JaaGim aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVpaalaaabaGaamizaiabeo8aZnaaBaaale aacaWGYbGaamOCaaqabaaakeaacaWGKbGaamOCaaaacqGHsislcaaI YaWaaSaaaeaacaWGzbaabaGaamOCaaaacqGH9aqpcaaIWaaaaa@7AB3@

 

3. Integrating, and using the boundary condition σ rr = p a r=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaGc caaMc8UaaGPaVlaadkhacqGH9aqpcaWGHbaaaa@3EC4@  together with the yield condition 1.  gives

σ rr =2Ylog(r/a) p a σ θθ = σ ϕϕ =2Ylog(r/a) p a +Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiik aiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWaaSbaaSqaai aadggaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacqaH4oqCcq aH4oqCaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiabew9aMjabew9a MbqabaGccqGH9aqpcaaIYaGaamywaiGacYgacaGGVbGaai4zaiaacI cacaWGYbGaai4laiaadggacaGGPaGaeyOeI0IaamiCamaaBaaaleaa caWGHbaabeaakiabgUcaRiaadMfaaaa@6A97@

 

4. Since the pressure is monotonically increasing, the incremental stress-strain relations for the elastic-plastic region given in 4.2.2 can be integrated. The elastic strains follow as

ε rr e = σ rr 2ν σ θθ /E ε ϕϕ e = ε θθ e = (1ν) σ θθ ν σ rr /E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadkhacaWGYb aabaGaamyzaaaakiabg2da9maabmaabaGaeq4Wdm3aaSbaaSqaaiaa dkhacaWGYbaabeaakiabgkHiTiaaikdacqaH9oGBcqaHdpWCdaWgaa WcbaGaeqiUdeNaeqiUdehabeaaaOGaayjkaiaawMcaaiaac+cacaWG fbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzdaqhaaWcba Gaeqy1dyMaeqy1dygabaGaamyzaaaakiabg2da9iaaykW7cqaH1oqz daqhaaWcbaGaeqiUdeNaeqiUdehabaGaamyzaaaakiabg2da9maabm aabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaeq4Wdm3aaSba aSqaaiabeI7aXjabeI7aXbqabaGccqGHsislcqaH9oGBcqaHdpWCda WgaaWcbaGaamOCaiaadkhaaeqaaaGccaGLOaGaayzkaaGaai4laiaa dweaaaa@71D9@

 

5. The plastic strains satisfy ε rr p +2 ε θθ p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadkhacaWGYb aabaGaamiCaaaakiabgUcaRiaaikdacqaH1oqzdaqhaaWcbaGaeqiU deNaeqiUdehabaGaamiCaaaakiabg2da9iaaicdaaaa@3F3E@ .  Consequently, using the strain partition formula, the results of (iv), and the strain-displacement relation shows that

ε rr +2 ε θθ = ε rr e +2 ε θθ e = (12ν) E σ rr +2 σ θθ du dr + 2u r = 1 r 2 d dr r 2 u = (12ν) E 6Ylog(r/a)3 p a +2Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamOCai aadkhaaeqaaOGaey4kaSIaaGOmaiabew7aLnaaBaaaleaacqaH4oqC cqaH4oqCaeqaaOGaeyypa0JaeqyTdu2aa0baaSqaaiaadkhacaWGYb aabaGaamyzaaaakiabgUcaRiaaikdacqaH1oqzdaqhaaWcbaGaeqiU deNaeqiUdehabaGaamyzaaaakiabg2da9maalaaabaGaaiikaiaaig dacqGHsislcaaIYaGaeqyVd4MaaiykaaqaaiaadweaaaWaaeWaaeaa cqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGaey4kaSIaaGOmai abeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGccaGLOaGaayzk aaGaaGPaVdqaaiaaykW7cqGHshI3daWcaaqaaiaadsgacaWG1baaba GaamizaiaadkhaaaGaey4kaSYaaSaaaeaacaaIYaGaamyDaaqaaiaa dkhaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOCamaaCaaaleqaba GaaGOmaaaaaaGcdaWcaaqaaiaadsgaaeaacaWGKbGaamOCaaaadaqa daqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWG1baacaGLOaGaay zkaaGaeyypa0ZaaSaaaeaacaGGOaGaaGymaiabgkHiTiaaikdacqaH 9oGBcaGGPaaabaGaamyraaaadaqadaqaaiaaiAdacaWGzbGaciiBai aac+gacaGGNbGaaiikaiaadkhacaGGVaGaamyyaiaacMcacqGHsisl caaIZaGaamiCamaaBaaaleaacaWGHbaabeaakiabgUcaRiaaikdaca WGzbaacaGLOaGaayzkaaaaaaa@8C41@

 

6. Integrating gives

u= 12ν E r 2Ylog(r/a) p a +C/ r 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDaiabg2da9maalaaabaWaaeWaae aacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiaa dweaaaGaamOCamaacmaabaGaaGOmaiaadMfaciGGSbGaai4BaiaacE gacaGGOaGaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWg aaWcbaGaamyyaaqabaaakiaawUhacaGL9baacqGHRaWkcaWGdbGaai 4laiaadkhadaahaaWcbeqaaiaaikdaaaaaaa@4C15@

where C is a constant of integration

 

7. The constant of integration can be found by noting that the radial displacements in the elastic and plastic regions must be equal at r=c.  Using the expression for the elastic displacement field below and solving for C gives

C= 3 2 1ν c 3 b 3 E( b 3 c 3 ) p a 2Ylog(c/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiabg2da9maalaaabaGaaG4maa qaaiaaikdaaaWaaSaaaeaadaqadaqaaiaaigdacqGHsislcqaH9oGB aiaawIcacaGLPaaacaWGJbWaaWbaaSqabeaacaaIZaaaaOGaamOyam aaCaaaleqabaGaaG4maaaaaOqaaiaadweacaGGOaGaamOyamaaCaaa leqabaGaaG4maaaakiabgkHiTiaadogadaahaaWcbeqaaiaaiodaaa GccaGGPaaaamaacmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiab gkHiTiaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiikaiaadogaca GGVaGaamyyaiaacMcaaiaawUhacaGL9baaaaa@5121@

This result can be simplified by noting that p a 2Ylog(c/a)=2Y(1 c 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki abgkHiTiaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiikaiaadoga caGGVaGaamyyaiaacMcacqGH9aqpcaaIYaGaamywaiaacIcacaaIXa GaeyOeI0Iaam4yamaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWa aWbaaSqabeaacaaIZaaaaOGaaiykaiaac+cacaaIZaaaaa@479D@  from the expression for the location of the elastic-plastic boundary given below.

 

In the elastic region

 

The solution can be found directly from the solution to the internally pressurized elastic sphere given in Sect 4.1.4.  From step (iii) in the solution for the plastic region we see that the radial pressure at r=c is p c = σ rr = p a 2Ylog(c/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGJbaabeaaki abg2da9iabgkHiTiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGc cqGH9aqpcaWGWbWaaSbaaSqaaiaadggaaeqaaOGaeyOeI0IaaGOmai aadMfaciGGSbGaai4BaiaacEgacaGGOaGaam4yaiaac+cacaWGHbGa aiykaaaa@4515@ . We can simplify the solution by noting p a 2Ylog(c/a)=2Y(1 c 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki abgkHiTiaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiikaiaadoga caGGVaGaamyyaiaacMcacqGH9aqpcaaIYaGaamywaiaacIcacaaIXa GaeyOeI0Iaam4yamaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWa aWbaaSqabeaacaaIZaaaaOGaaiykaiaac+cacaaIZaaaaa@479D@  from the expression for the location of the elastic-plastic boundary.   Substituting into the expressions for stress and displacement shows that

σ rr = p c c 3 b 3 c 3 1 b 3 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaamiCamaaBaaaleaacaWGJbaabeaa kiaadogadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaadkgada ahaaWcbeqaaiaaiodaaaGccqGHsislcaWGJbWaaWbaaSqabeaacaaI ZaaaaaGccaGLOaGaayzkaaaaamaabmaabaGaaGymaiabgkHiTmaala aabaGaamOyamaaCaaaleqabaGaaG4maaaaaOqaaiaadkhadaahaaWc beqaaiaaiodaaaaaaaGccaGLOaGaayzkaaaaaa@4700@  

          σ θθ = σ ϕϕ = p c c 3 b 3 c 3 1+ b 3 2 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaakiabg2da9maalaaabaGaamiCamaaBaaaleaacaWGJbaabeaaki aadogadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaadkgadaah aaWcbeqaaiaaiodaaaGccqGHsislcaWGJbWaaWbaaSqabeaacaaIZa aaaaGccaGLOaGaayzkaaaaamaabmaabaGaaGymaiabgUcaRmaalaaa baGaamOyamaaCaaaleqabaGaaG4maaaaaOqaaiaaikdacaWGYbWaaW baaSqabeaacaaIZaaaaaaaaOGaayjkaiaawMcaaaaa@4FBE@

u= p c c 3 2E b 3 c 3 r 2 2 12ν r 3 + 1+ν b 3 e r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9maalaaabaGaamiCam aaBaaaleaacaWGJbaabeaakiaadogadaahaaWcbeqaaiaaiodaaaaa keaacaaIYaGaamyramaabmaabaGaamOyamaaCaaaleqabaGaaG4maa aakiabgkHiTiaadogadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGL PaaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakmaacmaabaGaaGOmam aabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaa caWGYbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSYaaeWaaeaacaaIXa Gaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaamOyamaaCaaaleqabaGa aG4maaaaaOGaay5Eaiaaw2haaiaahwgadaWgaaWcbaGaamOCaaqaba aaaa@54A9@

 

Location of the elastic-plastic boundary

 

Finally, the elastic-platsic boundary is located by the condition that the stress in the elastic region must just reach yield at r=c (so there is a smooth transition into the plastic region).  The yield condition is σ θθ σ rr =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0Jaamywaaaa@3CFD@ , so substituting the expressions for stress in the elastic region and simplifying yields

σ θθ σ rr = 3 p a 2Ylog(c/a) b 3 2 b 3 c 3 =Y p a Y =2log(c/a)+ 2 3 (1 c 3 / b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaeqiUde NaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGYbGaamOC aaqabaGccqGH9aqpdaWcaaqaaiaaiodadaqadaqaaiaadchadaWgaa WcbaGaamyyaaqabaGccqGHsislcaaIYaGaamywaiGacYgacaGGVbGa ai4zaiaacIcacaWGJbGaai4laiaadggacaGGPaaacaGLOaGaayzkaa GaamOyamaaCaaaleqabaGaaG4maaaaaOqaaiaaikdadaqadaqaaiaa dkgadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGJbWaaWbaaSqabe aacaaIZaaaaaGccaGLOaGaayzkaaaaaiabg2da9iaadMfaaeaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeyi1HSTaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7daWcaaqaaiaadchadaWgaaWcbaGaamyyaaqaba aakeaacaWGzbaaaiabg2da9iaaikdaciGGSbGaai4BaiaacEgacaGG OaGaam4yaiaac+cacaWGHbGaaiykaiabgUcaRmaalaaabaGaaGOmaa qaaiaaiodaaaGaaiikaiaaigdacqGHsislcaWGJbWaaWbaaSqabeaa caaIZaaaaOGaai4laiaadkgadaahaaWcbeqaaiaaiodaaaGccaGGPa aaaaa@87C9@

If p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@ , Y, a and b are specified this equation can be solved (numerically) for c.  For graphing purposes it is preferable to choose c and then calculate the corresponding value of p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@  

 

 

 

6.1.4 Elastic-perfectly plastic hollow sphere subjected to cyclic internal pressure

 

The figure illustrates a thick-walled internally pressurized sphere. Assume that

 

· The sphere is stress free before it is loaded

 

· No body forces act on the sphere

 

· The sphere has uniform temperature

 

· The outer surface r=b is traction free

 

 

Suppose that the inner surface of the sphere r=a is repeatedly subjected to pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@  and then unloaded to zero pressure.

 

Solution:

 

(i) Preliminaries:

 

· If the maximum pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@  applied to the sphere does not exceed the elastic limit (i.e. p a /Y<2(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyipaWJaaGOmaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1B@  ) the solid remains elastic throughout the loading cycle.  In this case, the sphere is stress free after unloading, and remains elastic throughout all subsequent load cycles.

 

· For pressures in the range 2(1 a 3 / b 3 )/3< p a /Y<2log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaacIcacaaIXaGaeyOeI0Iaam yyamaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaa caaIZaaaaOGaaiykaiaac+cacaaIZaGaeyipaWJaamiCamaaBaaale aacaWGHbaabeaakiaac+cacaWGzbGaeyipaWJaaGOmaiGacYgacaGG VbGaai4zaiaacIcacaWGIbGaai4laiaadggacaGGPaaaaa@4784@  the region between r=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadggaaaa@33C3@  and r=c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadogaaaa@33C5@  deforms plastically during the first application of pressure; while the region between c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@  remains elastic, where c satisfies the equation p a /Y=2log(c/a)+ 2 3 (1 c 3 / b 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGOmaiGacYgacaGGVbGaai4zaiaacIca caWGJbGaai4laiaadggacaGGPaGaey4kaSYaaSaaaeaacaaIYaaaba GaaG4maaaacaGGOaGaaGymaiabgkHiTiaadogadaahaaWcbeqaaiaa iodaaaGccaGGVaGaamOyamaaCaaaleqabaGaaG4maaaakiaacMcaaa a@46C4@ .  In this case, the solid is permanently deformed.  After unloading, its internal and external radii are slightly increased, and the sphere is in a state of residual stress

 

· If the maximum internal pressure satisfies 2(1 a 3 / b 3 )/3< p a /Y<4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaacIcacaaIXaGaeyOeI0Iaam yyamaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaa caaIZaaaaOGaaiykaiaac+cacaaIZaGaeyipaWJaamiCamaaBaaale aacaWGHbaabeaakiaac+cacaWGzbGaeyipaWJaaGinaiaacIcacaaI XaGaeyOeI0IaamyyamaaCaaaleqabaGaaG4maaaakiaac+cacaWGIb WaaWbaaSqabeaacaaIZaaaaOGaaiykaiaac+cacaaIZaaaaa@49B6@ , the cylinder deforms plastically during the first application of pressure.  It then deforms elastically (no yield) while the pressure is removed.  During subsequent pressure cycles between zero and the maximum pressure, the cylinder deforms elastically.  Residual stresses introduced during the first loading cycle are protective, and prevent further plasticity.  This behavior is known as ‘shakedown’ and the maximum load for which it can occur ( p a /Y=4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1F@  ) is known as the ‘shakedown limit’

 

· If the maximum internal pressure reaches the shakedown limit p a /Y=4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1F@ , the residual stress just reaches yield at r=a when the pressure is reduced to zero after the first loading cycle.

 

· For internal pressures p a /Y>4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyOpa4JaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F21@ , a plastic zone forms between a<r<d MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGKbaaaa@35AE@  as the pressure is reduced to zero, where d satisfies the equation p a =4Y(1 d 3 / b 3 )/3+4Ylog(d/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki abg2da9iaaisdacaWGzbGaaiikaiaaigdacqGHsislcaWGKbWaaWba aSqabeaacaaIZaaaaOGaai4laiaadkgadaahaaWcbeqaaiaaiodaaa GccaGGPaGaai4laiaaiodacqGHRaWkcaaI0aGaamywaiGacYgacaGG VbGaai4zaiaacIcacaWGKbGaai4laiaadggacaGGPaaaaa@4798@ .   During subsequent cycles of loading, the region a<r<d MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGKbaaaa@35AE@  is repeatedly plastically deformed, stretching in the hoop direction during increasing pressure, and compressing as the pressure is reduced to zero.  The region between d<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35B0@  deforms plastically during the first cycle of pressure, but remains elastic for all subsequent cycles.  This is a ‘shakedown region.’ The remainder of the sphere experiences elastic cycles of strain. 

 

 

In the preceding discussion, we have assumed that the cylinder is thick enough to support an arbitrarily large pressure.   The internal pressure cannot exceed the collapse load p a /Y=2log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0JaaGOmaiGacYgacaGGVbGaai4zaiaacIca caWGIbGaai4laiaadggacaGGPaaaaa@3CED@ , so some regimes are inaccessible for thinner walled spheres.

 

The stress fields at maximum and minimum load for these various ranges of applied load are listed below.  The displacements can be computed, but the formulas are too long to record here.

 


 

The residual stress distributions (after unloading to zero pressure) are shown above for a sphere with b/a=3. The solution for c/a=1.25 is below the shakedown limit; the other two solutions are for pressures exceeding the shakedown limit.  The region of cyclic plasticity can be seen from the discontinuity in the hoop stress curves. Note that the residual stresses are predominantly compressive MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for this reason, bolt holes, pressure vessels and gun barrels are often purposely pressurized above the elastic limit so as to introduce a compressive stress near the loaded surface.  This protects the component against fatigue, since fatigue cracks do not propagate under compressive loading.

 

(ii) Solution for pressures below the elastic limit p a /Y<2(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyipaWJaaGOmaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1B@

 

The displacement, strain and stress field at maximum load are given by the elastic solution in Section 4.1.4

 

(iii) Solution for pressures between the elastic and shakedown limits p a /Y<4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyipaWJaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1D@

 

· At maximum pressure, the displacement and stress fields are given by the elastic-plastic solution in Section 6.1.3.

 

· At zero pressure, the solution is

 

Solution for  a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@

σ rr =2Ylog r a p a p a a 3 b 3 a 3 1 b 3 r 3 σ θθ = σ ϕϕ =2Ylog r a p a +Y p a a 3 b 3 a 3 1+ b 3 2 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0JaaGOmaiaadMfaciGGSbGaai4BaiaacEga daqadaqaamaalaaabaGaamOCaaqaaiaadggaaaaacaGLOaGaayzkaa GaeyOeI0IaamiCamaaBaaaleaacaWGHbaabeaakiabgkHiTmaalaaa baGaamiCamaaBaaaleaacaWGHbaabeaakiaadggadaahaaWcbeqaai aaiodaaaaakeaadaqadaqaaiaadkgadaahaaWcbeqaaiaaiodaaaGc cqGHsislcaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaa aaamaabmaabaGaaGymaiabgkHiTmaalaaabaGaamOyamaaCaaaleqa baGaaG4maaaaaOqaaiaadkhadaahaaWcbeqaaiaaiodaaaaaaaGcca GLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqa baGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dygabeaaki abg2da9iaaikdacaWGzbGaciiBaiaac+gacaGGNbWaaeWaaeaadaWc aaqaaiaadkhaaeaacaWGHbaaaaGaayjkaiaawMcaaiabgkHiTiaadc hadaWgaaWcbaGaamyyaaqabaGccqGHRaWkcaWGzbGaeyOeI0YaaSaa aeaacaWGWbWaaSbaaSqaaiaadggaaeqaaOGaamyyamaaCaaaleqaba GaaG4maaaaaOqaamaabmaabaGaamOyamaaCaaaleqabaGaaG4maaaa kiabgkHiTiaadggadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPa aaaaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGIbWaaWbaaSqa beaacaaIZaaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqaaiaaiodaaa aaaaGccaGLOaGaayzkaaaaaaa@7F2F@     

 

Solution for c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@

σ rr = 2Y c 3 3 b 3 1 b 3 r 3 p a a 3 b 3 a 3 1 b 3 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGOmaiaadMfacaWGJbWaaWbaaSqa beaacaaIZaaaaaGcbaGaaG4maiaadkgadaahaaWcbeqaaiaaiodaaa aaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGIbWaaWbaaSqa beaacaaIZaaaaaGcbaGaamOCamaaCaaaleqabaGaaG4maaaaaaaaki aawIcacaGLPaaacqGHsisldaWcaaqaaiaadchadaWgaaWcbaGaamyy aaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaaGcbaWaaeWaaeaaca WGIbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamyyamaaCaaaleqa baGaaG4maaaaaOGaayjkaiaawMcaaaaadaqadaqaaiaaigdacqGHsi sldaWcaaqaaiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaWGYbWa aWbaaSqabeaacaaIZaaaaaaaaOGaayjkaiaawMcaaaaa@550C@

           σ θθ = σ ϕϕ = 2Y c 3 3 b 3 1+ b 3 2 r 3 p a a 3 b 3 a 3 1+ b 3 2 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaakiabg2da9maalaaabaGaaGOmaiaadMfacaWGJbWaaWbaaSqabe aacaaIZaaaaaGcbaGaaG4maiaadkgadaahaaWcbeqaaiaaiodaaaaa aOWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGIbWaaWbaaSqabe aacaaIZaaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqaaiaaiodaaaaa aaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaWGWbWaaSbaaSqaai aadggaaeqaaOGaamyyamaaCaaaleqabaGaaG4maaaaaOqaamaabmaa baGaamOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadggadaahaa WcbeqaaiaaiodaaaaakiaawIcacaGLPaaaaaWaaeWaaeaacaaIXaGa ey4kaSYaaSaaaeaacaWGIbWaaWbaaSqabeaacaaIZaaaaaGcbaGaaG OmaiaadkhadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaaa aa@5E7B@

 

(iv) Solution for pressures exceeding the shakedown limit p a /Y>4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyOpa4JaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F21@

 

· At maximum pressure, the displacement, strain and stress fields are given in Section 6.1.3.

 

· At zero pressure, the solution is

 

Solution for cyclic plastic region  a<r<d MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGKbaaaa@35AE@

σ rr =2Ylog(r/a) σ θθ = σ ϕϕ =2Ylog(r/a)Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaaikdacaWGzbGaciiBaiaac+gacaGG NbGaaiikaiaadkhacaGGVaGaamyyaiaacMcacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4W dm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpcqaHdpWCda WgaaWcbaGaeqy1dyMaeqy1dygabeaakiabg2da9iabgkHiTiaaikda caWGzbGaciiBaiaac+gacaGGNbGaaiikaiaadkhacaGGVaGaamyyai aacMcacqGHsislcaWGzbaaaa@6680@

 

Solution for shakedown region d<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35B0@

σ rr =2Ylog(r/a) p a 4Y d 3 3 b 3 1 b 3 r 3 σ θθ = σ ϕϕ =2Ylog(r/a) p a +Y 4Y d 3 3 b 3 1+ b 3 2 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0JaaGOmaiaadMfaciGGSbGaai4BaiaacEga caGGOaGaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWgaa WcbaGaamyyaaqabaGccqGHsisldaWcaaqaaiaaisdacaWGzbGaamiz amaaCaaaleqabaGaaG4maaaaaOqaaiaaiodacaWGIbWaaWbaaSqabe aacaaIZaaaaaaakmaabmaabaGaaGymaiabgkHiTmaalaaabaGaamOy amaaCaaaleqabaGaaG4maaaaaOqaaiaadkhadaahaaWcbeqaaiaaio daaaaaaaGccaGLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiabeI7a XjabeI7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeq y1dygabeaakiabg2da9iaaikdacaWGzbGaciiBaiaac+gacaGGNbGa aiikaiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWaaSbaaS qaaiaadggaaeqaaOGaey4kaSIaamywaiabgkHiTmaalaaabaGaaGin aiaadMfacaWGKbWaaWbaaSqabeaacaaIZaaaaaGcbaGaaG4maiaadk gadaahaaWcbeqaaiaaiodaaaaaaOWaaeWaaeaacaaIXaGaey4kaSYa aSaaaeaacaWGIbWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGOmaiaadk hadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaaaaaa@780B@

 

(iii) Solution for the elastic region c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@

σ rr = 2Y c 3 3 b 3 1 b 3 r 3 4Y d 3 3 b 3 1 b 3 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGOmaiaadMfacaWGJbWaaWbaaSqa beaacaaIZaaaaaGcbaGaaG4maiaadkgadaahaaWcbeqaaiaaiodaaa aaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGIbWaaWbaaSqa beaacaaIZaaaaaGcbaGaamOCamaaCaaaleqabaGaaG4maaaaaaaaki aawIcacaGLPaaacqGHsisldaWcaaqaaiaaisdacaWGzbGaamizamaa CaaaleqabaGaaG4maaaaaOqaaiaaiodacaWGIbWaaWbaaSqabeaaca aIZaaaaaaakmaabmaabaGaaGymaiabgkHiTmaalaaabaGaamOyamaa CaaaleqabaGaaG4maaaaaOqaaiaadkhadaahaaWcbeqaaiaaiodaaa aaaaGccaGLOaGaayzkaaaaaa@5107@      

     σ θθ = σ ϕϕ = 2Y c 3 3 b 3 1+ b 3 2 r 3 4Y d 3 3 b 3 1+ b 3 2 r 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaakiabg2da9maalaaabaGaaGOmaiaadMfacaWGJbWaaWbaaSqabe aacaaIZaaaaaGcbaGaaG4maiaadkgadaahaaWcbeqaaiaaiodaaaaa aOWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGIbWaaWbaaSqabe aacaaIZaaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqaaiaaiodaaaaa aaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaI0aGaamywaiaads gadaahaaWcbeqaaiaaiodaaaaakeaacaaIZaGaamOyamaaCaaaleqa baGaaG4maaaaaaGcdaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadk gadaahaaWcbeqaaiaaiodaaaaakeaacaaIYaGaamOCamaaCaaaleqa baGaaG4maaaaaaaakiaawIcacaGLPaaaaaa@5A76@

 

 

Derivation of stress after unloading in the cyclic  plastic region a<r<d MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGKbaaaa@35AE@

 

1. We anticipate that σ rr >0 σ θθ <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg6da+iaaicdacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWg aaWcbaGaeqiUdeNaeqiUdehabeaakiabgYda8iaaicdaaaa@424D@ . The yield criterion then gives σ θθ σ rr =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0JaeyOeI0Iaamywaaaa@3DEA@

 

2. Substituting this result into the equilibrium equation shows that

d σ rr dr +2 Y r =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgUcaRiaa ikdadaWcaaqaaiaadMfaaeaacaWGYbaaaiabg2da9iaaicdaaaa@3CE2@

 

3. Integrating, and using the boundary condition σ rr =0r=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaadkhacqGH9aqpcaWG Hbaaaa@3C80@  together with the yield condition in step (i) gives

σ rr =2Ylog(r/a) σ θθ = σ ϕϕ =2Ylog(r/a)Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaaikdacaWGzbGaciiBaiaac+gacaGG NbGaaiikaiaadkhacaGGVaGaamyyaiaacMcacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4W dm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpcqaHdpWCda WgaaWcbaGaeqy1dyMaeqy1dygabeaakiabg2da9iabgkHiTiaaikda caWGzbGaciiBaiaac+gacaGGNbGaaiikaiaadkhacaGGVaGaamyyai aacMcacqGHsislcaWGzbaaaa@6680@

 

 

Derivation of stress after unloading in the shakedown regime d<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35B0@

 

1. In this region, the stress at maximum load are given by the expressions for r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabgYda8iaadogaaaa@33C3@  in 6.1.3, i.e.

σ rr =2Ylog(r/a) p a σ θθ = σ ϕϕ =2Ylog(r/a) p a +Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiik aiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWaaSbaaSqaai aadggaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacqaH4oqCcq aH4oqCaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiabew9aMjabew9a MbqabaGccqGH9aqpcaaIYaGaamywaiGacYgacaGGVbGaai4zaiaacI cacaWGYbGaai4laiaadggacaGGPaGaeyOeI0IaamiCamaaBaaaleaa caWGHbaabeaakiabgUcaRiaadMfaaaa@6A97@

The solid then unloads elastically while the pressure is removed. 

 

2. The change in stress during unloading can be calculated quickly by regarding the region d<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AF@  as a spherical shell with internal radius d and external radius b, subjected to radial pressure at r=d.  At maximum load, the pressure at r=d is p a 2Ylog(d/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki abgkHiTiaaikdacaWGzbGaciiBaiaac+gacaGGNbGaaiikaiaadsga caGGVaGaamyyaiaacMcaaaa@3C23@ ; after unloading the pressure follows from the solution for the cyclic plastic region as 2Ylog(d/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaadMfaciGGSbGaai4BaiaacE gacaGGOaGaamizaiaac+cacaWGHbGaaiykaaaa@3925@ .  The change in pressure at r=d during unloading is thus Δp=4Ylog(d/a) p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiCaiabg2da9iaaisdaca WGzbGaciiBaiaac+gacaGGNbGaaiikaiaadsgacaGGVaGaamyyaiaa cMcacqGHsislcaWGWbWaaSbaaSqaaiaadggaaeqaaaaa@3F7C@ .

 

3. The change in pressure during unloading can also be expressed as Δp=4Y(1 b 3 / d 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiCaiabg2da9iabgkHiTi aaisdacaWGzbGaaiikaiaaigdacqGHsislcaWGIbWaaWbaaSqabeaa caaIZaaaaOGaai4laiaadsgadaahaaWcbeqaaiaaiodaaaGccaGGPa Gaai4laiaaiodaaaa@3FA6@  using the governing equation for d shown below.

 

4. We then can simply add the (elastic) stress and displacement induced by this pressure change to the displacement and stress at maximum load, to obtain the solution given above.

 

 

Boundary of the cyclic plastic zone

The boundary of the cyclic plastic zone is determined by the condition that the stress in the shakedown regime must just reach yield at r=d when the pressure reaches zero.  This gives

σ θθ σ rr =Y p a =4Y(1 d 3 / b 3 )/3+4Ylog(d/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0JaeyOeI0IaamywaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabgkDiElaadchadaWgaaWcbaGaamyyaaqabaGccqGH 9aqpcaaI0aGaamywaiaacIcacaaIXaGaeyOeI0IaamizamaaCaaale qabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaacaaIZaaaaOGa aiykaiaac+cacaaIZaGaey4kaSIaaGinaiaadMfaciGGSbGaai4Bai aacEgacaGGOaGaamizaiaac+cacaWGHbGaaiykaaaa@6041@

 

Derivation of solution in the elastic region c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@

 

The solution in this region is derived in the same way as the solution for the shakedown region, except that the displacement and stress at maximum load are given by solutions for c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@

 

 

 

6.1.5 Simplified equations for plane strain axially symmetric elastic-perfectly plastic solids

 

An axially symmetric solid is illustrated in the figure. The solid is a circular cylinder, which is subjected to axially symmetric loading (i.e. internal body forces, as well as tractions or displacements applied to the surface, are independent of θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOEaaaa@31DF@ , and act in the radial direction only).  Temperature changes will be neglected, to simplify calculations.  However, the solid can spin with steady angular velocity about the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis.

 

We will assume that the cylinder is completely prevented from stretching in the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction, so that a state of plane strain exists in the solid. 

 

The solution is most conveniently expressed using a cylindrical-polar coordinate system, illustrated in Figure 6.7.  A point in the solid is identified by its cylindrical-polar co-ordinates (r,θ,z) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ilaiaadQhacaGGPaaaaa@3745@ . All vectors and tensors are expressed as components in the basis e r , e θ , e z MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaadk haaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYca caWHLbWaaSbaaSqaaiaadQhaaeqaaaGccaGL7bGaayzFaaaaaa@3B89@  shown in the figure.  For an axially symmetric problem

 

· Position Vector       x=r e r +z e z MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9iaadkhacaWHLbWaaS baaSqaaiaadkhaaeqaaOGaey4kaSIaamOEaiaahwgadaWgaaWcbaGa amOEaaqabaaaaa@39F2@

 

· Displacement vector u=u(r) e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaadwhacaGGOaGaam OCaiaacMcacaWHLbWaaSbaaSqaaiaadkhaaeqaaaaa@383E@

 

· Body force vector b= ρ 0 b(r) e r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaiabg2da9iabeg8aYnaaBaaale aacaaIWaaabeaakiaadkgacaGGOaGaamOCaiaacMcacaWHLbWaaSba aSqaaiaadkhaaeqaaaaa@3AC8@

 

· Acceleration vector a= ω 2 r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabg2da9iabgkHiTiabeM8a3n aaCaaaleqabaGaaGOmaaaakiaadkhaaaa@3774@

 

 

Here, u r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaabmaabaGaamOCaaGaayjkai aawMcaaaaa@345A@  and b r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaabmaabaGaamOCaaGaayjkai aawMcaaaaa@3447@  are scalar functions. The stress and strain tensors (written as components in { e r , e θ , e z } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaamOCaa qabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaamOEaaqabaGccaGG9baaaa@3B57@  ) have the form

σ σ rr 0 0 0 σ θθ 0 0 0 σ zz ε ε rr 0 0 0 ε θθ 0 0 0 ε zz MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyyyIO7aamWaaeaafaqabe WadaaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabeo8aZnaaBaaaleaacqaH4o qCcqaH4oqCaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaaaaaakiaawUfacaGLDb aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLjabgg Mi6oaadmaabaqbaeqabmWaaaqaaiabew7aLnaaBaaaleaacaWGYbGa amOCaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH1o qzdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiabew7aLnaaBaaaleaacaWG6bGaamOEaaqaba aaaaGccaGLBbGaayzxaaaaaa@7471@

 

For axial symmetry, the governing equations reduce to

 

· Strain Displacement Relations ε rr = du dr ε θθ = u r ε zz =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaamizaiaadwhaaeaacaWGKbGaamOC aaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqaH1oqzdaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiab g2da9maalaaabaGaamyDaaqaaiaadkhaaaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7a LnaaBaaaleaacaWG6bGaamOEaaqabaGccqGH9aqpcaaIWaaaaa@64C0@

 

· Stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ Strain relations (plane strain and generalized plane strain)

 

In elastic region(s)

σ rr σ θθ σ zz = E (1+ν)(12ν) 1ν ν ν ν 1ν ν ν ν 1ν ε rr ε θθ ε zz MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeq4Wdm 3aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiabeo8aZnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQhaca WG6baabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaadwea aeaacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymai abgkHiTiaaikdacqaH9oGBcaGGPaaaamaadmaabaqbaeqabmWaaaqa aiaaigdacqGHsislcqaH9oGBaeaacqaH9oGBaeaacqaH9oGBaeaacq aH9oGBaeaacaaIXaGaeyOeI0IaeqyVd4gabaGaeqyVd4gabaGaeqyV d4gabaGaeqyVd4gabaGaaGymaiabgkHiTiabe27aUbaaaiaawUfaca GLDbaadaWadaqaauaabeqadeaaaeaacqaH1oqzdaWgaaWcbaGaamOC aiaadkhaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7aXb qabaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGa ay5waiaaw2faaaaa@7190@

σ θθ σ rr 2 + σ θθ σ zz 2 + σ rr σ zz 2 /2 <Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaadaGadaqaamaabmaabaGaeq 4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGHsislcqaHdpWC daWgaaWcbaGaamOCaiaadkhaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacqaHdpWCdaWgaaWcbaGa eqiUdeNaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWG6b GaamOEaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkdaqadaqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqaba GccqGHsislcqaHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaGaai 4laiaaikdaaSqabaGccqGH8aapcaWGzbaaaa@5D0C@

 

In plastic region(s)

Yield criterion:   σ θθ σ rr 2 + σ θθ σ zz 2 + σ rr σ zz 2 /2 =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaadaGadaqaamaabmaabaGaeq 4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGHsislcqaHdpWC daWgaaWcbaGaamOCaiaadkhaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacqaHdpWCdaWgaaWcbaGa eqiUdeNaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWG6b GaamOEaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkdaqadaqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqaba GccqGHsislcqaHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaGaai 4laiaaikdaaSqabaGccqGH9aqpcaWGzbaaaa@5D0E@

Strain partition:

d ε rr =d ε rr p +d ε rr e d ε ϕϕ =d ε ϕϕ p +d ε ϕϕ e d ε θθ =d ε θθ p +d ε θθ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqaaiaadkha caWGYbaabaGaamiCaaaakiabgUcaRiaadsgacqaH1oqzdaqhaaWcba GaamOCaiaadkhaaeaacaWGLbaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaamizaiabew7aLnaaBaaaleaacqaHvpGzcqaHvp GzaeqaaOGaeyypa0Jaamizaiabew7aLnaaDaaaleaacqaHvpGzcqaH vpGzaeaacaWGWbaaaOGaey4kaSIaamizaiabew7aLnaaDaaaleaacq aHvpGzcqaHvpGzaeaacaWGLbaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaamizaiabew7aLnaaBaaaleaacqaH4oqCcqaH4o qCaeqaaOGaeyypa0Jaamizaiabew7aLnaaDaaaleaacqaH4oqCcqaH 4oqCaeaacaWGWbaaaOGaey4kaSIaamizaiabew7aLnaaDaaaleaacq aH4oqCcqaH4oqCaeaacaWGLbaaaaaa@8269@

Elastic strain:

d ε rr e =d σ rr /Eν(d σ θθ +d σ zz )/E d ε θθ e =d σ θθ /Eν(d σ rr +d σ zz )/E d ε zz e =d σ zz /Eν(d σ rr +d σ θθ )/E MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aadkhacaWGYbaabaGaamyzaaaakiabg2da9iaadsgacqaHdpWCdaWg aaWcbaGaamOCaiaadkhaaeqaaOGaai4laiaadweacqGHsislcqaH9o GBcaGGOaGaamizaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqa aOGaey4kaSIaamizaiabeo8aZnaaBaaaleaacaWG6bGaamOEaaqaba GccaGGPaGaai4laiaadweaaeaacaWGKbGaeqyTdu2aa0baaSqaaiab eI7aXjabeI7aXbqaaiaadwgaaaGccqGH9aqpcaWGKbGaeq4Wdm3aaS baaSqaaiabeI7aXjabeI7aXbqabaGccaGGVaGaamyraiabgkHiTiab e27aUjaacIcacaWGKbGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabe aakiabgUcaRiaadsgacqaHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqa aOGaaiykaiaac+cacaWGfbaabaGaamizaiabew7aLnaaDaaaleaaca WG6bGaamOEaaqaaiaadwgaaaGccqGH9aqpcaWGKbGaeq4Wdm3aaSba aSqaaiaadQhacaWG6baabeaakiaac+cacaWGfbGaeyOeI0IaeqyVd4 MaaiikaiaadsgacqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGa ey4kaSIaamizaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaO Gaaiykaiaac+cacaWGfbaaaaa@8DEC@

Flow rule:  

d ε rr p =d ε ¯ p σ rr σ θθ + σ zz /2 Y d ε θθ p =d ε ¯ p σ θθ σ rr + σ zz /2 Y d ε zz p =d ε ¯ p σ zz σ rr + σ θθ /2 Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeqyTdu2aa0baaSqaai aadkhacaWGYbaabaGaamiCaaaakiabg2da9iaadsgacuaH1oqzgaqe amaaCaaaleqabaGaamiCaaaakmaalaaabaGaeq4Wdm3aaSbaaSqaai aadkhacaWGYbaabeaakiabgkHiTmaabmaabaGaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaam OEaiaadQhaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaeaacaWG zbaaaaqaaiaaykW7caWGKbGaeqyTdu2aa0baaSqaaiabeI7aXjabeI 7aXbqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaahaaWc beqaaiaadchaaaGcdaWcaaqaaiabeo8aZnaaBaaaleaacqaH4oqCcq aH4oqCaeqaaOGaeyOeI0YaaeWaaeaacqaHdpWCdaWgaaWcbaGaamOC aiaadkhaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaadQhacaWG6b aabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaabaGaamywaaaaaeaa caWGKbGaeqyTdu2aa0baaSqaaiaadQhacaWG6baabaGaamiCaaaaki abg2da9iaadsgacuaH1oqzgaqeamaaCaaaleqabaGaamiCaaaakmaa laaabaGaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaakiabgkHiTm aabmaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaakiabgUca Riabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGccaGLOaGaay zkaaGaai4laiaaikdaaeaacaWGzbaaaaaaaa@8C74@

 

· Equation of motion

d σ rr dr + 1 r σ rr σ θθ + ρ 0 b r = ρ 0 ω 2 r MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgUcaRmaa laaabaGaaGymaaqaaiaadkhaaaWaaeWaaeaacqaHdpWCdaWgaaWcba GaamOCaiaadkhaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabeI7a XjabeI7aXbqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVlabgUcaRi abeg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaamOC aaqabaGccqGH9aqpcqGHsislcqaHbpGCdaWgaaWcbaGaaGimaaqaba GccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaWGYbaaaa@571B@

 

· Boundary Conditions

 

Prescribed Displacements u r (a)= g a u r (b)= g b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki aacIcacaWGHbGaaiykaiabg2da9iaadEgadaWgaaWcbaGaamyyaaqa baGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaamyDamaaBaaaleaacaWGYbaabeaakiaacIcacaWGIbGaaiykai abg2da9iaadEgadaWgaaWcbaGaamOyaaqabaaaaa@586F@

Prescribed Tractions σ rr (a)= t a σ rr (b)= t b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiaacIcacaWGHbGaaiykaiabg2da9iaadshadaWgaaWcbaGa amyyaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaaiikaiaadkgacaGGPaGaeyypa0JaamiDamaaBaaaleaacaWGIb aabeaaaaa@513C@

 

The equilibrium and strain-displacement equations can be derived following the procedure outlined in Section 4.1.7.  The stress-strain relations are derived by substituting the strain components into the general constitutive equation and simplifying the result.

 

Unlike the elastic solution in Sect 4.1, there is no clean, direct and general method for integrating these equations.  Instead, solutions must be found using a combination of physical intuition and some algebraic tricks, as illustrated in the sections below.

 

 

 

6.1.6 Long (plane strain) cylinder subjected to internal pressure.

 

We consider a long hollow cylinder with internal radius a and external radius b as shown in the figure. Assume that

 

· No body forces act on the cylinder

 

· The cylinder has zero angular velocity

 

· The sphere has uniform temperature

 

· The inner surface r=a is subjected to pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@

 

· The outer surface r=b is free of pressure

 

· The cylinder does not stretch parallel to its axis

 

The solution given below is approximate, because it assumes that both elastic and plastic axial strains vanish separately (when in fact only the sum of elastic and plastic strains should be zero).

 

Solution:

 

(i) Preliminaries:

· The cylinder first reaches yield (at r=a) at an internal pressure 3 p a /Y(1 a 2 / b 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIZaaaleqaaOGaamiCam aaBaaaleaacaWGHbaabeaakiaac+cacaWGzbGaeyisISRaaiikaiaa igdacqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaadk gadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@3E7C@

 

· For pressures in the range (1 a 2 / b 2 )< 3 p a /Y<2log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaaigdacqGHsislcaWGHbWaaW baaSqabeaacaaIYaaaaOGaai4laiaadkgadaahaaWcbeqaaiaaikda aaGccaGGPaGaeyipaWZaaOaaaeaacaaIZaaaleqaaOGaamiCamaaBa aaleaacaWGHbaabeaakiaac+cacaWGzbGaeyipaWJaaGOmaiGacYga caGGVbGaai4zaiaacIcacaWGIbGaai4laiaadggacaGGPaaaaa@4638@  the region between r=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadggaaaa@33C3@  and r=c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadogaaaa@33C5@  deforms plastically; while the region between c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@  remains elastic, where c satisfies the equation 3 p a /Y=2log(c/a)+1 c 2 / b 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIZaaaleqaaOGaamiCam aaBaaaleaacaWGHbaabeaakiaac+cacaWGzbGaeyypa0JaaGOmaiGa cYgacaGGVbGaai4zaiaacIcacaWGJbGaai4laiaadggacaGGPaGaey 4kaSIaaGymaiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaGccaGG VaGaamOyamaaCaaaleqabaGaaGOmaaaaaaa@44B8@

 

· At a pressure p a /Y= 2/ 3 log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyypa0ZaaeWaaeaacaaIYaGaai4lamaakaaabaGa aG4maaWcbeaaaOGaayjkaiaawMcaaiGacYgacaGGVbGaai4zaiaacI cacaWGIbGaai4laiaadggacaGGPaaaaa@400B@  the entire cylinder is plastic.  At this point the sphere collapses MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the displacements become infinitely large.

 

 

 

(ii) Solution in the plastic region a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@

u= 12ν 1+ν E 2r 2Y/ 3 log(r/a) p a + 1+ν Y c 2 (2(1ν) b 2 +(12ν)( b 2 c 2 )) 3 E b 2 r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG1bGaeyypa0ZaaSaaaeaada qadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaWa aeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaabaGaam yraaaacaaIYaGaamOCamaacmaabaWaaeWaaeaacaaIYaGaamywaiaa c+cadaGcaaqaaiaaiodaaSqabaaakiaawIcacaGLPaaaciGGSbGaai 4BaiaacEgacaGGOaGaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaa dchadaWgaaWcbaGaamyyaaqabaaakiaawUhacaGL9baaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSYaaSaa aeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaca WGzbGaam4yamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIYaGaaiik aiaaigdacqGHsislcqaH9oGBcaGGPaGaamOyamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaa cMcacaGGOaGaamOyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaado gadaahaaWcbeqaaiaaikdaaaGccaGGPaGaaiykaaqaamaakaaabaGa aG4maaWcbeaakiaadweacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaam OCaaaaaaaa@7D64@

σ rr =(2Y/ 3 )log(r/a) p a σ θθ =(2Y/ 3 )log(r/a) p a +2Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0JaaiikaiaaikdacaWGzbGaai4lamaakaaa baGaaG4maaWcbeaakiaacMcaciGGSbGaai4BaiaacEgacaGGOaGaam OCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWgaaWcbaGaamyy aaqabaGccaaMc8oabaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXb qabaGccqGH9aqpcaGGOaGaaGOmaiaadMfacaGGVaWaaOaaaeaacaaI ZaaaleqaaOGaaiykaiGacYgacaGGVbGaai4zaiaacIcacaWGYbGaai 4laiaadggacaGGPaGaeyOeI0IaamiCamaaBaaaleaacaWGHbaabeaa kiabgUcaRiaaikdacaWGzbGaai4lamaakaaabaGaaG4maaWcbeaaaa aa@5E4F@     

 

(iii) Solution in the elastic region c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@

u r = 1+ν c 2 Y E 3 1 r + 12ν r b 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki abg2da9maalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGL OaGaayzkaaGaam4yamaaCaaaleqabaGaaGOmaaaakiaadMfaaeaaca WGfbWaaOaaaeaacaaIZaaaleqaaaaakmaacmaabaWaaSaaaeaacaaI XaaabaGaamOCaaaacqGHRaWkdaqadaqaaiaaigdacqGHsislcaaIYa GaeqyVd4gacaGLOaGaayzkaaWaaSaaaeaacaWGYbaabaGaamOyamaa CaaaleqabaGaaGOmaaaaaaaakiaawUhacaGL9baaaaa@4ABA@

σ rr = Y c 2 3 b 2 1 b 2 r 2 σ θθ = Y c 2 3 b 2 1+ b 2 r 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaamywaiaadogadaahaaWcbeqaaiaa ikdaaaaakeaadaGcaaqaaiaaiodaaSqabaGccaWGIbWaaWbaaSqabe aacaaIYaaaaaaakmaacmaabaGaaGymaiabgkHiTmaalaaabaGaamOy amaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaik daaaaaaaGccaGL7bGaayzFaaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH9aqpdaWcaaqa aiaadMfacaWGJbWaaWbaaSqabeaacaaIYaaaaaGcbaWaaOaaaeaaca aIZaaaleqaaOGaamOyamaaCaaaleqabaGaaGOmaaaaaaGcdaGadaqa aiaaigdacqGHRaWkdaWcaaqaaiaadkgadaahaaWcbeqaaiaaikdaaa aakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eaiaaw2ha aaaa@6914@

 

The stress and displacement fields are plotted below for various positions of the elastic-plastic boundary.  The results are for b/a=3, and the displacement is shown for a solid with ν=0.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aIZaaaaa@35C7@


 

 

Derivation: By substituting the stresses for the elastic solution given in 4.1.9 into the Von-Mises yield criterion, we see that a pressurized elastic cylinder first reaches yield at r=a. If the pressure is increased beyond yield, a region a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@  will deform plastically, while a region c<r<b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabgYda8iaadkhacqGH8aapca WGIbaaaa@35AE@  remains elastic. We must find separate solutions in the plastic and elastic regions.

 

In the plastic region a<r<c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabgYda8iaadkhacqGH8aapca WGJbaaaa@35AD@

 

1. To simplify the calculation we assume that d ε zz p =d ε zz e =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWG6b GaamOEaaqaaiaadchaaaGccqGH9aqpcaWGKbGaeqyTdu2aa0baaSqa aiaadQhacaWG6baabaGaamyzaaaakiabg2da9iaaicdaaaa@3F0F@ .  This turns out to be exact for ν=1/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGymaiaac+caca aIYaaaaa@35C8@ , but is approximate for other values of Poisson ratio.  The plastic flow rule shows that

d ε zz p =d ε ¯ p σ zz σ rr + σ θθ /2 Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWG6b GaamOEaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabeo8aZnaaBaaaleaacaWG6b GaamOEaaqabaGccqGHsisldaqadaqaaiabeo8aZnaaBaaaleaacaWG YbGaamOCaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaabaGaamywaaaa aaa@4E6B@

in which case d ε zz p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWG6b GaamOEaaqaaiaadchaaaGccqGH9aqpcaaIWaaaaa@385A@  requires that σ zz = σ rr + σ θθ /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQhacaWG6b aabeaakiabg2da9maabmaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWG YbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCae qaaaGccaGLOaGaayzkaaGaai4laiaaikdaaaa@4302@

2. We anticipate that σ rr <0 σ θθ >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabgYda8iaaicdacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWg aaWcbaGaeqiUdeNaeqiUdehabeaakiabg6da+iaaicdaaaa@424D@ . Substituting the result of (i) into the yield criterion then gives σ θθ σ rr =2Y 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0JaaGOmaiaadMfadaGcaaqaaiaaiodaaSqabaaaaa@3E91@ .

 

3. Substituting this result into the equilibrium equation shows that

d σ rr dr 2Y 3 r =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadkhacaWGYbaabeaaaOqaaiaadsgacaWGYbaaaiabgkHiTmaa laaabaGaaGOmaiaadMfaaeaadaGcaaqaaiaaiodaaSqabaGccaWGYb aaaiabg2da9iaaicdaaaa@3DCF@

 

4. Integrating, and using the boundary condition σ rr = p a r=a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaGc caaMc8UaaGPaVlaadkhacqGH9aqpcaWGHbaaaa@3EC4@  together with the yield condition (i) gives

σ rr = 2Y/ 3 log(r/a) p a σ θθ = 2Y/ 3 log(r/a) p a +2Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0ZaaeWaaeaacaaIYaGaamywaiaac+cadaGc aaqaaiaaiodaaSqabaaakiaawIcacaGLPaaaciGGSbGaai4BaiaacE gacaGGOaGaamOCaiaac+cacaWGHbGaaiykaiabgkHiTiaadchadaWg aaWcbaGaamyyaaqabaGccaaMc8oabaGaeq4Wdm3aaSbaaSqaaiabeI 7aXjabeI7aXbqabaGccqGH9aqpdaqadaqaaiaaikdacaWGzbGaai4l amaakaaabaGaaG4maaWcbeaaaOGaayjkaiaawMcaaiGacYgacaGGVb Gaai4zaiaacIcacaWGYbGaai4laiaadggacaGGPaGaeyOeI0IaamiC amaaBaaaleaacaWGHbaabeaakiabgUcaRiaaikdacaWGzbGaai4lam aakaaabaGaaG4maaWcbeaaaaaa@5EAF@

5. The elastic strains follow as

ε rr e = σ rr ν σ θθ ν σ zz /E ε θθ e = σ θθ ν σ rr ν σ zz /E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaqhaaWcbaGaamOCai aadkhaaeaacaWGLbaaaOGaeyypa0ZaaeWaaeaacqaHdpWCdaWgaaWc baGaamOCaiaadkhaaeqaaOGaeyOeI0IaeqyVd4Maeq4Wdm3aaSbaaS qaaiabeI7aXjabeI7aXbqabaGccqGHsislcqaH9oGBcqaHdpWCdaWg aaWcbaGaamOEaiaadQhaaeqaaaGccaGLOaGaayzkaaGaai4laiaadw eaaeaacqaH1oqzdaqhaaWcbaGaeqiUdeNaeqiUdehabaGaamyzaaaa kiabg2da9maabmaabaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXb qabaGccqGHsislcqaH9oGBcqaHdpWCdaWgaaWcbaGaamOCaiaadkha aeqaaOGaeyOeI0IaeqyVd4Maeq4Wdm3aaSbaaSqaaiaadQhacaWG6b aabeaaaOGaayjkaiaawMcaaiaac+cacaWGfbaaaaa@6903@

 

6. With assumption1., the flow rule shows that plastic strains satisfy ε rr p + ε θθ p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadkhacaWGYb aabaGaamiCaaaakiabgUcaRiabew7aLnaaDaaaleaacqaH4oqCcqaH 4oqCaeaacaWGWbaaaOGaeyypa0JaaGimaaaa@3E82@ .  Consequently, using the strain partition formula and the strain-displacement relation shows that

ε rr + ε θθ = du dr + u r = 1 r d dr ru = 12ν 1+ν E σ rr + σ θθ = 12ν 1+ν E 2 2Y[log(r/a)+1]/ 3 p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamOCai aadkhaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7a XbqabaGccqGH9aqpdaWcaaqaaiaadsgacaWG1baabaGaamizaiaadk haaaGaey4kaSYaaSaaaeaacaWG1baabaGaamOCaaaacqGH9aqpdaWc aaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaamizaaqaaiaadsgaca WGYbaaamaabmaabaGaamOCaiaadwhaaiaawIcacaGLPaaacqGH9aqp daWcaaqaamaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawI cacaGLPaaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGL PaaaaeaacaWGfbaaamaacmaabaGaeq4Wdm3aaSbaaSqaaiaadkhaca WGYbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqC aeqaaaGccaGL7bGaayzFaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaeyypa0ZaaSaaaeaadaqadaqaaiaaigdacqGHsislcaaIYaGa eqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4 gacaGLOaGaayzkaaaabaGaamyraaaacaaIYaWaaeWaaeaacaaIYaGa amywaiaacUfaciGGSbGaai4BaiaacEgacaGGOaGaamOCaiaac+caca WGHbGaaiykaiabgUcaRiaaigdacaGGDbGaai4lamaakaaabaGaaG4m aaWcbeaakiabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaaakiaawI cacaGLPaaaaaaa@A3C8@

 

7. Integrating gives

u= 12ν 1+ν E 2r 2Y/ 3 log(r/a) p a +C/r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDaiabg2da9maalaaabaWaaeWaae aacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaamaabmaa baGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaqaaiaadweaaa GaaGOmaiaadkhadaGadaqaamaabmaabaGaaGOmaiaadMfacaGGVaWa aOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaGaciiBaiaac+gaca GGNbGaaiikaiaadkhacaGGVaGaamyyaiaacMcacqGHsislcaWGWbWa aSbaaSqaaiaadggaaeqaaaGccaGL7bGaayzFaaGaey4kaSIaam4qai aac+cacaWGYbaaaa@53E4@

where C is a constant of integration

 

8. The constant of integration can be found by noting that the radial displacements in the elastic and plastic regions must be equal at r=c.  Using the expression for the elastic displacement field below and solving for C gives

C= 1+ν c 2 (2(1ν) b 2 +(12ν)( b 2 c 2 )) E( b 2 c 2 ) p a 2Y/ 3 log(c/a) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiabg2da9maalaaabaWaaeWaae aacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaam4yamaaCaaa leqabaGaaGOmaaaakiaacIcacaaIYaGaaiikaiaaigdacqGHsislcq aH9oGBcaGGPaGaamOyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa cIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcacaGGOaGaamOyam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaa ikdaaaGccaGGPaGaaiykaaqaaiaadweacaGGOaGaamOyamaaCaaale qabaGaaGOmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaGc caGGPaaaamaacmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiabgk HiTmaabmaabaGaaGOmaiaadMfacaGGVaWaaOaaaeaacaaIZaaaleqa aaGccaGLOaGaayzkaaGaciiBaiaac+gacaGGNbGaaiikaiaadogaca GGVaGaamyyaiaacMcaaiaawUhacaGL9baaaaa@65C6@

This result can be simplified by noting that p a 2Y/ 3 log(c/a)=Y(1 c 2 / b 2 )/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki abgkHiTmaabmaabaGaaGOmaiaadMfacaGGVaWaaOaaaeaacaaIZaaa leqaaaGccaGLOaGaayzkaaGaciiBaiaac+gacaGGNbGaaiikaiaado gacaGGVaGaamyyaiaacMcacqGH9aqpcaWGzbGaaiikaiaaigdacqGH sislcaWGJbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaadkgadaahaa WcbeqaaiaaikdaaaGccaGGPaGaai4lamaakaaabaGaaG4maaWcbeaa aaa@4A18@  from the expression for the location of the elastic-plastic boundary given below.

 

 

In the elastic region

 

The solution can be found directly from the solution to the internally pressurized elastic cylinder given in Sect 4.1.9.  From step (iv) in the solution for the plastic region we see that the radial pressure at r=c is p c = σ rr = p a 2Y/ 3 log(c/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGJbaabeaaki abg2da9iabgkHiTiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGc cqGH9aqpcaWGWbWaaSbaaSqaaiaadggaaeqaaOGaeyOeI0YaaeWaae aacaaIYaGaamywaiaac+cadaGcaaqaaiaaiodaaSqabaaakiaawIca caGLPaaaciGGSbGaai4BaiaacEgacaGGOaGaam4yaiaac+cacaWGHb Gaaiykaaaa@4833@ . We can simplify the solution by noting p a 2Y/ 3 log(c/a)=Y(1 c 2 / b 2 )/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki abgkHiTmaabmaabaGaaGOmaiaadMfacaGGVaWaaOaaaeaacaaIZaaa leqaaaGccaGLOaGaayzkaaGaciiBaiaac+gacaGGNbGaaiikaiaado gacaGGVaGaamyyaiaacMcacqGH9aqpcaWGzbGaaiikaiaaigdacqGH sislcaWGJbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaadkgadaahaa WcbeqaaiaaikdaaaGccaGGPaGaai4lamaakaaabaGaaG4maaWcbeaa aaa@4A18@  from the expression for the location of the elastic-plastic boundary.   Substituting into the expressions for stress and displacement in 4.1.9 shows that

σ rr = p c c 2 b 2 c 2 1 b 2 r 2 σ θθ = p c c 2 b 2 c 2 1+ b 2 r 2 σ zz =2ν p c 2 b 2 c 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamOCai aadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWGWbWaaSbaaSqaaiaadoga aeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkgadaahaa WcbeqaaiaaikdaaaGccqGHsislcaWGJbWaaWbaaSqabeaacaaIYaaa aaaakmaacmaabaGaaGymaiabgkHiTmaalaaabaGaamOyamaaCaaale qabaGaaGOmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaGc caGL7bGaayzFaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8oabaGaeq4Wdm3aaSbaaSqaaiabeI7aXjab eI7aXbqabaGccqGH9aqpdaWcaaqaaiaadchadaWgaaWcbaGaam4yaa qabaGccaWGJbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaa aaaOWaaiWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGIbWaaWbaaSqa beaacaaIYaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaaaaaaki aawUhacaGL9baacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8oabaGaeq4Wdm3aaSbaaSqaaiaadQ hacaWG6baabeaakiabg2da9iaaikdacqaH9oGBdaWcaaqaaiaadcha caWGJbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaaaaaaa aa@8908@

u r = 1+ν c 2 b 2 p c E b 2 c 2 1 r + 12ν r b 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGYbaabeaaki abg2da9maalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGL OaGaayzkaaGaam4yamaaCaaaleqabaGaaGOmaaaakiaadkgadaahaa WcbeqaaiaaikdaaaGccaWGWbWaaSbaaSqaaiaadogaaeqaaaGcbaGa amyramaabmaabaGaamOyamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aadogadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaWaaiWa aeaadaWcaaqaaiaaigdaaeaacaWGYbaaaiabgUcaRmaabmaabaGaaG ymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaadaWcaaqaaiaa dkhaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eaiaaw2 haaaaa@5312@

 

Location of the elastic-plastic boundary

 

Finally, the elastic-plastic boundary is located by the condition that the stress in the elastic region must just reach yield at r=c (so there is a smooth transition into the plastic region).  The yield condition is σ θθ σ rr =2Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqa aOGaeyypa0JaaGOmaiaadMfacaGGVaWaaOaaaeaacaaIZaaaleqaaa aa@3F44@ , so substituting the expressions for stress in the elastic region and simplifying yields

σ θθ σ rr = 2 p a 2Y/ 3 log(c/a) b 2 b 2 c 2 =2Y/ 3 3 p a Y =2log(c/a)+(1 c 2 / b 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaeqiUde NaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGYbGaamOC aaqabaGccqGH9aqpdaWcaaqaaiaaikdadaqadaqaaiaadchadaWgaa WcbaGaamyyaaqabaGccqGHsisldaqadaqaaiaaikdacaWGzbGaai4l amaakaaabaGaaG4maaWcbeaaaOGaayjkaiaawMcaaiGacYgacaGGVb Gaai4zaiaacIcacaWGJbGaai4laiaadggacaGGPaaacaGLOaGaayzk aaGaamOyamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaamOyam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaa ikdaaaaakiaawIcacaGLPaaaaaGaeyypa0JaaGOmaiaadMfacaGGVa WaaOaaaeaacaaIZaaaleqaaaGcbaGaeyi1HS9aaOaaaeaacaaIZaaa leqaaOWaaSaaaeaacaWGWbWaaSbaaSqaaiaadggaaeqaaaGcbaGaam ywaaaacqGH9aqpcaaIYaGaciiBaiaac+gacaGGNbGaaiikaiaadoga caGGVaGaamyyaiaacMcacqGHRaWkcaGGOaGaaGymaiabgkHiTiaado gadaahaaWcbeqaaiaaikdaaaGccaGGVaGaamOyamaaCaaaleqabaGa aGOmaaaakiaacMcaaaaa@7009@

If p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@ , Y, a and b are specified this equation can be solved (numerically) for c.  For graphing purposes it is preferable to choose c and then calculate the corresponding value of p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@