<

 

 

 

 

7.2 A simple Finite Element program

 

The goal of this section is to provide some insight into the theory and algorithms that are coded in a finite element program.  Here, we will implement only the simplest possible finite element code: specifically, we will develop a finite element method to solve a 2D (plane stress or plane strain) static boundary value problem in linear elasticity, as shown below.


 

We assume that we are given:

 

1. The shape of the solid in its unloaded condition R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaaaa@31B7@

 

2. Boundary conditions, specifying displacements u * (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiykaaaa@351D@  on a portion 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  or tractions on a portion 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  of the boundary of R

 

 

To simplify the problem, we will make the following assumptions

 

· The solid is an isotropic, linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ ;

 

· Plane strain or plane stress deformation;

 

· The solid is at constant temperature (no thermal strains);

 

· We will neglect body forces.

 

 

We then wish to find a displacement field u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@  satisfying the usual field equations and boundary conditions (see Sect 5.1.1).  The procedure is based on the principle of minimum potential energy discussed in Section 5.6.  There are four steps:

 

1. A finite element mesh is constructed to interpolate the displacement field

 

2. The strain energy in each element is calculated in terms of the displacements of each node;

 

3. The potential energy of tractions acting on the solid’s boundary is added

 

4. The displacement field is calculated by minimizing the potential energy.

 

 

These steps are discussed in more detail in the sections below.

 

 

 

7.2.1 The finite element mesh and element connectivity

 

For simplicity, we will assume that the elements are 3 noded triangles, as shown below. The nodes are numbered 1,2,3…N, while the elements are numbered 1,2…L.  Element numbers are shown in parentheses.


 

 

The position of the ath node is specified by its coordinates x i (a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaWGPbaabaGaai ikaiaadggacaGGPaaaaaaa@3537@

 

The element connectivity specifies the node numbers attached to each element.  For example, in the figure above, the connectivity for element 1 is (10,9,2); for element 2 it is (10,2,1), etc.

 

 

 

7.2.2 The global displacement vector

 

We will approximate the displacement field by interpolating between values at the nodes, as follows.  Let u i (a) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaai ikaiaadggacaGGPaaaaaaa@3533@  denote the unknown displacement vector at nodes a=1,2,....N MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabg2da9iaaigdacaGGSaGaaG OmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaamOtaaaa@393D@ .  In a finite element code, the displacements for a plane stress or plane strain problem are normally stored as a column vector like the one shown below:

u ¯ = u 1 (1) u 2 (1) u 1 (2) u 2 (2) u 1 (3) u 2 (3) T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1baaaiabg2da9maadm aabaqbaeqabeacaaaaaeaacaWG1bWaa0baaSqaaiaaigdaaeaacaGG OaGaaGymaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaaca GGOaGaaGymaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaigdaaeaa caGGOaGaaGOmaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikdaae aacaGGOaGaaGOmaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaigda aeaacaGGOaGaaG4maiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaik daaeaacaGGOaGaaG4maiaacMcaaaaakeaacqWIMaYsaeaaaaaacaGL BbGaayzxaaWaaWbaaSqabeaacaWGubaaaaaa@4F2B@

 

The unknown displacement components will be determined by minimizing the potential energy of the solid.

 

 

 

7.2.3 Element interpolation functions

 

To calculate the potential energy, we need to be able to compute the displacements within each element.  This is done by interpolation.  Consider a triangular element, with nodes a, b, c at its corners, as shown on the right. Let x i (a) , x i (b) , x i (c) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaWGPbaabaGaai ikaiaadggacaGGPaaaaOGaaiilaiaaykW7caaMc8UaaGPaVlaadIha daqhaaWcbaGaamyAaaqaaiaacIcacaWGIbGaaiykaaaakiaacYcaca aMc8UaaGPaVlaaykW7caWG4bWaa0baaSqaaiaadMgaaeaacaGGOaGa am4yaiaacMcaaaaaaa@489D@  denote the coordinates of the corners. 

 

We then define the element interpolation functions (also known as shape functions) as follows

N a ( x 1 , x 2 )= x 2 x 2 (b) x 1 (c) x 1 (b) x 1 x 1 (b) x 2 (c) x 2 (b) x 2 (a) x 2 (b) x 1 (c) x 1 (b) x 1 (a) x 1 (b) x 2 (c) x 2 (b) N b ( x 1 , x 2 )= x 2 x 2 (c) x 1 (a) x 1 (c) x 1 x 1 (c) x 2 (a) x 2 (c) x 2 (b) x 2 (c) x 1 (a) x 1 (c) x 1 (b) x 1 (c) x 2 (a) x 2 (c) N c ( x 1 , x 2 )= x 2 x 2 (a) x 1 (b) x 1 (a) x 1 x 1 (a) x 2 (b) x 2 (a) x 2 (c) x 2 (a) x 1 (b) x 1 (a) x 1 (c) x 1 (a) x 2 (b) x 2 (a) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaSbaaSqaaiaadggaae qaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiE amaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpdaWcaaqaamaabm aabaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaqh aaWcbaGaaGOmaaqaaiaacIcacaWGIbGaaiykaaaaaOGaayjkaiaawM caamaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadoga caGGPaaaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaiikai aadkgacaGGPaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaDaaaleaaca aIXaaabaGaaiikaiaadkgacaGGPaaaaaGccaGLOaGaayzkaaWaaeWa aeaacaWG4bWaa0baaSqaaiaaikdaaeaacaGGOaGaam4yaiaacMcaaa GccqGHsislcaWG4bWaa0baaSqaaiaaikdaaeaacaGGOaGaamOyaiaa cMcaaaaakiaawIcacaGLPaaaaeaadaqadaqaaiaadIhadaqhaaWcba GaaGOmaaqaaiaacIcacaWGHbGaaiykaaaakiabgkHiTiaadIhadaqh aaWcbaGaaGOmaaqaaiaacIcacaWGIbGaaiykaaaaaOGaayjkaiaawM caamaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadoga caGGPaaaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaiikai aadkgacaGGPaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWG 4bWaa0baaSqaaiaaigdaaeaacaGGOaGaamyyaiaacMcaaaGccqGHsi slcaWG4bWaa0baaSqaaiaaigdaaeaacaGGOaGaamOyaiaacMcaaaaa kiaawIcacaGLPaaadaqadaqaaiaadIhadaqhaaWcbaGaaGOmaaqaai aacIcacaWGJbGaaiykaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGOm aaqaaiaacIcacaWGIbGaaiykaaaaaOGaayjkaiaawMcaaaaaaeaaca WGobWaaSbaaSqaaiaadkgaaeqaaOGaaiikaiaadIhadaWgaaWcbaGa aGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacM cacqGH9aqpdaWcaaqaamaabmaabaGaamiEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIcacaWGJb GaaiykaaaaaOGaayjkaiaawMcaamaabmaabaGaamiEamaaDaaaleaa caaIXaaabaGaaiikaiaadggacaGGPaaaaOGaeyOeI0IaamiEamaaDa aaleaacaaIXaaabaGaaiikaiaadogacaGGPaaaaaGccaGLOaGaayzk aaGaeyOeI0YaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey OeI0IaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadogacaGGPaaa aaGccaGLOaGaayzkaaWaaeWaaeaacaWG4bWaa0baaSqaaiaaikdaae aacaGGOaGaamyyaiaacMcaaaGccqGHsislcaWG4bWaa0baaSqaaiaa ikdaaeaacaGGOaGaam4yaiaacMcaaaaakiaawIcacaGLPaaaaeaada qadaqaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIcacaWGIbGaaiyk aaaakiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIcacaWGJb GaaiykaaaaaOGaayjkaiaawMcaamaabmaabaGaamiEamaaDaaaleaa caaIXaaabaGaaiikaiaadggacaGGPaaaaOGaeyOeI0IaamiEamaaDa aaleaacaaIXaaabaGaaiikaiaadogacaGGPaaaaaGccaGLOaGaayzk aaGaeyOeI0YaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaGGOa GaamOyaiaacMcaaaGccqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaa caGGOaGaam4yaiaacMcaaaaakiaawIcacaGLPaaadaqadaqaaiaadI hadaqhaaWcbaGaaGOmaaqaaiaacIcacaWGHbGaaiykaaaakiabgkHi TiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIcacaWGJbGaaiykaaaaaO GaayjkaiaawMcaaaaaaeaacaWGobWaaSbaaSqaaiaadogaaeqaaOGa aiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBa aaleaacaaIYaaabeaakiaacMcacqGH9aqpdaWcaaqaamaabmaabaGa amiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhadaqhaaWcba GaaGOmaaqaaiaacIcacaWGHbGaaiykaaaaaOGaayjkaiaawMcaamaa bmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadkgacaGGPa aaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadgga caGGPaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaa baGaaiikaiaadggacaGGPaaaaaGccaGLOaGaayzkaaWaaeWaaeaaca WG4bWaa0baaSqaaiaaikdaaeaacaGGOaGaamOyaiaacMcaaaGccqGH sislcaWG4bWaa0baaSqaaiaaikdaaeaacaGGOaGaamyyaiaacMcaaa aakiaawIcacaGLPaaaaeaadaqadaqaaiaadIhadaqhaaWcbaGaaGOm aaqaaiaacIcacaWGJbGaaiykaaaakiabgkHiTiaadIhadaqhaaWcba GaaGOmaaqaaiaacIcacaWGHbGaaiykaaaaaOGaayjkaiaawMcaamaa bmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadkgacaGGPa aaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaadgga caGGPaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWG4bWaa0 baaSqaaiaaigdaaeaacaGGOaGaam4yaiaacMcaaaGccqGHsislcaWG 4bWaa0baaSqaaiaaigdaaeaacaGGOaGaamyyaiaacMcaaaaakiaawI cacaGLPaaadaqadaqaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIca caWGIbGaaiykaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaai aacIcacaWGHbGaaiykaaaaaOGaayjkaiaawMcaaaaaaaaa@47AB@

These shape functions are constructed so that

 

· They vary linearly with position within the element

 

· Each shape function has a value of one at one of the nodes, and is zero at the other two.

 

 

We then write

u i ( x 1 , x 2 )= u i (a) N a ( x 1 , x 2 )+ u i (b) N b ( x 1 , x 2 )+ u i (c) N c ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaGGPaGaeyypa0JaamyDamaaDaaaleaaca WGPbaabaGaaiikaiaadggacaGGPaaaaOGaamOtamaaBaaaleaacaWG HbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilai aadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaamyDamaa DaaaleaacaWGPbaabaGaaiikaiaadkgacaGGPaaaaOGaamOtamaaBa aaleaacaWGIbaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaS IaamyDamaaDaaaleaacaWGPbaabaGaaiikaiaadogacaGGPaaaaOGa amOtamaaBaaaleaacaWGJbaabeaakiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@604C@

One can readily verify that this expression gives the correct values for u i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F3@  at each corner of the triangle.

 

Of course, the shape functions given are valid only for 3 noded triangular elements MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  other elements have more complicated interpolation functions.

 

 

 

7.2.4 Element strains, stresses and strain energy density

 

We can now compute the strain distribution within the element and hence determine the strain energy density. Since we are solving a plane strain problem, the only nonzero strains are ε 11 , ε 22 , ε 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiaacYcacqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGa aiilaiabew7aLnaaBaaaleaacaaIXaGaaGOmaaqabaaaaa@3C32@ .  It is convenient to express the results in matrix form, as follows

ε ¯ = B u ¯ element ε 11 ε 22 2 ε 12 = N a x 1 0 N b x 1 0 N c x 1 0 0 N a x 2 0 N b x 2 0 N c x 2 N a x 2 N a x 1 N b x 2 N b x 1 N c x 2 N c x 1 u 1 (a) u 2 (a) u 1 (b) u 2 (b) u 1 (c) u 2 (c) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacqaH1oqzaaGaeyypa0Zaam WaaeaacaWGcbaacaGLBbGaayzxaaWaaWaaaeaacaWG1baaamaaCaaa leqabaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaa aakiaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaa ykW7caaMc8+aamWaaeaafaqabeWabaaabaGaeqyTdu2aaSbaaSqaai aaigdacaaIXaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIYaGaaGOm aaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabe aaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqadyaaaaqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGHbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGIbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGJbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqa aiaaicdaaeaadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaamyyaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa aiaaicdaaeaadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaamOyaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa aiaaicdaaeaadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaam4yaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGHbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaa cqGHciITcaWGobWaaSbaaSqaaiaadggaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaa d6eadaWgaaWcbaGaamOyaaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOtamaaBaaa leaacaWGIbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaaaaGcbaWaaSaaaeaacqGHciITcaWGobWaaSbaaSqaaiaadoga aeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaake aadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaam4yaaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaaaakiaawUfaca GLDbaadaWadaqaauaabeqageaaaaqaaiaadwhadaqhaaWcbaGaaGym aaqaaiaacIcacaWGHbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGaaG OmaaqaaiaacIcacaWGHbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGa aGymaaqaaiaacIcacaWGIbGaaiykaaaaaOqaaiaadwhadaqhaaWcba GaaGOmaaqaaiaacIcacaWGIbGaaiykaaaaaOqaaiaadwhadaqhaaWc baGaaGymaaqaaiaacIcacaWGJbGaaiykaaaaaOqaaiaadwhadaqhaa WcbaGaaGOmaaqaaiaacIcacaWGJbGaaiykaaaaaaaakiaawUfacaGL Dbaaaaa@CC36@

The factor of 2 multiplying the shear strains in the strain vector has been introduced for convenience.  Note that, for linear triangular elements, the matrix of shape function derivatives B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa aaaa@3398@  is constant.  It depends only on the coordinates of the corners of the element, and does not vary with position within the element.  This is not the case for most elements.

 

Now, we can compute the strain energy density within the element.  Begin by computing the stresses within the element.  For plane strain deformation, have that

σ 11 σ 22 σ 12 = E (1+ν)(12ν) 1ν ν 0 ν 1ν 0 0 0 12ν 2 ε 11 ε 22 2 ε 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyraaqa aiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaey OeI0IaaGOmaiabe27aUjaacMcaaaWaamWaaeaafaqabeWadaaabaGa aGymaiabgkHiTiabe27aUbqaaiabe27aUbqaaiaaicdaaeaacqaH9o GBaeaacaaIXaGaeyOeI0IaeqyVd4gabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaWaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbqaai aaikdaaaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiab ew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaa WcbaGaaGOmaiaaikdaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaa caaIXaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@69F6@

For plane stress, the result is

σ 11 σ 22 σ 12 = E (1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 ε 11 ε 22 2 ε 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyraaqa aiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaO GaaiykaaaadaWadaqaauaabeqadmaaaeaacaaIXaaabaGaeqyVd4ga baGaaGimaaqaaiabe27aUbqaaiaaigdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacaGG VaGaaGOmaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacq aH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeqyTdu2aaSba aSqaaiaaikdacaaIYaaabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcba GaaGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaaa@6175@

Recall (see Sect 3.1.7) that the strain energy density is related to the stresses and strains by U= σ ij ε ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9iabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccqaH1oqzdaWgaaWcbaGaamyAaiaadQga aeqaaOGaai4laiaaikdaaaa@3BBF@ .   This can be written in matrix form as

U= 1 2 ε ¯ T σ ¯ = 1 2 ε ¯ T D ε ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaaWaaaeaacqaH1oqzaaWaaWbaaSqabeaacaWGubaa aOWaaWaaaeaacqaHdpWCaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG Omaaaadaadaaqaaiabew7aLbaadaahaaWcbeqaaiaadsfaaaGcdaWa daqaaiaadseaaiaawUfacaGLDbaadaadaaqaaiabew7aLbaacaaMc8 UaaGPaVdaa@45BC@

where

σ ¯ = σ 11 σ 22 σ 12 ε ¯ = ε 11 ε 22 2 ε 12 D = E (1+ν)(12ν) 1ν ν 0 ν 1ν 0 0 0 (12ν)/2 Plane strain E (1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 Plane stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaadaaqaaiabeo8aZbaacqGH9a qpdaWadaqaauaabeqadeaaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaa igdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGccaGLBbGa ayzxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaWaaaeaacqaH1oqzaaGa eyypa0JaaGPaVpaadmaabaqbaeqabmqaaaqaaiabew7aLnaaBaaale aacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaiaa ikdaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaaIXaGaaGOmaa qabaaaaaGccaGLBbGaayzxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaamaadmaabaGaam iraaGaay5waiaaw2faaiabg2da9maaceaabaqbaeqabiqaaaqaamaa laaabaGaamyraaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykai aacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaamWaaeaa faqabeWadaaabaGaaGymaiabgkHiTiabe27aUbqaaiabe27aUbqaai aaicdaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaeqyVd4gabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaiikaiaaigdacqGHsislcaaIYa GaeqyVd4Maaiykaiaac+cacaaIYaaaaaGaay5waiaaw2faaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabcfacaqGSbGaaeyyai aab6gacaqGLbGaaeiiaiaabohacaqG0bGaaeOCaiaabggacaqGPbGa aeOBaaqaamaalaaabaGaamyraaqaaiaacIcacaaIXaGaeyOeI0Iaeq yVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaWadaqaauaabeqa dmaaaeaacaaIXaaabaGaeqyVd4gabaGaaGimaaqaaiabe27aUbqaai aaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaGGOaGaaGym aiabgkHiTiabe27aUjaacMcacaGGVaGaaGOmaaaaaiaawUfacaGLDb aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaabcfacaqGSbGaaeyyaiaab6gacaqGLbGaaeiiaiaabohacaqG0b GaaeOCaiaabwgacaqGZbGaae4CaaaaaiaawUhaaaaaaa@DAAA@

Now, express these results in terms of the nodal displacements for the element

U element = 1 2 u ¯ element T B T D B u ¯ element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaCaaaleqabaGaaeyzaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiabg2da9maalaaa baGaaGymaaqaaiaaikdaaaWaaWaaaeaacaWG1baaamaaCaaaleqaba GaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakmaa CaaaleqabaGaamivaaaakmaabmaabaWaamWaaeaacaWGcbaacaGLBb GaayzxaaWaaWbaaSqabeaacaWGubaaaOWaamWaaeaacaWGebaacaGL BbGaayzxaaWaamWaaeaacaWGcbaacaGLBbGaayzxaaaacaGLOaGaay zkaaWaaWaaaeaacaWG1baaamaaCaaaleqabaGaaeyzaiaabYgacaqG LbGaaeyBaiaabwgacaqGUbGaaeiDaaaaaaa@5648@

We can now compute the total strain energy stored within the element.  Because B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGcbaacaGLBbGaayzxaa aaaa@3398@  is constant, we merely need to multiply the strain energy density by the area of the element, which can be computed from the coordinates of its corners as follows

A= 1 2 x 1 b x 1 a x 2 c x 2 a x 1 c x 1 a x 2 b x 2 a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaaqWaaeaadaqadaqaaiaadIhadaqhaaWcbaGaaGym aaqaaiaadkgaaaGccqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaaca WGHbaaaaGccaGLOaGaayzkaaWaaeWaaeaacaWG4bWaa0baaSqaaiaa ikdaaeaacaWGJbaaaOGaeyOeI0IaamiEamaaDaaaleaacaaIYaaaba GaamyyaaaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGaamiEamaa DaaaleaacaaIXaaabaGaam4yaaaakiabgkHiTiaadIhadaqhaaWcba GaaGymaaqaaiaadggaaaaakiaawIcacaGLPaaadaqadaqaaiaadIha daqhaaWcbaGaaGOmaaqaaiaadkgaaaGccqGHsislcaWG4bWaa0baaS qaaiaaikdaaeaacaWGHbaaaaGccaGLOaGaayzkaaaacaGLhWUaayjc Sdaaaa@58CB@

Hence, the total strain energy of the element is

W element = 1 2 u ¯ element T A element B T D B u ¯ element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaCaaaleqabaGaaeyzaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiabg2da9maalaaa baGaaGymaaqaaiaaikdaaaWaaWaaaeaacaWG1baaamaaCaaaleqaba GaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakmaa CaaaleqabaGaamivaaaakmaabmaabaGaamyqamaaBaaaleaacaqGLb GaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baabeaakmaadmaa baGaamOqaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakmaadm aabaGaamiraaGaay5waiaaw2faamaadmaabaGaamOqaaGaay5waiaa w2faaaGaayjkaiaawMcaamaamaaabaGaamyDaaaadaahaaWcbeqaai aabwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaaaaa@5DC5@

 

 

 

7.2.5 The element stiffness matrix

 

The strain energy can be simplified by defining the element stiffness matrix

K element = A element B T D B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaCaaaleqabaGaaeyzaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiabg2da9iaadgea daWgaaWcbaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaae iDaaqabaGcdaWadaqaaiaadkeaaiaawUfacaGLDbaadaahaaWcbeqa aiaadsfaaaGcdaWadaqaaiaadseaaiaawUfacaGLDbaadaWadaqaai aadkeaaiaawUfacaGLDbaaaaa@4A23@

so that

W element = 1 2 u ¯ element T K element u ¯ element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaCaaaleqabaGaaeyzaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiabg2da9maalaaa baGaaGymaaqaaiaaikdaaaWaaWaaaeaacaWG1baaamaaCaaaleqaba GaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakmaa CaaaleqabaGaamivaaaakiaadUeadaahaaWcbeqaaiaabwgacaqGSb Gaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaGcdaadaaqaaiaadwha aaWaaWbaaSqabeaacaqGLbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6 gacaqG0baaaaaa@530A@

Observe that, because the material property matrix D MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGebaacaGLBbGaayzxaa aaaa@339A@  is symmetric, the element stiffness matrix is also symmetric.  To see this, note that

K element T = A element B T D B T = A element B T D T B = A element B T D B = K element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaWbaaSqabeaacaqGLb GaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baaaOWaaWbaaSqa beaacaWGubaaaOGaeyypa0JaamyqamaaBaaaleaacaqGLbGaaeiBai aabwgacaqGTbGaaeyzaiaab6gacaqG0baabeaakmaabmaabaWaamWa aeaacaWGcbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOWaam WaaeaacaWGebaacaGLBbGaayzxaaWaamWaaeaacaWGcbaacaGLBbGa ayzxaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaaGPaVl aaykW7caaMc8UaaGPaVlabg2da9iaadgeadaWgaaWcbaGaaeyzaiaa bYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaqabaGcdaWadaqaai aadkeaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaWadaqa aiaadseaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaWada qaaiaadkeaaiaawUfacaGLDbaacaaMc8UaaGPaVdqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaadg eadaWgaaWcbaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGa aeiDaaqabaGcdaWadaqaaiaadkeaaiaawUfacaGLDbaadaahaaWcbe qaaiaadsfaaaGcdaWadaqaaiaadseaaiaawUfacaGLDbaadaWadaqa aiaadkeaaiaawUfacaGLDbaacaaMc8UaaGPaVlabg2da9iaadUeada ahaaWcbeqaaiaabwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaa bshaaaaaaaa@AC41@

 

 

 

 

 

7.2.6 The Global stiffness matrix

 

The total strain energy of the solid may be computed by adding together the strain energy of each element:

W= elements W element = 1 2 elements u ¯ element T K element u ¯ element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maaqafabaGaam4vam aaCaaaleqabaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGa aeiDaaaaaeaacaqGLbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gaca qG0bGaae4Caaqab0GaeyyeIuoakiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaWaaabuaeaadaadaaqaaiaadwhaaaWaaWbaaSqabeaaca qGLbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baaaOWaaWba aSqabeaacaWGubaaaOGaam4samaaCaaaleqabaGaaeyzaiaabYgaca qGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakmaamaaabaGaamyDaaaa daahaaWcbeqaaiaabwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBai aabshaaaaabaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGa aeiDaiaabohaaeqaniabggHiLdaaaa@6806@

It is more convenient to express W in terms of the vector u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1baaaaaa@31E9@  which contains all the nodal displacements, rather than using u ¯ element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1baaamaaCaaaleqaba GaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaaaaa@3895@  for each element to describe the displacements.  For example, the strain energy for the simple 2 element mesh shown on the right is

 

 

W= 1 2 u 1 (1) u 2 (1) u 1 (2) u 2 (2) u 1 (3) u 2 (3) k 11 (1) k 12 (1) k 16 (1) k 21 (1) k 22 (1) k 61 (1) k 66 (1) u 1 (1) u 2 (1) u 1 (2) u 2 (2) u 1 (3) u 2 (3) + 1 2 u 1 (2) u 2 (2) u 1 (3) u 2 (3) u 1 (4) u 2 (4) k 11 (2) k 12 (2) k 16 (2) k 21 (2) k 22 (2) k 61 (2) k 66 (2) u 1 (2) u 2 (2) u 1 (3) u 2 (3) u 1 (4) u 2 (4) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGxbGaeyypa0ZaaSaaaeaaca aIXaaabaGaaGOmaaaadaWadaqaauaabeqabyaaaaqaaiaadwhadaqh aaWcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaadwhada qhaaWcbaGaaGOmaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaadwha daqhaaWcbaGaaGymaaqaaiaacIcacaaIYaGaaiykaaaaaOqaaiaadw hadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIYaGaaiykaaaaaOqaaiaa dwhadaqhaaWcbaGaaGymaaqaaiaacIcacaaIZaGaaiykaaaaaOqaai aadwhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIZaGaaiykaaaaaaaa kiaawUfacaGLDbaadaWadaqaauaabeqaeqaaaaaabaGaam4AamaaDa aaleaacaaIXaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaa dUgadaqhaaWcbaGaaGymaiaaikdaaeaacaGGOaGaaGymaiaacMcaaa aakeaacqWIVlctaeaacaWGRbWaa0baaSqaaiaaigdacaaI2aaabaGa aiikaiaaigdacaGGPaaaaaGcbaGaam4AamaaDaaaleaacaaIYaGaaG ymaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaadUgadaqhaaWcbaGa aGOmaiaaikdaaeaacaGGOaGaaGymaiaacMcaaaaakeaaaeaaaeaacq WIUlstaeaaaeaacqWIXlYtaeaaaeaacaWGRbWaa0baaSqaaiaaiAda caaIXaaabaGaaiikaiaaigdacaGGPaaaaaGcbaaabaaabaGaam4Aam aaDaaaleaacaaI2aGaaGOnaaqaaiaacIcacaaIXaGaaiykaaaaaaaa kiaawUfacaGLDbaadaWadaqaauaabeqageaaaaqaaiaadwhadaqhaa WcbaGaaGymaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaadwhadaqh aaWcbaGaaGOmaaqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaadwhada qhaaWcbaGaaGymaaqaaiaacIcacaaIYaGaaiykaaaaaOqaaiaadwha daqhaaWcbaGaaGOmaaqaaiaacIcacaaIYaGaaiykaaaaaOqaaiaadw hadaqhaaWcbaGaaGymaaqaaiaacIcacaaIZaGaaiykaaaaaOqaaiaa dwhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIZaGaaiykaaaaaaaaki aawUfacaGLDbaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaa WaamWaaeaafaqabeqagaaaaeaacaWG1bWaa0baaSqaaiaaigdaaeaa caGGOaGaaGOmaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikdaae aacaGGOaGaaGOmaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaigda aeaacaGGOaGaaG4maiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaik daaeaacaGGOaGaaG4maiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaa igdaaeaacaGGOaGaaGinaiaacMcaaaaakeaacaWG1bWaa0baaSqaai aaikdaaeaacaGGOaGaaGinaiaacMcaaaaaaaGccaGLBbGaayzxaaWa amWaaeaafaqabeabeaaaaaqaaiaadUgadaqhaaWcbaGaaGymaiaaig daaeaacaGGOaGaaGOmaiaacMcaaaaakeaacaWGRbWaa0baaSqaaiaa igdacaaIYaaabaGaaiikaiaaikdacaGGPaaaaaGcbaGaeS47IWeaba Gaam4AamaaDaaaleaacaaIXaGaaGOnaaqaaiaacIcacaaIYaGaaiyk aaaaaOqaaiaadUgadaqhaaWcbaGaaGOmaiaaigdaaeaacaGGOaGaaG OmaiaacMcaaaaakeaacaWGRbWaa0baaSqaaiaaikdacaaIYaaabaGa aiikaiaaikdacaGGPaaaaaGcbaaabaaabaGaeSO7I0eabaaabaGaeS y8I8eabaaabaGaam4AamaaDaaaleaacaaI2aGaaGymaaqaaiaacIca caaIYaGaaiykaaaaaOqaaaqaaaqaaiaadUgadaqhaaWcbaGaaGOnai aaiAdaaeaacaGGOaGaaGOmaiaacMcaaaaaaaGccaGLBbGaayzxaaWa amWaaeaafaqabeGbbaaaaeaacaWG1bWaa0baaSqaaiaaigdaaeaaca GGOaGaaGOmaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaa caGGOaGaaGOmaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaigdaae aacaGGOaGaaG4maiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikda aeaacaGGOaGaaG4maiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaig daaeaacaGGOaGaaGinaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaa ikdaaeaacaGGOaGaaGinaiaacMcaaaaaaaGccaGLBbGaayzxaaaaaa a@FD03@

If we wanted to, we could add the missing terms to each element displacement vector:

 


 

We can now collect together corresponding terms in the two element stiffness matrices to express this as

 


 We can therefore write

W= 1 2 u ¯ T K u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaaWaaaeaacaWG1baaamaaCaaaleqabaGaamivaaaa kmaadmaabaGaam4saaGaay5waiaaw2faamaamaaabaGaamyDaaaaaa a@3A2E@

where K MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGlbaacaGLBbGaayzxaa aaaa@33A1@  is known as the Global stiffness matrix.  It is the sum of all the element stiffness matrices.

 

Because the element stiffness matrix is symmetric, the global stiffness matrix must also be symmetric.

 

To assemble the global stiffness matrix for a plane strain or plane stress mesh with N nodes, we use the following procedure.

 

1. Note that for N MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtaaaa@31B2@  nodes, there will be 2N MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaad6eaaaa@326E@  unknown displacement components (2 at each node).  Therefore, we start by setting up storage for a 2N×2N MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaaIYaGaamOtaiabgEna0k aaikdacaWGobaacaGLOaGaayzkaaaaaa@379D@  global stiffness matrix, and set each term in the matrix to zero.

 

2. Next, begin a loop over the elements.

 

 

1. For the current element, assemble the element stiffness matrix

K element = A element B T D B MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaCaaaleqabaGaaeyzaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiabg2da9iaadgea daWgaaWcbaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaae iDaaqabaGcdaWadaqaaiaadkeaaiaawUfacaGLDbaadaahaaWcbeqa aiaadsfaaaGcdaWadaqaaiaadseaaiaawUfacaGLDbaadaWadaqaai aadkeaaiaawUfacaGLDbaaaaa@4A23@

 

2. Add the element stiffness matrix to the global stiffness matrix, using the following procedure.  Let a, b, c denote the numbers of the nodes on the 3 corners of the element.  Let k ij element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaDaaaleaacaWGPbGaamOAaa qaaiaabwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaaa aa@3A58@  for i=1…6, j=1…6  denote the terms in the the element stiffness matrix.  Let K nm MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGUbGaamyBaa qabaaaaa@33C0@  for n=1…2N, m=1…2N denote the terms in the global stiffness matrix.  Then,

K 2a1,2a1 += k 11 element , K 2a1,2a += k 12 element K 2a1,2b1 += k 13 element K 2a1,2b += k 14 element K 2a1,2c1 += k 15 element K 2a1,2c += k 16 element K 2a,2a1 += k 21 element , K 2a,2a += k 22 element K 2a,2b1 += k 23 element K 2a,2b += k 24 element K 2a,2c1 += k 25 element K 2a,2c += k 26 element K 2b1,2a1 += k 31 element , K 2b1,2a += k 32 element K 2b1,2b1 += k 33 element K 2b1,2b += k 34 element K 2b1,2c1 += k 35 element K 2b1,2c += k 36 element K 2c,2a1 += k 61 element , K 2c,2a += k 62 element K 2c,2b1 += k 63 element K 2c,2b += k 64 element K 2c,2c1 += k 65 element K 2c,2c += k 66 element MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaSbaaSqaaiaaikdaca WGHbGaeyOeI0IaaGymaiaacYcacaaIYaGaamyyaiabgkHiTiaaigda aeqaaOGaaGPaVlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPaVlaayk W7caaMc8Uaam4AamaaDaaaleaacaaIXaGaaGymaaqaaiaabwgacaqG SbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaGccaGGSaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadUeadaWgaaWcbaGaaGOmaiaadggacqGHsislcaaIXaGaai ilaiaaikdacaWGHbaabeaakiaaykW7caaMc8UaaGPaVlabgUcaRiab g2da9iaaykW7caaMc8UaaGPaVlaadUgadaqhaaWcbaGaaGymaiaaik daaeaacaqGLbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baa aaGcbaGaam4samaaBaaaleaacaaIYaGaamyyaiabgkHiTiaaigdaca GGSaGaaGOmaiaadkgacqGHsislcaaIXaaabeaakiaaykW7caaMc8Ua aGPaVlabgUcaRiabg2da9iaaykW7caaMc8UaaGPaVlaadUgadaqhaa WcbaGaaGymaiaaiodaaeaacaqGLbGaaeiBaiaabwgacaqGTbGaaeyz aiaab6gacaqG0baaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4samaa BaaaleaacaaIYaGaamyyaiabgkHiTiaaigdacaGGSaGaaGOmaiaadk gaaeqaaOGaaGPaVlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPaVlaa ykW7caaMc8Uaam4AamaaDaaaleaacaaIXaGaaGinaaqaaiaabwgaca qGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaaakeaacaWGlbWa aSbaaSqaaiaaikdacaWGHbGaeyOeI0IaaGymaiaacYcacaaIYaGaam 4yaiabgkHiTiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaey4kaSIa eyypa0JaaGPaVlaaykW7caaMc8Uaam4AamaaDaaaleaacaaIXaGaaG ynaaqaaiaabwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabsha aaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGlbWaaSbaaSqaaiaaikda caWGHbGaeyOeI0IaaGymaiaacYcacaaIYaGaam4yaaqabaGccaaMc8 UaaGPaVlaaykW7cqGHRaWkcqGH9aqpcaaMc8UaaGPaVlaaykW7caWG RbWaa0baaSqaaiaaigdacaaI2aaabaGaaeyzaiaabYgacaqGLbGaae yBaiaabwgacaqGUbGaaeiDaaaaaOqaaaqaaiaadUeadaWgaaWcbaGa aGOmaiaadggacaGGSaGaaGOmaiaadggacqGHsislcaaIXaaabeaaki aaykW7caaMc8UaaGPaVlabgUcaRiabg2da9iaaykW7caaMc8UaaGPa VlaadUgadaqhaaWcbaGaaGOmaiaaigdaaeaacaqGLbGaaeiBaiaabw gacaqGTbGaaeyzaiaab6gacaqG0baaaOGaaiilaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WGlbWaaSbaaSqaaiaaikdacaWGHbGaaiilaiaaikdacaWGHbaabeaa kiaaykW7caaMc8UaaGPaVlabgUcaRiabg2da9iaaykW7caaMc8UaaG PaVlaadUgadaqhaaWcbaGaaGOmaiaaikdaaeaacaqGLbGaaeiBaiaa bwgacaqGTbGaaeyzaiaab6gacaqG0baaaaGcbaGaam4samaaBaaale aacaaIYaGaamyyaiaacYcacaaIYaGaamOyaiabgkHiTiaaigdaaeqa aOGaaGPaVlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPaVlaaykW7ca aMc8Uaam4AamaaDaaaleaacaaIYaGaaG4maaqaaiaabwgacaqGSbGa aeyzaiaab2gacaqGLbGaaeOBaiaabshaaaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWGlbWaaSbaaSqaaiaaikdacaWGHbGaaiilaiaaikdaca WGIbaabeaakiaaykW7caaMc8UaaGPaVlabgUcaRiabg2da9iaaykW7 caaMc8UaaGPaVlaadUgadaqhaaWcbaGaaGOmaiaaisdaaeaacaqGLb GaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baaaaGcbaGaam4s amaaBaaaleaacaaIYaGaamyyaiaacYcacaaIYaGaam4yaiabgkHiTi aaigdaaeqaaOGaaGPaVlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPa VlaaykW7caaMc8Uaam4AamaaDaaaleaacaaIYaGaaGynaaqaaiaabw gacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGlbWaaSbaaSqaaiaaikdacaWGHbGaaiil aiaaikdacaWGJbaabeaakiaaykW7caaMc8UaaGPaVlabgUcaRiabg2 da9iaaykW7caaMc8UaaGPaVlaadUgadaqhaaWcbaGaaGOmaiaaiAda aeaacaqGLbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baaaa GcbaaabaGaam4samaaBaaaleaacaaIYaGaamOyaiabgkHiTiaaigda caGGSaGaaGOmaiaadggacqGHsislcaaIXaaabeaakiaaykW7caaMc8 UaaGPaVlabgUcaRiabg2da9iaaykW7caaMc8UaaGPaVlaadUgadaqh aaWcbaGaaG4maiaaigdaaeaacaqGLbGaaeiBaiaabwgacaqGTbGaae yzaiaab6gacaqG0baaaOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGlbWaaSbaaS qaaiaaikdacaWGIbGaeyOeI0IaaGymaiaacYcacaaIYaGaamyyaaqa baGccaaMc8UaaGPaVlaaykW7cqGHRaWkcqGH9aqpcaaMc8UaaGPaVl aadUgadaqhaaWcbaGaaG4maiaaikdaaeaacaqGLbGaaeiBaiaabwga caqGTbGaaeyzaiaab6gacaqG0baaaOGaaGPaVdqaaiaadUeadaWgaa WcbaGaaGOmaiaadkgacqGHsislcaaIXaGaaiilaiaaikdacaWGIbGa eyOeI0IaaGymaaqabaGccaaMc8UaaGPaVlaaykW7cqGHRaWkcqGH9a qpcaaMc8UaaGPaVlaaykW7caWGRbWaa0baaSqaaiaaiodacaaIZaaa baGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadUeadaWgaaWcbaGaaGOmaiaadk gacqGHsislcaaIXaGaaiilaiaaikdacaWGIbaabeaakiaaykW7caaM c8UaaGPaVlabgUcaRiabg2da9iaaykW7caaMc8UaaGPaVlaadUgada qhaaWcbaGaaG4maiaaisdaaeaacaqGLbGaaeiBaiaabwgacaqGTbGa aeyzaiaab6gacaqG0baaaaGcbaGaam4samaaBaaaleaacaaIYaGaam OyaiabgkHiTiaaigdacaGGSaGaaGOmaiaadogacqGHsislcaaIXaaa beaakiaaykW7caaMc8UaaGPaVlabgUcaRiabg2da9iaaykW7caaMc8 UaaGPaVlaadUgadaqhaaWcbaGaaG4maiaaiwdaaeaacaqGLbGaaeiB aiaabwgacaqGTbGaaeyzaiaab6gacaqG0baaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaam4samaaBaaaleaacaaIYaGaamOyaiabgkHiTiaaig dacaGGSaGaaGOmaiaadogaaeqaaOGaaGPaVlaaykW7caaMc8Uaey4k aSIaeyypa0JaaGPaVlaaykW7caaMc8Uaam4AamaaDaaaleaacaaIZa GaaGOnaaqaaiaabwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaa bshaaaaakeaacaaMf8UaeSO7I0eabaGaam4samaaBaaaleaacaaIYa Gaam4yaiaacYcacaaIYaGaamyyaiabgkHiTiaaigdaaeqaaOGaaGPa VlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPaVlaaykW7caaMc8Uaam 4AamaaDaaaleaacaaI2aGaaGymaaqaaiaabwgacaqGSbGaaeyzaiaa b2gacaqGLbGaaeOBaiaabshaaaGccaGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadUea daWgaaWcbaGaaGOmaiaadogacaGGSaGaaGOmaiaadggaaeqaaOGaaG PaVlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPaVlaaykW7caaMc8Ua am4AamaaDaaaleaacaaI2aGaaGOmaaqaaiaabwgacaqGSbGaaeyzai aab2gacaqGLbGaaeOBaiaabshaaaaakeaacaWGlbWaaSbaaSqaaiaa ikdacaWGJbGaaiilaiaaikdacaWGIbGaeyOeI0IaaGymaaqabaGcca aMc8UaaGPaVlaaykW7cqGHRaWkcqGH9aqpcaaMc8UaaGPaVlaaykW7 caWGRbWaa0baaSqaaiaaiAdacaaIZaaabaGaaeyzaiaabYgacaqGLb GaaeyBaiaabwgacaqGUbGaaeiDaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadUeadaWgaaWcbaGaaGOmaiaadogacaGGSaGaaGOmaiaadkga aeqaaOGaaGPaVlaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPaVlaayk W7caaMc8Uaam4AamaaDaaaleaacaaI2aGaaGinaaqaaiaabwgacaqG SbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshaaaaakeaacaWGlbWaaS baaSqaaiaaikdacaWGJbGaaiilaiaaikdacaWGJbGaeyOeI0IaaGym aaqabaGccaaMc8UaaGPaVlaaykW7cqGHRaWkcqGH9aqpcaaMc8UaaG PaVlaaykW7caWGRbWaa0baaSqaaiaaiAdacaaI1aaabaGaaeyzaiaa bYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaam4samaaBaaaleaacaaIYaGaam4yaiaacYcacaaIYaGaam 4yaaqabaGccaaMc8UaaGPaVlaaykW7cqGHRaWkcqGH9aqpcaaMc8Ua aGPaVlaaykW7caWGRbWaa0baaSqaaiaaiAdacaaI2aaabaGaaeyzai aabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaaaaaa@8DC8@

Here, the symbol += means that the term on the left is incremented by the term on the right, following standard C syntax.

 

3. Proceed to the next element.

 

 

 

7.2.7 Boundary loading

 

We have now found a way to compute the strain energy for a finite element mesh.  Next, we need to compute the boundary term in the potential energy.

 


 

Consider tractions acting on a finite element model, as shown above. Boundary loading will be specified as follows:

 

1. The element on which the loading acts

 

2. The face of the element which is loaded

 

3. The traction vector t (force per unit area) that acts on the face of the element.  The traction is assumed to be constant on the face of any one element.

 

Now, we compute the contribution to the potential energy due to the traction acting on the face of one element.

 

For the element shown in the figure, the contribution to the potential energy would be

P= 0 L t i u i ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iabgkHiTmaapehaba GaamiDamaaBaaaleaacaWGPbaabeaakiaadwhadaWgaaWcbaGaamyA aaqabaGccaWGKbGaam4CaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIi paaaa@3DB7@

Recall that the displacements vary linearly within a 3 noded triangle.  Therefore, we can write

u i = u i (a) s L + u i (c) 1 s L MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacIcacaWGHbGaaiyk aaaakmaalaaabaGaam4CaaqaaiaadYeaaaGaey4kaSIaamyDamaaDa aaleaacaWGPbaabaGaaiikaiaadogacaGGPaaaaOWaaeWaaeaacaaI XaGaeyOeI0YaaSaaaeaacaWGZbaabaGaamitaaaaaiaawIcacaGLPa aaaaa@4486@

So, since the tractions are uniform

P element = t i u i (a) 0 L s L ds t i u i (c) 0 L 1 s L ds = t i u i (a) L 2 t i u i (c) L 2 = t 1 L 2 t 2 L 2 t 1 L 2 t 2 L 2 u 1 (a) u 2 (a) u 1 (c) u 2 (c) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGqbWaaWbaaSqabeaacaqGLb GaaeiBaiaabwgacaqGTbGaaeyzaiaab6gacaqG0baaaOGaeyypa0Ja eyOeI0IaamiDamaaBaaaleaacaWGPbaabeaakiaadwhadaqhaaWcba GaamyAaaqaaiaacIcacaWGHbGaaiykaaaakmaapehabaWaaSaaaeaa caWGZbaabaGaamitaaaacaWGKbGaam4CaaWcbaGaaGimaaqaaiaadY eaa0Gaey4kIipakiabgkHiTiaadshadaWgaaWcbaGaamyAaaqabaGc caWG1bWaa0baaSqaaiaadMgaaeaacaGGOaGaam4yaiaacMcaaaGcda WdXbqaamaabmaabaGaaGymaiabgkHiTmaalaaabaGaam4Caaqaaiaa dYeaaaaacaGLOaGaayzkaaGaamizaiaadohaaSqaaiaaicdaaeaaca WGmbaaniabgUIiYdaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGH9aqpcaaMc8UaaGPaVlabgkHiTiaadshadaWgaaWcba GaamyAaaqabaGccaWG1bWaa0baaSqaaiaadMgaaeaacaGGOaGaamyy aiaacMcaaaGcdaWcaaqaaiaadYeaaeaacaaIYaaaaiabgkHiTiaads hadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaSqaaiaadMgaaeaa caGGOaGaam4yaiaacMcaaaGcdaWcaaqaaiaadYeaaeaacaaIYaaaaa qaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH 9aqpcqGHsisldaWadaqaauaabeqabqaaaaqaaiaadshadaWgaaWcba GaaGymaaqabaGcdaWcaaqaaiaadYeaaeaacaaIYaaaaaqaaiaadsha daWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiaadYeaaeaacaaIYaaaaa qaaiaadshadaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiaadYeaaeaa caaIYaaaaaqaaiaadshadaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaai aadYeaaeaacaaIYaaaaaaaaiaawUfacaGLDbaacqGHflY1daWadaqa auaabeqabqaaaaqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaacIcaca WGHbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGaaGOmaaqaaiaacIca caWGHbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaacI cacaWGJbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGaaGOmaaqaaiaa cIcacaWGJbGaaiykaaaaaaaakiaawUfacaGLDbaaaaaa@AC35@

Abbreviate this as

P element = r ¯ face u ¯ face MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaCaaaleqabaGaaeyzaiaabY gacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaaaakiabg2da9iabgkHi TmaamaaabaGaamOCaaaadaahaaWcbeqaaiaabAgacaqGHbGaae4yai aabwgaaaGccqGHflY1daadaaqaaiaadwhaaaWaaWbaaSqabeaacaqG MbGaaeyyaiaabogacaqGLbaaaaaa@4652@

 

 

 

7.2.8 Global residual force vector

 

The total contribution to the potential energy due to boundary loading on all element faces is

P= faces r ¯ faces u ¯ faces MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iabgkHiTmaaqafaba WaaWaaaeaacaWGYbaaamaaCaaaleqabaGaaeOzaiaabggacaqGJbGa aeyzaiaabohaaaGccqGHflY1daadaaqaaiaadwhaaaWaaWbaaSqabe aacaqGMbGaaeyyaiaabogacaqGLbGaae4CaaaaaeaacaqGMbGaaeyy aiaabogacaqGLbGaae4Caaqab0GaeyyeIuoaaaa@4831@

It is more convenient to express this in terms of the global displacement vector u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1baaaaaa@31E9@

P= r ¯ u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iabgkHiTmaamaaaba GaamOCaaaacqGHflY1daadaaqaaiaadwhaaaaaaa@3802@

where r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWGYbaaaaaa@31E6@  is the global residual force vector.

 

The global residual force vector for a mesh with N nodes is assembled as follows.

 

1. The residual force vector has length 2N (2 entries per node).  Reserve storage for a vector of length 2N and initialize to zero

2. Loop over elements

3. Determine which face of the element is loaded.  Let a, b denote the node numbers attached to this face.  Determine the residual force vector for the element face.  Let r i face MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaakm aaCaaaleqabaGaaeOzaiaabggacaqGJbGaaeyzaaaaaaa@36C2@ , i=1…4 denote the terms in the element face residual vector.  Let r n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGUbaabeaaaa a@32F5@ , n=1…2N denote the terms in the global residual force vector.  Then

r 2a1 += r 1 face r 2a += r 2 face r 2b1 += r 3 face r 2b += r 4 face MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGYbWaaSbaaSqaaiaaikdaca WGHbGaeyOeI0IaaGymaaqabaGccaaMc8UaaGPaVlabgUcaRiabg2da 9iaaykW7caaMc8UaaGPaVlaadkhadaqhaaWcbaGaaGymaaqaaiaabA gacaqGHbGaae4yaiaabwgaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadkhadaWgaaWcbaGaaGOmaiaadggaaeqaaOGaaGPa VlaaykW7cqGHRaWkcqGH9aqpcaaMc8UaaGPaVlaaykW7caWGYbWaa0 baaSqaaiaaikdaaeaacaqGMbGaaeyyaiaabogacaqGLbaaaaGcbaGa amOCamaaBaaaleaacaaIYaGaamOyaiabgkHiTiaaigdaaeqaaOGaaG PaVlaaykW7cqGHRaWkcqGH9aqpcaaMc8UaaGPaVlaaykW7caWGYbWa a0baaSqaaiaaiodaaeaacaqGMbGaaeyyaiaabogacaqGLbaaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGYbWaaSbaaSqaai aaikdacaWGIbaabeaakiaaykW7caaMc8Uaey4kaSIaeyypa0JaaGPa VlaaykW7caaMc8UaamOCamaaDaaaleaacaaI0aaabaGaaeOzaiaabg gacaqGJbGaaeyzaaaaaaaa@A730@

 

 

 

7.2.9 Minimizing the Potential Energy

 

We have set up the following expression for the potential energy of a finite element mesh

V= 1 2 u ¯ T K u ¯ r ¯ u ¯ 1 2 j=1 2N u j i=1 2N K ji u i j=1 2N r j u j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGwbGaeyypa0ZaaSaaaeaaca aIXaaabaGaaGOmaaaadaadaaqaaiaadwhaaaWaaWbaaSqabeaacaWG ubaaaOWaamWaaeaacaWGlbaacaGLBbGaayzxaaWaaWaaaeaacaWG1b aaaiabgkHiTmaamaaabaGaamOCaaaacqGHflY1daadaaqaaiaadwha aaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyyyIO 7aaSaaaeaacaaIXaaabaGaaGOmaaaadaaeWbqaaiaadwhadaWgaaWc baGaamOAaaqabaGcdaaeWbqaaiaadUeadaWgaaWcbaGaamOAaiaadM gaaeqaaOGaamyDamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaaikdacaWGobaaniabggHiLdaaleaacaWGQbGaey ypa0JaaGymaaqaaiaaikdacaWGobaaniabggHiLdGccqGHsisldaae WbqaaiaadkhadaWgaaWcbaGaamOAaaqabaGccaWG1bWaaSbaaSqaai aadQgaaeqaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaaGOmaiaad6ea a0GaeyyeIuoaaaaa@6BB8@

Now, minimize V

V u k = 1 2 i=1 2N K ki u i + 1 2 j=1 2N u j K jk r k =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbaabaGaey OaIyRaamyDamaaBaaaleaacaWGRbaabeaaaaGccqGH9aqpdaWcaaqa aiaaigdaaeaacaaIYaaaamaaqahabaGaam4samaaBaaaleaacaWGRb GaamyAaaqabaGccaWG1bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga cqGH9aqpcaaIXaaabaGaaGOmaiaad6eaa0GaeyyeIuoakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdaaaWaaabCaeaacaWG1bWaaSbaaSqa aiaadQgaaeqaaOGaam4samaaBaaaleaacaWGQbGaam4Aaaqabaaaba GaamOAaiabg2da9iaaigdaaeaacaaIYaGaamOtaaqdcqGHris5aOGa eyOeI0IaamOCamaaBaaaleaacaWGRbaabeaakiabg2da9iaaicdaaa a@5767@

where we have noted that

u j u k = 1,j=k 0,jk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadQgaaeqaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaWGRbaa beaaaaGccqGH9aqpdaGabaabaeqabaGaaGymaiaacYcacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadQgacqGH9aqpcaWGRbaabaGaaGimaiaacYcacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamOAaiabgcMi5kaadUgaaaGaay5Eaaaaaa@63E8@

Simplify this by noting that K MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGlbaacaGLBbGaayzxaa aaaa@33A1@  is symmetric

V u k = 1 2 i=1 2N K ki u i + 1 2 j=1 2N u j K kj r k = i=1 2N K ki u i r k =0 K u ¯ = r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadAfaae aacqGHciITcaWG1bWaaSbaaSqaaiaadUgaaeqaaaaakiabg2da9maa laaabaGaaGymaaqaaiaaikdaaaWaaabCaeaacaWGlbWaaSbaaSqaai aadUgacaWGPbaabeaakiaadwhadaWgaaWcbaGaamyAaaqabaaabaGa amyAaiabg2da9iaaigdaaeaacaaIYaGaamOtaaqdcqGHris5aOGaey 4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaaeWbqaaiaadwhadaWg aaWcbaGaamOAaaqabaGccaWGlbWaaSbaaSqaaiaadUgacaWGQbaabe aaaeaacaWGQbGaeyypa0JaaGymaaqaaiaaikdacaWGobaaniabggHi LdGccqGHsislcaWGYbWaaSbaaSqaaiaadUgaaeqaaaGcbaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqGH9aqpdaaeWbqaaiaadUeadaWgaaWcbaGaam4Aai aadMgaaeqaaOGaamyDamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGa eyypa0JaaGymaaqaaiaaikdacaWGobaaniabggHiLdGccqGHsislca WGYbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0JaaGimaaqaaiabgkDi ElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVpaadmaabaGaam4saaGaay5waiaaw2faamaamaaabaGaamyD aaaacqGH9aqpdaadaaqaaiaadkhaaaaaaaa@8E08@

This is a system of 2N simultaneous linear equations for the 2N unknown nodal displacements.  But in this form it may or may not be possible to solve them MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  can you see why? (The title of the next section gives a hint!)

 

 

 

7.2.10 Eliminating prescribed displacements

 

So far, we have seen how to calculate displacements in a finite element mesh which is subjected to prescribed loading.  What if displacements are prescribed instead?

 

If this is the case, the stiffness matrix and residual are first assembled exactly as described in the preceding section.  They are then modified to enforce the constraint.  The procedure is best illustrated using an example. Suppose that the finite element equations after assembly have the form

k 11 k 12 k 12N k 21 k 22 k 22N k 2N1 k 2N2 k 2N2N u 1 (1) u 2 (1) u 2 (N) = r 1 r 2 r 4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeabeaaaaaqaaiaadU gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaam4AamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaacqWIVlctaeaacaWGRbWaaSbaaSqaai aaigdacaaIYaGaamOtaaqabaaakeaacaWGRbWaaSbaaSqaaiaaikda caaIXaaabeaaaOqaaiaadUgadaWgaaWcbaGaaGOmaiaaikdaaeqaaa GcbaaabaGaam4AamaaBaaaleaacaaIYaGaaGOmaiaad6eaaeqaaaGc baGaeSO7I0eabaaabaGaeSy8I8eabaaabaGaam4AamaaBaaaleaaca aIYaGaamOtaiaaigdaaeqaaaGcbaGaam4AamaaBaaaleaacaaIYaGa amOtaiaaikdaaeqaaaGcbaaabaGaam4AamaaBaaaleaacaaIYaGaam OtaiaaikdacaWGobaabeaaaaaakiaawUfacaGLDbaadaWadaqaauaa beqaeeaaaaqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaacIcacaaIXa GaaiykaaaaaOqaaiaadwhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaI XaGaaiykaaaaaOqaaiabl6UinbqaaiaadwhadaqhaaWcbaGaaGOmaa qaaiaacIcacaWGobGaaiykaaaaaaaakiaawUfacaGLDbaacqGH9aqp daWadaqaauaabeqaeeaaaaqaaiaadkhadaWgaaWcbaGaaGymaaqaba aakeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeSO7I0eabaGa amOCamaaBaaaleaacaaI0aaabeaaaaaakiaawUfacaGLDbaaaaa@6FF8@

To prescribe displacements for any node, we simply replace the equation for the appropriate degrees of freedom with the constraint.  For example, to force u 2 (1) =Δ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaaIYaaabaGaai ikaiaaigdacaGGPaaaaOGaeyypa0JaeuiLdqeaaa@374C@ , we could modify the finite element equations to

k 11 k 12 k 12N 0 1 0 k 2N1 k 2N2 k 2N2N u 1 (1) u 2 (1) u 2 (N) = r 1 Δ r 4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeabeaaaaaqaaiaadU gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaam4AamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaacqWIVlctaeaacaWGRbWaaSbaaSqaai aaigdacaaMc8UaaGPaVlaaikdacaWGobaabeaaaOqaaiaaicdaaeaa caaIXaaabaaabaGaaGimaaqaaiabl6UinbqaaaqaaiablgVipbqaaa qaaiaadUgadaWgaaWcbaGaaGOmaiaad6eacaaMc8UaaGPaVlaaigda aeqaaaGcbaGaam4AamaaBaaaleaacaaIYaGaamOtaiaaykW7caaMc8 UaaGOmaaqabaaakeaaaeaacaWGRbWaaSbaaSqaaiaaikdacaWGobGa aGPaVlaaykW7caaIYaGaamOtaaqabaaaaaGccaGLBbGaayzxaaWaam WaaeaafaqabeabbaaaaeaacaWG1bWaa0baaSqaaiaaigdaaeaacaGG OaGaaGymaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaaca GGOaGaaGymaiaacMcaaaaakeaacqWIUlstaeaacaWG1bWaa0baaSqa aiaaikdaaeaacaGGOaGaamOtaiaacMcaaaaaaaGccaGLBbGaayzxaa Gaeyypa0ZaamWaaeaafaqabeabbaaaaeaacaWGYbWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeuiLdqeabaGaeSO7I0eabaGaamOCamaaBaaale aacaaI0aaabeaaaaaakiaawUfacaGLDbaaaaa@7550@

Thus, the equation for u 2 (1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaaIYaaabaGaai ikaiaaigdacaGGPaaaaaaa@34D6@  has been replaced with the constraint u 2 (1) =Δ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaaIYaaabaGaai ikaiaaigdacaGGPaaaaOGaeyypa0JaeuiLdqeaaa@374C@ .

 

This procedure works, but has the disadvantage that the modified stiffness matrix is no longer symmetric.  It is preferable to modify the stiffness and residual further, to retain symmetry.  To do so, we eliminate the constrained degrees of freedom from all rows of the stiffness matrix. This is best illustrated by example.  Suppose our modified stiffness matrix has the form

k 11 k 12 k 12N 0 1 0 k 2N1 k 2N2 k 2N2N u 1 (1) u 2 (1) u 2 (N) = r 1 Δ r 4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeabeaaaaaqaaiaadU gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaam4AamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaacqWIVlctaeaacaWGRbWaaSbaaSqaai aaigdacaaMc8UaaGPaVlaaikdacaWGobaabeaaaOqaaiaaicdaaeaa caaIXaaabaaabaGaaGimaaqaaiabl6UinbqaaaqaaiablgVipbqaaa qaaiaadUgadaWgaaWcbaGaaGOmaiaad6eacaaMc8UaaGPaVlaaigda aeqaaaGcbaGaam4AamaaBaaaleaacaaIYaGaamOtaiaaykW7caaMc8 UaaGOmaaqabaaakeaaaeaacaWGRbWaaSbaaSqaaiaaikdacaWGobGa aGPaVlaaykW7caaIYaGaamOtaaqabaaaaaGccaGLBbGaayzxaaWaam WaaeaafaqabeabbaaaaeaacaWG1bWaa0baaSqaaiaaigdaaeaacaGG OaGaaGymaiaacMcaaaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaaca GGOaGaaGymaiaacMcaaaaakeaacqWIUlstaeaacaWG1bWaa0baaSqa aiaaikdaaeaacaGGOaGaamOtaiaacMcaaaaaaaGccaGLBbGaayzxaa Gaeyypa0ZaamWaaeaafaqabeabbaaaaeaacaWGYbWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeuiLdqeabaGaeSO7I0eabaGaamOCamaaBaaale aacaaI0aaabeaaaaaakiaawUfacaGLDbaaaaa@7550@

Now, we wish to set each entry in the second column (apart from the diagonal) to zero, so that the stiffness is symmetric.  Recall that we can add and subtract equations in the system from one another without affecting the solution.  Therefore, to symmetrize the stiffness matrix in our example, we can subtract appropriate multiples of the second row so as to set each entry in the second column to zero.

k 11 0 k 12N 0 1 0 k 2N1 0 k 2N2N u 1 (1) u 2 (1) u 2 (N) = r 1 k 12 Δ Δ r 4 k 2N2 Δ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeabeaaaaaqaaiaadU gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaaGimaaqaaiabl+Ui mbqaaiaadUgadaWgaaWcbaGaaGymaiaaykW7caaMc8UaaGPaVlaaik dacaWGobaabeaaaOqaaiaaicdaaeaacaaIXaaabaaabaGaaGimaaqa aiabl6UinbqaaaqaaiablgVipbqaaaqaaiaadUgadaWgaaWcbaGaaG Omaiaad6eacaaMc8UaaGPaVlaaykW7caaIXaaabeaaaOqaaiaaicda aeaaaeaacaWGRbWaaSbaaSqaaiaaikdacaWGobGaaGPaVlaaykW7ca aMc8UaaGOmaiaad6eaaeqaaaaaaOGaay5waiaaw2faamaadmaabaqb aeqabqqaaaaabaGaamyDamaaDaaaleaacaaIXaaabaGaaiikaiaaig dacaGGPaaaaaGcbaGaamyDamaaDaaaleaacaaIYaaabaGaaiikaiaa igdacaGGPaaaaaGcbaGaeSO7I0eabaGaamyDamaaDaaaleaacaaIYa aabaGaaiikaiaad6eacaGGPaaaaaaaaOGaay5waiaaw2faaiabg2da 9maadmaabaqbaeqabqqaaaaabaGaamOCamaaBaaaleaacaaIXaaabe aakiabgkHiTiaadUgadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeuiL dqeabaGaeuiLdqeabaGaeSO7I0eabaGaamOCamaaBaaaleaacaaI0a aabeaakiabgkHiTiaadUgadaWgaaWcbaGaaGOmaiaad6eacaaMc8Ua aGPaVlaaykW7caaIYaaabeaakiabfs5aebaaaiaawUfacaGLDbaaaa a@8196@

 

 

7.2.11 Solution

 

The result of Sections 7.2.1-7.2.10 is a set of simultaneous linear equations of the form

K mod u ¯ = r ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGlbWaaWbaaSqabeaaci GGTbGaai4BaiaacsgaaaaakiaawUfacaGLDbaadaadaaqaaiaadwha aaGaeyypa0ZaaWaaaeaacaWGYbaaaaaa@39BD@

These can be solved for the unknown displacements u ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacaWG1baaaaaa@31EA@  using standard techniques (e.g. Gaussian elimination or, for larger numbers of equations, iterative techniques such as the conjugate gradient method).  An important feature of the FEM equations is that the stiffness matrix is sparse MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  that is to say, only a small number of entries in the matrix are non-zero.  Consequently, special schemes are used to store and factor the equations, which avoid having to store large numbers of zeros. 

 

 

 

7.2.12 Post-processing

 

Once the displacements have been computed, the strain in each element can be computed, and so the stress distribution can be deduced.  The procedure is as follows

 

1. For the element of interest, extract the displacement of each node from the global displacement vector

 

2. Calculate the strains using the procedure in 7.2.4

ε ¯ = B u ¯ element ε 11 ε 22 2 ε 12 = N a x 1 0 N b x 1 0 N c x 1 0 0 N a x 2 0 N b x 2 0 N c x 2 N a x 2 N a x 1 N b x 2 N b x 1 N c x 2 N c x 1 u 1 (a) u 2 (a) u 1 (b) u 2 (b) u 1 (c) u 2 (c) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacqaH1oqzaaGaeyypa0Zaam WaaeaacaWGcbaacaGLBbGaayzxaaWaaWaaaeaacaWG1baaamaaCaaa leqabaGaaeyzaiaabYgacaqGLbGaaeyBaiaabwgacaqGUbGaaeiDaa aakiaaykW7caaMc8UaaGPaVlaaykW7cqGHHjIUcaaMc8UaaGPaVlaa ykW7caaMc8+aamWaaeaafaqabeWabaaabaGaeqyTdu2aaSbaaSqaai aaigdacaaIXaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIYaGaaGOm aaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabe aaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqadyaaaaqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGHbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGIbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGJbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqa aiaaicdaaeaadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaamyyaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa aiaaicdaaeaadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaamOyaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa aiaaicdaaeaadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaam4yaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOqa amaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWGHbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaa cqGHciITcaWGobWaaSbaaSqaaiaadggaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaa d6eadaWgaaWcbaGaamOyaaqabaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOtamaaBaaa leaacaWGIbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaaaaGcbaWaaSaaaeaacqGHciITcaWGobWaaSbaaSqaaiaadoga aeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaake aadaWcaaqaaiabgkGi2kaad6eadaWgaaWcbaGaam4yaaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaaaakiaawUfaca GLDbaadaWadaqaauaabeqageaaaaqaaiaadwhadaqhaaWcbaGaaGym aaqaaiaacIcacaWGHbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGaaG OmaaqaaiaacIcacaWGHbGaaiykaaaaaOqaaiaadwhadaqhaaWcbaGa aGymaaqaaiaacIcacaWGIbGaaiykaaaaaOqaaiaadwhadaqhaaWcba GaaGOmaaqaaiaacIcacaWGIbGaaiykaaaaaOqaaiaadwhadaqhaaWc baGaaGymaaqaaiaacIcacaWGJbGaaiykaaaaaOqaaiaadwhadaqhaa WcbaGaaGOmaaqaaiaacIcacaWGJbGaaiykaaaaaaaakiaawUfacaGL Dbaaaaa@CC36@

3. The stresses can then be determined from the stress-strain equations

σ ¯ = D ε ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaWaaaeaacqaHdpWCaaGaeyypa0Zaam WaaeaacaWGebaacaGLBbGaayzxaaWaaWaaaeaacqaH1oqzaaGaaGPa VlaaykW7aaa@3B40@

where [D] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadseacaGGDbaaaa@3369@  is defined in 7.2.4.

 

 

 

7.2.13 Example FEA code

 

A MATLAB™ implementation of the procedure is provided in the file FEM_conststrain_m, which can be downloaded from https://github.com/albower/Applied_Mechanics_of_Solids   

 

The code reads an input file.  A very simple input file (with just two elements) can be found in FEM_conststrain_input.txt.  A more sophisticated input file (a stretched plate containing a central hole) can be found in FEM_conststrain_holeplate.txt.

 

The simple data file solves the problem illustrated in the figure. A rectangular block with Young’s modulus 100 and Poisson’s ratio 0.3 is meshed with two plane strain elements.  Node 1 is pinned; node 4 is constrained against horizontal motion, and the right hand face of element 2 is subjected to a constant horizontal traction with magnitude 10. 


The input file is shown below
MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it should be mostly self-explanatory. 

 


 

Note that

 

1. Nodes are numbered sequentially MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  thus node (1) has coordinates (0,0); node (2) has coordinates (1,0), etc.

 

2. The element connectivity specifies the node numbers attached to each element, using a counterclockwise numbering convention.  It doesn’t matter which node you use for the first one, as long as all the others are ordered in a counterclockwise sense around the element. For example, you could use (2,4,1) instead of (1,2,4) for the connectivity of the first element.

 

3. To fix motion of a node, you need to enter the node number, the degree of freedom that is being constrained,  (1 for horizontal, 2 for vertical), and a value for the prescribed displacement.

 

4. To specify tractions acting on an element face, you need to enter (a) the element number; (b) the face number of the element, and (c,d) the horizontal and vertical components of traction acting on the face.  The face numbering scheme is determined by the element connectivity, as follows.  Face (1) has the first and second nodes as end points; face (2) has the second and third nodes; and face (3) has the third and first nodes as end points.  Since connectivity for element (2) was entered as (2,3,4), face 1 of this element has nodes numbered 2 and 3; face 2 connects nodes numbered 3 and 4, while face 3 connects nodes numbered 4 and 1.

 

 

To run the code, you need to open the .m file with MATLAB, then follow these steps:

 

 

1.       Edit the code to insert the full path for the input and output files (see the instructions in the code)

 

2.       Run the code in the usual way, using the green arrow at the top of the MATLAB editor window or by calling the script from the command window.

 

3.       You should see two figures: the first displays a plot of the displaced mesh (red) superimposed on the original mesh (green); the second colors the elements according to the stress state.  For the two element test you will just see a red rectangle since the stress is constant.    If you run the second input file (conststrain_holeplate.txt) the stress concentration at the edge of the hole will be visible.

 

4.       Finally, open the output file.  It should contain the results shown below