Chapter 8

 

Theory and Implementation of the Finite Element Method

 

 

 

8.5 The finite element method for viscoplasticity

 

We next extend the finite element method to treat history and rate dependent materials.  The main issue to resolve is how to integrate the history dependent plastic constitutive equations with respect to time. 

 

As an example we will first develop a finite element method for a small strain rate dependent plastic constitutive law.

 

8.5.1 Summary of governing equations

 

We therefore pose the following boundary value problem.  Given:

1.      The shape of the solid in its unloaded condition R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaaaa@31A4@

2.      A body force distribution b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31B8@  (t)  acting on the solid (Note that in this section we will use b to denote force per unit volume rather than force per unit mass, to avoid having to write out the mass density all the time)

3.      Boundary conditions, specifying displacements u * (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiilaiaadshacaGGPaaaaa@36B5@  on a portion 1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@33FD@  or tractions t * (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiDamaaCa aaleqabaGaaiOkaaaakiaacIcacaWG0bGaaiykaaaa@3B31@  on a portion 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@33FE@  of the boundary of R;

4.      The material constants Y n, m ε ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGimaaqabaaaaa@388C@ , Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgfaaaa@313E@  and ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaa aa@336A@  that characterize the viscoplastic creep law described in Section 3.7.3.

 

Calculate displacements, strains and stresses u i , ε ij , σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaGcca GGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcacqaH dpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3B6C@  satisfying the following equations

1.      The strain-displacement equation ε ij = 1 2 ( u i / x j + u j / x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiaacMcaaaa@48CF@

2.      The equation of static equilibrium for stresses σ ij / x i + b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGQbaabeaakiabg2da9i aaicdaaaa@3EF3@

3.      The boundary conditions on displacement and stress

u i = u i * on 1 R σ ij n i = t j * on 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaaMc8Ua aGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq GHciITdaWgaaWcbaGaaGymaaqabaGccaWGsbGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaad6ga daWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWaa0baaSqaaiaadQ gaaeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHciITdaWgaaWcbaGaaGOmaaqabaGccaWGsbaaaa@7A78@

4.      The constitutive equations for small-strain, power-law rate dependent plasticity, with

ε ˙ ij = ε ˙ ij e + ε ˙ ij p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JafqyTduMbaiaa daqhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaOGaey4kaSIafqyTdu MbaiaadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaaaa@4605@

ε ˙ ij e = 1+ν E ( σ ˙ ij ν 1+ν σ ˙ kk δ ij ) ε ˙ ij p = ε ˙ 0 exp(Q/kT) ( σ e σ 0 ) m 3 2 S ij σ e σ 0 =Y ( 1+ ε e ε 0 ) 1/n S ij = σ ij σ kk δ ij /3 σ e = 3 2 S ij S ij ε ˙ e = 2 3 ε ˙ ij p ε ˙ ij p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaiaadaqhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaOGaeyypa0Za aSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGaamyraaaadaqadaqaai qbeo8aZzaacaWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaa laaabaGaeqyVd4gabaGaaGymaiabgUcaRiabe27aUbaacuaHdpWCga GaamaaBaaaleaacaWGRbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGa amyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UafqyTduMbaiaadaqhaaWcbaGaam yAaiaadQgaaeaacaWGWbaaaOGaeyypa0JafqyTduMbaiaadaWgaaWc baGaaGimaaqabaGcciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0Iaam yuaiaac+cacaWGRbGaamivaiaacMcadaqadaqaamaalaaabaGaeq4W dm3aaSbaaSqaaiaadwgaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaic daaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamyBaaaakmaa laaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaai aadMgacaWGQbaabeaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaa aaaakeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaWGzb WaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacqaH1oqzdaWgaaWcbaGa amyzaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGimaaqabaaaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad6gaaaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iabeo8a ZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcqaHdpWCdaWgaa WcbaGaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWG Qbaabeaakiaac+cacaaIZaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaWGLbaabeaakiabg2da 9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaakiaadofadaWgaaWcbaGaamyAaiaadQga aeqaaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlqbew7aLzaacaWaaSbaaSqaaiaadwgaaeqaaOGaeyyp a0ZaaOaaaeaadaWcaaqaaiaaikdaaeaacaaIZaaaaiqbew7aLzaaca Waa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiqbew7aLzaacaWa a0baaSqaaiaadMgacaWGQbaabaGaamiCaaaaaeqaaaaaaa@EA62@

 

Note that we must now solve a history dependent problem.  We need to specify the time variation of the applied load and boundary conditions, and our objective is to calculate the displacements, strains, and stresses as functions of time.

 

 

8.5.2 Governing equations in terms of the Virtual Work Principle

 

As in all FEM analysis, the stress equilibrium equation is replaced by the equivalent statement of the principle of  virtual work.  Thus, u i , ε ij , σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaGcca GGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcacqaH dpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3B6C@  are determined as follows. 

1.      First, calculate a (time dependent) displacement field that satisfies

R σ ij [ u k (t)] δ v i x j dV R b i δ v i dV 2 R t i * δ v i dA=0 u i = u i * on 1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGBbGaamyDamaaBaaaleaacaWGRbaa beaakiaacIcacaWG0bGaaiykaiaac2fadaWcaaqaaiabgkGi2kabes 7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quae aacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamODamaaBaaa leaacaWGPbaabeaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0b Waa0baaSqaaiaadMgaaeaacaGGQaaaaOGaeqiTdqMaamODamaaBaaa leaacaWGPbaabeaakiaadsgacaWGbbGaeyypa0JaaGimaaWcbaGaey OaIy7aaSbaaWqaaiaaikdaaeqaaSGaamOuaaqab0Gaey4kIipaaSqa aiaadkfaaeqaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aaGcba GaamyDamaaBaaaleaacaWGPbaabeaakiabg2da9iaadwhadaqhaaWc baGaamyAaaqaaiaacQcaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Baiaab6gacaaM c8UaaGPaVlabgkGi2oaaBaaaleaacaaIXaaabeaakiaadkfaaaaa@821D@

for all virtual velocity fields δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@3489@  that satisfy δ v i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9iaaicdaaaa@3653@  on 1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@33FD@ .   Here, the notation σ ij [ u k ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccaGGBbGaamyDamaaBaaaleaacaWGRbaabeaakiaac2faaaa@381E@  is used to show that the stress in the solid depends on the displacement field (through the strain-displacement relation and the constitutive equations).

2.      Compute the strains from the definition ε ij = 1 2 ( u i / x j + u j / x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiaacMcaaaa@48CF@

3.      Compute the stresses from the constitutive equations

The stress will automatically satisfy the equation of equilibrium, so all the field equations and boundary conditions will be satisfied.

 

The procedure to solve the equations is conceptually identical to the hypoelastic solution found in Section 8.3.1 and 8.3.2.  The only complication is that the constitutive equation is time dependent, so the solution must be obtained as a function of time.

 

 

8.5.3 Finite element equations

 

The finite solution follows almost exactly the same procedure as before.  We first discretize the displacement field, by choosing to calculate the displacement field at a set of n nodes.  We will denote the coordinates of these special points by x i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33CD@ , where the superscript a ranges from 1 to n.  The unknown displacement vector at each nodal point will be denoted by u i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33CA@ .

 

Now, however, the displacements vary as a function of time MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  we thus need to solve for u i a (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG0bGaaiykaaaa@3C54@ .  We will do this by applying the load in a series of steps, and computing the change in displacement during each step.  We assume that the displacements u i a (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG0bGaaiykaaaa@3C54@  are known at the end of a time step.  We wish to compute u i a (t+Δt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG0bGaey4kaSIaeuiL dqKaamiDaiaacMcaaaa@3F95@  at the end of the next time step.  It is convenient to write

u i a (t+Δt)= u i a (t)+Δ u i a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG0bGaey4kaSIaeuiL dqKaamiDaiaacMcacqGH9aqpcaWG1bWaa0baaSqaaiaadMgaaeaaca WGHbaaaOGaaiikaiaadshacaGGPaGaey4kaSIaeuiLdqKaamyDamaa DaaaleaacaWGPbaabaGaamyyaaaaaaa@4B35@

and solve for the displacement increment Δ u i a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yDamaaDaaaleaacaWGPbaabaGaamyyaaaaaaa@3B5E@  at each time step.  The finite element solutions are then set up as follows

1.      The displacement increment and the virtual displacement are interpolated in the usual way. 

Δ u i (x)= a=1 n N a (x)Δ u i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaakiaacIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaa CaaaleqabaGaamyyaaaakiaacIcacaWH4bGaaiykaiabfs5aejaadw hadaqhaaWcbaGaamyAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdaaaa@462F@       δ v i (x)= a=1 n N a (x)δ v i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiaacIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaa CaaaleqabaGaamyyaaaakiaacIcacaWH4bGaaiykaiabes7aKjaadA hadaqhaaWcbaGaamyAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdaaaa@46AF@

Here, x denotes the coordinates of an arbitrary point in the solid.

2.      The increment in strain during the current load step follows as

Δ ε ij = 1 2 ( Δ u i x j + Δ u j x i )= 1 2 a=1 n ( N a x j Δ u i a + N a x i Δ u j a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWa aeWaaeaadaWcaaqaaiabgkGi2kabfs5aejaadwhadaWgaaWcbaGaam yAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa kiabgUcaRmaalaaabaGaeyOaIyRaeuiLdqKaamyDamaaBaaaleaaca WGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaa aadaaeWbqaamaabmaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqa beaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabe aaaaGccqqHuoarcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGa ey4kaSYaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccqqHuoar caWG1bWaa0baaSqaaiaadQgaaeaacaWGHbaaaaGccaGLOaGaayzkaa aaleaacaWGHbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa@6D71@

We now need to find a way to compute the stress field caused by this change in strain during time interval Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3855@ .  This issue will be addressed shortly.  For now, we just assume that we can do this somehow using the constitutive law (e.g. assign it to a grad student) and write this functional relationship as

σ ij = σ ij [ Δ ε kl (Δ u i a ),Δt ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGc daWadaqaaiabfs5aejabew7aLnaaBaaaleaacaWGRbGaamiBaaqaba GccaGGOaGaeuiLdqKaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaa kiaacMcacaGGSaGaeuiLdqKaamiDaaGaay5waiaaw2faaaaa@496A@

where the time interval Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3855@  appears in the equation because the material is rate dependent.

3.      Substituting into the principle of virtual work, we see that

{ R σ ij [ Δ ε kl (Δ u i a ),Δt ] N a x j dV R b i (t+Δt) N a dV 2 R t i * (t+Δt) N a dA }δ v i a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaadaWdrbqaaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabfs5aejabew7aLnaa BaaaleaacaWGRbGaamiBaaqabaGccaGGOaGaeuiLdqKaamyDamaaDa aaleaacaWGPbaabaGaamyyaaaakiaacMcacaGGSaGaeuiLdqKaamiD aaGaay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaaleqaba GaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaa aOGaamizaiaadAfacqGHsisldaWdrbqaaiaadkgadaWgaaWcbaGaam yAaaqabaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaGa amOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGwbGaeyOeI0Yaa8 quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaiikaiaa dshacqGHRaWkcqqHuoarcaWG0bGaaiykaiaad6eadaahaaWcbeqaai aadggaaaGccaWGKbGaamyqaaWcbaGaeyOaIy7aaSbaaWqaaiaaikda aeqaaSGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYd aaleaacaWGsbaabeqdcqGHRiI8aaGccaGL7bGaayzFaaGaeqiTdqMa amODamaaDaaaleaacaWGPbaabaGaamyyaaaakiabg2da9iaaicdaaa a@7AED@

and since this must hold for all δ v i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3570@  we must ensure that

R σ ij [ Δ ε kl (Δ u i a ),Δt ] N a x j dV R b i (t+Δt) N a dV 2 R t i * (t+Δt) N a dA =0{a,i}: x k a not on  1 R Δ u i a = u i * ( x i a ,t+Δt) u i * ( x i a ,t){a,i}: x k a on  1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGcdaWadaqaaiabfs5aejabew7aLnaaBaaa leaacaWGRbGaamiBaaqabaGccaGGOaGaeuiLdqKaamyDamaaDaaale aacaWGPbaabaGaamyyaaaakiaacMcacaGGSaGaeuiLdqKaamiDaaGa ay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaam yyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGa amizaiaadAfacqGHsisldaWdrbqaaiaadkgadaWgaaWcbaGaamyAaa qabaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaGaamOt amaaCaaaleqabaGaamyyaaaakiaadsgacaWGwbGaeyOeI0Yaa8quae aacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaiikaiaadsha cqGHRaWkcqqHuoarcaWG0bGaaiykaiaad6eadaahaaWcbeqaaiaadg gaaaGccaWGKbGaamyqaaWcbaGaeyOaIy7aaSbaaWqaaiaaikdaaeqa aSGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYdaale aacaWGsbaabeqdcqGHRiI8aOGaeyypa0JaaGimaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabgcGiIiaacUhacaWGHbGaaiilai aadMgacaGG9bGaaGPaVlaaykW7caaMc8UaaiOoaiaaykW7caaMc8Ua aGPaVlaadIhadaqhaaWcbaGaam4AaaqaaiaadggaaaGccaaMc8Uaae OBaiaab+gacaqG0bGaaeiiaiaab+gacaqGUbGaaeiiaiabgkGi2oaa BaaaleaacaqGXaaabeaakiaadkfaaeaacqqHuoarcaWG1bWaa0baaS qaaiaadMgaaeaacaWGHbaaaOGaeyypa0JaamyDamaaDaaaleaacaWG PbaabaGaaiOkaaaakiaacIcacaWG4bWaa0baaSqaaiaadMgaaeaaca WGHbaaaOGaaiilaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaiaa ykW7caaMc8UaeyOeI0IaaGPaVlaadwhadaqhaaWcbaGaamyAaaqaai aacQcaaaGccaGGOaGaamiEamaaDaaaleaacaWGPbaabaGaamyyaaaa kiaacYcacaWG0bGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgcGiIiaacUhacaWGHb GaaiilaiaadMgacaGG9bGaaGPaVlaaykW7caaMc8UaaiOoaiaaykW7 caaMc8UaamiEamaaDaaaleaacaWGRbaabaGaamyyaaaakiaaykW7ca aMc8Uaae4Baiaab6gacaqGGaGaeyOaIy7aaSbaaSqaaiaabgdaaeqa aOGaamOuaaaaaa@EFB7@

This is now a routine set of nonlinear equations to be solved for Δ u i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3530@ .

 

 

8.5.4 Integrating the plastic stress-strain law

 

The crux of FEM for small-strain plasticity problems is to integrate the plastic stress-strain equations to obtain the stress caused by an increment in total strain Δ ε ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3C13@  applied to the specimen during a time interval Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3845@ .

 

There are various ways to do this MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  here we outline a straightforward and robust technique. The problem we must solve can be posed as follows:

 

Given:    Values of stress σ ij (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaeq4Wdm NcdaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaamOBaiaacMcaaaaa aa@3DE9@ , accumulated plastic strain ε e (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgaaeaacaGGOaGaamOBaiaacMcaaaaaaa@3C07@  at time t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbaabeaaaaa@3915@

 The total strain increment Δ ε ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3C13@  and time increment Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3845@

 

Compute:  Values of stress σ ij (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaeq4Wdm NcdaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaaaa@3F86@ , accumulated plastic strain ε e (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aaaa@3DA4@  at time t n+1 = t n +Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWG0bWaaSba aSqaaiaad6gaaeqaaOGaey4kaSIaeuiLdqKaamiDaaaa@4125@

 

The following procedure can be used to do this:

1.      Calculate the deviatoric strain increment Δ e ij =Δ ε ij Δ ε kk δ ij /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yzamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcqqHuoarcqaH 1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeuiLdqKaeq yTdu2aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaa caWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4CBE@

2.      Calculate the `elastic predictor’ for the deviatoric and effective stress at the end of the increment

S ij *(n+1) = S ij (n) + E 1+ν Δ e ij σ e *(n+1) = 3 2 S ij *(n+1) S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaOGaeyypa0Jaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaaiykaaaakiabgUcaRmaalaaabaGaamyraaqa aiaaigdacqGHRaWkcqaH9oGBaaGaeuiLdqKaamyzamaaBaaaleaaca WGPbGaamOAaaqabaqcaaSaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4WdmNcdaqhaaWcbaGa amyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaaaakiabg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaa caWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcacaWGUb Gaey4kaSIaaGymaiaacMcaaaGccaWGtbWaa0baaSqaaiaadMgacaWG QbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaabe aaaaa@8562@

3.      Calculate the increment in effective plastic strain Δ ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadwgaaeqaaaaa@3B20@  by solving (numerically) the following equation

σ e *(n+1) Y 3E 2Y(1+ν) Δ ε e ( 1+ ε e +Δ ε e ε 0 ) 1/n ( Δ ε e Δt ε ˙ 0 exp(Q/kT) ) 1/m =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHdpWCdaqhaaWcbaGaamyzaaqaaiaacQcacaGGOaGaamOBaiabgUca RiaaigdacaGGPaaaaaGcbaGaamywaaaacqGHsisldaWcaaqaaiaaio dacaWGfbaabaGaaGOmaiaadMfacaGGOaGaaGymaiabgUcaRiabe27a UjaacMcaaaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaey OeI0YaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacqaH1oqzdaWgaaWc baGaamyzaaqabaGccqGHRaWkcqqHuoarcqaH1oqzdaWgaaWcbaGaam yzaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGimaaqabaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad6gaaaGcdaqada qaamaalaaabaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGc baGaeuiLdqKaamiDaiqbew7aLzaacaWaaSbaaSqaaiaaicdaaeqaaO GaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiaadgfacaGGVaGaam4A aiaadsfacaGGPaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymai aac+cacaWGTbaaaOGaeyypa0JaaGimaaaa@7516@

4.      The stress at the end of the increment then follows as

σ ij (n+1) =( 1 3E 2(1+ν) σ e *(n+1) Δ ε e )( S ij (n) + E 1+ν Δ e ij )+ σ kk (n) + E 3(12ν) Δ ε kk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadMgacaWGQbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGa aiykaaaakiabg2da9maabmaabaGaaGymaiabgkHiTmaalaaabaGaaG 4maiaadweaaeaacaaIYaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGG PaGaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oabaGaaiOkaiaacIcaca WGUbGaey4kaSIaaGymaiaacMcaaaaaaOGaeuiLdqKaeqyTdu2aaSba aSqaaiaadwgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGtbWaa0 baaSqaaiaadMgacaWGQbaabaGaaiikaiaad6gacaGGPaaaaOGaey4k aSYaaSaaaeaacaWGfbaabaGaaGymaiabgUcaRiabe27aUbaacqqHuo arcaWGLbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMca aiabgUcaRiabeo8aZnaaDaaaleaacaWGRbGaam4AaaqaaiaacIcaca WGUbGaaiykaaaakiabgUcaRmaalaaabaGaamyraaqaaiaaiodacaGG OaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaiabfs5aejabew 7aLnaaBaaaleaacaWGRbGaam4Aaaqabaaaaa@7B6C@

 

Derivation These expressions can be derived as follows:

1.      Separate the stress σ ij (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaeq4Wdm NcdaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaaaa@3F86@  into deviatoric and hydrostatic components as follows

p (n+1) = σ kk (n+1) /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da 9iabeo8aZnaaDaaaleaacaWGRbGaam4AaaqaaiaacIcacaWGUbGaey 4kaSIaaGymaiaacMcaaaGccaGGVaGaaG4maaaa@464B@           S ij (n+1) = σ ij (n+1) p (n+1) δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaGccqGH9aqpcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyOeI0IaamiCamaa CaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabes 7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@5048@

2.      The elastic stress-strain equation gives the hydrostatic part of the stress a time t n+1 = t n +Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWG0bWaaSba aSqaaiaad6gaaeqaaOGaey4kaSIaeuiLdqKaamiDaaaa@4125@  as

p (n+1) = p (n) + E 3(12ν) Δ ε kk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da 9iaadchadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabgUcaRm aalaaabaGaamyraaqaaiaaiodacaGGOaGaaGymaiabgkHiTiaaikda cqaH9oGBcaGGPaaaaiabfs5aejabew7aLnaaBaaaleaacaWGRbGaam 4Aaaqabaaaaa@4D97@

3.      The deviatoric stress at the end of the increment can be expressed in terms of the total deviatoric strain increment Δ e ij =Δ ε ij Δ ε kk δ ij /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yzamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcqqHuoarcqaH 1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeuiLdqKaeq yTdu2aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaa caWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4CBE@  and the increment in plastic strain Δ ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaaaaa@3D09@  by writing

S ij (n+1) = S ij (n) + E 1+ν Δ e ij e = S ij (n) + E 1+ν ( Δ e ij Δ ε ij p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaGccqGH9aqpcaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaai ikaiaad6gacaGGPaaaaOGaey4kaSYaaSaaaeaacaWGfbaabaGaaGym aiabgUcaRiabe27aUbaacqqHuoarcaWGLbWaa0baaSqaaiaadMgaca WGQbaabaGaamyzaaaajaaWcqGH9aqpkiaadofadaqhaaWcbaGaamyA aiaadQgaaeaacaGGOaGaamOBaiaacMcaaaGccqGHRaWkdaWcaaqaai aadweaaeaacaaIXaGaey4kaSIaeqyVd4gaamaabmaabaGaeuiLdqKa amyzamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcqqHuoarcq aH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaaGccaGLOaGa ayzkaaaaaa@6776@

4.      To calculate the plastic strain increment Δ e ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHuoarcaWGLbWaa0baaSqaaiaadM gacaWGQbaabaGaamiCaaaaaaa@3815@  we need to integrate the expression for plastic strain rate with respect to time over the interval Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaaaa@3855@ .  There are many advantages to using an implicit, or backward-Euler time integration scheme for this purpose, as follows

Δ ε ij p =Δ ε e 3 2 S ij (n+1) σ e (n+1) Δ ε e =Δt ε ˙ 0 exp(Q/kT) ( σ e (n+1) σ 0 (n+1) ) m σ 0 (n+1) =Y ( 1+ ε e (n) +Δ ε e ε 0 ) 1/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiabg2da9iab fs5aejabew7aLnaaBaaaleaacaWGLbaabeaakmaalaaabaGaaG4maa qaaiaaikdaaaWaaSaaaeaacaWGtbWaa0baaSqaaiaadMgacaWGQbaa baGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaiabeo8aZn aaDaaaleaacaWGLbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiyk aaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabfs5aejabew7aLnaaBaaaleaacaWGLbaabeaakiabg2da 9iabfs5aejaadshacuaH1oqzgaGaamaaBaaaleaacaaIWaaabeaaki GacwgacaGG4bGaaiiCaiaacIcacqGHsislcaWGrbGaai4laiaadUga caWGubGaaiykamaabmaabaWaaSaaaeaacqaHdpWCdaqhaaWcbaGaam yzaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaakeaacqaH dpWCdaqhaaWcbaGaaGimaaqaaiaacIcacaWGUbGaey4kaSIaaGymai aacMcaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGTbaaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaeq4Wdm3aa0baaSqaaiaaicdaaeaacaGGOaGaamOBaiabgUca RiaaigdacaGGPaaaaOGaeyypa0JaamywamaabmaabaGaaGymaiabgU caRmaalaaabaGaeqyTdu2aa0baaSqaaiaadwgaaeaacaGGOaGaamOB aiaacMcaaaGccqGHRaWkcqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaa qabaaakeaacqaH1oqzdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad6gaaaaaaa@A98C@

This is an implicit scheme, because the strain rate is computed based on values of stress and state variables at the end of the time interval.  It is a bit more cumbersome to deal with than a simple forward-Euler (explicit) scheme, in which the strain rate depends on stresses and state at the start of the increment, but the advantages far outweigh the additional complexity.  The implicit scheme can be shown to be unconditionally stable (you can take large timesteps without encountering numerical instabilities) and also leads to symmetric material tangents, as shown in the next section.

5.      The problem is now algebraic MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  we need to solve for S ij (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaaaaa@3DC8@  and accumulated plastic strain ε e (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aaaa@3DA4@ .  To this end, define

S ij *(n+1) = S ij (n) + E 1+ν Δ e ij σ e *(n+1) = 3 2 S ij *(n+1) S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaOGaeyypa0Jaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaaiykaaaakiabgUcaRmaalaaabaGaamyraaqa aiaaigdacqGHRaWkcqaH9oGBaaGaeuiLdqKaamyzamaaBaaaleaaca WGPbGaamOAaaqabaqcaaSaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4WdmNcdaqhaaWcbaGa amyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaaaakiabg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaa caWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcacaWGUb Gaey4kaSIaaGymaiaacMcaaaGccaWGtbWaa0baaSqaaiaadMgacaWG QbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaabe aaaaa@8562@

( S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaaaa@3E76@  is the deviatoric stress that you would get in the absence of plasticity).

6.      Now assume that the actual stress will be S ij (n+1) =β S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaGccqGH9aqpcqaHYoGycaWGtbWaa0baaSqaaiaadMgacaWGQb aabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@47F2@ , where β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3787@  is a numerical factor to be determined.  Substitute into the expression for S ij (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaaaaa@3DC8@  and eliminate Δ ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaaaaa@3D09@  to see that

β S ij *(n+1) = S ij *(n+1) Δ ε e 3E 2(1+ν) S ij *(n+1) σ e *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaam 4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaamOBaiab gUcaRiaaigdacaGGPaaaaOGaeyypa0Jaam4uamaaDaaaleaacaWGPb GaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aOGaeyOeI0IaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOWaaS aaaeaacaaIZaGaamyraaqaaiaaikdacaGGOaGaaGymaiabgUcaRiab e27aUjaacMcaaaWaaSaaaeaacaWGtbWaa0baaSqaaiaadMgacaWGQb aabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaakeaa cqaHdpWCdaqhaaWcbaGaamyzaiaaykW7aeaacaGGQaGaaiikaiaad6 gacqGHRaWkcaaIXaGaaiykaaaaaaaaaa@6554@

7.      Contracting both sides of this equation with S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaaaa@3E76@  shows that

β=1 3E 2(1+ν) σ e *(n+1) Δ ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0JaaGymaiabgkHiTmaalaaabaGaaG4maiaadweaaeaacaaIYaGa aiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaeq4Wdm3aa0baaSqaai aadwgacaaMc8oabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaaaaOGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaaa@4F76@

8.      Finally, note that β= σ e *(n+1) / σ e (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0Jaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oabaGaaiOkaiaacIca caWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGVaGaeq4Wdm3aa0baaS qaaiaadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa @4A20@  and eliminate σ e (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aaaa@3DC0@  and σ 0 (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaaicdaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aaaa@3D90@  from the remaining equations in step (4) to get

σ e *(n+1) Y 3E 2Y(1+ν) Δ ε e ( 1+ ε e +Δ ε e ε 0 ) 1/n ( Δ ε e Δt ε ˙ 0 exp(Q/kT) ) 1/m =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHdpWCdaqhaaWcbaGaamyzaaqaaiaacQcacaGGOaGaamOBaiabgUca RiaaigdacaGGPaaaaaGcbaGaamywaaaacqGHsisldaWcaaqaaiaaio dacaWGfbaabaGaaGOmaiaadMfacaGGOaGaaGymaiabgUcaRiabe27a UjaacMcaaaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaey OeI0YaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacqaH1oqzdaWgaaWc baGaamyzaaqabaGccqGHRaWkcqqHuoarcqaH1oqzdaWgaaWcbaGaam yzaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGimaaqabaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad6gaaaGcdaqada qaamaalaaabaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGc baGaeuiLdqKaamiDaiqbew7aLzaacaWaaSbaaSqaaiaaicdaaeqaaO GaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiaadgfacaGGVaGaam4A aiaadsfacaGGPaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymai aac+cacaWGTbaaaOGaeyypa0JaaGimaaaa@7516@

9.      The deviatoric stress at the end of the increment follows by substituting the result of (8) into (7) and recalling that S ij (n+1) =β S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaGccqGH9aqpcqaHYoGycaWGtbWaa0baaSqaaiaadMgacaWGQb aabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@47F2@ , so

S ij (n+1) =( 1 3E 2(1+ν) σ e *(n+1) Δ ε e )( S ij (n) + E 1+ν Δ e ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaGccqGH9aqpdaqadaqaaiaaigdacqGHsisldaWcaaqaaiaaio dacaWGfbaabaGaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiyk aiabeo8aZnaaDaaaleaacaWGLbGaaGPaVdqaaiaacQcacaGGOaGaam OBaiabgUcaRiaaigdacaGGPaaaaaaakiabfs5aejabew7aLnaaBaaa leaacaWGLbaabeaaaOGaayjkaiaawMcaamaabmaabaGaam4uamaaDa aaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaaiykaaaakiabgUca RmaalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH9oGBaaGaeuiLdq KaamyzamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaa aaa@6672@

10.  Finally, the formula for stress follows by combining the deviatoric stress in (9) with the hydrostatic stress in (2)

 

 

 

8.5.5 Material Tangent

 

Since the stress-strain relation is nonlinear, the virtual work equation will need to be solved using Newton-Raphson iteration.  For this purpose we must compute the material tangent σ ij /Δ ε kl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaeq 4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaac+cacqGHciITcqqH uoarcqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@436C@ .  The result is

σ ij Δ ε kl = C ijkl ep = βE 1+ν ( 1 2 ( δ ik δ jl + δ jk δ il ) 1 3 δ ij δ kl + 9E( Δ ε e 1/γ ) 4(1+ν) σ e (n+1) S ij (n+1) σ e (n+1) S kl (n+1) σ e (n+1) )+ E 3(12ν) δ ij δ kl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOa IyRaeuiLdqKaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabeaaaaGccq GH9aqpcaWGdbWaa0baaSqaaiaadMgacaWGQbGaam4AaiaadYgaaeaa caWGLbGaamiCaaaakiabg2da9maalaaabaGaeqOSdiMaamyraaqaai aaigdacqGHRaWkcqaH9oGBaaWaaeWaaeaadaWcaaqaaiaaigdaaeaa caaIYaaaamaabmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGRbaabe aakiabes7aKnaaBaaaleaacaWGQbGaamiBaaqabaGccqGHRaWkcqaH 0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaai aadMgacaWGSbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGa aGymaaqaaiaaiodaaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aakiabes7aKnaaBaaaleaacaWGRbGaamiBaaqabaGccqGHRaWkdaWc aaqaaiaaiMdacaWGfbWaaeWaaeaacqqHuoarcqaH1oqzdaWgaaWcba GaamyzaaqabaGccqGHsislcaaIXaGaai4laiabeo7aNbGaayjkaiaa wMcaaaqaaiaaisdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacq aHdpWCdaqhaaWcbaGaamyzaaqaaiaacIcacaWGUbGaey4kaSIaaGym aiaacMcaaaaaaOWaaSaaaeaacaWGtbWaa0baaSqaaiaadMgacaWGQb aabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaiabeo8a ZnaaDaaaleaacaWGLbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaaaaaaGcdaWcaaqaaiaadofadaqhaaWcbaGaam4AaiaadYgaaeaa caGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGcbaGaeq4Wdm3aa0 baaSqaaiaadwgacaaMc8oabaGaaiikaiaad6gacqGHRaWkcaaIXaGa aiykaaaaaaaakiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaadweaae aacaaIZaGaaiikaiaaigdacqGHsislcaaIYaGaeqyVd4Maaiykaaaa cqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdq2aaSbaaS qaaiaadUgacaWGSbaabeaaaaa@B452@

where

β= ( 1+ 3EΔ ε e 2(1+ν) σ e (n+1) ) 1 γ=β{ 3E 2(1+ν) σ e (n+1) +( 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIZaGaamyraiab fs5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOqaaiaaikdacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcacqaHdpWCdaqhaaWcbaGaamyz aaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eq4SdCMaeyypa0JaeqOSdi2aaiWaaeaadaWcaaqaaiaaiodacaWGfb aabaGaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaiabeo8a ZnaaDaaaleaacaWGLbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaaaaaaGccqGHRaWkdaqadaqaamaalaaabaGaaGymaaqaaiaad6ga caGGOaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqyTdu 2aaSbaaSqaaiaadwgaaeqaaOGaey4kaSIaeuiLdqKaeqyTdu2aaSba aSqaaiaadwgaaeqaaOGaaiykaaaacqGHRaWkdaWcaaqaaiaaigdaae aacaWGTbGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaaaaOGa ayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@9854@

 

Derivation As always calculating the material tangent stiffness is a tiresome algebraic exercise.  We have that

σ ij (n+1) =β S ij *(n+1) + σ kk (n) + E 3(12ν) Δ ε kk β=( 1 3E 2(1+ν) σ e *(n+1) Δ ε e ) S ij *(n+1) =( S ij (n) + E 1+ν Δ e ij ) σ e *(n+1) = 3 2 S ij *(n+1) S ij *(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaamOBaiabgUcaRiaa igdacaGGPaaaaOGaeyypa0JaeqOSdiMaam4uamaaDaaaleaacaWGPb GaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadUgacaWGRbaabaGaaiikai aad6gacaGGPaaaaOGaey4kaSYaaSaaaeaacaWGfbaabaGaaG4maiaa cIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadUgacaWGRbaabeaaaOqaaiabek7aIjabg2da 9iaaykW7daqadaqaaiaaigdacqGHsisldaWcaaqaaiaaiodacaWGfb aabaGaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaiabeo8a ZnaaDaaaleaacaWGLbGaaGPaVdqaaiaacQcacaGGOaGaamOBaiabgU caRiaaigdacaGGPaaaaaaakiabfs5aejabew7aLnaaBaaaleaacaWG LbaabeaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaa0baaSqa aiaadMgacaWGQbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymai aacMcaaaGccqGH9aqpcaaMc8+aaeWaaeaacaWGtbWaa0baaSqaaiaa dMgacaWGQbaabaGaaiikaiaad6gacaGGPaaaaOGaey4kaSYaaSaaae aacaWGfbaabaGaaGymaiabgUcaRiabe27aUbaacqqHuoarcaWGLbWa aSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaqhaaWc baGaamyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXa Gaaiykaaaakiabg2da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOm aaaacaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcaca WGUbGaey4kaSIaaGymaiaacMcaaaGccaWGtbWaa0baaSqaaiaadMga caWGQbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaa aabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8oaaaa@CF84@

Consequently,

d σ ij (n+1) =β E 1+ν dΔ e ij 3E 2(1+ν) S ij *(n+1) σ e *(n+1) dΔ ε e + 3EΔ ε e 2(1+ν) S ij *(n+1) σ e *(n+1) d σ e *(n+1) σ e *(n+1) + E 3(12ν) δ ij dΔ ε kk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabeo 8aZnaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaey4kaSIa aGymaiaacMcaaaGccqGH9aqpcqaHYoGydaWcaaqaaiaadweaaeaaca aIXaGaey4kaSIaeqyVd4gaaiaadsgacqqHuoarcaWGLbWaaSbaaSqa aiaadMgacaWGQbaabeaakiabgkHiTmaalaaabaGaaG4maiaadweaae aacaaIYaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaaamaalaaa baGaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaam OBaiabgUcaRiaaigdacaGGPaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaa dwgacaaMc8oabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacM caaaaaaOGaamizaiabfs5aejabew7aLnaaBaaaleaacaWGLbaabeaa kiabgUcaRmaalaaabaGaaG4maiaadweacqqHuoarcqaH1oqzdaWgaa WcbaGaamyzaaqabaaakeaacaaIYaGaaiikaiaaigdacqGHRaWkcqaH 9oGBcaGGPaaaamaalaaabaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGcbaGa eq4Wdm3aa0baaSqaaiaadwgacaaMc8oabaGaaiOkaiaacIcacaWGUb Gaey4kaSIaaGymaiaacMcaaaaaaOWaaSaaaeaacaWGKbGaeq4Wdm3a a0baaSqaaiaadwgacaaMc8oabaGaaiOkaiaacIcacaWGUbGaey4kaS IaaGymaiaacMcaaaaakeaacqaHdpWCdaqhaaWcbaGaamyzaiaaykW7 aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaGccq GHRaWkdaWcaaqaaiaadweaaeaacaaIZaGaaiikaiaaigdacqGHsisl caaIYaGaeqyVd4MaaiykaaaacqaH0oazdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamizaiabfs5aejabew7aLnaaBaaaleaacaWGRbGaam4A aaqabaaaaa@AABB@

where

d σ e *(n+1) = σ e *(n+1) ε ij dΔ ε ij = 3E 2(1+ν) S ij *(n+1) dΔ ε ij σ e *(n+1) = 3E 2(1+ν) S ij (n+1) dΔ ε ij σ e (n+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabeo 8aZnaaDaaaleaacaWGLbGaaGPaVdqaaiaacQcacaGGOaGaamOBaiab gUcaRiaaigdacaGGPaaaaOGaeyypa0ZaaSaaaeaacqGHciITcqaHdp WCdaqhaaWcbaGaamyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGH RaWkcaaIXaGaaiykaaaaaOqaaiabgkGi2kabew7aLnaaBaaaleaaca WGPbGaamOAaaqabaaaaOGaamizaiabfs5aejabew7aLnaaBaaaleaa caWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaiodacaWGfbaaba GaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaaadaWcaaqa aiaadofadaqhaaWcbaGaamyAaiaadQgaaeaacaGGQaGaaiikaiaad6 gacqGHRaWkcaaIXaGaaiykaaaakiaadsgacqqHuoarcqaH1oqzdaWg aaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaadw gacaaMc8oabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMca aaaaaOGaeyypa0ZaaSaaaeaacaaIZaGaamyraaqaaiaaikdacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcaaaWaaSaaaeaacaWGtbWaa0ba aSqaaiaadMgacaWGQbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaaaakiaadsgacqqHuoarcqaH1oqzdaWgaaWcbaGaamyAaiaadQga aeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oabaGaaiikai aad6gacqGHRaWkcaaIXaGaaiykaaaaaaaaaa@9383@

and dΔ ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabfs 5aejabew7aLnaaBaaaleaacaWGLbaabeaaaaa@3C09@  can be computed by differentiating the nonlinear equation for Δ ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadwgaaeqaaaaa@3B20@  as

d σ e *(n+1) Y { 3E 2(1+ν)Y + ( 1+ ε e +Δ ε e ε 0 ) 1/n ( Δ ε e Δt ε ˙ 0 exp(Q/kT) ) 1/m ( 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e ) }dΔ ε e =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oabaGaaiOkaiaacIca caWGUbGaey4kaSIaaGymaiaacMcaaaaakeaacaWGzbaaaiabgkHiTm aacmaabaWaaSaaaeaacaaIZaGaamyraaqaaiaaikdacaGGOaGaaGym aiabgUcaRiabe27aUjaacMcacaWGzbaaaiabgUcaRmaabmaabaGaaG ymaiabgUcaRmaalaaabaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGa ey4kaSIaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGcbaGaeq yTdu2aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGymaiaac+cacaWGUbaaaOWaaeWaaeaadaWcaaqaaiabfs 5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOqaaiabfs5aejaadsha cuaH1oqzgaGaamaaBaaaleaacaaIWaaabeaakiGacwgacaGG4bGaai iCaiaacIcacqGHsislcaWGrbGaai4laiaadUgacaWGubGaaiykaaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGaamyBaaaakm aabmaabaWaaSaaaeaacaaIXaaabaGaamOBaiaacIcacqaH1oqzdaWg aaWcbaGaaGimaaqabaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaamyzaa qabaGccqGHRaWkcqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaGc caGGPaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaad2gacqqHuoarcq aH1oqzdaWgaaWcbaGaamyzaaqabaaaaaGccaGLOaGaayzkaaaacaGL 7bGaayzFaaGaamizaiabfs5aejabew7aLnaaBaaaleaacaWGLbaabe aakiabg2da9iaaicdaaaa@9154@

Finally noting that

dΔ e ij dΔ ε kl = 1 2 ( δ ik δ jl + δ jk δ il ) 1 3 δ ij δ kl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeuiLdqKaamyzamaaBaaaleaacaWGPbGaamOAaaqabaaakeaa caWGKbGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadUgacaWGSbaabeaaaa GccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeqiT dq2aaSbaaSqaaiaadMgacaWGRbaabeaakiabes7aKnaaBaaaleaaca WGQbGaamiBaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaamOAaiaa dUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGSbaabeaaaOGaay jkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaGaeqiT dq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabes7aKnaaBaaaleaaca WGRbGaamiBaaqabaaaaa@6025@

we can collect together all the relevant terms to show that

C ijkl ep = βE 1+ν ( 1 2 ( δ ik δ jl + δ jk δ il ) 1 3 δ ij δ kl + 9E( Δ ε e 1/γ ) 4(1+ν) σ e (n+1) S ij (n+1) σ e (n+1) S kl (n+1) σ e (n+1) )+ E 3(12ν) δ ij δ kl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGPbGaamOAaiaadUgacaWGSbaabaGaamyzaiaadchaaaGc cqGH9aqpdaWcaaqaaiabek7aIjaadweaaeaacaaIXaGaey4kaSIaeq yVd4gaamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqa aiabes7aKnaaBaaaleaacaWGPbGaam4AaaqabaGccqaH0oazdaWgaa WcbaGaamOAaiaadYgaaeqaaOGaey4kaSIaeqiTdq2aaSbaaSqaaiaa dQgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamiBaaqaba aakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaa aiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqaH0oazdaWgaa WcbaGaam4AaiaadYgaaeqaaOGaey4kaSYaaSaaaeaacaaI5aGaamyr amaabmaabaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaey OeI0IaaGymaiaac+cacqaHZoWzaiaawIcacaGLPaaaaeaacaaI0aGa aiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaeq4Wdm3aa0baaSqaai aadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaakmaa laaabaGaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWGUb Gaey4kaSIaaGymaiaacMcaaaaakeaacqaHdpWCdaqhaaWcbaGaamyz aaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaOWaaSaaae aacaWGtbWaa0baaSqaaiaadUgacaWGSbaabaGaaiikaiaad6gacqGH RaWkcaaIXaGaaiykaaaaaOqaaiabeo8aZnaaDaaaleaacaWGLbGaaG PaVdqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaaGccaGL OaGaayzkaaGaey4kaSYaaSaaaeaacaWGfbaabaGaaG4maiaacIcaca aIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaGaeqiTdq2aaSbaaSqa aiaadMgacaWGQbaabeaakiabes7aKnaaBaaaleaacaWGRbGaamiBaa qabaaaaa@A776@

where

γ=β{ 3E 2(1+ν) σ e (n+1) +( 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e ) }β= ( 1+ 3EΔ ε e 2(1+ν) σ e (n+1) ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0JaeqOSdi2aaiWaaeaadaWcaaqaaiaaiodacaWGfbaabaGaaGOm aiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaiabeo8aZnaaDaaale aacaWGLbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaGc cqGHRaWkdaqadaqaamaalaaabaGaaGymaaqaaiaad6gacaGGOaGaeq yTdu2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqa aiaadwgaaeqaaOGaey4kaSIaeuiLdqKaeqyTdu2aaSbaaSqaaiaadw gaaeqaaOGaaiykaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbGa euiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaaaaOGaayjkaiaawM caaaGaay5Eaiaaw2haaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabek7aIjabg2da9maabmaabaGaaGymaiabgUcaRmaalaaaba GaaG4maiaadweacqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaaa keaacaaIYaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaeq4Wdm 3aa0baaSqaaiaadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGG PaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaa aaaaa@85C6@

 

 

 

8.5.6 Solution using Consistent Newton Raphson Iteration

 

At this point our problem is essentially identical to the hypoelasticity problem we solved earlier, except that we have to account for the history dependence of the solid.  With this in mind, we apply the loads (or impose displacements) in a series of increments, and calculate the change in displacements and stresses during each successive increment.  A generic load step is

Given current values for displacement u n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyDamaaBa aaleaacaWGUbaabeaaaaa@391A@ , accumulated plastic strain ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwgaaeqaaaaa@39BA@  and stress σ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaaC4WdO WaaSbaaSqaaiaad6gaaeqaaaaa@3A3E@

Compute the displacement increment Δ u n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaC yDamaaBaaaleaacaWGUbaabeaaaaa@3A80@  and increment in plastic strain Δ ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadwgaaeqaaaaa@3B20@

Update the solution to u n +Δ u n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyDamaaBa aaleaacaWGUbaabeaakiabgUcaRiabfs5aejaahwhadaWgaaWcbaGa amOBaaqabaaaaa@3D89@ , ε en+1 = ε en +Δ ε e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwgacaaMc8UaamOBaiabgUcaRiaaigdaaeqaaOGaeyyp a0JaeqyTdu2aaSbaaSqaaiaadwgacaaMc8UaamOBaaqabaGccqGHRa WkcqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaaaaa@492F@ , σ n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaaC4WdO WaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaaa@3BDB@

 

We start the solution for some generic load step with an initial guess for Δ u i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3530@  - say w i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33CC@  (we can use the solution at the end of the preceding increment).  We then attempt to correct this guess to bring it closer to the proper solution by setting w i a w i a +d w i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaakiabgkziUkaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc cqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaaaa a@3D92@ .  Ideally, of course, we would want the correction to satisfy

σ ij [ ε kl ( w i a +d w i a ) ] N a x j dV b i N a dV t i * N a dA =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaa kiaacMcaaiaawUfacaGLDbaadaWcaaqaaiabgkGi2kaad6eadaahaa WcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWGIbWaaSbaaS qaaiaadMgaaeqaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsga caWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGbbaa leaacqGHciITcqWIDesOaeqaniabgUIiYdaaleaacqWIDesOaeqani abgUIiYdaaleaacqWIDesOaeqaniabgUIiYdGccqGH9aqpcaaIWaaa aa@689B@

Just as we did for hypoelastic problems, we linearize in d w i a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34B5@  to obtain a system of linear equations

K aibk d w k b + R i a F i a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaey4kaSIaamOuamaaDaaaleaacaWGPbaabaGaamyyaa aakiabgkHiTiaadAeadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH 9aqpcaaIWaaaaa@42BA@

with

K aibk = C ijkl ep N a x j N b x l dV R i a = σ ij [ ε kl ( w i b ) ] N a x j dV F i a = b i N a dV+ t i * N a dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiabg2da9maapefabaGaam4qamaaDaaaleaa caWGPbGaamOAaiaadUgacaWGSbaabaGaamyzaiaadchaaaGcdaWcaa qaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaadQgaaeqaaaaakmaalaaabaGaeyOaIyRaam OtamaaCaaaleqabaGaamOyaaaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaamiBaaqabaaaaOGaamizaiaadAfaaSqaaiabl2riHcqab0Gaey 4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWGsbWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaeyypa0Zaa8quae aacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOWaamWaaeaacqaH 1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaaiikaiaadEhadaqhaa WcbaGaamyAaaqaaiaadkgaaaGccaGGPaaacaGLBbGaayzxaaWaaSaa aeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaWGQbaabeaaaaGccaWGKbGaamOvaaWcbaGa eSyhHekabeqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGgbWaa0baaSqaaiaadMgaaeaacaWG HbaaaOGaeyypa0Zaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaamOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGwbGaey4kaSYa a8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaamOtam aaCaaaleqabaGaamyyaaaakiaadsgacaWGbbaaleaacqGHciITcqWI DesOaeqaniabgUIiYdaaleaacqWIDesOaeqaniabgUIiYdaaaa@9FB5@

 

These expressions are essentially identical to those we dealt with in the hypoelasticity problem.

 

Developing an elastic-plastic FEM code is a chore.  It is conceptually no more difficult than the hypoelasticity problem, but there’s a lot more bookkeeping to do to keep track of the history dependence of the material.  Specifically, it is necessary to store, and to update, the stress and accumulated plastic strain at each integration point of each element, and to pass this information to the routines that calculate element residual and element stiffness information.  Newton-Raphson solution of the equilibrium equations is standard.  Once a convergent solution has been found, the stress and accumulated plastic strain at the element integration points must be updated, before starting the next load step.

 

 

 

 

 

 

8.5.7 Example small-strain plastic FEM code

 

As always, we provide a simple example FEM code to illustrate actual implementation. 

 

The code is in a file FEM_2Dor3D_viscoplastic.mws

An input file is provided in the file Viscoplastic_quad4.txt

 

The code and sample input file are set up to solve the problem illustrated in the figure:  the element deforms in plane strain and has the viscoplastic constitutive response described earlier with

E=10000,ν=0.3 Y=15, ε 0 =0.5n=10, ε ˙ 0 =0.1m=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbGaeyypa0JaaGymaiaaic dacaaIWaGaaGimaiaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaH9oGBcqGH9aqpcaaIWaGaaiOlaiaaiodaaeaacaWGzb Gaeyypa0JaaGymaiaaiwdacaGGSaGaaGPaVlaaykW7caaMc8UaeqyT du2aaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI1a GaaGPaVlaaykW7caaMc8UaaGPaVlaad6gacqGH9aqpcaaIXaGaaGim aiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqbew7aLzaaca WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaIXaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WGTbGaeyypa0JaaGymaiaaicdaaaaa@79A1@

The program assumes the load increases from zero to 20 over a time period of 2.  The load is applied in a series of increments, and using consistent Newton-Raphson iteration to solve the nonlinear equations at each step.  Element strains and stresses are printed to a file at each load step, and the stress-v-displacement curve for the element is plotted, as shown below.