9.5 Plastic fracture mechanics

 

Thus far we have avoided discussing the complicated material behavior in the process zone near the crack tip.  This is acceptable as long as the process zone is small compared with the specimen dimensions, and a clear zone of K dominance is established around the crack tip.  In some structures, however, the materials are so tough and ductile that the plastic zone near the crack tip is huge MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  and comparable to specimen dimensions.  Linear elastic fracture mechanics cannot be used under these conditions.  Instead, we adopt a framework based on plastic solutions to crack tip fields. 

 

In this section, we address three issues:

 

1. The size of the plastic zone at the crack tip is estimated

 

2. The asymptotic fields near the crack tip in a plastic material are calculated

 

3. A phenomenological framework for predicting fracture in plastic solids is outlined.

 

 

 

9.5.1 Dugdale-Barenblatt cohesive zone model of yield at a crack tip

 

The simplest estimate of the size of the plastic zone at a crack tip can be obtained using Dugdale & Barenblatt’s cohesive zone model, which gives the plastic zone size at the tip of a crack in a thin sheet (deforming under conditions of plane stress) as

r p π 8 K I Y 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaki abgIKi7oaalaaabaGaeqiWdahabaGaaGioaaaadaqadaqaamaalaaa baGaam4samaaBaaaleaacaWGjbaabeaaaOqaaiaadMfaaaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@3C75@

where K I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGjbaabeaaaa a@32AA@  is the crack tip stress intensity factor and Y is the material yield stress. 

 

This estimate is derived as follows.  Consider a crack of length 2a in an elastic-perfectly plastic material with elastic constants E,ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacYcacqaH9oGBaaa@3411@  and yield stress Y.  We assume that the specimen is a thin sheet, with thickness much less than crack length, so that a state of plane stress is developed in the solid.  We anticipate that there will be a region near each crack tip where the material deforms plastically.  The Mises equivalent stress 3 S ij S ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIZaGaam4uamaaBaaale aacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaac+cacaaIYaaaleqaaaaa@38FC@  should not exceed yield in this region.   It’s hard to find a solution with stresses at yield everywhere in the plastic zone, but we can easily construct an approximate solution where the stress along the line of the crack satisfies the yield condition, using the ‘cohesive zone’ model illustrated in below

 


 

 

Let r p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaaa a@32F7@  denote the length of the cohesive zone at each crack tip.  To construct an appropriate solution we extend the crack in both directions to put fictitious crack tips at x 1 =± a+ r p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iabgglaXoaabmaabaGaamyyaiabgUcaRiaadkhadaWgaaWc baGaamiCaaqabaaakiaawIcacaGLPaaaaaa@3B34@ , and distribute tractions of magnitude Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaaaa@31BD@  over the crack flanks from x 1 =a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadggaaaa@34B9@  to x 1 =a+ r p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaki abg2da9iaadggacqGHRaWkcaWGYbWaaSbaaSqaaiaadchaaeqaaaaa @37B3@ , and similarly at the other crack tip..  Evidently, the stress then satisfies σ 22 =Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaadMfaaaa@3634@  along the line of the crack just ahead of each crack.  

 

We can use point force solution given in the table in Section 9.3.3 to compute the stress intensity factor at the fictitious crack tip. Omitting the tedious details of evaluating the integral, we find that

K I * = σY π(a+ r p ) + 2Y π π(a+ r p ) sin 1 a a+ r p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaDaaaleaacaWGjbaabaGaai Okaaaakiabg2da9maabmaabaGaeq4WdmNaeyOeI0IaamywaaGaayjk aiaawMcaamaakaaabaGaeqiWdaNaaiikaiaadggacqGHRaWkcaWGYb WaaSbaaSqaaiaadchaaeqaaOGaaiykaaWcbeaakiabgUcaRmaalaaa baGaaGOmaiaadMfaaeaacqaHapaCaaWaaOaaaeaacqaHapaCcaGGOa GaamyyaiabgUcaRiaadkhadaWgaaWcbaGaamiCaaqabaGccaGGPaaa leqaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaSaaaeaacaWGHbaabaGaamyyaiabgUcaRiaadkhadaWgaaWc baGaamiCaaqabaaaaaaa@559F@

The * on the stress intensity factor is introduced to emphasize that this is not the true crack tip stress intensity factor (which is of course K I =σ πa MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGjbaabeaaki abg2da9iabeo8aZnaakaaabaGaeqiWdaNaamyyaaWcbeaaaaa@383A@  ), but the stress intensity factor at the fictitious crack tip. The stresses must remain bounded just ahead of the fictitious crack tip, so that r p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaaa a@32F7@  must be chosen to satisfy K I * =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaDaaaleaacaWGjbaabaGaai Okaaaakiabg2da9iaaicdaaaa@3522@ .  This gives

r p = a sin π[1σ/Y]/2 a π 2 8 σ Y 2 a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaki abg2da9maalaaabaGaamyyaaqaaiGacohacaGGPbGaaiOBamaabmaa baGaeqiWdaNaai4waiaaigdacqGHsislcqaHdpWCcaGGVaGaamywai aac2facaGGVaGaaGOmaaGaayjkaiaawMcaaaaacqGHsislcaWGHbGa eyisIS7aaSaaaeaacqaHapaCdaahaaWcbeqaaiaaikdaaaaakeaaca aI4aaaamaabmaabaWaaSaaaeaacqaHdpWCaeaacaWGzbaaaaGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiaadggaaaa@505F@

Its more sensible to express this in terms of stress intensity factor

r p π 8 K I Y 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaki abgIKi7oaalaaabaGaeqiWdahabaGaaGioaaaadaqadaqaamaalaaa baGaam4samaaBaaaleaacaWGjbaabeaaaOqaaiaadMfaaaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@3C75@

This estimate turns out to be remarkably accurate for plane stress conditions, where more detailed calculations give

r p = 1 π K IC Y 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaki abg2da9maalaaabaGaaGymaaqaaiabec8aWbaadaqadaqaamaalaaa baGaam4samaaBaaaleaacaWGjbGaam4qaaqabaaakeaacaWGzbaaaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@3C8B@

For plane strain the plastic zone is smaller: detailed calculations show that the plastic zone size is

r p = 1 3π K IC Y 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGWbaabeaaki abg2da9maalaaabaGaaGymaaqaaiaaiodacqaHapaCaaWaaeWaaeaa daWcaaqaaiaadUeadaWgaaWcbaGaamysaiaadoeaaeqaaaGcbaGaam ywaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@3D48@

 

 

 

9.5.2 Hutchinson-Rice-Rosengren (HRR) crack tip fields for stationary crack in a power law hardening solid

 

The HRR fields are an exact solution to the stress, strain and displacement fields near a crack tip in a power-law strain hardening, rigid plastic material, which is subjected to monotonically increasing stress at infinity.  The model is based on the following assumptions:

 

1. The solid is infinitely large, and contains an infinitely long crack with its tip at the origin;

 

2. The material is a rigid plastic, strain hardening solid with uniaxial stress -v- strain curve

σ= σ 0 (ε/ ε 0 ) 1/n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaeq4Wdm3aaSbaaS qaaiaaicdaaeqaaOGaaiikaiabew7aLjaac+cacqaH1oqzdaWgaaWc baGaaGimaaqabaGccaGGPaWaaWbaaSqabeaacaaIXaGaai4laiaad6 gaaaaaaa@3F34@

where σ 0 , ε 0 ,n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaaiilaiabew7aLnaaBaaaleaacaaIWaaabeaakiaacYcacaWGUbaa aa@387D@  are material properties, with n>1.

 

The HRR solution shows that the stress, strain and displacement fields at a point (r,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ykaaaa@3596@  in the solid (see the figure)  can be calculated from functions of the form

σ ij = σ 0 J σ 0 ε 0 r 1/(n+1) Σ ij (θ,n) ε ij = ε 0 J σ 0 ε 0 r n/(n+1) E ij (θ,n) u i = J σ 0 σ 0 ε 0 r J 1/(n+1) U i (θ,n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOWa aeWaaeaadaWcaaqaaiaadQeaaeaacqaHdpWCdaWgaaWcbaGaaGimaa qabaGccqaH1oqzdaWgaaWcbaGaaGimaaqabaGccaWGYbaaaaGaayjk aiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaGGOaGaamOBaiabgU caRiaaigdacaGGPaaaaOGaeu4Odm1aaSbaaSqaaiaadMgacaWGQbaa beaakiaacIcacqaH4oqCcaGGSaGaamOBaiaacMcaaeaacqaH1oqzda WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqa aiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaadQeaaeaacqaHdpWCda WgaaWcbaGaaGimaaqabaGccqaH1oqzdaWgaaWcbaGaaGimaaqabaGc caWGYbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaamOBaiaac+caca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaamyramaaBaaaleaa caWGPbGaamOAaaqabaGccaGGOaGaeqiUdeNaaiilaiaad6gacaGGPa aabaGaamyDamaaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGa amOsaaqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaam aalaaabaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaeqyTdu2aaSba aSqaaiaaicdaaeqaaOGaamOCaaqaaiaadQeaaaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIXaGaai4laiaacIcacaWGUbGaey4kaSIaaGym aiaacMcaaaGccaWGvbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiabeI 7aXjaacYcacaWGUbGaaiykaaaaaa@87E8@

where Σ ij , E ij , U i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiaacYcacaWGfbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa cYcacaWGvbWaaSbaaSqaaiaadMgaaeqaaaaa@3AA7@  are dimensionless functions of the angle θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3295@  and the hardening index n only, and J is the value of the (path independent) J integral

J= C (W( σ e ) δ j1 σ ij u i x 1 ) m j ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9maapefabaGaaiikai aadEfacaGGOaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaOGaaiykaiab es7aKnaaBaaaleaacaWGQbGaaGymaaqabaGccqGHsislcqaHdpWCda WgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacqGHciITcaWG1bGa aCjaVpaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaa WcbaGaaGymaaqabaaaaOGaaiykaiaad2gadaWgaaWcbaGaamOAaaqa baGccaWGKbGaam4CaaWcbaGaam4qaaqab0Gaey4kIipaaaa@50E7@

where

W= n n+1 σ 0 ε 0 3 S ij S ij 2 σ 0 n+1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maalaaabaGaamOBaa qaaiaad6gacqGHRaWkcaaIXaaaaiabeo8aZnaaBaaaleaacaaIWaaa beaakiabew7aLnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaae aacaaIZaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGtbWa aSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaaikdacqaHdpWCdaWgaa WcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWG UbGaey4kaSIaaGymaaaakiaaykW7caaMc8oaaa@4D16@

with S ij = σ ij σ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0Iaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4295@ W can be interpreted as the total work done in loading the material up to a stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  under monotonically increasing, proportional loading.

 

These results are important for two reasons:

 

1. They show that the magnitudes of the stress, strain and displacement near the crack tip are characterized by J.  Thus, in highly plastic materials, J can replace K as the fracture criterion.

 

2. They illustrate the nature of the stress and strain fields near the crack tip.  In particular, they show that the stress has a r (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaCaaaleqabaGaeyOeI0Iaai ikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaa@36DA@  singularity MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for n=1 (a linear stress-strain curve) we recover the square root singularity found in elastic materials; while for a perfectly plastic solid ( n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBaiabgkziUkabg6HiLcaa@3531@  ) the stress is constant.  In contrast, the strains have a square root singularity for n=1 and an r 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaCaaaleqabaGaeyOeI0IaaG ymaaaaaaa@33AC@  singularity for n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBaiabgkziUkabg6HiLcaa@3531@

 

 

Derivation  The HRR solution is derived by solving the following governing equations for displacements u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaaa a@32F4@ , strains ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3490@  and stresses σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  

 

· Strain-displacement relation ε ij =( u i / x j + u j / x i )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaacIcacqGHciITcaWG1bWaaSbaaSqaaiaadMga aeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGccq GHRaWkcqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaai4laiab gkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaGaai4laiaaik daaaa@48C7@

 

· Stress equilibrium σ ij /x i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bGaaCjaVpaaBaaaleaa caWGPbaabeaakiabg2da9iaaicdaaaa@3D9E@

 

· Boundary conditions σ 22 = σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGc cqGH9aqpcaaIWaaaaa@3A87@  on x 2 =0 x 1 <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdacaaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGymaaqa baGccqGH8aapcaaIWaaaaa@3B51@

 

· The stress-strain relation for a power-law hardening rigid plastic material subjected to monotonically increasing, proportional loading (this means that material particles are subjected to stresses and strains whose principal axes don’t rotate during loading) can be expressed as

ε ij = ε 0 σ e σ 0 n 3 2 S ij σ e S ij = σ 0 ε e ε 0 1/n 2 3 ε ij ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIWaaabeaakmaabmaa baWaaSaaaeaacqaHdpWCdaWgaaWcbaGaamyzaaqabaaakeaacqaHdp WCdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaWGUbaaaOWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWcaaqaai aadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeq4Wdm3aaSba aSqaaiaadwgaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uam aaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcqaHdpWCdaWgaaWc baGaaGimaaqabaGcdaqadaqaamaalaaabaGaeqyTdu2aaSbaaSqaai aadwgaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaWGUbaaaOWaaS aaaeaacaaIYaaabaGaaG4maaaadaWcaaqaaiabew7aLnaaBaaaleaa caWGPbGaamOAaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGimaaqaba aaaaaa@7EE5@

where ε 0 , σ 0 ,n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaO Gaaiilaiabeo8aZnaaBaaaleaacaaIWaaabeaakiaacYcacaWGUbaa aa@387C@  are material constants and S ij = σ ij σ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0Iaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4294@  is the deviatoric stress and σ e = 3 S ij S ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaacaaIZaGaam4uamaaBaaaleaacaWGPbGaamOA aaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaac+caca aIYaaaleqaaaaa@3CE6@  is the Von Mises effective stress.  Of course, we don’t know a priori that material elements ahead of a crack tip experience proportional loading, but this can be verified after the solution has been found.  It is helpful to note that under proportional loading, the rigid plastic material is indistinguishable from an elastic material with strain energy potential

W= n n+1 σ 0 ε 0 σ e σ 0 n+1 = n n+1 σ 0 ε 0 ε e ε 0 (1+n)/n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maalaaabaGaamOBaa qaaiaad6gacqGHRaWkcaaIXaaaaiabeo8aZnaaBaaaleaacaaIWaaa beaakiabew7aLnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaae aacqaHdpWCdaWgaaWcbaGaamyzaaqabaaakeaacqaHdpWCdaWgaaWc baGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUb Gaey4kaSIaaGymaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq GH9aqpdaWcaaqaaiaad6gaaeaacaWGUbGaey4kaSIaaGymaaaacqaH dpWCdaWgaaWcbaGaaGimaaqabaGccqaH1oqzdaWgaaWcbaGaaGimaa qabaGcdaqadaqaamaalaaabaGaeqyTdu2aaSbaaSqaaiaadwgaaeqa aaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawM caamaaCaaaleqabaGaaiikaiaaigdacqGHRaWkcaWGUbGaaiykaiaa c+cacaWGUbaaaOGaaGPaVdaa@71CE@

The J integral must then be path independent.

 

 

The equilibrium condition may be satisfied through an Airy stress function ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@ , generating stresses in the usual way as

σ rr = 1 r ϕ r + 1 r 2 2 ϕ θ 2 σ θθ = 2 ϕ r 2 σ rθ = r 1 r ϕ θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaa cqGHciITcqaHvpGzaeaacqGHciITcaWGYbaaaiabgUcaRmaalaaaba GaaGymaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITcq aH4oqCdaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXb qabaGccqGH9aqpdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaa kiabew9aMbqaaiabgkGi2kaadkhadaahaaWcbeqaaiaaikdaaaaaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGa amOCaiabeI7aXbqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2c qaaiabgkGi2kaadkhaaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWG YbaaamaalaaabaGaeyOaIyRaeqy1dygabaGaeyOaIyRaeqiUdehaaa GaayjkaiaawMcaaaaa@7BF6@

The solution can be derived from an Airy function that has a separable form

ϕ= r α f θ +... MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaamOCamaaCaaale qabaGaeqySdegaaOGaamOzamaabmaabaGaeqiUdehacaGLOaGaayzk aaGaey4kaSIaaiOlaiaac6cacaGGUaaaaa@3D9C@

where the power α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  and f θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzamaabmaabaGaeqiUdehacaGLOa Gaayzkaaaaaa@3509@  are to be determined.

 

The strength of the singularity α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  can be determined using the J integral. Evaluating the integral around a circular contour radius r enclosing the crack tip we obtain

J= C (W δ j1 σ ij u i x 1 ) m j ds = π π (W δ j1 σ ij u i x 1 ) m j rdθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9maapefabaGaaiikai aadEfacqaH0oazdaWgaaWcbaGaamOAaiaaigdaaeqaaOGaeyOeI0Ia eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakmaalaaabaGaeyOaIy RaamyDamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaaGymaaqabaaaaOGaaiykaiaad2gadaWgaaWcbaGaamOAaa qabaGccaWGKbGaam4CaaWcbaGaam4qaaqab0Gaey4kIipakiabg2da 9maapehabaGaaiikaiaadEfacqaH0oazdaWgaaWcbaGaamOAaiaaig daaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaa kmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaaiykaiaad2ga daWgaaWcbaGaamOAaaqabaGccaWGYbGaamizaiabeI7aXbWcbaGaey OeI0IaeqiWdahabaGaeqiWdahaniabgUIiYdaaaa@6A15@

For the J integral to be path independent, it must be independent of r and therefore W must be of order r 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaCaaaleqabaGaeyOeI0IaaG ymaaaaaaa@33AB@ .  The Airy function gives stresses of order r α2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaCaaaleqabaGaeqySdeMaey OeI0IaaGOmaaaaaaa@354B@ , and the corresponding strain energy density would have order r (n+1)(α2) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaCaaaleqabaGaaiikaiaad6 gacqGHRaWkcaaIXaGaaiykaiaacIcacqaHXoqycqGHsislcaaIYaGa aiykaaaaaaa@3A8D@ .  Consequently, for a path independent J, we must have (n+1)(α2)=1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaiaacIcacqaHXoqycqGHsislcaaIYaGaaiykaiabg2da9iabgkHi Tiaaigdaaaa@3C17@ , so

α= 2n+1 n+1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0ZaaSaaaeaacaaIYa GaamOBaiabgUcaRiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaaaaa@3970@

Note for a linear material (n=1), we find α=3/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyypa0JaaG4maiaac+caca aIYaaaaa@35B0@ , which corresponds to the expected square-root stress singularity.

 

We can now scale the governing equations as discussed in Section 7.2.13.   To this end, define normalized length, displacement, strain, stress and Airy function as

X i = σ 0 ε 0 x i /JR= σ 0 ε 0 r/J U i = u i σ 0 /J MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiwamaaBaaaleaacaWGPbaabeaaki abg2da9iabeo8aZnaaBaaaleaacaaIWaaabeaakiabew7aLnaaBaaa leaacaaIWaaabeaakiaadIhadaWgaaWcbaGaamyAaaqabaGccaGGVa GaamOsaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadkfacqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaa qabaGccqaH1oqzdaWgaaWcbaGaaGimaaqabaGccaWGYbGaai4laiaa dQeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWGvbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamyD amaaBaaaleaacaWGPbaabeaakiabeo8aZnaaBaaaleaacaaIWaaabe aakiaac+cacaWGkbaaaa@6B90@

E ij =ε ij / ε 0 Σ ij = σ ij / σ 0 Φ=ϕ σ 0 ε 0 /J 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH1oqzcaWLa8+aaSbaaSqaaiaadMgacaWGQbaa beaakiaac+cacqaH1oqzdaWgaaWcbaGaaGimaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqqHJoWudaWgaaWcbaGaamyA aiaadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaac+cacqaHdpWCdaWgaaWcbaGaaGimaaqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeuOPdyKaeyypa0 Jaeqy1dy2aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaGccqaH 1oqzdaWgaaWcbaGaaGimaaqabaGccaGGVaGaamOsaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaaa@6ABD@

With these definitions the governing equations reduce to

 

· Strain-displacement relation E ij =( U i / X j + U j / X i )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaGGOaGaeyOaIyRaamyvamaaBaaaleaacaWGPbaa beaakiaac+cacqGHciITcaWGybWaaSbaaSqaaiaadQgaaeqaaOGaey 4kaSIaeyOaIyRaamyvamaaBaaaleaacaWGQbaabeaakiaac+cacqGH ciITcaWGybWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaac+cacaaIYa aaaa@476A@

 

· Stress equilibrium Σ ij /X i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeu4Odm1aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWGybGaaCjaVpaaBaaaleaa caWGPbaabeaakiabg2da9iaaicdaaaa@3D3F@

 

· Constitutive equation

E ij = Σ e n 3 2 Σ ij Σ e Σ ij = Σ ij Σ kk δ ij /3 Σ e = 3 Σ ij Σ ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaqadaqaaiabfo6atnaaBaaaleaacaWGLbaabeaa aOGaayjkaiaawMcaamaaCaaaleqabaGaamOBaaaakmaalaaabaGaaG 4maaqaaiaaikdaaaWaaSaaaeaacuqHJoWugaqbamaaBaaaleaacaWG PbGaamOAaaqabaaakeaacqqHJoWudaWgaaWcbaGaamyzaaqabaaaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uafu4OdmLbauaa daWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0Jaeu4Odm1aaSbaaS qaaiaadMgacaWGQbaabeaakiabgkHiTiabfo6atnaaBaaaleaacaWG RbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaai4laiaaiodacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaeu4Odm1aaSbaaSqaaiaadwgaaeqaaOGaeyypa0ZaaOaaae aacaaIZaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQbaabeaakiabfo6a tnaaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaGOmaaWcbeaaaa a@7516@

 

In addition, the stresses are related to the normalized Airy function by

Σ rr = 1 R Φ R + 1 R 2 2 Φ θ 2 Σ θθ = 2 Φ R 2 Σ rθ = R 1 R Φ θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaa cqGHciITcqqHMoGraeaacqGHciITcaWGsbaaaiabgUcaRmaalaaaba GaaGymaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccqqHMoGraeaacqGHciITcq aH4oqCdaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaeu4Odm1aaSbaaSqaaiabeI7aXjabeI7aXb qabaGccqGH9aqpdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaa kiabfA6agbqaaiabgkGi2kaadkfadaahaaWcbeqaaiaaikdaaaaaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqqHJoWudaWgaaWcbaGa amOCaiabeI7aXbqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2c qaaiabgkGi2kaadkfaaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWG sbaaamaalaaabaGaeyOaIyRaeuOPdyeabaGaeyOaIyRaeqiUdehaaa GaayjkaiaawMcaaaaa@7941@

while the expression for the J integral becomes

1= π π ( W ^ δ j1 Σ ij U i X 1 ) m j Rdθ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiabg2da9maapehabaGaaiikai qadEfagaqcaiabes7aKnaaBaaaleaacaWGQbGaaGymaaqabaGccqGH sislcqqHJoWudaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacq GHciITcaWGvbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiw amaaBaaaleaacaaIXaaabeaaaaGccaGGPaGaamyBamaaBaaaleaaca WGQbaabeaakiaadkfacaWGKbGaeqiUdehaleaacqGHsislcqaHapaC aeaacqaHapaCa0Gaey4kIipaaaa@4FF3@

where W ^ =W/ σ 0 ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaajaGaeyypa0Jaam4vaiaac+ cacqaHdpWCdaWgaaWcbaGaaGimaaqabaGccqaH1oqzdaWgaaWcbaGa aGimaaqabaaaaa@39A1@ .  The only material parameter appearing in the scaled equations is n.  In addition, note that J has been eliminated from the equations, so the solution is independent of J.

 

The stresses can be derived from an Airy function

Φ= R (2n+1)/(n+1) f(θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0JaamOuamaaCaaale qabaGaaiikaiaaikdacaWGUbGaey4kaSIaaGymaiaacMcacaGGVaGa aiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaadAgacaGGOaGaeq iUdeNaaiykaaaa@41A9@

The scaling of displacements, strain and stress with load and material properties then follows directly from the definition of the normalized quantities. 

 

To compute the full expression for f(θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaH4oqCcaGGPaaaaa@34DA@  and hence to determine Σ ij , E ij , U i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiaacYcacaWGfbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa cYcacaWGvbWaaSbaaSqaaiaadMgaaeqaaaaa@3AA7@  is a tedious and not especially straightforward exercise.  The governing equation for f MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaaaa@31CA@  is obtained from the condition that the strain field must be compatible.  This requires

r 1 ε rr r r 2 2 ε rr θ 2 2 r 1 ε θθ r 2 ε θθ r 2 + r 1 2 ε rθ rθ + r 2 ε rθ θ =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaalaaabaGaeyOaIyRaeqyTdu2aaSbaaSqaaiaadkhacaWG YbaabeaaaOqaaiabgkGi2kaadkhaaaGaeyOeI0IaamOCamaaCaaale qabaGaeyOeI0IaaGOmaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaOGaeqyTdu2aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaai abgkGi2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaaGccqGHsislcaaI YaGaamOCamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaalaaabaGaey OaIyRaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaacqGH ciITcaWGYbaaaiabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaa cqGHciITcaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRiaadk hadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiabew7aLnaaBaaaleaacaWGYbGaeqiUde habeaaaOqaaiabgkGi2kaadkhacqGHciITcqaH4oqCaaGaey4kaSIa amOCamaaCaaaleqabaGaeyOeI0IaaGOmaaaakmaalaaabaGaeyOaIy RaeqyTdu2aaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaeyOaIyRa eqiUdehaaiabg2da9iaaicdaaaa@819D@

Computing the stresses from the Airy function, deducing the strains using the constitutive law and substituting the results into this equation yields a fourth order nonlinear ODE for f, which must be solved subject to appropriate symmetry and boundary conditions.  The solution must be found numerically MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  details are given in Hutchinson (1968) and Rice and Rosengren (1968).

 

 

 

9.5.3. Plastic fracture mechanics based on J

 

There are many situations (e.g. in design of pressure vessels, pipelines, etc) where the structure is purposely made from a tough, ductile material. Usually, one cannot apply LEFM to these structures, because a large plastic zone forms at the crack tip (the plastic zone is comparable to specimen dimensions, and there is no K dominant zone).  Some other approach is needed to design against fracture in these applications.

 

Two related approaches are used MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  one is based on the HRR crack tip field and uses J as a fracture criterion; the other uses the crack tip opening displacements as a fracture criterion.  Only the J based approach will be discussed here.

 

The most important conclusion from the HRR crack tip field is that the amplitude of stresses, strains and displacements near a crack tip in a plastically deforming solid scale in a predictable way with J.  Just as stress intensity factors quantify the stress and strain magnitudes in a linear elastic solid, J can be used as a parameter to quantify the state of stress near the tip of a crack in a plastic solid.

 

Phenomenological J based fracture mechanics is based on the same reasoning that is used to justify K based LEFM.  We postulate that we will find three distinct regions in a plastically deforming specimen containing a crack (see the figure), namely

 

1. A process zone near the crack tip, with finite deformations and extensive material damge, where the asymptotic HRR field is not accurate

 

2. A J dominant zone, which is outside the process zone, but small compared with specimen dimensions. Here, the HRR field accurately describes the deformation

 

3. The remainder, where stress and strain fields are controlled by specimen geometry and loading.

 

 

As for LEFM, we hope that the process zone is controlled by the surrounding J dominant zone, so that crack tip loading conditions can be characterized by J.

 

J based fracture mechanics is applied in much the same way as LEFM.  We assume that crack growth starts when J reaches a critical value (for mode I plane strain loading this value is denoted J IC MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGjbGaam4qaa qabaaaaa@3370@  ).  The critical value must be measured experimentally for a given material, using standard test specimens.  To assess the safety of a structure or component containing a crack, one must calculate J and compare the predicted value to J IC MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGjbGaam4qaa qabaaaaa@3370@  - if J< J IC MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabgYda8iaadQeadaWgaaWcba Gaamysaiaadoeaaeqaaaaa@3543@  the structure is safe.

 

 

Practical application of J based fracture mechanics is somewhat more involved than LEFM.  Tests to measure   J IC MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGjbGaam4qaa qabaaaaa@3370@  are performed using standard test specimens MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  deeply cracked 3 or 4 point bend bars are often used.  For example, calibrations for a 3 point bend bar shown below are available in J. R. Rice, P. C. Paris and J. G. Merkle (1973).


 

Calculating J for a specimen or component usually requires a full field FEM analysis.  Cataloging solutions to standard problems is much more difficult than for LEFM, because the results depend on the stress-strain behavior of the material.  Specifically, for a power-law solid containing a crack of length a and subjected to stress σ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdmhaaa@32A2@ , we expect that

J= σ 0 ε 0 a (σ/ σ 0 ) n+1 f(n,geometry) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iabeo8aZnaaBaaale aacaaIWaaabeaakiabew7aLnaaBaaaleaacaaIWaaabeaakiaadgga caGGOaGaeq4WdmNaai4laiabeo8aZnaaBaaaleaacaaIWaaabeaaki aacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaamOzaiaa cIcacaWGUbGaaiilaiaadEgacaWGLbGaam4Baiaad2gacaWGLbGaam iDaiaadkhacaWG5bGaaiykaaaa@4DA8@

For example, a slit crack of length 2a subjected to mode I loading with stress σ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdmhaaa@32A2@  has (approximately MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  see He & Hutchinson (1981)

J= σ 0 ε 0 aπ n 3 σ σ 0 n+1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iabeo8aZnaaBaaale aacaaIWaaabeaakiabew7aLnaaBaaaleaacaaIWaaabeaakiaadgga cqaHapaCdaGcaaqaaiaad6gaaSqabaGcdaqadaqaamaalaaabaWaaO aaaeaacaaIZaaaleqaaOGaeq4WdmhabaGaeq4Wdm3aaSbaaSqaaiaa icdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOBaiabgU caRiaaigdaaaaaaa@4567@

Finally, to apply the theory it is necessary to ensure that both test specimen and component satisfy conditions necessary for J dominance.  As a rough rule of thumb, if all characteristic specimen dimensions (crack length, etc) exceed 200J/ ε 0 σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaaicdacaaIWaGaamOsaiaac+ cacqaH1oqzdaWgaaWcbaGaaGimaaqabaGccqaHdpWCdaWgaaWcbaGa aGimaaqabaaaaa@39D1@  J dominance is likely to be satisfied.