Problems for Chapter 3

 

Constitutive Models: Relations between Stress and Strain

 

 

 

3.12.    Crystal Plasticity

 

 

3.12.1.  Draw an inverse pole figure for an fcc single crystal, with [100], [010] and [001] directions parallel to the {i,j,k} directions, showing the following:

3.12.1.1.        The trace of the (010), (100), (110) and ( 1 ¯ 10) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGabGymayaaraGaaGymaiaaic dacaGGPaaaaa@3667@  planes

3.12.1.2.        The trace of the {111} planes

3.12.1.3.        The twelve slip directions, labeled according to the convention given in Section 3.12.2 (i.e. a 1 , a 2 , a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaO GaaiilaiaadggadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyyamaa BaaaleaacaaIZaaabeaaaaa@39A4@ , etc)

 

 

 

 

3.12.2.  Consider the inverse pole figure for an fcc crystal with  [100], [010] and [001] directions parallel to the {i,j,k} directions, as shown in the figure.  Show that the circle corresponding to the trace of the ( 1 ¯ 01) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGabGymayaaraGaaGimaiaaig dacaGGPaaaaa@3667@  plane has radius R= 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGsbGaeyypa0ZaaOaaaeaacaaIYa aaleqaaaaa@357A@ , and is centered at the point corresponding to the [ 1 ¯ 01] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGabGymayaaraGaaGimaiaaig dacaGGDbaaaa@36CE@  as shown in the figure.  The simplest approach to this problem is to note that the [010] direction and the [101] direction both lie on the circle. 

 

 

 

 

 

3.12.3.  Plot a contour map on the standard triangle of the inverse pole figure for an fcc single crystal, showing the magnitude of the resolved shear stress induced by uniaxial tensile stress on the critical (d1) slip system.  Find the orientation of the tensile axis that gives the largest resolved shear stress

 

 

 

3.12.4.  An fcc single crystal deforms by shearing at rate γ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacuaHZoWzgaGaaaaa@3476@  on the d1 (1 1 ¯ 1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaaGymaiqaigdagaqeaiaaig dacaGGPaaaaa@3668@   [011] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGaaGimaiaaigdacaaIXaGaai yxaaaa@36B6@  and γ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHsislcuaHZoWzgaGaaaaa@3563@  on the c2 ( 1 ¯ 11) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGabGymayaaraGaaGymaiaaig dacaGGPaaaaa@3668@   [ 1 ¯ 0 1 ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGBbGabGymayaaraGaaGimaiqaig dagaqeaiaac2faaaa@36E5@  slip systems. 

3.12.4.1.        Show that the material fiber parallel to the [112] direction has zero angular velocity;

3.12.4.2.        Calculate the rate of stretching of the material fiber parallel to the [112] direction.

 

 

 

3.12.5.  A single crystal is loaded in uniaxial tension.  The direction of the loading axis, specified by a unit vector p remains fixed during straining.  The crystal deforms by slip on a single system, with slip direction s α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHZbWaaWbaaSqabeaacqaHXoqyaa aaaa@358E@  and slip plane normal m α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHTbWaaWbaaSqabeaacqaHXoqyaa aaaa@3588@ The deformation gradient resulting from a shear strain γ α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHZoWzdaahaaWcbeqaaiabeg7aHb aaaaa@3639@  is

F ij = R ik ( δ kj + γ α s k α m j α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGgbWaaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadkfadaWgaaWcbaGaamyAaiaadUgaaeqaaOWa aeWaaeaacqaH0oazdaWgaaWcbaGaam4AaiaadQgaaeqaaOGaey4kaS Iaeq4SdC2aaWbaaSqabeaacqaHXoqyaaGccaWGZbWaa0baaSqaaiaa dUgaaeaacqaHXoqyaaGccaWGTbWaa0baaSqaaiaadQgaaeaacqaHXo qyaaaakiaawIcacaGLPaaaaaa@4AAC@

where R ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGsbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@35A6@  is a proper orthogonal tensor (i.e. det(R)=1, R ik R jk = δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGsbWaaSbaaSqaaiaadMgacaWGRb aabeaakiaadkfadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaeyypa0Ja eqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3D51@  ), representing a rigid rotation.  Assume that that the material fiber parallel to the loading axis does not rotate during deformation.  Show that:

R ij = δ ij cosθ+(1cosθ) n i n j +sinθ ikj n k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGsbWaaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGc ciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWkcaGGOaGaaGymaiabgk HiTiGacogacaGGVbGaai4CaiabeI7aXjaacMcacaWGUbWaaSbaaSqa aiaadMgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabgUcaRi GacohacaGGPbGaaiOBaiabeI7aXjabgIGiopaaBaaaleaacaWGPbGa am4AaiaadQgaaeqaaOGaamOBamaaBaaaleaacaWGRbaabeaaaaa@5798@

where n i = ijk s j p k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGc caWGZbWaaSbaaSqaaiaadQgaaeqaaOGaamiCamaaBaaaleaacaWGRb aabeaaaaa@3E98@   cosθ=(1+ γ α p i s i α p k m k α )/C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaciGGJbGaai4BaiaacohacqaH4oqCcq GH9aqpcaGGOaGaaGymaiabgUcaRiabeo7aNnaaCaaaleqabaGaeqyS degaaOGaamiCamaaBaaaleaacaWGPbaabeaakiaadohadaqhaaWcba GaamyAaaqaaiabeg7aHbaakiaadchadaWgaaWcbaGaam4AaaqabaGc caWGTbWaa0baaSqaaiaadUgaaeaacqaHXoqyaaGccaGGPaGaai4lai aadoeaaaa@4BEB@ , sinθ= γ α ( p i m i α ) ( 1 ( p i s i α ) 2 ) /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaciGGZbGaaiyAaiaac6gacqaH4oqCcq GH9aqpcqaHZoWzdaahaaWcbeqaaiabeg7aHbaakiaacIcacaWGWbWa aSbaaSqaaiaadMgaaeqaaOGaamyBamaaDaaaleaacaWGPbaabaGaeq ySdegaaOGaaiykamaakaaabaWaaeWaaeaacaaIXaGaeyOeI0Iaaiik aiaadchadaWgaaWcbaGaamyAaaqabaGccaWGZbWaa0baaSqaaiaadM gaaeaacqaHXoqyaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaaleqaaOGaai4laiaadoeaaaa@4FF0@ , and C= 1+ γ α2 ( p i m i α ) 2 +2 γ α p i s i α p k m k α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbGaeyypa0ZaaOaaaeaacaaIXa Gaey4kaSIaeq4SdC2aaWbaaSqabeaacqaHXoqycaaIYaaaaOGaaiik aiaadchadaWgaaWcbaGaamyAaaqabaGccaWGTbWaa0baaSqaaiaadM gaaeaacqaHXoqyaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGOmaiabeo7aNnaaCaaaleqabaGaeqySdegaaOGaamiCamaaBa aaleaacaWGPbaabeaakiaadohadaqhaaWcbaGaamyAaaqaaiabeg7a HbaakiaadchadaWgaaWcbaGaam4AaaqabaGccaWGTbWaa0baaSqaai aadUgaaeaacqaHXoqyaaaabeaaaaa@534D@ .

 

 

 

3.12.6.  Consider the single crystal loaded in uniaxial tension described in the preceding problem.  Calculate

3.12.6.1.        The angular velocity vector that describes the angular velocity of the slip direction and slip plane normal (it is easiest to do this by first assuming that the slip direction and slip plane normal are fixed, and calculating the angular velocity of the material fiber parallel to p, and hence deducing the angular velocity that must be imposed on the crystal to keep p pointing in the same direction)

3.12.6.2.        Calculate the spin tensor W associated with the angular velocity calculated in 3.10.6.1

 

 

 

 

3.12.7.  The resolved shear stress on a slip system in a crystal is related to the Kirchhoff stress τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHepaaaa@3416@  by τ α = s *α τ m *α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDdaahaaWcbeqaaiabeg7aHb aakiabg2da9iaahohadaahaaWcbeqaaiaacQcacqaHXoqyaaGccqGH flY1caWHepGaeyyXICTaaCyBamaaCaaaleqabaGaaiOkaiabeg7aHb aaaaa@443B@ .  Show that the rate of change of resolved shear stress is related to the elastic Jaumann rate of Kirchhoff stress by

d τ α dt = s i *α ( τ ij e D ik e τ kj + D ik e τ kj ) m j *α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacqaHepaDdaahaa Wcbeqaaiabeg7aHbaaaOqaaiaadsgacaWG0baaaiabg2da9iaadoha daqhaaWcbaGaamyAaaqaaiaacQcacqaHXoqyaaGcdaqadaqaamaaxa cabaGaeqiXdq3aaSbaaSqaaiaadMgacaWGQbaabeaaaeqabaGaey4b IeTaamyzaaaakiabgkHiTiaadseadaqhaaWcbaGaamyAaiaadUgaae aacaWGLbaaaOGaeqiXdq3aaSbaaSqaaiaadUgacaWGQbaabeaakiab gUcaRiaadseadaqhaaWcbaGaamyAaiaadUgaaeaacaWGLbaaaOGaeq iXdq3aaSbaaSqaaiaadUgacaWGQbaabeaaaOGaayjkaiaawMcaaiaa d2gadaqhaaWcbaGaamOAaaqaaiaacQcacqaHXoqyaaaaaa@5C29@

 

 

 

3.12.8.  A rigid MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@ perfectly plastic single crystal contains two slip systems, oriented at angles ϕ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzdaWgaaWcbaGaaGymaaqaba aaaa@346E@  and ϕ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzdaWgaaWcbaGaaGOmaaqaba aaaa@346F@  as illustrated in the figure.  The solid is deformed in simple shear as indicated

3.12.8.1.        Suppose that ϕ 1 = 60 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzdaWgaaWcbaGaaGymaaqaba GccqGH9aqpcaaI2aGaaGimamaaCaaaleqabaGaaGimaaaaaaa@38E6@ , ϕ 2 = 120 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzdaWgaaWcbaGaaGOmaaqaba GccqGH9aqpcaaIXaGaaGOmaiaaicdadaahaaWcbeqaaiaaicdaaaaa aa@399E@ .  Sketch the yield locus (in σ 11 , σ 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaa aa@3A4C@  space) for the crystal.

3.12.8.2.        Write down the velocity gradient L in the strip, and compute an expression the deformation rate D.  Hence, show that (at the instant shown) the slip rates on the two slip systems are given by

γ ˙ (1) = γ ˙ sin2 ϕ 2 /sin2( ϕ 2 ϕ 1 ) γ ˙ (2) = γ ˙ sin2 ϕ 1 /sin2( ϕ 1 ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiqbeo7aNzaacaWaaWbaaSqabe aacaGGOaGaaGymaiaacMcaaaGccqGH9aqpcuaHZoWzgaGaaiGacoha caGGPbGaaiOBaiaaikdacqaHvpGzdaWgaaWcbaGaaGOmaaqabaGcca GGVaGaci4CaiaacMgacaGGUbGaaGOmaiaacIcacqaHvpGzdaWgaaWc baGaaGOmaaqabaGccqGHsislcqaHvpGzdaWgaaWcbaGaaGymaaqaba GccaGGPaaabaGafq4SdCMbaiaadaahaaWcbeqaaiaacIcacaaIYaGa aiykaaaakiabg2da9iqbeo7aNzaacaGaci4CaiaacMgacaGGUbGaaG Omaiabew9aMnaaBaaaleaacaaIXaaabeaakiaac+caciGGZbGaaiyA aiaac6gacaaIYaGaaiikaiabew9aMnaaBaaaleaacaaIXaaabeaaki abgkHiTiabew9aMnaaBaaaleaacaaIYaaabeaakiaacMcaaaaa@64CB@

and give an expression for γ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacuaHZoWzgaGaaaaa@336F@  in terms of v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaa aa@33A0@  and h.

3.12.8.3.        Assume that σ 11 + σ 22 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iaaicdaaaa@3C48@ , and that the slip systems have critical resolved shear stress τ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDdaWgaaWcbaGaam4yaaqaba aaaa@359F@ .  Show that the stress in the crystal is

σ 11 = σ 22 = τ c (sin2 ϕ 2 sin2 ϕ 1 )/sin2( ϕ 2 ϕ 1 ) σ 12 = τ c (cos2 ϕ 2 cos2 ϕ 1 )/sin2( ϕ 2 ϕ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaaIXa GaaGymaaqabaGccqGH9aqpcqGHsislcqaHdpWCdaWgaaWcbaGaaGOm aiaaikdaaeqaaOGaeyypa0JaeqiXdq3aaSbaaSqaaiaadogaaeqaaO GaaiikaiGacohacaGGPbGaaiOBaiaaikdacqaHvpGzdaWgaaWcbaGa aGOmaaqabaGccqGHsislciGGZbGaaiyAaiaac6gacaaIYaGaeqy1dy 2aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaac+caciGGZbGaaiyAaiaa c6gacaaIYaGaaiikaiabew9aMnaaBaaaleaacaaIYaaabeaakiabgk HiTiabew9aMnaaBaaaleaacaaIXaaabeaakiaacMcaaeaacqaHdpWC daWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaeqiXdq3aaSbaaS qaaiaadogaaeqaaOGaaiikaiGacogacaGGVbGaai4CaiaaikdacqaH vpGzdaWgaaWcbaGaaGOmaaqabaGccqGHsislciGGJbGaai4Baiaaco hacaaIYaGaeqy1dy2aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaac+ca ciGGZbGaaiyAaiaac6gacaaIYaGaaiikaiabew9aMnaaBaaaleaaca aIYaaabeaakiabgkHiTiabew9aMnaaBaaaleaacaaIXaaabeaakiaa cMcaaaaa@7C9A@

 

 

 

 

3.12.9.  Consider a single crystal of copper, with constitutive equation given in section 3.12.5. and properties listed in 3.12.6. 

3.12.9.1.        Plot a graph showing the uniaxial true stress-v-true strain curve for a crystal that is loaded parallel to the [112] direction

3.12.9.2.        Plot a graph showing the uniaxial  true stress-v-true strain curve for a crystal loaded parallel to the [111] direction

3.12.9.3.        Plot a graph showing the uniaxial true stress-v-true strain curve for a crystal loaded parallel to the [001] direction.


 

 

 

3.12.10.                      A rate independent, rigid perfectly plastic fcc single crystal is loaded in uniaxial tension, with tensile axis parallel to the [102] crystallographic direction.  Assume that the crystal rotates to maintain the material fiber parallel to the [102] direction aligned with the tensile axis.

3.12.10.1.    Assuming the magnitude of the shearing rate is γ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbeo7aNzaacaaaaa@3238@  on all active slip systems, calculate the velocity gradient in the crystal, expressing your answer as components in a basis aligned with the {100} directions.

3.12.10.2.    Hence, show that the [102] loading direction is not a stable orientation MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  i.e. the tensile axis rotates with respect to the crystallographic directions.

3.12.10.3.    Calculate the instantaneous stretching rate of the tensile axis as a function of the magnitude of the shearing rate.

3.12.10.4.    Deduce the angular velocity vector that characterizes the instantaneous rotation of the crystal relative to the tensile axis.

3.12.10.5.    Show the motion of the tensile axis on an inverse pole figure.  Without calculations, predict the eventual steady-state orientation of the tensile axis with respect to the loading axis.