Chapter 3

 

Constitutive Models: Relations between Stress and Strain

 

 

3.3.  Hypoelasticity

 

3.3.1.      A thin-walled tube can be idealized using the hypoelastic constitutive equation described in Section 3.3.  You may assume that the axial load induces a uniaxial stress σ zz =P/(2πat) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaamOEaa qabaGccqGH9aqpcaWGqbGaai4laiaacIcacaaIYaGaeqiWdaNaamyy aiaadshacaGGPaaaaa@3C9E@  while the torque induces a shear stress σ zθ =Q/(2π a 2 t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaeqiUde habeaakiabg2da9iaadgfacaGGVaGaaiikaiaaikdacqaHapaCcaWG HbWaaWbaaSqabeaacaaIYaaaaOGaamiDaiaacMcaaaa@3E49@ .   The shear strains are related to the twist per unit length of the tube by ε zθ =ϕ/2L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWG6bGaeqiUde habeaakiabg2da9iabew9aMjaac+cacaaIYaGaamitaaaa@3A08@ , while the axial strains are related to the extension of the tube by ε zz =Δ/L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWG6bGaamOEaa qabaGccqGH9aqpcqqHuoarcaGGVaGaamitaaaa@3833@ .

3.3.1.1.            Calculate a relationship between the axial load P and the extension Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aebaa@31CE@  for a tube subjected only to axial loading

3.3.1.2.            Calculate a relationship between the torque Q and the twist ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMbaa@3230@  for a tube subjected only to torsional loading

3.3.1.3.            Calculate a relationship between P, Q and Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aebaa@31CE@ , ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMbaa@3230@  for a tube subjected to combined axial and torsional loading.  

 

3.3.2.      Consider a material with the hypoelastic constitutive equation described in Section 3.3. Calculate an expression for the tangent stiffness C ijkl = σ ij / ε kl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaamyAaiaadQgaca WGRbGaamiBaaqabaGccqGH9aqpcqGHciITcqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaOGaai4laiabgkGi2kabew7aLnaaBaaaleaaca WGRbGaamiBaaqabaaaaa@4133@ .  Express your answer in  matrix form by finding the matrix [C] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUfacaWGdbGaaiyxaaaa@32F0@  such that stress increment dσ _ = [ d σ 11 ,d σ 22 ,d σ 33 ,d σ 23 ,d σ 13 ,d σ 12 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaamaaabaGaamizaiabeo8aZbaacqGH9a qpdaWadaqaaiaadsgacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqa aOGaaiilaiaadsgacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaO GaaiilaiaadsgacqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGa aiilaiaadsgacqaHdpWCdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaai ilaiaadsgacqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaiil aiaadsgacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaaGccaGLBb GaayzxaaWaaWbaaSqabeaacaWGubaaaaaa@54AE@  and strain increment dε _ = [ d ε 11 ,d ε 22 ,d ε 33 ,d ε 23 ,d ε 13 ,d ε 12 ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaamaaabaGaamizaiabew7aLbaacqGH9a qpdaWadaqaaiaadsgacqaH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqa aOGaaiilaiaadsgacqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaO GaaiilaiaadsgacqaH1oqzdaWgaaWcbaGaaG4maiaaiodaaeqaaOGa aiilaiaadsgacqaH1oqzdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaai ilaiaadsgacqaH1oqzdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaiil aiaadsgacqaH1oqzdaWgaaWcbaGaaGymaiaaikdaaeqaaaGccaGLBb GaayzxaaWaaWbaaSqabeaacaWGubaaaaaa@53EA@  are related by dσ _ =[C] dε _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaamaaabaGaamizaiabeo8aZbaacqGH9a qpcaGGBbGaam4qaiaac2fadaadaaqaaiaadsgacqaH1oqzaaaaaa@3952@ .  Find the eigenvalues of [C] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUfacaWGdbGaaiyxaaaa@32F0@  for the particular case [ε]=[ ε 11 , ε 22 , ε 33 ,0,0,0] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUfacqaH1oqzcaGGDbGaeyypa0Jaai 4waiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaGccaGGSaGaeqyT du2aaSbaaSqaaiaaikdacaaIYaaabeaakiaacYcacqaH1oqzdaWgaa WcbaGaaG4maiaaiodaaeqaaOGaaiilaiaaicdacaGGSaGaaGimaiaa cYcacaaIWaGaaiyxaaaa@4632@ .   Hence, show that the material is stable in the sense of Drucker as long as K>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUeacqGH+aGpcaaIWaaaaa@32FA@ , σ 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaki abg6da+iaaicdaaaa@34DD@ .