Problems for Chapter 3

 

Constitutive Models: Relations between Stress and Strain

 

 

3.7.  Small Strain Plasticity

 

3.7.1.      The stress state induced by stretching a large plate containing a cylindrical hole of radius a at the origin  is given by

σ 11 = σ 0 ( 1+( 3 a 4 2 r 4 a 2 r 2 )cos4θ 3 a 2 2 r 2 cos2θ ) σ 22 = σ 0 ( ( a 2 r 2 3 a 4 2 r 4 )cos4θ a 2 2 r 2 cos2θ ) σ 12 = σ 0 ( ( 3 a 4 2 r 4 a 2 r 2 )sin4θ a 2 2 r 2 sin2θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeq4Wdm3aaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIWaaabeaakmaa bmaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaacaaIZaGaamyyam aaCaaaleqabaGaaGinaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaa caaI0aaaaaaakiabgkHiTmaalaaabaGaamyyamaaCaaaleqabaGaaG OmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGa ayzkaaGaci4yaiaac+gacaGGZbGaaGinaiabeI7aXjabgkHiTmaala aabaGaaG4maiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amOCamaaCaaaleqabaGaaGOmaaaaaaGcciGGJbGaai4Baiaacohaca aIYaGaeqiUdehacaGLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiaa ikdacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIWaaabe aakmaabmaabaWaaeWaaeaadaWcaaqaaiaadggadaahaaWcbeqaaiaa ikdaaaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTm aalaaabaGaaG4maiaadggadaahaaWcbeqaaiaaisdaaaaakeaacaaI YaGaamOCamaaCaaaleqabaGaaGinaaaaaaaakiaawIcacaGLPaaaci GGJbGaai4BaiaacohacaaI0aGaeqiUdeNaeyOeI0YaaSaaaeaacaWG HbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadkhadaahaaWcbe qaaiaaikdaaaaaaOGaci4yaiaac+gacaGGZbGaaGOmaiabeI7aXbGa ayjkaiaawMcaaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqaba GccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaGcdaqadaqaamaa bmaabaWaaSaaaeaacaaIZaGaamyyamaaCaaaleqabaGaaGinaaaaaO qaaiaaikdacaWGYbWaaWbaaSqabeaacaaI0aaaaaaakiabgkHiTmaa laaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaahaa WcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaci4CaiaacMgacaGG UbGaaGinaiabeI7aXjabgkHiTmaalaaabaGaamyyamaaCaaaleqaba GaaGOmaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaacaaIYaaaaaaa kiGacohacaGGPbGaaiOBaiaaikdacqaH4oqCaiaawIcacaGLPaaaca aMc8UaaGPaVlaaykW7aaaa@A46E@

Here, σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaa a@3311@  is the stress in the plate far from the hole. (Stress components not listed are all zero)

3.7.1.1.            Plot contours of von-Mises equivalent stress (normalized by σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaa a@3311@  ) as a function of r/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacaGGVaGaamyyaaaa@32F8@  and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXbaa@321E@ , for a material with ν=0.3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUjabg2da9iaaicdacaGGUaGaaG 4maaaa@354F@  Hence identify the point in the solid that first reaches yield.

3.7.1.2.            Assume that the material has a yield stress Y .Calculate the critical value of σ 0 /Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaki aac+cacaWGzbaaaa@34AC@  that will just cause the plate to reach yield.

 

 

 

3.7.2.      The stress state (expressed in cylindrical-polar coordinates) in a thin disk with mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaa a@330E@  that spins with angular velocity ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeM8a3baa@3235@  can be shown to be

σ rr =( 3+ν ) ρ 0 ω 2 8 { a 2 r 2 } σ θθ = ρ 0 ω 2 8 { (3+ν) a 2 (3ν+1) r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpdaqadaqaaiaaiodacqGHRaWkcqaH9oGB aiaawIcacaGLPaaadaWcaaqaaiabeg8aYnaaBaaaleaacaaIWaaabe aakiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaiIdaaaWaaiWa aeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOCamaaCa aaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haaaqaaiabeo8aZnaaBaaa leaacqaH4oqCcqaH4oqCaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCda WgaaWcbaGaaGimaaqabaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaaa keaacaaI4aaaamaacmaabaGaaiikaiaaiodacqGHRaWkcqaH9oGBca GGPaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaacIcacaaI ZaGaeqyVd4Maey4kaSIaaGymaiaacMcacaWGYbWaaWbaaSqabeaaca aIYaaaaaGccaGL7bGaayzFaaaaaaa@6766@

Assume that the disk is made from an elastic-plastic material with yield stress Y and ν=1/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUjabg2da9iaaigdacaGGVaGaaG 4maaaa@3551@ .

3.7.2.1.            Find a formula for the critical angular velocity that will cause the disk to yield, assuming Von-Mises yield criterion.  Where is the critical point in the disk where plastic flow first starts?

3.7.2.2.            Find a formula for the critical angular velocity that will cause the disk to yield, using the Tresca yield criterion.  Where is the critical point in the disk where plastic flow first starts?

3.7.2.3.            Using parameters representative of steel, estimate how much kinetic energy can be stored in a disk with a 0.5m radius and 0.1m thickness.

3.7.2.4.            Recommend the best choice of material for the flywheel in a flywheel energy storage system. 

 

 

 

3.7.3.      An isotropic, elastic-perfectly plastic thin film with Young’s Modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31A7@ , Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3295@  , yield stress in uniaxial tension Y and thermal expansion coefficient α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327C@  is bonded to a stiff substrate.  It is stress free at some initial temperature and then heated. The substrate prevents the film from stretching in its own plane, so that ε 11 = ε 22 = ε 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iabew7aLnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9a qpcaaIWaaaaa@408E@ , while the surface is traction free, so that the film deforms in a state of plane stress. Calculate the critical temperature change Δ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivamaaBaaaleaacaWG5b aabeaaaaa@3446@  that will cause the film to yield, using (a) the Von Mises yield criterion and (b) the Tresca yield criterion.

 

 

 

3.7.4.      Assume that the thin film described in the preceding problem shows so little strain hardening behavior that it can be idealized as an elastic-perfectly plastic solid, with uniaxial tensile yield stress Y.  Suppose the film is stress free at some initial temperature, and then heated to a temperature βΔ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeuiLdqKaamivamaaBaaale aacaWG5baabeaaaaa@35E7@ , where Δ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivamaaBaaaleaacaWG5b aabeaaaaa@3446@  is the yield temperature calculated in the preceding problem, and β>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyOpa4JaaGymaaaa@3441@ .

3.7.4.1.              Find the stress in the film at this temperature.

3.7.4.2.             The film is then cooled back to its original temperature.  Find the stress in the film after cooling.

 

 

 

3.7.5.      Suppose that the thin film described in the preceding problem is made from an elastic, isotropically hardening plastic material with a Mises yield surface, and yield stress-v-plastic strain as shown in the figure.   The film is initially stress free, and then heated to a temperature βΔ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeuiLdqKaamivamaaBaaale aacaWG5baabeaaaaa@35E7@ , where Δ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivamaaBaaaleaacaWG5b aabeaaaaa@3446@  is the yield temperature calculated in problem 1, and β>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyOpa4JaaGymaaaa@3441@ .

3.7.5.1.            Find a formula for the stress in the film at this temperature.

3.7.5.2.            The film is then cooled back to its original temperature.  Find the stress in the film after cooling.

3.7.5.3.            The film is cooled further by a temperature change ΔT<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadsfacqGH8aapcaaIWaaaaa@3465@ .  Calculate the critical value of ΔT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadsfaaaa@32A7@  that will cause the film to reach yield again.

 

 

 

3.7.6.      Suppose that the thin film described in the preceding problem is made from an elastic, linear kinematically hardening plastic material with a Mises yield surface, and yield stress-v-plastic strain as shown in the figure.   The stress is initially stress free, and then heated to a temperature βΔ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeuiLdqKaamivamaaBaaale aacaWG5baabeaaaaa@35E7@ , where Δ T y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivamaaBaaaleaacaWG5b aabeaaaaa@3446@  is the yield temperature calculated in problem 1, and β>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyOpa4JaaGymaaaa@3441@ .

3.7.6.1.            Find a formula for the stress in the film at this temperature.

3.7.6.2.            The film is then cooled back to its original temperature.  Find the stress in the film after cooling.

3.7.6.3.            The film is cooled further by a temperature change ΔT<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadsfacqGH8aapcaaIWaaaaa@3465@ .  Calculate the critical value of ΔT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadsfaaaa@32A7@  that will cause the film to reach yield again.

 

 

 

3.7.7.      A thin-walled tube of mean radius a and wall thickness t<<a is subjected to an axial load P which exceeds the initial yield load by 10% (i.e. P=1.1 P Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iaaigdacaGGUaGaaG ymaiaadcfadaWgaaWcbaGaamywaaqabaaaaa@36BF@  ).  The axial load is then removed, and a torque Q is applied to the tube.   You may assume that the axial load induces a uniaxial stress σ zz =P/(2πat) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaamOEaa qabaGccqGH9aqpcaWGqbGaai4laiaacIcacaaIYaGaeqiWdaNaamyy aiaadshacaGGPaaaaa@3C9E@  while the torque induces a shear stress σ zθ =Q/(2π a 2 t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaeqiUde habeaakiabg2da9iaadgfacaGGVaGaaiikaiaaikdacqaHapaCcaWG HbWaaWbaaSqabeaacaaIYaaaaOGaamiDaiaacMcaaaa@3E49@ .  Find the magnitude of Q to cause further plastic flow, assuming that the solid is

3.7.7.1.            an isotropically hardening solid with a Mises yield surface

3.7.7.2.            a linear kinematically hardening solid with a Mises yield surface

Express your answer in terms of P Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaWGzbaabeaaaa a@32BC@  and appropriate geometrical terms, and assume infinitesimal deformation. 

 

 

 

3.7.8.      A cylindrical, thin-walled pressure vessel with initial radius R, length L  and wall thickness t<<R is subjected to internal pressure p.  The vessel is made from an isotropic elastic-plastic solid with Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@3377@ , and its yield stress varies with accumulated plastic strain ε e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyzaaqaba aaaa@347C@  as Y= Y 0 +h ε e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbGaeyypa0JaamywamaaBaaale aacaaIWaaabeaakiabgUcaRiaadIgacqaH1oqzdaWgaaWcbaGaamyz aaqabaaaaa@3B04@ .  Recall that the stresses in a thin-walled pressurized tube are related to the internal pressure by σ zz =pR/(2t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaamOEaa qabaGccqGH9aqpcaWGWbGaamOuaiaac+cacaGGOaGaaGOmaiaadsha caGGPaaaaa@3AF2@ , σ θθ =pR/t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4o qCaeqaaOGaeyypa0JaamiCaiaadkfacaGGVaGaamiDaaaa@3A4B@

3.7.8.1.            Calculate the critical value of internal pressure required to initiate yield in the solid

3.7.8.2.            Find a formula for the strain increment d ε rr ,d ε θθ ,d ε zz MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqyTdu2aaSbaaSqaaiaadk hacaWGYbaabeaakiaacYcacaWGKbGaeqyTdu2aaSbaaSqaaiabeI7a XjabeI7aXbqabaGccaGGSaGaamizaiabew7aLnaaBaaaleaacaWG6b GaamOEaaqabaaaaa@43C6@  resulting from an increment in pressure dp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamiCaaaa@339D@

3.7.8.3.            Suppose that the pressure is increased 10% above the initial yield value.  Find a formula for the change in radius, length and wall thickness of the vessel.  Assume small strains.

 

 

 

3.7.9.      Write a simple program that will compute the history of stress resulting from an arbitrary history of strain applied to an isotropic, elastic-plastic von-Mises solid.  Assume that the yield stress is related to the accumulated effective strain by Y= Y 0 (1+ ε ¯ p / ε 0 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbGaeyypa0JaamywamaaBaaale aacaaIWaaabeaakiaacIcacaaIXaGaey4kaSIafqyTduMbaebadaah aaWcbeqaaiaadchaaaGccaGGVaGaeqyTdu2aaSbaaSqaaiaaicdaae qaaOGaaiykamaaCaaaleqabaGaamOBaaaaaaa@40C3@ , where Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbWaaSbaaSqaaiaaicdaaeqaaa aa@3383@ , ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaGimaaqaba aaaa@344C@  and n are material constants.  Check your code by using it to compute the stress resulting from a volume preserving uniaxial strain ε 11 =λ, ε 22 = ε 33 =λ/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0Jaeq4UdWMaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7cqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Jaeq yTdu2aaSbaaSqaaiaaiodacaaIZaaabeaakiabg2da9iabgkHiTiab eU7aSjaac+cacaaIYaaaaa@4C77@ , and compare the predictions of your code with the analytical solution.   Try one other cycle of strain of your choice.

 

 

 

3.7.10.  In a classic paper, Taylor, G. I., and Quinney, I., 1932, “The Plastic Distortion of Metals,” Philos. Trans. R. Soc. London, Ser. A, 230, pp. 323 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@ 362 described a series of experiments designed to investigate the plastic deformation of various ductile metals. Among other things, they compared their experimental measurements with the predictions of the von-Mises and Tresca yield criteria and their associated flow rules.  They used the apparatus shown in the figure.  Thin walled cylindrical tubes were first subjected to an axial stress σ zz = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadQhacaWG6baabeaakiabg2da9iabeo8aZnaaBaaaleaa caaIWaaabeaaaaa@3EA4@ . The stress was sufficient to extend the tubes plastically.  The axial stress was then reduced to a magnitde m σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabeo 8aZnaaBaaaleaacaaIWaaabeaaaaa@3A99@ , with 0<m<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY da8iaad2gacqGH8aapcaaIXaaaaa@3A56@ , and a progressively increasing torque was applied to the tube so as to induce a shear stress σ zθ =τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOEaiabeI 7aXbqabaGccqGH9aqpcqaHepaDaaa@3A3F@  in the solid. The twist, extension and internal volume of the tube were recorded as the torque was applied.  In this problem you will compare their experimental results with the predictions of plasticity theory. Assume that the material is made from an isotropically hardening rigid plastic solid, with a Von Mises yield surface, and yield stress-v-plastic strain given by Y= Y 0 +h ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbGaeyypa0JaamywamaaBaaale aacaaIWaaabeaakiabgUcaRiaadIgacuaH1oqzgaqeamaaCaaaleqa baGaamiCaaaaaaa@3B28@ .

3.7.10.1.        One set of experimental results is illustrated in the figure to the right.  The figure shows the ratio τ/ σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDcaGGVaGaeq4Wdm3aaSbaaS qaaiaaicdaaeqaaaaa@37E7@  required to initiate yield in the tube during torsional loading as a function of m.   Show that theory predicts that τ/ σ 0 = ( 1 m 2 )/ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDcaGGVaGaeq4Wdm3aaSbaaS qaaiaaicdaaeqaaOGaeyypa0ZaaOaaaeaadaqadaqaaiaaigdacqGH sislcaWGTbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaai 4lamaakaaabaGaaG4maaWcbeaaaeqaaaaa@3FA8@

 

3.7.10.2.        Compute the magnitudes of the principal stresses ( σ 1 , σ 2 , σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeo 8aZnaaBaaaleaacaaIXaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aGOmaaqabaGccaGGSaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@41D6@  at the point of yielding under combined axial and torsional loads  in terms of σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGimaaqaba aaaa@356F@  and m

3.7.10.3.        Suppose that, for a given axial stress σ zz =m σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadQhacaWG6baabeaakiabg2da9iaad2gacqaHdpWCdaWg aaWcbaGaaGimaaqabaaaaa@3F96@ , the shear stress τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDaaa@348B@  is first brought to the critical value required to initiate yield in the solid, and is then increased by an infinitesimal increment dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqiXdqhaaa@3574@ .  Find expressions for the resulting plastic strain increments d ε zz ,d ε θθ ,d ε rr ,d ε rθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqyTdu2aaSbaaSqaaiaadQ hacaWG6baabeaakiaacYcacaWGKbGaeqyTdu2aaSbaaSqaaiabeI7a XjabeI7aXbqabaGccaGGSaGaamizaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccaGGSaGaamizaiabew7aLnaaBaaaleaacaWGYbGa eqiUdehabeaaaaa@49E9@ , in terms of m, σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGimaaqaba aaaa@356F@ , h and dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqiXdqhaaa@3574@ .

3.7.10.4.        Hence, deduce expressions for the magnitudes of the principal strains increments  (d ε 1 ,d ε 2 ,d ε 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaads gacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaGGSaGaamizaiabew7a LnaaBaaaleaacaaIYaaabeaakiaacYcacaWGKbGaeqyTdu2aaSbaaS qaaiaaiodaaeqaaOGaaiykaaaa@443D@  resulting from the stress increment dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqiXdqhaaa@3574@ .

3.7.10.5.        Using the results of 11.2 and 11.6, calculate the so-called “Lode parameters,” defined as

ν=2 (d ε 2 d ε 3 ) (d ε 1 d ε 3 ) 1μ=2 ( σ 2 σ 3 ) ( σ 1 σ 3 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGOmamaalaaabaGaaiikaiaadsgacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccqGHsislcaWGKbGaeqyTdu2aaSbaaSqaaiaaiodaae qaaOGaaiykaaqaaiaacIcacaWGKbGaeqyTdu2aaSbaaSqaaiaaigda aeqaaOGaeyOeI0Iaamizaiabew7aLnaaBaaaleaacaaIZaaabeaaki aacMcaaaGaeyOeI0IaaGymaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaeqiVd0Maeyypa0JaaGOmamaa laaabaGaaiikaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgkHiTi abeo8aZnaaBaaaleaacaaIZaaabeaakiaacMcaaeaacaGGOaGaeq4W dm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaai aaiodaaeqaaOGaaiykaaaacqGHsislcaaIXaaaaa@7D90@

and show that the theory predicts ν=μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBcqGH9aqpcqaH8oqBaaa@373A@  

 

 

 

3.7.11.  The Taylor/Quinney experiments show that the constitutive equations for an isotropically hardening Von-Mises solid predict behavior that matches reasonably well with experimental observations, but there is a clear systematic error between theory and experiment.  In this problem, you will compare the predictions of a linear kinematic hardening law with experiment.  Assume that the solid has a yield function and hardening law given by

f= 3 2 ( S ij α ij )( S ij α ij ) Y 0 =0d α ij = 2 3 cd ε ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9maakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaGGOaGaam4u amaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcqaHXoqydaWgaa WcbaGaamyAaiaadQgaaeqaaOGaaiykaiaacIcacaWGtbWaaSbaaSqa aiaadMgacaWGQbaabeaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccaGGPaaaleqaaOGaeyOeI0IaamywamaaBaaaleaa caaIWaaabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsgacqaHXoqydaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGa aG4maaaacaWGJbGaamizaiabew7aLnaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaaaaa@78BA@

3.7.11.1.        Assume that during the initial tensile test, the axial stress σ zz = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaaa@3A6C@  in the specimens reached a magnitude σ 0 =β Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaicdaaeqaaOGaeyypa0JaeqOSdiMaamywamaaBaaaleaa caaIWaaabeaaaaa@3E1C@ , where Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbWaaSbaaSqaaiaaicdaaeqaaa aa@348A@  is the initial tensile yield stress of the solid and β>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey Opa4JaaGymaaaa@394B@  is a scalar multiplier.  Assume that the axial stress was then reduced to m σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabeo 8aZnaaBaaaleaacaaIWaaabeaaaaa@3A99@  and a progressively increasing shear stress was applied to the solid.  Show that the critical value of τ/ σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDcaGGVaGaeq4Wdm3aaSbaaS qaaiaaicdaaeqaaaaa@37E7@  at which plastic deformation begins is given by

τ σ 0 = 1 3 { 1 β 2 (m1+ β 1 ) 2 } 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHepaDaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0Za aSaaaeaacaaIXaaabaWaaOaaaeaacaaIZaaaleqaaaaakmaacmaaba WaaSaaaeaacaaIXaaabaGaeqOSdi2aaWbaaSqabeaacaaIYaaaaaaa kiabgkHiTiaacIcacaWGTbGaeyOeI0IaaGymaiabgUcaRiabek7aIn aaCaaaleqabaGaeyOeI0IaaGymaaaakiaacMcadaahaaWcbeqaaiaa ikdaaaaakiaawUhacaGL9baadaahaaWcbeqaaiaaigdacaGGVaGaaG Omaaaaaaa@5055@

Plot τ/ σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaai 4laiabeo8aZnaaBaaaleaacaaIWaaabeaaaaa@3C1F@  against m for various values of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3788@

3.7.11.2.        Suppose that, for a given axial stress σ zz =m σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadQhacaWG6baabeaakiabg2da9iaad2gacqaHdpWCdaWg aaWcbaGaaGimaaqabaaaaa@3F96@ , the shear stress is first brought to the critical value required to initiate yield in the solid, and is then increased by an infinitesimal increment dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqiXdqhaaa@3574@ .  Find expressions for the resulting plastic strain increments, in terms of m, β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3788@ , c Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbWaaSbaaSqaaiaaicdaaeqaaa aa@348A@  and dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqiXdqhaaa@3574@ .

3.7.11.3.        Hence, deduce the magnitudes of the principal strains in the specimen (d ε 1 ,d ε 2 ,d ε 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaads gacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaGGSaGaamizaiabew7a LnaaBaaaleaacaaIYaaabeaakiaacYcacaWGKbGaeqyTdu2aaSbaaS qaaiaaiodaaeqaaOGaaiykaaaa@443D@

3.7.11.4.        Compute the magnitudes of the principal stresses ( σ 1 , σ 2 , σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeo 8aZnaaBaaaleaacaaIXaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aGOmaaqabaGccaGGSaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaai ykaaaa@41D6@  at the point of yielding under combined axial and torsional loads  in terms of m, β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3788@ , and Y 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGzbWaaSbaaSqaaiaaicdaaeqaaa aa@348A@

3.7.11.5.        Finally, find expressions for Lode’s parameters

ν=2 (d ε 2 d ε 3 ) (d ε 1 d ε 3 ) 1μ=2 ( σ 2 σ 3 ) ( σ 1 σ 3 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGOmamaalaaabaGaaiikaiaadsgacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccqGHsislcaWGKbGaeqyTdu2aaSbaaSqaaiaaiodaae qaaOGaaiykaaqaaiaacIcacaWGKbGaeqyTdu2aaSbaaSqaaiaaigda aeqaaOGaeyOeI0Iaamizaiabew7aLnaaBaaaleaacaaIZaaabeaaki aacMcaaaGaeyOeI0IaaGymaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaeqiVd0Maeyypa0JaaGOmamaa laaabaGaaiikaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgkHiTi abeo8aZnaaBaaaleaacaaIZaaabeaakiaacMcaaeaacaGGOaGaeq4W dm3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaai aaiodaaeqaaOGaaiykaaaacqGHsislcaaIXaaaaa@7D90@

3.7.11.6.        Plot ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@379F@  versus μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@379D@  for various values of  β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3788@ , and compare your predictions with Taylor and Quinney’s measurements.

 

 

 

 

3.7.12.  An elastic- nonlinear kinematic hardening solid has Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGfbaaaa@3390@ , Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@ , a Von-Mises yield surface

f( σ ij , α ij )= 3 2 ( S ij α ij )( S ij α ij ) Y=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaWGPbGa amOAaaqabaGccaGGPaGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaamaabmaabaGaam4uamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaHXoqydaWgaaWcbaGaamyAaiaadQgaaeqaaaGcca GLOaGaayzkaaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiabeg7aHnaaBaaaleaacaWGPbGaamOAaaqabaaaki aawIcacaGLPaaaaSqabaGccqGHsislcaWGzbGaeyypa0JaaGimaaaa @53B0@

where Y is the initial yield stress of the solid, and a hardening law given by

d α ij = 2 3 cd ε ij p γ α ij d ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeg7aHnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dogacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiabgkHiTiabeo7aNjabeg7aHnaaBaaaleaacaWGPbGaamOAaaqa baGccaWGKbGafqyTduMbaebadaahaaWcbeqaaiaadchaaaaaaa@488A@

where c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbaaaa@33AE@  and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHZoWzaaa@346D@  are material properties.  In the undeformed solid, α ij =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0JaaGimaaaa@3838@ . Calculate the formulas relating the total strain increment d ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@375F@  to the state of stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3692@ , the state variables α ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@366E@  and the increment in stress d σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@377B@  applied to the solid

 

3.7.13.  Consider a rigid nonlinear kinematic hardening solid, with yield surface and hardening law described in the preceding problem.

3.7.13.1.        Show that the constitutive law implies that α kk =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaam4AaiaadU gaaeqaaOGaeyypa0JaaGimaaaa@383B@

3.7.13.2.        Show that under uniaxial loading with σ 11 =σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0Jaeq4Wdmhaaa@38FE@ , α 22 = α 33 = α 11 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaaGOmaiaaik daaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaaiodacaaIZaaabeaa kiabg2da9iabgkHiTiabeg7aHnaaBaaaleaacaaIXaGaaGymaaqaba GccaGGVaGaaGOmaaaa@4115@

3.7.13.3.        Suppose the material is subjected to a monotonically increasing uniaxial tensile stress σ 11 =σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0Jaeq4Wdmhaaa@38FE@ .  Show that the uniaxial stress-strain curve has the form σ=Y+(c/γ)[1exp(γε)] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCcqGH9aqpcaWGzbGaey4kaS IaaiikaiaadogacaGGVaGaeq4SdCMaaiykaiaacUfacaaIXaGaeyOe I0IaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiabeo7aNjabew7aLj aacMcacaGGDbaaaa@47C1@  (it is simplest to calculate α ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHXoqydaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@366E@  as a function of the strain and then use the yield criterion to find the stress)

 

 

 

3.7.14.  Suppose that a solid contains a large number of randomly oriented slip planes, so that it begins to yield when the resolved shear stress on any plane in the solid reaches a critical magnitude k

3.7.14.1.        Suppose that the material is subjected to principal stresses σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaaqaba GccaGGSaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaaiilaiabeo8a ZnaaBaaaleaacaaIZaaabeaaaaa@3B34@ .  Find a formula for the maximum resolved shear stress in the solid, and by means of appropriate sketches, identify the planes that will begin to slip.

3.7.14.2.        Draw the yield locus for this material.

 

 

 

3.7.15.  Consider a rate independent plastic material with yield criterion f( σ ij )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgacaGGOaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiaacMcacqGH9aqpcaaIWaaaaa@3842@ .  Assume that (i) the constitutive law for the material has an associated flow  rule, so that the plastic strain increment is related to the yield criterion by d ε ij p =d ε ¯ p f/ σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0Jaamizaiqbew7aLzaaraWaaWba aSqabeaacaWGWbaaaOGaeyOaIyRaamOzaiaac+cacqGHciITcqaHdp WCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@4311@ ; and (ii) the yield surface is convex, so that

f[ σ ij * +β( σ ij σ ij * ) ]f[ σ ij * ]0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgadaWadaqaaiabeo8aZnaaDaaale aacaWGPbGaamOAaaqaaiaacQcaaaGccqGHRaWkcqaHYoGycaGGOaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiabeo8aZn aaDaaaleaacaWGPbGaamOAaaqaaiaacQcaaaGccaGGPaaacaGLBbGa ayzxaaGaeyOeI0IaamOzamaadmaabaGaeq4Wdm3aa0baaSqaaiaadM gacaWGQbaabaGaaiOkaaaaaOGaay5waiaaw2faaiabgwMiZkaaicda aaa@4FBD@

 for all stress states σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  and σ ij * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaa qaaiaacQcaaaaaaa@34E3@  satisfying f( σ ij )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgacaGGOaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiaacMcacqGH9aqpcaaIWaaaaa@3842@  and f( σ ij * )0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAgacaGGOaGaeq4Wdm3aa0baaSqaai aadMgacaWGQbaabaGaaiOkaaaakiaacMcacqGHKjYOcaaIWaaaaa@39A0@  and 0β1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaicdacqGHKjYOcqaHYoGycqGHKjYOca aIXaaaaa@36E8@ .  Show that the material obeys the principle of maximum plastic resistance.

 

 

 

3.7.16.  The yield strength of a frictional material (such as sand) depends on hydrostatic pressure.  A simple model of yield and plastic flow in such a material is proposed as follows:

Yield criterion F( σ ij )=f( σ ij )+μ σ kk =0f( σ ij )= 3 2 S ij S ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOraiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iaadAgacaGGOaGaeq4W dm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaacMcacqGHRaWkcqaH8o qBcqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeyypa0JaaGim aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAgacaGGOaGaeq4Wdm 3aaSbaaSqaaiaadMgacaWGQbaabeaakiaacMcacqGH9aqpdaGcaaqa amaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBaaaleaacaWGPb GaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeqa aaaa@7506@

Flow rule d ε ij p =d ε ¯ p f σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGafqyTduMbaebadaah aaWcbeqaaiaadchaaaGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHci ITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaaa@42D5@

Where μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3293@  is a material constant (some measure of the friction between the sand grains).

3.7.16.1.        Sketch the yield surface for this material in principal stress space (note that the material looks like a Mises solid whose yield stress increases with hydrostatic pressure.  You will need to sketch the full 3D surface, not just the projection that is used for pressure independent surfaces)

3.7.16.2.        Sketch a vector indicating the direction of plastic flow for some point on the yield surface drawn in part (3.8.3.1)

3.7.16.3.        By finding a counter-example, demonstrate that this material does not satisfy the principle of maximum plastic resistance

( σ ij σ ij * )d ε ij p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaGccqGHsislcqaHdpWCdaqhaaWcbaGaamyAaiaadQga aeaacaGGQaaaaOGaaiykaiaadsgacqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyyzImRaaGimaaaa@4389@

(you can do this graphically, or by finding two specific stress states that violate the condition)

3.7.16.4.        Demonstrate that the material is not stable in the sense of Drucker MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  i.e. find a cycle of loading for which the work done by the traction increment through the displacement increment is non-zero.

3.7.16.5.        What modification would be required to the constitutive law to make it satisfy the principle of maximum plastic resistance and Drucker stability?  How does the physical response of the stable material differ from the original model (think about compaction under combined shear and pressure).