Problems for Chapter 5

 

Analytical Techniques and Solutions for Linear Elastic Solids

 

 

 

5.1.  General Principles

 

 

5.1.1.      A spherical shell is simultaneously subjected to internal pressure, and is heated internally to raise its temperature at r=a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacqGH9aqpcaWGHbaaaa@334B@  to a temperature T a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamyyaaqabaaaaa@3253@ , while at r=b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacqGH9aqpcaWGIbaaaa@334C@  its surface is traction free, and temperature is  T b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamOyaaqabaaaaa@3254@ .  Use the principle of superposition, together with the solutions given in Chapter 4.1, to determine the stress field in the sphere.

 

 

5.1.2.      The stress field around a cylindrical hole in an infinite solid, which is subjected to uniaxial tension σ 11 = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@3786@  far from the hole, is given by

σ 11 = σ 0 ( 1+( 3 a 4 2 r 4 a 2 r 2 )cos4θ 3 a 2 2 r 2 cos2θ ) σ 22 = σ 0 ( ( a 2 r 2 3 a 4 2 r 4 )cos4θ a 2 2 r 2 cos2θ ) σ 12 = σ 0 ( ( 3 a 4 2 r 4 a 2 r 2 )sin4θ a 2 2 r 2 sin2θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeq4Wdm3aaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIWaaabeaakmaa bmaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaacaaIZaGaamyyam aaCaaaleqabaGaaGinaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaa caaI0aaaaaaakiabgkHiTmaalaaabaGaamyyamaaCaaaleqabaGaaG OmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGa ayzkaaGaci4yaiaac+gacaGGZbGaaGinaiabeI7aXjabgkHiTmaala aabaGaaG4maiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amOCamaaCaaaleqabaGaaGOmaaaaaaGcciGGJbGaai4Baiaacohaca aIYaGaeqiUdehacaGLOaGaayzkaaGaaGPaVdqaaiaaykW7cqaHdpWC daWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaS qaaiaaicdaaeqaaOWaaeWaaeaadaqadaqaamaalaaabaGaamyyamaa CaaaleqabaGaaGOmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaa aaaOGaeyOeI0YaaSaaaeaacaaIZaGaamyyamaaCaaaleqabaGaaGin aaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaacaaI0aaaaaaaaOGaay jkaiaawMcaaiGacogacaGGVbGaai4CaiaaisdacqaH4oqCcqGHsisl daWcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaam OCamaaCaaaleqabaGaaGOmaaaaaaGcciGGJbGaai4BaiaacohacaaI YaGaeqiUdehacaGLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiaaig dacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIWaaabeaa kmaabmaabaWaaeWaaeaadaWcaaqaaiaaiodacaWGHbWaaWbaaSqabe aacaaI0aaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqaaiaaisdaaaaa aOGaeyOeI0YaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcba GaamOCamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaciGG ZbGaaiyAaiaac6gacaaI0aGaeqiUdeNaeyOeI0YaaSaaaeaacaWGHb WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadkhadaahaaWcbeqa aiaaikdaaaaaaOGaci4CaiaacMgacaGGUbGaaGOmaiabeI7aXbGaay jkaiaawMcaaaaaaa@A2E3@

Using the principle of superposition, calculate the stresses near a hole in a solid which is subjected to shear stress σ 12 = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@3787@  at infinity.

 

 

 

5.1.3.      The stress field due to a concentrated line load, with force per unit out-of-plane distance P acting on the surface of a large flat elastic solid are given by

σ 11 = 2P π x 1 3 ( x 1 2 + x 2 2 ) 2 σ 22 = 2P π x 1 x 2 2 ( x 1 2 + x 2 2 ) 2 σ 12 = 2P π x 1 2 x 2 ( x 1 2 + x 2 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuaaqaaiab ec8aWbaadaWcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaiodaaa aakeaadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBa aaleaacaaIYaGaaGOmaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaa ikdacaWGqbaabaGaeqiWdahaamaalaaabaGaamiEamaaDaaaleaaca aIXaaabaaaaOGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOqa amaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgU caRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH dpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaS aaaeaacaaIYaGaamiuaaqaaiabec8aWbaadaWcaaqaaiaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaa0baaSqaaiaaikdaae aaaaaakeaadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@920C@

The stress field due to a uniform pressure distribution acting on a strip with width 2a is

σ 22 = p 2π ( 2( θ 1 θ 2 )+( sin2 θ 1 sin2 θ 2 ) ) σ 11 = p 2π ( 2( θ 1 θ 2 )( sin2 θ 1 sin2 θ 2 ) ) σ 12 = p 2π ( cos2 θ 1 cos2 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaWGWbaabaGaaGOmaiabec8aWbaadaqadaqaaiaaikdadaqada qaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7aXnaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaaba Gaci4CaiaacMgacaGGUbGaaGOmaiabeI7aXnaaBaaaleaacaaIXaaa beaakiabgkHiTiGacohacaGGPbGaaiOBaiaaikdacqaH4oqCdaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaa cqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0JaeyOeI0 YaaSaaaeaacaWGWbaabaGaaGOmaiabec8aWbaadaqadaqaaiaaikda daqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI 7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaa bmaabaGaci4CaiaacMgacaGGUbGaaGOmaiabeI7aXnaaBaaaleaaca aIXaaabeaakiabgkHiTiGacohacaGGPbGaaiOBaiaaikdacqaH4oqC daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPa aaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Za aSaaaeaacaWGWbaabaGaaGOmaiabec8aWbaadaqadaqaaiGacogaca GGVbGaai4CaiaaikdacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGH sislciGGJbGaai4BaiaacohacaaIYaGaeqiUde3aaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaaaaa@935B@

where 0 θ α π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaeyizImQaeqiWdaha aa@4069@  and θ 1 = tan 1 x 1 /( x 2 a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaciiDaiaacggacaGGUbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaamiEamaaBaaaleaacaaIXaaabe aakiaac+cacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHi TiaadggacaGGPaaaaa@4716@   θ 2 = tan 1 x 1 /( x 2 +a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaciiDaiaacggacaGGUbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaamiEamaaBaaaleaacaaIXaaabe aakiaac+cacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgUca RiaadggacaGGPaaaaa@470C@

Show that, for x 1 2 + x 2 2 >>a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaakaaabaGaamiEamaaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiaadIhadaqhaaWcbaGaaGOmaaqaaiaa ikdaaaaabeaakiabg6da+iabg6da+iaadggaaaa@39A7@  the stresses due to the uniform pressure become equal to the stresses induced by the line force (you can do this graphically, or analytically).

 

 

 

 

5.1.4.      The stress field in an infinite solid that contains a spherical cavity with radius a at the origin, and is subjected to a uniform uniaxial stress σ 33 = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@378A@  far from the sphere is given by

σ ij σ 0 = 3 a 3 2(75ν) R 3 ( 35ν4 a 2 R 2 ) δ ij + 3 a 3 x i x j 2(75ν) R 5 ( 65ν5 a 2 R 2 +10 x 3 2 R 2 ) + δ i3 δ j3 (75ν) ( (75ν)+5(12ν) a 3 R 3 +3 a 5 R 5 ) 15 a 3 x 3 ( x j δ i3 + x i δ j3 ) (75ν) R 5 ( a 2 R 2 ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqa aaaakiabg2da9maalaaabaGaaG4maiaadggadaahaaWcbeqaaiaaio daaaaakeaacaaIYaGaaiikaiaaiEdacqGHsislcaaI1aGaeqyVd4Ma aiykaiaadkfadaahaaWcbeqaaiaaiodaaaaaaOWaaeWaaeaacaaIZa GaeyOeI0IaaGynaiabe27aUjabgkHiTiaaisdadaWcaaqaaiaadgga daahaaWcbeqaaiaaikdaaaaakeaacaWGsbWaaWbaaSqabeaacaaIYa aaaaaaaOGaayjkaiaawMcaaiabes7aKnaaBaaaleaacaWGPbGaamOA aaqabaGccqGHRaWkdaWcaaqaaiaaiodacaWGHbWaaWbaaSqabeaaca aIZaaaaOGaamiEamaaBaaaleaacaWGPbaabeaakiaadIhadaWgaaWc baGaamOAaaqabaaakeaacaaIYaGaaiikaiaaiEdacqGHsislcaaI1a GaeqyVd4MaaiykaiaadkfadaahaaWcbeqaaiaaiwdaaaaaaOWaaeWa aeaacaaI2aGaeyOeI0IaaGynaiabe27aUjabgkHiTiaaiwdadaWcaa qaaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaWGsbWaaWbaaSqa beaacaaIYaaaaaaakiabgUcaRiaaigdacaaIWaWaaSaaaeaacaWG4b Waa0baaSqaaiaaiodaaeaacaaIYaaaaaGcbaGaamOuamaaCaaaleqa baGaaGOmaaaaaaaakiaawIcacaGLPaaaaeaacaaMc8Uaey4kaSYaaS aaaeaacqaH0oazdaWgaaWcbaGaamyAaiaaiodaaeqaaOGaeqiTdq2a aSbaaSqaaiaadQgacaaIZaaabeaaaOqaaiaacIcacaaI3aGaeyOeI0 IaaGynaiabe27aUjaacMcaaaWaaeWaaeaacaGGOaGaaG4naiabgkHi TiaaiwdacqaH9oGBcaGGPaGaey4kaSIaaGynaiaacIcacaaIXaGaey OeI0IaaGOmaiabe27aUjaacMcadaWcaaqaaiaadggadaahaaWcbeqa aiaaiodaaaaakeaacaWGsbWaaWbaaSqabeaacaaIZaaaaaaakiabgU caRiaaiodadaWcaaqaaiaadggadaahaaWcbeqaaiaaiwdaaaaakeaa caWGsbWaaWbaaSqabeaacaaI1aaaaaaaaOGaayjkaiaawMcaaiabgk HiTmaalaaabaGaaGymaiaaiwdacaWGHbWaaWbaaSqabeaacaaIZaaa aOGaamiEamaaBaaaleaacaaIZaaabeaakiaacIcacaWG4bWaaSbaaS qaaiaadQgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaaIZaaabeaa kiabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaGccqaH0oazdaWgaa WcbaGaamOAaiaaiodaaeqaaOGaaiykaaqaaiaacIcacaaI3aGaeyOe I0IaaGynaiabe27aUjaacMcacaWGsbWaaWbaaSqabeaacaaI1aaaaa aakmaabmaabaWaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGc baGaamOuamaaCaaaleqabaGaaGOmaaaaaaGccqGHsislcqaH9oGBai aawIcacaGLPaaaaaaa@BC60@

Show that the hole only influences the stress field in a region close to the hole.