Problems for Chapter 5

 

Analytical Techniques and Solutions for Linear Elastic Solids

 

 

 

5.2.  Airy Function to Plane Static Problems

 

 

5.2.1.      A rectangular dam is subjected to pressure p( x 2 )= ρ w x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbGaaiikaiaadIhadaWgaaWcba GaaGOmaaqabaGccaGGPaGaeyypa0JaeqyWdi3aaSbaaSqaaiaadEha aeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaaa@3CF0@  on one face, where ρ w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCdaWgaaWcbaGaam4Daaqaba aaaa@35BE@  is the weight density of water.  The dam is made from concrete, with weight density ρ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCdaWgaaWcbaGaam4yaaqaba aaaa@35AA@  (and is therefore subjected to a body force ρ c e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCdaWgaaWcbaGaam4yaaqaba GccaWHLbWaaSbaaSqaaiaahkdaaeqaaaaa@3789@  per unit volume).  The goal is to calculate formulas for a and L to avoid failure.

5.2.1.1.            Write down the boundary conditions on all four sides of the dam.

5.2.1.2.            Consider the following approximate state of stress in the dam

σ 22 = ρ w x 2 3 x 1 4 a 3 + ρ w x 2 x 1 20 a 3 ( 10 x 1 2 +6 a 2 ) ρ c x 2 σ 11 = ρ w x 2 2 + ρ w x 2 x 1 4 a 3 ( x 1 2 3 a 2 ) σ 12 = 3 ρ w x 2 2 8 a 3 ( a 2 x 1 2 ) ρ w 8 a 3 ( a 4 x 1 4 )+ 3 ρ w 20a ( a 2 x 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaaIYa GaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabeg8aYnaaBaaaleaacaWG 3baabeaakiaadIhadaqhaaWcbaGaaGOmaaqaaiaaiodaaaGccaWG4b WaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGinaiaadggadaahaaWcbeqa aiaaiodaaaaaaOGaey4kaSYaaSaaaeaacqaHbpGCdaWgaaWcbaGaam 4DaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiEamaaBaaa leaacaaIXaaabeaaaOqaaiaaikdacaaIWaGaamyyamaaCaaaleqaba GaaG4maaaaaaGcdaqadaqaaiabgkHiTiaaigdacaaIWaGaamiEamaa DaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaaiAdacaWGHbWaaW baaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0IaeqyWdi3a aSbaaSqaaiaadogaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaO qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpcqGH sisldaWcaaqaaiabeg8aYnaaBaaaleaacaWG3baabeaakiaadIhada WgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaiabgUcaRmaalaaabaGa eqyWdi3aaSbaaSqaaiaadEhaaeqaaOGaamiEamaaBaaaleaacaaIYa aabeaakiaadIhadaWgaaWcbaGaaGymaaqabaaakeaacaaI0aGaamyy amaaCaaaleqabaGaaG4maaaaaaGcdaqadaqaaiaadIhadaqhaaWcba GaaGymaaqaaiaaikdaaaGccqGHsislcaaIZaGaamyyamaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiabeo8aZnaaBaaaleaaca aIXaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaiodacqaHbpGCdaWg aaWcbaGaam4DaaqabaGccaWG4bWaa0baaSqaaiaaikdaaeaacaaIYa aaaaGcbaGaaGioaiaadggadaahaaWcbeqaaiaaiodaaaaaaOGaaiik aiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaaiykaiabgkHiTmaalaaabaGaeqyW di3aaSbaaSqaaiaadEhaaeqaaaGcbaGaaGioaiaadggadaahaaWcbe qaaiaaiodaaaaaaOWaaeWaaeaacaWGHbWaaWbaaSqabeaacaaI0aaa aOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaGinaaaaaOGaay jkaiaawMcaaiabgUcaRmaalaaabaGaaG4maiabeg8aYnaaBaaaleaa caWG3baabeaaaOqaaiaaikdacaaIWaGaamyyaaaacaGGOaGaamyyam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccaGGPaaaaaa@A91C@

Show that (i) The stress state satisfies the equilibrium equations (ii) the stress state exactly satisfies boundary conditions on the sides x 1 =±a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaeyySaeRaamyyaaaa@389E@ , (iii) The stress does not satisfy the boundary condition on x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaaGimaaaa@3685@  exactly.

5.2.1.3.            Show, however, that the resultant force acting on x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaaGimaaaa@3685@  is zero, so by Saint Venant’s principle the stress state will be accurate away from the top of the dam.

5.2.1.4.            The concrete cannot withstand any tension.  Assuming that the greatest principal tensile stress is located at point A ( x 1 =a, x 2 =L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiabg2da9iaadggacaGGSaGaamiEamaaBaaaleaacaaIYaaa beaakiabg2da9iaadYeacaGGPaaaaa@3C7F@ , show that the dam width must satisfy

5.2.1.5.            The concrete fails by crushing when the minimum principal stress reaches σ 1min = σ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiGac2 gacaGGPbGaaiOBaaqabaGccqGH9aqpcqGHsislcqaHdpWCdaWgaaWc baGaam4yaaqabaaaaa@3D26@ .  Assuming the greatest principal compressive stress is located at point B, ( x 1 =a, x 2 =L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamiEamaaBaaaleaacaaIXa aabeaakiabg2da9iabgkHiTiaadggacaGGSaGaamiEamaaBaaaleaa caaIYaaabeaakiabg2da9iaadYeacaGGPaaaaa@3D6C@  show that the height of the dam cannot exceed

 

 

 

 

5.2.2.      The stress due to a line load magnitude P per unit out-of-plane length acting tangent to the surface of a homogeneous, isotropic half-space can be generated from the Airy function

ϕ= P π rθcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKe9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaey ypa0JaeyOeI0YaaSaaaeaacaWGqbaabaGaeqiWdahaaiaadkhacqaH 4oqCciGGJbGaai4BaiaacohacqaH4oqCaaa@44B0@

Calculate the displacement field in the solid, following the procedure in Section 5.2.6

 

 

 

 

 

5.2.3.      The figure shows a simple design for a dam.

 

5.2.3.1.            Write down an expression for the hydrostatic pressure in the fluid at a depth x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGOmaaqabaaaaa@381E@  below the surface

5.2.3.2.            Hence, write down an expression for the traction vector acting on face OA of the dam.

5.2.3.3.            Write down an expression for the traction acting on face OB

5.2.3.4.            Write down the components of the unit vector normal to face OB in the basis shown

5.2.3.5.            Hence write down the boundary conditions for the stress state in the dam on faces OA and OB

5.2.3.6.            Consider the candidate Airy function

ϕ= C 1 6 x 1 3 + C 2 2 x 1 2 x 2 + C 3 2 x 1 x 2 2 + C 4 6 x 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjabg2 da9maalaaabaGaam4qamaaBaaaleaacaaIXaaabeaaaOqaaiaaiAda aaGaamiEamaaDaaaleaacaaIXaaabaGaaG4maaaakiabgUcaRmaala aabaGaam4qamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaGaamiE amaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaG OmaaqabaGccqGHRaWkdaWcaaqaaiaadoeadaWgaaWcbaGaaG4maaqa baaakeaacaaIYaaaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4b Waa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWG dbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaaGOnaaaacaWG4bWaa0baaS qaaiaaikdaaeaacaaIZaaaaaaa@5452@

Is this a valid Airy function?  Why?

5.2.3.7.            Calculate the stresses generated by the Airy function given in 5.2.2.6

5.2.3.8.            Use 5.2.2.5 and 5.2.2.7 to find values for the coefficients in the Airy function, and hence show that the stress field in the dam is

σ 11 =ρ x 2 σ 22 = 2ρ tan 3 β x 1 + ρ tan 2 β x 2 σ 12 = ρ tan 2 β x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9iabgkHiTiabeg8a YjaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcba GaaGOmaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHsislcaaIYaGa eqyWdihabaGaciiDaiaacggacaGGUbWaaWbaaSqabeaacaaIZaaaaO GaeqOSdigaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWc aaqaaiabeg8aYbqaaiGacshacaGGHbGaaiOBamaaCaaaleqabaGaaG Omaaaakiabek7aIbaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGa eq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9maalaaaba GaeyOeI0IaeqyWdihabaGaciiDaiaacggacaGGUbWaaWbaaSqabeaa caaIYaaaaOGaeqOSdigaaiaadIhadaWgaaWcbaGaaGymaaqabaaaaa a@6718@

 

 

 

5.2.4.      Consider the Airy function

ϕ= σ 0 2 log(r)+ σ 0 4 r 2 + σ 0 4 ( 2 a 2 r 2 a 4 r 2 )cos2θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzcqGH9aqpcqGHsisldaWcaa qaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaaiaaikdaaaGaciiB aiaac+gacaGGNbGaaiikaiaadkhacaGGPaGaey4kaSYaaSaaaeaacq aHdpWCdaWgaaWcbaGaaGimaaqabaaakeaacaaI0aaaaiaadkhadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiabeo8aZnaaBaaale aacaaIWaaabeaaaOqaaiaaisdaaaWaaeWaaeaacaaIYaGaamyyamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaadkhadaahaaWcbeqaaiaaik daaaGccqGHsisldaWcaaqaaiaadggadaahaaWcbeqaaiaaisdaaaaa keaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaai GacogacaGGVbGaai4CaiaaikdacqaH4oqCaaa@5ACC@

Verify that the Airy function satisfies the appropriate governing equation. Show that this stress state represents the solution to a large plate containing a circular hole with radius a at the origin, which is loaded by a tensile stress σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGimaaqaba aaaa@356F@  acting parallel to the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaa aa@34AB@  direction.  To do this,

5.2.4.1.            Show that the surface of the hole is traction free MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  i.e. σ rr = σ rθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadkhacqaH4oqCaeqa aOGaeyypa0JaaGimaaaa@3E19@  on r=a

5.2.4.2.            Show that the stress at r/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGYbGaai4laiaadggacqGHsgIRcq GHEisPaaa@38B4@  is σ rr = σ 0 (1+cos2θ)/2= σ 0 cos 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaaiik aiaaigdacqGHRaWkciGGJbGaai4BaiaacohacaaIYaGaeqiUdeNaai ykaiaac+cacaaIYaGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaicdaaeqa aOGaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqiUde haaa@4D45@ , σ θθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iaaicdaaaa@39EB@ σ rθ = σ 0 sin2θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiabeI 7aXbqabaGccqGH9aqpcqGHsislcqaHdpWCdaWgaaWcbaGaaGimaaqa baGcciGGZbGaaiyAaiaac6gacaaIYaGaeqiUdehaaa@415C@ .

5.2.4.3.            Show that the stresses in 5.2.3.2 are equivalent to a stress σ 11 = σ 0 , σ 22 = σ 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaaiil aiaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaki abg2da9iabeo8aZnaaBaaaleaacqGHXaqmcaaIYaaabeaakiabg2da 9iaaicdaaaa@478E@ .  It is easiest to work backwards MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  start with the stress components in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaaG ymaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYca caWHLbWaaSbaaSqaaiaaiodaaeqaaaGccaGL7bGaayzFaaaaaa@3BF7@  basis and use the basis change formulas to find the stresses in the { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaam OCaaqabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiil aiaahwgadaWgaaWcbaGaamOEaaqabaaakiaawUhacaGL9baaaaa@3D6F@  basis

5.2.4.4.            Plot a graph showing the variation of hoop stress σ θθ / σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiaac+cacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@3B87@  with θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@347C@  at r=a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGYbGaeyypa0Jaamyyaaaa@35A9@  (the surface of the hole).  What is the value of the maximum stress, and where does it occur?

 

 

 

 

 

5.2.5.      Find an expression for the vertical displacement u 1 ( x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@359B@  of the surface of a half-space that is subjected to a distribution of pressure p(s) as shown in the picture.  Show that the slope of the surface can be calculated as

u 2 x 2 = 2( 1 ν 2 ) πE L p(s)ds x 2 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamyDamaaBaaale aacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqa baaaaOGaeyypa0ZaaSaaaeaacaaIYaWaaeWaaeaacaaIXaGaeyOeI0 IaeqyVd42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGa eqiWdaNaamyraaaadaWdrbqaamaalaaabaGaamiCaiaacIcacaWGZb GaaiykaiaadsgacaWGZbaabaGaamiEamaaBaaaleaacaaIYaaabeaa kiabgkHiTiaadohaaaaaleaacaWGmbaabeqdcqGHRiI8aaaa@4D7A@