Problems for Chapter 5

 

Analytical Techniques and Solutions for Linear Elastic Solids

 

 

 

5.4.  Solutions to 3D Static Problems

 

 

5.4.1.      Consider the Papkovich-Neuber potentials

Ψ i = (1ν) σ 0 (1+ν) x 3 δ i3 ϕ= ν(1ν) σ 0 (1+ν) (3 x 3 2 R 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHOoqwdaWgaaWcbaGaamyAaaqaba GccqGH9aqpdaWcaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaaiaacIcacaaIXaGaey 4kaSIaeqyVd4MaaiykaaaacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa eqiTdq2aaSbaaSqaaiaadMgacaaIZaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH vpGzcqGH9aqpdaWcaaqaaiabe27aUjaacIcacaaIXaGaeyOeI0Iaeq yVd4Maaiykaiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaaiaacIca caaIXaGaey4kaSIaeqyVd4MaaiykaaaacaGGOaGaaG4maiaadIhada qhaaWcbaGaaG4maaqaaiaaikdaaaGccqGHsislcaWGsbWaaWbaaSqa beaacaaIYaaaaOGaaiykaaaa@6FB7@

5.4.1.1.            Verify that the potentials satisfy the equilibrium equations

5.4.1.2.            Show that the fields generated from the potentials correspond to a state of uniaxial stress, with magnitude σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaa a@3311@  acting parallel to the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  direction of an infinite solid

 

 

 

5.4.2.      Consider the fields derived from the Papkovich-Neuber potentials

Ψ i = (1ν)p (1+ν) x i ϕ= 2ν(1ν)p (1+ν) R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHOoqwdaWgaaWcbaGaamyAaaqaba GccqGH9aqpdaWcaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aiaadchaaeaacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaGaam iEamaaBaaaleaacaWGPbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHvpGzcqGH9a qpdaWcaaqaaiaaikdacqaH9oGBcaGGOaGaaGymaiabgkHiTiabe27a UjaacMcacaWGWbaabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPa aaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaa@63E8@

5.4.2.1.            Verify that the potentials satisfy the equilibrium equations

5.4.2.2.            Show that the fields generated from the potentials correspond to a state of  hydrostatic tension σ ij =p δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGWbGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaa beaaaaa@39E7@

 

 

 

 

5.4.3.      Consider the Papkovich-Neuber potentials

Ψ i =α x i +β x i R 3 ϕ=α R 2 3β R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHOoqwdaWgaaWcbaGaamyAaaqaba GccqGH9aqpcqaHXoqycaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaey4k aSIaeqOSdi2aaSaaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGcba GaamOuamaaCaaaleqabaGaaG4maaaaaaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeqy1dy Maeyypa0JaeqySdeMaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHi TmaalaaabaGaaG4maiabek7aIbqaaiaadkfaaaaaaa@5A95@

5.4.3.1.            Verify that the potentials satisfy the governing equations

5.4.3.2.            Show that the potentials generate a spherically symmetric displacement field

5.4.3.3.            Calculate values of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHbaa@3207@  and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIbaa@3209@  that generate the solution to an internally pressurized spherical shell, with pressure p acting at R=a and with surface at R=b traction free.

 

 

 

5.4.4.      Verify that the Papkovich-Neuber potential

Ψ i = P i 4πR ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfI6aznaaBaaaleaacaWGPbaabeaaki abg2da9maalaaabaGaamiuamaaBaaaleaacaWGPbaabeaaaOqaaiaa isdacqaHapaCcaWGsbaaaiaaykW6caaMcSUaaGPaRlaaykW6caaMcS UaaGPaRlaaykW6caaMcSUaaGPaRlaaykW6caaMcSUaaGPaRlaaykW6 caaMcSUaeqy1dyMaeyypa0JaaGimaaaa@5265@

generates the fields for a point force P= P 1 e 1 + P 2 e 2 + P 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHqbGaeyypa0JaamiuamaaBaaale aacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGqbWaaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaakiabgUcaRiaadcfadaWgaaWcbaGaaG4maaqabaGccaWHLbWa aSbaaSqaaiaaiodaaeqaaaaa@4154@  acting at the origin of a large (infinite) elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@ .  To this end:

5.4.4.1.            Verify that the potentials satisfy the governing equation

5.4.4.2.            Calculate the stresses

5.4.4.3.            Consider a spherical region with radius R surrounding the origin.  Calculate the resultant force exerted by the stress on the outer surface of this sphere, and show that they are in equilibrium with a force P.

 

 

 

5.4.5.      Consider an infinite, isotropic, linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@ .  Suppose that the solid contains a rigid spherical particle (an inclusion) with radius a and center at the origin.  The particle is perfectly bonded to the elastic matrix, so that u i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcaaIWaaaaa@3446@  at the particle/matrix interface.  The solid is subjected to a uniaxial tensile stress σ 33 = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@378A@  at infinity.  Calculate the stress field in the elastic solid.  To proceed, note that the potentials

Ψ i = (1ν) σ 0 (1+ν) x 3 δ i3 ϕ= ν(1ν) σ 0 (1+ν) (3 x 3 2 R 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHOoqwdaWgaaWcbaGaamyAaaqaba GccqGH9aqpdaWcaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaaiaacIcacaaIXaGaey 4kaSIaeqyVd4MaaiykaaaacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa eqiTdq2aaSbaaSqaaiaadMgacaaIZaaabeaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH vpGzcqGH9aqpdaWcaaqaaiabe27aUjaacIcacaaIXaGaeyOeI0Iaeq yVd4Maaiykaiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaaiaacIca caaIXaGaey4kaSIaeqyVd4MaaiykaaaacaGGOaGaaG4maiaadIhada qhaaWcbaGaaG4maaqaaiaaikdaaaGccqGHsislcaWGsbWaaWbaaSqa beaacaaIYaaaaOGaaiykaaaa@6FB7@

generate a uniform, uniaxial stress σ 33 = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@378A@  (see problem 1).  The potentials

Ψ i = a 3 p ik T x k 3 R 3 ϕ= a 3 p ij T 15 R 3 ( (5 R 2 a 2 ) δ ij +3 a 2 x i x j R 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHOoqwdaWgaaWcbaGaamyAaaqaba GccqGH9aqpdaWcaaqaaiaadggadaahaaWcbeqaaiaaiodaaaGccaWG WbWaa0baaSqaaiaadMgacaWGRbaabaGaamivaaaakiaadIhadaWgaa WcbaGaam4AaaqabaaakeaacaaIZaGaamOuamaaCaaaleqabaGaaG4m aaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHvpGzcqGH9aqpdaWc aaqaaiaadggadaahaaWcbeqaaiaaiodaaaGccaWGWbWaa0baaSqaai aadMgacaWGQbaabaGaamivaaaaaOqaaiaaigdacaaI1aGaamOuamaa CaaaleqabaGaaG4maaaaaaGcdaqadaqaaiaacIcacaaI1aGaamOuam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaa ikdaaaGccaGGPaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaki abgUcaRiaaiodacaWGHbWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaa caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaamiEamaaBaaaleaacaWGQb aabeaaaOqaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGa ayzkaaaaaa@74D8@

are a special case of the Eshelby problem described in Section 5.4.6, and generate the stresses outside a spherical inclusion, which is subjected to a uniform transformation strain.   Let p ij T =A δ ij +B δ i3 δ j3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaa0baaSqaaiaadMgacaWGQb aabaGaamivaaaakiabg2da9iaadgeacqaH0oazdaWgaaWcbaGaamyA aiaadQgaaeqaaOGaey4kaSIaamOqaiabes7aKnaaBaaaleaacaWGPb GaaG4maaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaaiodaaeqaaaaa @44D8@ , where A and B are constants to be determined.  The two pairs of potentials can be superposed to generate the required solution. 

 

 

 

 

5.4.6.      Consider an infinite, isotropic, linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@ .  Suppose that the solid contains a spherical particle (an inclusion) with radius a and center at the origin.  The particle has Young’s modulus E p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweadaWgaaWcbaGaamiCaaqabaaaaa@3253@  and Poisson’s ratio ν p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUnaaBaaaleaacaWGWbaabeaaaa a@3341@ , and is perfectly bonded to the matrix, so that the displacement and radial stress are equal in both particle and matrix at the particle/matrix interface.  The solid is subjected to a uniaxial tensile stress σ 33 = σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa@378A@  at infinity.  The objective of this problem is to calculate the stress field in the elastic inclusion.

5.4.6.1.            Assume that the stress field inside the inclusion is given by σ ij =A σ 0 δ ij +B σ 0 δ i3 δ j3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0Jaamyqaiabeo8aZnaaBaaaleaacaaIWaaabeaa kiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkcaWGcb Gaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaeqiTdq2aaSbaaSqaaiaa dMgacaaIZaaabeaakiabes7aKnaaBaaaleaacaWGQbGaaG4maaqaba aaaa@4A32@ .  Calculate the displacement field in the inclusion (assume that the displacement and rotation of the solid vanish at the origin).

5.4.6.2.            The stress field outside the inclusion can be generated from Papkovich-Neuber potentials

Ψ i = (1ν) σ 0 (1+ν) x 3 δ i3 + a 3 p ik T x k 3 R 3 ϕ= ν(1ν) σ 0 (1+ν) (3 x 3 2 R 2 )+ a 3 p ij T 15 R 3 ( (5 R 2 a 2 ) δ ij +3 a 2 x i x j R 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHOoqwdaWgaaWcbaGaamyAaaqaba GccqGH9aqpdaWcaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk aiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaaiaacIcacaaIXaGaey 4kaSIaeqyVd4MaaiykaaaacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGa eqiTdq2aaSbaaSqaaiaadMgacaaIZaaabeaakiabgUcaRmaalaaaba GaamyyamaaCaaaleqabaGaaG4maaaakiaadchadaqhaaWcbaGaamyA aiaadUgaaeaacaWGubaaaOGaamiEamaaBaaaleaacaWGRbaabeaaaO qaaiaaiodacaWGsbWaaWbaaSqabeaacaaIZaaaaaaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqaHvpGzcqGH9aqpdaWcaaqaaiabe27aUjaacIcacaaIXaGaeyOe I0IaeqyVd4Maaiykaiabeo8aZnaaBaaaleaacaaIWaaabeaaaOqaai aacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaaacaGGOaGaaG4maiaa dIhadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccqGHsislcaWGsbWaaW baaSqabeaacaaIYaaaaOGaaiykaiabgUcaRmaalaaabaGaamyyamaa CaaaleqabaGaaG4maaaakiaadchadaqhaaWcbaGaamyAaiaadQgaae aacaWGubaaaaGcbaGaaGymaiaaiwdacaWGsbWaaWbaaSqabeaacaaI ZaaaaaaakmaabmaabaGaaiikaiaaiwdacaWGsbWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiaacMca cqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaaG4mai aadggadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadIhadaWgaaWc baGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaam OuamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@9A82@

where p ij T =C σ 0 δ ij +D σ 0 δ i3 δ j3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaa0baaSqaaiaadMgacaWGQb aabaGaamivaaaakiabg2da9iaadoeacqaHdpWCdaWgaaWcbaGaaGim aaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaS Iaamiraiabeo8aZnaaBaaaleaacaaIWaaabeaakiabes7aKnaaBaaa leaacaWGPbGaaG4maaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaaio daaeqaaaaa@4A42@ , and C and D are constants to be determined.

5.4.6.3.            Use the conditions at r=a to find expressions for A,B,C,D in terms of geometric and material properties.

5.4.6.4.            Hence, find the stress field inside the inclusion.

 

 

 

5.4.7.      Consider the Eshelby inclusion problem described in Section 5.4.6. An infinite homogeneous, stress free, linear elastic solid has Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@ . The solid is initially stress free. An inelastic strain distribution ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGubaaaaaa@374F@   is introduced into an ellipsoidal region of the solid B (e.g. due to thermal expansion, or a phase transformation).  Let u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaaaaa@327C@  denote the displacement field, ε ij = ε ij e + ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaqhaaWcbaGaamyAaiaadQ gaaeaaaaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaa caWGLbaaaOGaey4kaSIaeqyTdu2aa0baaSqaaiaadMgacaWGQbaaba Gaamivaaaaaaa@4197@   denote the total strain distribution, and let σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  denote the stress field in the solid.

5.4.7.1.            Write down an expression for the total strain energy Φ I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agnaaBaaaleaacaWGjbaabeaaaa a@32DC@  within the ellipsoidal region, in terms of σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@ , ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3418@  and ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGubaaaaaa@374F@ .

5.4.7.2.            Write down an expression for the total strain energy outside the ellipsoidal region, expressing your answer as a volume integral in terms of ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3418@  and σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@ .  Using the divergence theorem, show that the result can also be expressed as

Φ O = 1 2 S σ ij n j u i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agnaaBaaaleaacaWGpbaabeaaki abg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8quaeaa cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOBamaaBaaale aacaWGQbaabeaakiaadwhadaWgaaWcbaGaamyAaaqabaGccaWGKbGa amyqaaWcbaGaam4uaaqab0Gaey4kIipaaaa@4343@

where S denotes the surface of the ellipsoid, and n j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaamOAaaqabaaaaa@3276@  are the components of an outward unit vector normal to B.  Note that, when applying the divergence theorem, you need to show that the integral taken over the (arbitrary) boundary of the solid at infinity does not contribute to the energy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaa aaaaaaa8qacaWFtacaaa@37E6@  you can do this by using the asymptotic formula given in Section 5.4.6 for the displacements far from an Eshelby inclusion.

5.4.7.3.            The Eshelby solution shows that the strain ε ij = ε ij e + ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaqhaaWcbaGaamyAaiaadQ gaaeaaaaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaa caWGLbaaaOGaey4kaSIaeqyTdu2aa0baaSqaaiaadMgacaWGQbaaba Gaamivaaaaaaa@4197@  inside B is uniform.  Write down the displacement field inside the ellipsoidal region, in terms of ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3418@  (take the displacement and rotation of the solid at the origin to be zero).  Hence, show that the result of 7.2 can be re-written as

Φ O = 1 2 S σ ij ε ik x k n j dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agnaaBaaaleaacaWGpbaabeaaki abg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8quaeaa cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqyTdu2aaSbaaS qaaiaadMgacaWGRbaabeaakiaadIhadaWgaaWcbaGaam4AaaqabaGc caWGUbWaaSbaaSqaaiaadQgaaeqaaOGaamizaiaadgeaaSqaaiaado faaeqaniabgUIiYdaaaa@4703@

5.4.7.4.            Finally, use the results of 7.1 and 7.3, together with the divergence theorem, to show that the total strain energy of the solid can be calculated as

Φ= Φ O + Φ I = 1 2 B σ ij ε ij T dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHMoGrcqGH9aqpcqqHMoGrdaWgaa WcbaGaam4taaqabaGccqGHRaWkcqqHMoGrdaWgaaWcbaGaamysaaqa baGccqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaape fabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabew7aLnaa DaaaleaacaWGPbGaamOAaaqaaiaadsfaaaaabaGaamOqaaqab0Gaey 4kIipakiaaykW6caWGKbGaamOvaaaa@4D5E@

 

 

 

5.4.8.      Using the solution to Problem 7, calculate the total strain energy of an  initially stress-free isotropic, linear elastic solid with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@ , after an inelastic strain ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaqhaaWcbaGaamyAaiaadQ gaaeaacaWGubaaaaaa@374F@  is introduced into a spherical region with radius a in the solid. 

 

 

 

 

5.4.9.      A steel ball-bearing with radius 1cm is pushed into a flat steel surface by a force P.  Neglect friction between the contacting surfaces.  Typical ball-bearing steels have uniaxial tensile yield stress of order 2.8 GPa.   Calculate the maximum load that the ball-bearing can withstand without causing yield, and calculate the radius of contact and maximum contact pressure at this load.

 

 

 

 

5.4.10.  The contact between the wheel of a locomotive and the head of a rail may be approximated as the (frictionless) contact between two cylinders, with identical radius R as illustrated in the figure. The rail and wheel can be idealized as elastic-perfectly plastic solids with identical Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@  and yield stress Y. Find expressions for the radius of the contact patch, the contact area, and the contact pressure as a function of the load acting on the wheel and relevant geometric and material properties.  By estimating values for relevant quantities, calculate the maximum load that can be applied to the wheel without causing the rail to yield.

 

 

 

 

 

 

 

5.4.11.  The figure shows a rolling element bearing.  The inner raceway has radius R, and the balls have radius r, and both inner and outer raceways are designed so that the area of contact between the ball and the raceway is circular.  The balls are equally spaced circumferentially around the ring. The bearing is free of stress when unloaded. The bearing is then subjected to a force P as shown.  This load is transmitted through the bearings at the contacts between the raceways and the balls marked A, B, C in the figure (the remaining balls lose contact with the raceways but are held in place by a cage, which is not shown).  Assume that the entire assembly is made from an elastic material with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGfbaaaa@3390@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@

5.4.11.1.        Assume that the load causes the center of the inner raceway to move vertically upwards by a distance Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHuoaraaa@342C@ , while the outer raceway remains fixed.  Write down the change in the gap between inner and outer raceway at A, B, C, in terms of Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHuoaraaa@342C@

5.4.11.2.        Hence, calculate the resultant contact forces between the balls at A, B, C and the raceways, in terms of Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHuoaraaa@342C@  and relevant geometrical and material properties.

5.4.11.3.        Finally, calculate the contact forces in terms of P

5.4.11.4.        If the materials have uniaxial tensile yield stress Y, find an expression for the maximum force P that the bearing can withstand before yielding.

 

 

 

 

 

5.4.12.  A rigid, conical indenter with apex angle 2β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaaIYaGaeqOSdigaaa@3523@  is pressed into the surface of an isotropic, linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGfbaaaa@3390@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@

5.4.12.1.        Write down the initial gap between the two surfaces g(r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGNbGaaiikaiaadkhacaGGPaaaaa@3602@

5.4.12.2.        Find the relationship between the depth of penetration h of the indenter and the radius of contact a

5.4.12.3.        Find the relationship between the force applied to the contact and the radius of contact, and hence deduce the relationship between penetration depth and force.   Verify that the contact stiffness is given by dP dh =2 E * a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacaWGqbaabaGaam izaiaadIgaaaGaeyypa0JaaGOmaiaadweadaahaaWcbeqaaiaacQca aaGccaWGHbaaaa@3AC1@

5.4.12.4.        Calculate the distribution of contact pressure that acts between the contacting surfaces.

 

 

 

 

5.4.13.  A sphere, which has radius R, is dropped from height h onto the flat surface of a large solid.  The sphere has mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3228@ , and both the sphere and the surface can be idealized as linear elastic solids, with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3132@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@ .  As a rough approximation, the impact can be idealized as a quasi-static elastic indentation.

5.4.13.1.        Write down the relationship between the force P acting on the sphere and the displacement of the center of the sphere below x 2 =R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaamOuaaaa@3692@  

5.4.13.2.        Calculate the maximum vertical displacement of the sphere below the point of initial contact.

5.4.13.3.        Deduce the maximum force and contact pressure acting on the sphere

5.4.13.4.        Suppose that the two solids have yield stress in uniaxial tension Y. Find an expression for the critical value of h which will cause the solids to yield

5.4.13.5.        Calculate a value of h if the materials are steel, and the sphere has a 1 cm radius.