3.10 Large Strain Viscoelasticity

 

This section describes constitutive equations that can be used to model large, irreversible deformations in polymers, and also to model biological tissue that is subjected to large shape changes.  A number of different formulations exist. The model outlined here is based on Bergstrom and Boyce, J. Mech. Phys. Solids., Vol. 46, pp. 931-954, 1998.

 

The constitutive equation is intended to capture the following features of material behavior

 

1. When the material is deformed very slowly (so that material behavior is fully reversible) it behaves like an ideal rubber, as described in Section 3.5;

 

2. When deformed very quickly (so that there is no time for inelastic mechanisms to operate) it again behaves like an ideal rubber, but with different properties;

 

3. At intermediate rates, the solid exhibits a rate dependent, hysteretic response.

 

 

In addition, we assume

 

· The material is isotropic.

 

· Material response to a pure volumetric strain ( ε 11 = ε 22 = ε 33 =δV/(3V) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaH1oqzdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 JaeqiTdqMaamOvaiaac+cacaGGOaGaaG4maiaadAfacaGGPaaaaa@4415@  with all other ε ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaicdaaaa@365A@  ) is perfectly elastic (with no time dependent behavior).

 

· The material is nearly incompressible;

 

· Hydrostatic stress has no effect on the deviatoric response of the solid.

.

 

The constitutive equations outlined in this section make use of many concepts from Sections 3.5, 3.8 and 3.9, so you may find it convenient to read these sections before the material to follow. 

 

 

 

3.10.1 Kinematics for finite strain viscoelasticity.

 

The description of shape changes in polymers follows closely the approach outlined in 3.9.1.  Let x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  be the position of a material particle in the undeformed solid. Suppose that the solid is subjected to a displacement field u i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaa@367A@ , so that the point moves to y i = x i + u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadMgaaeqaaaaa@391F@  as shown in the figure.

 


 

 Define

 

· The deformation gradient and its jacobian

F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@4070@        J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaaaa@37A8@

 

· The velocity gradient

L ij = u ˙ i y j = F ˙ ik F kj 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2kqadwhagaGaamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqaba aaaOGaeyypa0JabmOrayaacaWaaSbaaSqaaiaadMgacaWGRbaabeaa kiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaacqGHsislcaaIXaaaaa aa@445D@

 

· The deformation gradient is decomposed into elastic and plastic parts as

F ij = F ik e F kj p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGgbWaa0baaSqaaiaadMgacaWGRbaabaGaamyz aaaakiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaacaWGWbaaaaaa@3C5A@

 

· The velocity gradient is decomposed into elastic and plastic parts as

L ij = L ij e + L ij p , L ij e = F ˙ ik e F kj e1 , L ij p = F ik e F ˙ kl p F lm p1 F mj e1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGmbWaa0baaSqaaiaadMgacaWGQbaabaGaamyz aaaakiabgUcaRiaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWb aaaOGaaiilaiaaykW7caaMc8UaamitamaaDaaaleaacaWGPbGaamOA aaqaaiaadwgaaaGccqGH9aqpceWGgbGbaiaadaqhaaWcbaGaamyAai aadUgaaeaacaWGLbaaaOGaamOramaaDaaaleaacaWGRbGaamOAaaqa aiaadwgacqGHsislcaaIXaaaaOGaaiilaiaaykW7caaMc8Uaamitam aaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaGccqGH9aqpcaWGgbWa a0baaSqaaiaadMgacaWGRbaabaGaamyzaaaakiqadAeagaGaamaaDa aaleaacaWGRbGaamiBaaqaaiaadchaaaGccaWGgbWaa0baaSqaaiaa dYgacaWGTbaabaGaamiCaiabgkHiTiaaigdaaaGccaWGgbWaa0baaS qaaiaad2gacaWGQbaabaGaamyzaiabgkHiTiaaigdaaaaaaa@6A74@

 

· Define the elastic and plastic stretch rates and spin rates as

D ij e =( L ij e + L ji e )/2 W ij e =( L ij e L ji e )/2 D ij p =( L ij p + L ji p )/2 W ij p =( L ij p L ji p )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGebWaa0baaSqaaiaadMgaca WGQbaabaGaamyzaaaakiabg2da9iaacIcacaWGmbWaa0baaSqaaiaa dMgacaWGQbaabaGaamyzaaaakiabgUcaRiaadYeadaqhaaWcbaGaam OAaiaadMgaaeaacaWGLbaaaOGaaiykaiaac+cacaaIYaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4vamaaDa aaleaacaWGPbGaamOAaaqaaiaadwgaaaGccqGH9aqpcaGGOaGaamit amaaDaaaleaacaWGPbGaamOAaaqaaiaadwgaaaGccqGHsislcaWGmb Waa0baaSqaaiaadQgacaWGPbaabaGaamyzaaaakiaacMcacaGGVaGa aGOmaaqaaiaadseadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaO Gaeyypa0JaaiikaiaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaey4kaSIaamitamaaDaaaleaacaWGQbGaamyAaaqaaiaadc haaaGccaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGxbWaa0baaSqaaiaadMgacaWGQb aabaGaamiCaaaakiabg2da9iaacIcacaWGmbWaa0baaSqaaiaadMga caWGQbaabaGaamiCaaaakiabgkHiTiaadYeadaqhaaWcbaGaamOAai aadMgaaeaacaWGWbaaaOGaaiykaiaac+cacaaIYaaaaaa@BBC8@

 

· Define the Left Cauchy-Green deformation tensor for the total and elastic deformation gradients

B ij = F ik F jk B ij e = F ik e F jk e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa dAeadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadkea daqhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaOGaeyypa0JaamOram aaDaaaleaacaWGPbGaam4AaaqaaiaadwgaaaGccaWGgbWaa0baaSqa aiaadQgacaWGRbaabaGaamyzaaaaaaa@5642@

 

· Define the invariants of B and B e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaCaaaleqabaGaamyzaaaaaa a@32C2@  as

I ¯ 1 = B kk J 2/3 I ¯ 2 = 1 2 I ¯ 1 2 B ik B ki J 4/3 I ¯ 3 =detB= J 2 I ¯ 1 e = B kk e J e 2/3 I ¯ 2 e = 1 2 I ¯ 1 e2 B ik e B ki e J e 4/3 I ¯ 3 e =det B e = J e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWGjbGbaebadaWgaaWcbaGaaG ymaaqabaGccqGH9aqpdaWcaaqaaiaadkeadaWgaaWcbaGaam4Aaiaa dUgaaeqaaaGcbaGaamOsamaaCaaaleqabaGaaGOmaiaac+cacaaIZa aaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UabmysayaaraWaaSbaaSqaaiaaik daaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqa aiqadMeagaqeamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgkHiTm aalaaabaGaamOqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWGcbWa aSbaaSqaaiaadUgacaWGPbaabeaaaOqaaiaadQeadaahaaWcbeqaai aaisdacaGGVaGaaG4maaaaaaaakiaawIcacaGLPaaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlqadMeagaqeamaaBaaaleaacaaIZaaabeaakiabg2da9iGa csgacaGGLbGaaiiDaiaahkeacqGH9aqpcaWGkbWaaWbaaSqabeaaca aIYaaaaaGcbaGabmysayaaraWaa0baaSqaaiaaigdaaeaacaWGLbaa aOGaeyypa0ZaaSaaaeaacaWGcbWaa0baaSqaaiaadUgacaWGRbaaba GaamyzaaaaaOqaaiaadQeadaqhaaWcbaGaamyzaaqaaiaaikdacaGG VaGaaG4maaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7ceWGjbGbaebadaqhaaWcbaGaaGOmaaqa aiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabm aabaGabmysayaaraWaa0baaSqaaiaaigdaaeaacaWGLbGaaGOmaaaa kiabgkHiTmaalaaabaGaamOqamaaDaaaleaacaWGPbGaam4Aaaqaai aadwgaaaGccaWGcbWaa0baaSqaaiaadUgacaWGPbaabaGaamyzaaaa aOqaaiaadQeadaqhaaWcbaGaamyzaaqaaiaaisdacaGGVaGaaG4maa aaaaaakiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7ceWGjbGbaebadaqhaaWcbaGaaG 4maaqaaiaadwgaaaGccqGH9aqpciGGKbGaaiyzaiaacshacaWHcbWa aWbaaSqabeaacaWGLbaaaOGaeyypa0JaamOsamaaDaaaleaacaWGLb aabaGaaGOmaaaaaaaa@C223@

 

· Denote the principal stretches for B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaaaa@31AB@  and B e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaCaaaleqabaGaamyzaaaaaa a@32C2@  by λ i , λ i e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaO GaaiilaiabeU7aSnaaDaaaleaacaWGPbaabaGaamyzaaaaaaa@3821@  (these are the square roots of the eigenvalues of B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaaaa@31AB@  and B e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaCaaaleqabaGaamyzaaaaaa a@32C2@  ) and principal stretch directions by b i , b i e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyamaaBaaaleaacaWGPbaabeaaki aacYcacaWHIbWaa0baaSqaaiaadMgaaeaacaWGLbaaaaaa@368F@ .

 

 

 

3.10.2 Stress measures for finite strain viscoelasticity.

 

Usually stress-strain laws are given as equations relating Cauchy stress (`true’ stress) σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  to left Cauchy-Green deformation tensor.  For some computations it may be more convenient to use other stress measures.  They are defined below, for convenience.  The figure shows forces acting on an infinitesimal area element within a solid.   Then:

 

· Cauchy (“true”) stress represents the force per unit deformed area in the solid and is defined by

n i σ ij = Lim dA0 d P j (n) dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWfqaqa aiaadYeacaWGPbGaamyBaaWcbaGaamizaiaadgeacqGHsgIRcaaIWa aabeaakmaalaaabaGaamizaiaadcfadaqhaaWcbaGaamOAaaqaaiaa cIcacaWHUbGaaiykaaaaaOqaaiaadsgacaWGbbaaaaaa@4610@

 

· Kirchhoff stress  τ=Jσ τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaCiXdOGaeyypa0JaamOsaKaaal aaho8acaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes8a0PWaaSba aSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@482A@

 

 

The constitutive model must specify relations between stress, the total deformation gradient F, the elastic part of the deformation gradient F e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOramaaCaaaleqabaGaamyzaaaaaa a@32C6@ , and the plastic part of the deformation gradient.

 

 

 

3.10.3 Relation between stress, deformation measures and strain energy density

 

Just as for hyperelastic materials, the instantaneous stress in a hyperviscoelastic solid is calculated from a strain energy density function U MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaaaa@31BA@ .  For viscoelastic materials, the strain energy density is separated into two parts

U( I ¯ 1 , I ¯ 2 ,J, I ¯ 1 e , I ¯ 2 e )= U ( I ¯ 1 , I ¯ 2 ,J)+ U T ( I ¯ 1 e , I ¯ 2 e , J e ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcaceWGjbGbaebadaWgaa WcbaGaaGymaaqabaGccaGGSaGabmysayaaraWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadQeacaGGSaGabmysayaaraWaa0baaSqaaiaaig daaeaacaWGLbaaaOGaaiilaiqadMeagaqeamaaDaaaleaacaaIYaaa baGaamyzaaaakiaacMcacqGH9aqpcaWGvbWaaSbaaSqaaiabg6HiLc qabaGccaGGOaGabmysayaaraWaaSbaaSqaaiaaigdaaeqaaOGaaiil aiqadMeagaqeamaaBaaaleaacaaIYaaabeaakiaacYcacaWGkbGaai ykaiabgUcaRiaadwfadaWgaaWcbaGaamivaaqabaGccaGGOaGabmys ayaaraWaa0baaSqaaiaaigdaaeaacaWGLbaaaOGaaiilaiqadMeaga qeamaaDaaaleaacaaIYaaabaGaamyzaaaakiaacYcacaWGkbWaaSba aSqaaiaadwgaaeqaaOGaaiykaaaa@578C@

Here

 

1. U ( I ¯ 1 , I ¯ 2 ,J) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacqGHEisPaeqaaO GaaiikaiqadMeagaqeamaaDaaaleaacaaIXaaabaaaaOGaaiilaiqa dMeagaqeamaaDaaaleaacaaIYaaabaaaaOGaaiilaiaadQeacaGGPa aaaa@3A9A@  specifies the strain energy density in the fully relaxed material.  It is represents the effect of a set of polymer chains in the solid which can only accommodate deformation by stretching to follow the total extension.  U =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacqGHEisPaeqaaO Gaeyypa0JaaGimaaaa@3521@  for a material that exhibits steady-state creep.

 

2. U T ( I ¯ 1 e , I ¯ 2 e ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGubaabeaaki aacIcaceWGjbGbaebadaqhaaWcbaGaaGymaaqaaiaadwgaaaGccaGG SaGabmysayaaraWaa0baaSqaaiaaikdaaeaacaWGLbaaaOGaaiykaa aa@3A57@  is an additional, transient contribution to the total strain energy.  This contribution gradually relaxes with time.   It represents a set of polymer chains which initially stretch with the solid, but with time are able to relax towards their preferred configuration.

 

 

The stress is related to the energy density by

 


 

You can use any of the hyperelastic strain energy density potentials listed in Section 3.4 to describe a particular material.  It is sensible to choose U T , U MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGubaabeaaki aacYcacaWGvbWaaSbaaSqaaiabg6HiLcqabaaaaa@35F0@  to have the same functional form (but with different material constants).   Note also that since the inelastic strains are assumed to be volume preserving (see below), J e =J MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGLbaabeaaki abg2da9iaadQeaaaa@34A4@ , and therefore once can take U T / J e =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyvamaaBaaaleaacaWGub aabeaakiaac+cacqGHciITcaWGkbWaaSbaaSqaaiaadwgaaeqaaOGa eyypa0JaaGimaaaa@39F7@  without loss of generality.

 

 

 

3.10.4 Strain relaxation

 

The strain rate dependence and irreversibility of a viscoelastic material can be modeled using the framework described in Section 3.8 for finite strain viscoplasticity.  The constitutive equations must specify the plastic stretch rate D ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaaaaa@34A8@  and plastic spin W ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaaaaa@34BB@  as a function of stress.   The expressions given here follow Bergstrom and Boyce, J. Mech. Phys. Solids., Vol. 46, pp. 931-954, 1998.

 

1. Define the deviatoric Kirchhoff stress resulting from the elastic part of the deformation gradient F ij e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaaaaa@349F@  as

τ ij =2 1 J e 2/3 U T I ¯ 1 e + I ¯ 1 e U T I ¯ 2 e B ij e I ¯ 1 e 3 U T I ¯ 1 e δ ij 1 J e 4/3 U T I ¯ 2 e B ik e B kj e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiXdqNbauaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaaGPaVlaaykW7caaIYaWaamWaaeaadaWc aaqaaiaaigdaaeaacaWGkbWaa0baaSqaaiaadwgaaeaacaaIYaGaai 4laiaaiodaaaaaaOWaaeWaaeaadaWcaaqaaiabgkGi2kaadwfadaWg aaWcbaGaamivaaqabaaakeaacqGHciITceWGjbGbaebadaqhaaWcba GaaGymaaqaaiaadwgaaaaaaOGaey4kaSIabmysayaaraWaa0baaSqa aiaaigdaaeaacaWGLbaaaOWaaSaaaeaacqGHciITcaWGvbWaaSbaaS qaaiaadsfaaeqaaaGcbaGaeyOaIyRabmysayaaraWaa0baaSqaaiaa ikdaaeaacaWGLbaaaaaaaOGaayjkaiaawMcaaiaadkeadaqhaaWcba GaamyAaiaadQgaaeaacaWGLbaaaOGaeyOeI0YaaSaaaeaaceWGjbGb aebadaqhaaWcbaGaaGymaaqaaiaadwgaaaaakeaacaaIZaaaamaala aabaGaeyOaIyRaamyvamaaBaaaleaacaWGubaabeaaaOqaaiabgkGi 2kqadMeagaqeamaaDaaaleaacaaIXaaabaGaamyzaaaaaaGccqaH0o azdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0YaaSaaaeaacaaI XaaabaGaamOsamaaDaaaleaacaWGLbaabaGaaGinaiaac+cacaaIZa aaaaaakmaalaaabaGaeyOaIyRaamyvamaaBaaaleaacaWGubaabeaa aOqaaiabgkGi2kqadMeagaqeamaaDaaaleaacaaIYaaabaGaamyzaa aaaaGccaWGcbWaa0baaSqaaiaadMgacaWGRbaabaGaamyzaaaakiaa dkeadaqhaaWcbaGaam4AaiaadQgaaeaacaWGLbaaaaGccaGLBbGaay zxaaaaaa@7D1C@

 

2. Define the effective stress

τ e = 3 τ ij τ ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaacaaIZaGafqiXdqNbauaadaWgaaWcbaGaamyA aiaadQgaaeqaaOGafqiXdqNbauaadaWgaaWcbaGaamyAaiaadQgaae qaaOGaai4laiaaikdaaSqabaaaaa@3EDA@

 

3. The plastic strain rate is then

D ij p = ε ˙ e ( τ e , I 1 e , I 2 e ,T) 3 τ ij 2 τ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaGccqGH9aqpcuaH1oqzgaGaamaaBaaaleaacaWGLbaa beaakiaacIcacqaHepaDdaWgaaWcbaGaamyzaaqabaGccaGGSaGaam ysamaaDaaaleaacaaIXaaabaGaamyzaaaakiaacYcacaWGjbWaa0ba aSqaaiaaikdaaeaacaWGLbaaaOGaaiilaiaadsfacaGGPaWaaSaaae aacaaIZaGafqiXdqNbauaadaWgaaWcbaGaamyAaiaadQgaaeqaaaGc baGaaGOmaiabes8a0naaBaaaleaacaWGLbaabeaaaaaaaa@4D4C@

 

4. Here, ε ˙ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyzaa qabaaaaa@33A6@  is the magnitude of the plastic strain rate, which is a function of temperature T, the effective stress τ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadwgaaeqaaa aa@33BB@  and the elastic strain.  This function must be calibrated experimentally.  Bergstrom & Boyce suggest that the following function should describe approximately the relaxation dynamics of long-chain molecules

ε ˙ e = ε ˙ 0 I 1 e 3 n τ e τ 0 m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyzaa qabaGccqGH9aqpcuaH1oqzgaGaamaaBaaaleaacaaIWaaabeaakmaa bmaabaWaaOaaaeaacaWGjbWaa0baaSqaaiaaigdaaeaacaWGLbaaaa qabaGccqGHsisldaGcaaqaaiaaiodaaSqabaaakiaawIcacaGLPaaa daahaaWcbeqaaiaad6gaaaGcdaqadaqaamaalaaabaGaeqiXdq3aaS baaSqaaiaadwgaaeqaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamyBaaaaaaa@46E4@

where ε ˙ 0 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaaGimaa qabaGccqGH+aGpcaaIWaaaaa@3542@ , 1<n<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGymaiabgYda8iaad6gacq GH8aapcaaIWaaaaa@363D@ , τ 0 >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaO GaeyOpa4JaaGimaaaa@3557@  and m>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabg6da+iaaicdaaaa@3394@  are temperature dependent material properties.

 

Additional constitutive equations must specify W ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaaaaa@34BB@ .   This has not been studied in detail: usually we just take W ij p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaGccqGH9aqpcaaIWaaaaa@3685@ .

 

 

 

3.10.5 Representative values for material parameters in a finite-strain viscoelastic model

 

Bergstrom and Boyce, J. Mech.Phys. Solids., Vol. 46, pp. 931-954, 1998 give experimental data for the rate dependent response of several rubbers, and fit material properties to their data.   They use the Arruda-Boyce potential for both U , U T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacqGHEisPaeqaaO GaaiilaiaadwfadaWgaaWcbaGaamivaaqabaaaaa@35F0@

U = μ 1 2 ( I ¯ 1 3)+ 1 20 β 2 ( I ¯ 1 2 9)+ 11 1050 β 4 ( I ¯ 1 3 27)+... + K 2 J1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacqGHEisPaeqaaO Gaeyypa0JaeqiVd02aaSbaaSqaaiabg6HiLcqabaGcdaGadaqaamaa laaabaGaaGymaaqaaiaaikdaaaGaaiikaiqadMeagaqeamaaDaaale aacaaIXaaabaaaaOGaeyOeI0IaaG4maiaacMcacqGHRaWkdaWcaaqa aiaaigdaaeaacaaIYaGaaGimaiabek7aInaaDaaaleaacqGHEisPae aacaaIYaaaaaaakiaacIcaceWGjbGbaebadaqhaaWcbaGaaGymaaqa aiaaikdaaaGccqGHsislcaaI5aGaaiykaiabgUcaRmaalaaabaGaaG ymaiaaigdaaeaacaaIXaGaaGimaiaaiwdacaaIWaGaeqOSdi2aa0ba aSqaaiabg6HiLcqaaiaaisdaaaaaaOGaaiikaiqadMeagaqeamaaDa aaleaacaaIXaaabaGaaG4maaaakiabgkHiTiaaikdacaaI3aGaaiyk aiabgUcaRiaac6cacaGGUaGaaiOlaaGaay5Eaiaaw2haaiabgUcaRm aalaaabaGaam4saaqaaiaaikdaaaWaaeWaaeaacaWGkbGaeyOeI0Ia aGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@6730@

U T = μ T 1 2 ( I ¯ 1 e 3)+ 1 20 β T 2 ( I ¯ 1 e2 9)+ 11 1050 β T 4 ( I ¯ 1 e3 27)+... MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvamaaBaaaleaacaWGubaabeaaki abg2da9iabeY7aTnaaBaaaleaacaWGubaabeaakmaacmaabaWaaSaa aeaacaaIXaaabaGaaGOmaaaacaGGOaGabmysayaaraWaa0baaSqaai aaigdaaeaacaWGLbaaaOGaeyOeI0IaaG4maiaacMcacqGHRaWkdaWc aaqaaiaaigdaaeaacaaIYaGaaGimaiabek7aInaaDaaaleaacaWGub aabaGaaGOmaaaaaaGccaGGOaGabmysayaaraWaa0baaSqaaiaaigda aeaacaWGLbGaaGOmaaaakiabgkHiTiaaiMdacaGGPaGaey4kaSYaaS aaaeaacaaIXaGaaGymaaqaaiaaigdacaaIWaGaaGynaiaaicdacqaH YoGydaqhaaWcbaGaamivaaqaaiaaisdaaaaaaOGaaiikaiqadMeaga qeamaaDaaaleaacaaIXaaabaGaamyzaiaaiodaaaGccqGHsislcaaI YaGaaG4naiaacMcacqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUhaca GL9baaaaa@6027@

Material behavior is therefore characterized by values of the two shear moduli μ T , μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadsfaaeqaaO GaaiilaiabeY7aTnaaBaaaleaacqGHEisPaeqaaaaa@37A8@ , the bulk modulus K, the coefficients β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiabg6HiLcqaba aaaa@341E@ , β T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaadsfaaeqaaa aa@3386@ , and the parameters ε ˙ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaaGimaa qabaaaaa@3376@ , n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBaaaa@31D3@ , τ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaa aa@338B@  and m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaaaa@31D2@ , as outlined in the preceding section.  Representative values for these parameters are listed in the table below.