3.11 Critical State Models for Soils

 

Soils consist of a two phase mixture of particles and water.  They exhibit very complex behavior in response to stress, and a number of different constitutive theories are used to model them MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  in fact, entire books are devoted to critical state soil models.  Here, we outline a basic soil model known as `Cam-clay,’ developed at Cambridge (UK).   It uses many of the concepts that are used to model plastic deformation of metals, so you will find it helpful to review Sections 3.7 and 3.8 before reading this one.

 

 

 

3.11.1 Features of the behavior of soils

 

1. Soils cannot withstand significant tensile stress: we therefore focus on their response to combined pressure and shear loading. 

 

2. The behavior of a soil is very sensitive to its water content.   Two types of experiment are conducted on soils: in a `drained’ test, water is allowed to escape from the specimen as it is compressed (so the water pressure is zero); in an `undrained’ test, the volume of the specimen (water + soil particles) is held fixed.   In the latter test, the water pressure can be measured by means of a manometer connected to the pressurized cell.

 

3. Under combined pressure and shear loading, soil behaves like a frictional material.  In a drained test, the solid can support shear stresses τ<Mp/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlabes8a0jabgYda8iaad2eaca WGWbGaai4lamaakaaabaGaaG4maaWcbeaaaaa@3886@  without excessive deformation, where M is a material property (analogous to friction coefficient).  If the shear stress reaches τ=Mp/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0Jaamytaiaadchaca GGVaWaaOaaaeaacaaIZaaaleqaaaaa@36FD@ , the material collapses MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  usually by shearing along one or more discrete shear planes parallel to the maximum resolved shear stress.  If the same test is conducted on an undrained specimen, shear failure occurs earlier, because the water supports part of the hydrostatic pressure.   In this case shear failure occurs when τ<M(p p w )/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyipaWJaamytaiaacIcaca WGWbGaeyOeI0IaamiCamaaBaaaleaacaWG3baabeaakiaacMcacaGG VaWaaOaaaeaacaaIZaaaleqaaaaa@3B68@ , where p is the applied hydrostatic pressure, and p w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWG3baabeaaaa a@32FD@  is the water pressure.

 

4. If subjected to loads below those required to cause catastrophic collapse, soils show a complicated behavior that resembles that of a strain hardening metal MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  except that soils compact in response to combined shear and pressure, whereas metals do not. In addition, the strain hardening occurs only as a result of the compaction: shear strain does not increase the solid’s strength.  For example, the figure shows the response of a soil sample to a test where in which specimen is subjected to a constant pressure, together with a steadily increasing shear stress.   The soil accumulates a permanent shear strain, and also compacts.   The strength of the solid increases up to the limiting shear stress τ=M(p p w )/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0JaamytaiaacIcaca WGWbGaeyOeI0IaamiCamaaBaaaleaacaWG3baabeaakiaacMcacaGG VaWaaOaaaeaacaaIZaaaleqaaaaa@3B6A@ , at which point the compaction reaches a steady state, and the specimen continues to deform at constant shear stress.   

 

 

 

 

3.11.2 Constitutive equations for Cam-Clay

 

The constitutive equations for Cam-clay are very similar to the rate independent plastic equations in Section 3.7.  The main concepts are,

 

1. Strain rate decomposition into elastic and plastic parts;

 

2. Pressure decomposition into contributions from the water pressure (or ‘pore pressure’) and from the pressure supported by the soil particles.  The pore pressure must be calculated by modeling fluid seepage through the soil.

 

3. Elastic stress-strain law, which specifies the elastic part of the strain in terms of stress;

 

4. A yield criterion, which determines the magnitude of the plastic strain rate, given the stresses and the resistance of the material to flow.  Unlike metals, the yield criterion for a soil is a function of the hydrostatic stress, or pressure, in addition to shear stress. The yield criterion is expressed in terms of a State Variable which characterizes the resistance of the material to flow (analogous to yield stress). 

 

5. A Plastic flow rule that specifies the ratios of the plastic strain components under multi-axial stress

 

6. A hardening law, which specifies how the state variable evolves with plastic straining

 

7. The yield surface, flow rule and hardening law also define a critical state criterion for the solid.  The critical state criterion specifies the combination of stresses that lead to unconstrained collapse of the solid.

 

These are discussed in more detail below.

 

 

 

Strain rate decomposition

 

We assume small strains, so shape changes are characterized by ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdaaaa@48F8@ . The strain is decomposed into elastic and plastic parts as

ε ij = ε ij e + ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaaaaOGaeyypa0JaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGa amyzaaaakiabgUcaRiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaai aadchaaaaaaa@3FCE@

 

 

Pressure Decomposition

 

Assume that the soil is subjected to a stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@ .  The pressure is p= σ kk /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiabg2da9iabgkHiTiabeo8aZn aaBaaaleaacaWGRbGaam4AaaqabaGccaGGVaGaaG4maaaa@3911@  (note the negative sign).  In general, part of this pressure is supported by the water in the soil; while the rest is supported by the soil particles themselves.  The pressure is decomposed into two parts

p= p w + p s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiabg2da9iaadchadaWgaaWcba Gaam4DaaqabaGccqGHRaWkcaWGWbWaaSbaaSqaaiaadohaaeqaaaaa @37FD@

where p s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGZbaabeaaaa a@32F9@  is the contribution to the pressure from the soil particles and p w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWG3baabeaaaa a@32FD@  is the contribution from the water.

 

When using the constitutive equation in a boundary value problem, the water pressure must be calculated as a separate problem, in addition to solving the usual mechanical field equations.  Here, we outline briefly a simple approximate description of fluid seepage through a soil.  More general treatments are also available, which include nonlinear versions of the flow law, finite strain effects, as well as the effects of fluid absorption by the soil particles to form a gel, the tendency of soil to absorb fluid due to capillarity, and the effects of partial soil saturation.

 

1. Fluid seepage through the soil is driven by gravity and by fluid pressure variations.  The driving force is quantified by the piezometric head, defined as

ϕ=z+ p w ρ w g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaamOEaiabgUcaRm aalaaabaGaamiCamaaBaaaleaacaWG3baabeaaaOqaaiabeg8aYnaa BaaaleaacaWG3baabeaakiaadEgaaaaaaa@3BA4@

where z is the height above some arbitrary datum, p w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWG3baabeaaaa a@32FD@  is the fluid pressure (compressive pressure is positive); ρ w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadEhaaeqaaa aa@33C8@  is the fluid density; and g is the acceleration due to gravity.

 

2. The volume of material flowing through unit area of solid in the x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  direction per unit time obeys Darcy’s law

q i =k ϕ x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacaWGPbaabeaaki abg2da9iabgkHiTiaadUgadaWcaaqaaiabgkGi2kabew9aMbqaaiab gkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaaaa@3C98@

where k is a material parameter, known as the permeability of the medium.

 

3. The fluid itself may be compressible, with bulk modulus K w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWG3baabeaaaa a@32D8@

 

4. The fluid can be absorbed in cavities in the soil.   The volume fraction of cavities n is defined as

n= d V c dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBaiabg2da9maalaaabaGaamizai aadAfadaWgaaWcbaGaam4yaaqabaaakeaacaWGKbGaamOvaaaaaaa@378F@

where d V c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfadaWgaaWcbaGaam4yaa qabaaaaa@33B8@  is the cavity volume in a volume of soil (including both cavities and soil particles) dV.

 

5. At time t=0 the solid starts with some cavity volume fraction n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaaaa a@32B9@ ; this volume fraction evolves as the solid is deformed.  Usually the dominant contribution to the cavity volume change occurs as a result of plastic compaction of the soil (more sophisticated treatments include an elastic contribution).  The cavity volume fraction after the solid is subjected to an infinitesimal plastic strain ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaGaamiCaaaaaaa@3586@  is

n= n 0 + ε kk p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBaiabg2da9iaad6gadaWgaaWcba GaaGimaaqabaGccqGHRaWkcqaH1oqzdaqhaaWcbaGaam4AaiaadUga aeaacaWGWbaaaaaa@3A47@

 

6. At time t=0, a (possibly zero) fluid pressure p w0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWG3bGaaGimaa qabaaaaa@33B7@  acts on the solid; and for t>0 the values of either fluid pressure, or volumetric flow rate must be specified on the boundary of the solid.

 

7. Finally, the rate of change of fluid pressure follows from conservation of fluid volume as

n K w p w t = q i x i + dn dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGUbaabaGaam4samaaBa aaleaacaWG3baabeaaaaGcdaWcaaqaaiabgkGi2kaadchadaWgaaWc baGaam4DaaqabaaakeaacqGHciITcaWG0baaaiabg2da9maalaaaba GaeyOaIyRaamyCamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaa dIhadaWgaaWcbaGaamyAaaqabaaaaOGaey4kaSYaaSaaaeaacaWGKb GaamOBaaqaaiaadsgacaWG0baaaaaa@46AE@

 

 

Elastic constitutive equations

 

The elastic strains are related to the stresses using the standard linear elastic stress-strain law.   The elastic strain is related to stress by

σ ij = C ijkl ε kl e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccqaH1oqzdaqhaaWcbaGaam4AaiaadYgaaeaacaWGLb aaaaaa@3F17@

where C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  are the components of the elastic compliance tensor.  For the special case of an isotropic material with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@

σ ij = E 1+ν ε ij + ν 12ν ε kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaWaaiWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbaacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaay5Eaiaaw2haaaaa@4E10@

 

 

Yield criterion and critical state surface

 

The yield criterion specifies the stresses that are required to cause plastic flow in the soil.  The concept is identical to the yield criterion used in metal plasticity, except that, unlike metals, hydrostatic pressure can cause yield in a soil.  The yield criterion is

f( σ ij )= p s a 1 2 + σ e Ma 2 1=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9maabmaabaWaaSaaaeaa caWGWbWaaSbaaSqaaiaadohaaeqaaaGcbaGaamyyaaaacqGHsislca aIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaadaWcaaqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaaOqaai aad2eacaWGHbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaigdacqGH9aqpcaaIWaaaaa@4AAE@

where

 

1.   p s = σ kk /3 p w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGZbaabeaaki abg2da9iabgkHiTiabeo8aZnaaBaaaleaacaWGRbGaam4AaaqabaGc caGGVaGaaG4maiabgkHiTiaadchadaWgaaWcbaGaam4Daaqabaaaaa@3D49@  is the pressure exerted by the stresses on the soil skeleton.

 

2.   σ e = 3 S ij S ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaacaaIZaGaam4uamaaBaaaleaacaWGPbGaamOA aaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaac+caca aIYaaaleqaaaaa@3CE6@  where S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqaHdpWCdaWgaaWcba Gaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaa beaaaaa@42A3@  is the Von-Mises effective stress;

 

3.  M is a material property, whose physical significance was described in Sect 3.11.1.  Usually M<1.

 

4.  a is a state variable that quantifies the current yield strength of the soil. At time t=0, the soil has some finite strength a= a 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabg2da9iaadggadaWgaaWcba GaaGimaaqabaaaaa@3498@ , which subsequently evolves with plastic straining, as described below.

 

 

The yield criterion is sketched in principal stress space in the figure below MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it resembles a football (if you are American MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  or a rugby ball to the rest of the world) with its axis parallel to the line σ 1 = σ 2 = σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaeq4W dm3aaSbaaSqaaiaaiodaaeqaaaaa@3B01@ .  The shape of the football depends on M MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for M=1 it is a sphere; for M<1 it is stretched parallel to its axis.  The size of the yield locus is determined by a.

 


 

The yield criterion, together with the hardening law, also define a critical state surface, which determines the stress where unrestricted shear deformation can occur at constant shear stress (i.e. with zero hardening).  If the stresses lie inside the critical state surface (this is known as the `wet’ side of critical state), the material shows stable strain hardening behavior.  If the stresses lie outside the critical state surface (known as the `dry’ side of the critical state), the material softens with plastic straining, and so violates the Drucker stability condition.  Under these conditions the material is unstable, and plastic strain tends to localize into shear bands.

 

The critical state surface for Camclay is

g( σ ij )= σ e M p s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iabeo8aZnaaBaaaleaa caWGLbaabeaakiabgkHiTiaad2eacaWGWbWaaSbaaSqaaiaadohaae qaaaaa@3EBC@

The material is stable for g<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiabgYda8iaaicdaaaa@338A@  and unstable for g>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiabg6da+iaaicdaaaa@338E@ .  The critical state surface is sketched in the figure: it is a cone, which cuts through the fattest part of the yield surface.

 

 

Flow law

 

The flow law specifies the plastic strain components under a multiaxial state of stress.  Like metal plasticity, the Cam-clay model bases the flow law on the yield criterion, so that

d ε ij p =dλa f σ ij =dλ 2 3 p s a 1 δ ij +3 S ij M 2 a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaWGKbGaeq4UdWMaamyyamaa laaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabeo8aZnaaBaaaleaaca WGPbGaamOAaaqabaaaaOGaeyypa0JaamizaiabeU7aSnaabmaabaGa eyOeI0YaaSaaaeaacaaIYaaabaGaaG4maaaadaWadaqaamaalaaaba GaamiCamaaBaaaleaacaWGZbaabeaaaOqaaiaadggaaaGaeyOeI0Ia aGymaaGaay5waiaaw2faaiabes7aKnaaBaaaleaacaWGPbGaamOAaa qabaGccqGHRaWkcaaIZaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMga caWGQbaabeaaaOqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccaWGHb aaaaGaayjkaiaawMcaaaaa@5BF1@

where dλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSbaa@337D@  is a dimensionless constant that depends on the increment of stress applied to the solid, and is proportional to the plastic strain magnitude. The procedure to calculate dλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSbaa@337D@  is discussed in more detail below: if the stress state lies inside the critical state surface  ( g( σ ij )<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabgYda8iaaicdaaaa@38B9@  ), then dλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSbaa@337D@  can be expressed in terms of the stress increment d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3595@  and the fluid pressure increment d p w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadchadaWgaaWcbaGaam4Daa qabaaaaa@33E6@  applied to the solid as

dλ= 0f( σ ij )<0 1 3a p s a 1 d σ kk +3d p w + 3 2 S ij d S ij Ma 2 2c p s a p s a 1 f( σ ij )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSjabg2da9maaceaaba qbaeqabiqaaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadAgacaGGOaGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacMcacqGH8aapcaaIWaaabaWaaSaa aeaadaaadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodacaWGHb aaamaadmaabaWaaSaaaeaacaWGWbWaaSbaaSqaaiaadohaaeqaaaGc baGaamyyaaaacqGHsislcaaIXaaacaGLBbGaayzxaaWaaeWaaeaaca WGKbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabgUcaRiaa iodacaWGKbGaamiCamaaBaaaleaacaWG3baabeaaaOGaayjkaiaawM caaiabgUcaRmaalaaabaGaaG4maaqaaiaaikdaaaWaaSaaaeaacaWG tbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadsgacaWGtbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOqaamaabmaabaGaamytaiaadggaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLPmIaayPkJa aabaGaaGOmaiaadogadaWcaaqaaiaadchadaWgaaWcbaGaam4Caaqa baaakeaacaWGHbaaamaadmaabaWaaSaaaeaacaWGWbWaaSbaaSqaai aadohaaeqaaaGcbaGaamyyaaaacqGHsislcaaIXaaacaGLBbGaayzx aaaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOzaiaacIcacqaHdpWCda WgaaWcbaGaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iaaicdaaaaa caGL7baaaaa@50F6@

Here x =x MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaaWaaeaacaWG4baacaGLPmIaayPkJa Gaeyypa0JaamiEaaaa@35B0@  for x>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEaiabg6da+iaaicdaaaa@339F@  and x =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaaWaaeaacaWG4baacaGLPmIaayPkJa Gaeyypa0JaaGimaaaa@356D@  for x<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEaiabgYda8iaaicdaaaa@339B@ , and c is a material property governing the hardening rate, as defined below.  These expressions are valid only if the stress lies inside the critical state surface.  If the stress lies on or outside the critical state surface g( σ ij )0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabgwMiZkaaicdaaaa@397B@  then dλ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSbaa@337D@  cannot be determined from the stress increment. 

 

 

Hardening law

 

A soil becomes stronger if it is compacted to crush the soil particles together.   This is described in the constitutive law by making the state variable a evolve with plastic straining in some appropriate way.  A simple hardening law that captures the main features of experiments is

da=cad ε kk p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadggacqGH9aqpcqGHsislca WGJbGaamyyaiaadsgacqaH1oqzdaqhaaWcbaGaam4AaiaadUgaaeaa caWGWbaaaaaa@3C02@

where c is a dimensionless material property, which determines the hardening rate.  Notice that, in this law, hardening occurs only as a result of compaction, and not as a result of shear deformation.

 

 

Calculating the plastic stress-strain relation

 

When using the constitutive equation, the formulas outlined in the preceding sections must be combined to predict the plastic strain d ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaaaaa@366F@  resulting from an increment in stress d σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@3595@  and fluid pressure increment d p w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadchadaWgaaWcbaGaam4Daa qabaaaaa@33E6@ .  This is done as follows:

 

1. Check the yield criterion.  If f<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiabgYda8iaaicdaaaa@3389@ , the plastic strain is zero d ε ij p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaaIWaaaaa@3839@ .

 

2. Check to see whether the stresses lie inside the critical state surface.  If g( σ ij )<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabgYda8iaaicdaaaa@38B9@  the material behaves like a stable, strain hardening plastic solid, and the plastic strain increment can be calculated by following steps 3-5 below.

 

3. Check for elastic unloading.   The solid will unload elastically, with d ε ij p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaaIWaaaaa@3839@ , if the stress increment brings the stress below yield. This is the case whenever

f σ ij d σ ij <0 2 3a p s a 1 d σ kk +3d p w +3 S ij d S ij Ma 2 <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaey OaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccaWGKbGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgYda8iaaicdacq GHshI3daqadaqaaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodacaWG HbaaamaadmaabaWaaSaaaeaacaWGWbWaaSbaaSqaaiaadohaaeqaaa GcbaGaamyyaaaacqGHsislcaaIXaaacaGLBbGaayzxaaWaaeWaaeaa caWGKbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabgUcaRi aaiodacaWGKbGaamiCamaaBaaaleaacaWG3baabeaaaOGaayjkaiaa wMcaaiabgUcaRiaaiodadaWcaaqaaiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamizaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqa aaGcbaWaaeWaaeaacaWGnbGaamyyaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGH8aapcaaIWaaaaa@6649@

 

4. If plastic strain does occur, the yield criterion must be satisfied throughout plastic straining.  This requires that

df= f σ ij d σ ij + f a da=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAgacqGH9aqpdaWcaaqaai abgkGi2kaadAgaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaamyAaiaa dQgaaeqaaaaakiaadsgacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaae qaaOGaey4kaSYaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamyy aaaacaWGKbGaamyyaiabg2da9iaaicdaaaa@4934@

It is straightforward to show that

f a = 2 p s a 2 p s a 1 2 σ e 2 M 2 a 3 = 2 p s a 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaey OaIyRaamyyaaaacqGH9aqpdaWcaaqaaiabgkHiTiaaikdacaWGWbWa aSbaaSqaaiaadohaaeqaaaGcbaGaamyyamaaCaaaleqabaGaaGOmaa aaaaGcdaqadaqaamaalaaabaGaamiCamaaBaaaleaacaWGZbaabeaa aOqaaiaadggaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkHiTi aaikdadaWcaaqaaiabeo8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaa aOqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccaWGHbWaaWbaaSqabe aacaaIZaaaaaaakiabg2da9iabgkHiTmaalaaabaGaaGOmaiaadcha daWgaaWcbaGaam4CaaqabaaakeaacaWGHbWaaWbaaSqabeaacaaIYa aaaaaaaaa@523B@

 

5. The hardening law and plastic flow rule give

da=cad ε kk p =cadλ f σ kk =2cdλ p s a 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadggacqGH9aqpcqGHsislca WGJbGaamyyaiaadsgacqaH1oqzdaqhaaWcbaGaam4AaiaadUgaaeaa caWGWbaaaOGaeyypa0JaeyOeI0Iaam4yaiaadggacaWGKbGaeq4UdW 2aaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeq4Wdm3aaSbaaSqa aiaadUgacaWGRbaabeaaaaGccqGH9aqpcaaIYaGaam4yaiaadsgacq aH7oaBdaWadaqaamaalaaabaGaamiCamaaBaaaleaacaWGZbaabeaa aOqaaiaadggaaaGaeyOeI0IaaGymaaGaay5waiaaw2faaaaa@5604@

 

6. Finally, combining 3-5 leads to

dλ= 1 3a p s a 1 d σ kk +3d p w + 3 2 S ij d S ij Ma 2 2c p s a p s a 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSjabg2da9maalaaaba WaaeWaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaIZaGaamyyaaaa daWadaqaamaalaaabaGaamiCamaaBaaaleaacaWGZbaabeaaaOqaai aadggaaaGaeyOeI0IaaGymaaGaay5waiaaw2faamaabmaabaGaamiz aiabeo8aZnaaBaaaleaacaWGRbGaam4AaaqabaGccqGHRaWkcaaIZa GaamizaiaadchadaWgaaWcbaGaam4DaaqabaaakiaawIcacaGLPaaa cqGHRaWkdaWcaaqaaiaaiodaaeaacaaIYaaaamaalaaabaGaam4uam aaBaaaleaacaWGPbGaamOAaaqabaGccaWGKbGaam4uamaaBaaaleaa caWGPbGaamOAaaqabaaakeaadaqadaqaaiaad2eacaWGHbaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaqa aiaaikdacaWGJbWaaSaaaeaacaWGWbWaaSbaaSqaaiaadohaaeqaaa GcbaGaamyyaaaadaWadaqaamaalaaabaGaamiCamaaBaaaleaacaWG ZbaabeaaaOqaaiaadggaaaGaeyOeI0IaaGymaaGaay5waiaaw2faaa aaaaa@6402@

 

 

If the stress state is at yield f( σ ij )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iaaicdaaaa@38BA@  and also lies on the critical state g( σ ij )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iaaicdaaaa@38BB@  the material behaves like a perfectly plastic solid (with constant flow stress).  In this case,

 

1. The solid unloads elastically, with d ε ij p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaGccqGH9aqpcaaIWaaaaa@3839@  if

f σ ij d σ ij <0 2 3a p s a 1 d σ kk +3d p w +3 S ij d S ij Ma 2 <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaey OaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccaWGKbGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgYda8iaaicdacq GHshI3daqadaqaaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodacaWG HbaaamaadmaabaWaaSaaaeaacaWGWbWaaSbaaSqaaiaadohaaeqaaa GcbaGaamyyaaaacqGHsislcaaIXaaacaGLBbGaayzxaaWaaeWaaeaa caWGKbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabgUcaRi aaiodacaWGKbGaamiCamaaBaaaleaacaWG3baabeaaaOGaayjkaiaa wMcaaiabgUcaRiaaiodadaWcaaqaaiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamizaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqa aaGcbaWaaeWaaeaacaWGnbGaamyyaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGH8aapcaaIWaaaaa@6649@

 

2. If the solid deforms plastically, the stress state must satisfy

f σ ij d σ ij =0 2 3a p s a 1 d σ kk +3d p w +3 S ij d S ij Ma 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaey OaIyRaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaaGccaWGKbGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaaicdacq GHshI3daqadaqaaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodacaWG HbaaamaadmaabaWaaSaaaeaacaWGWbWaaSbaaSqaaiaadohaaeqaaa GcbaGaamyyaaaacqGHsislcaaIXaaacaGLBbGaayzxaaWaaeWaaeaa caWGKbGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabgUcaRi aaiodacaWGKbGaamiCamaaBaaaleaacaWG3baabeaaaOGaayjkaiaa wMcaaiabgUcaRiaaiodadaWcaaqaaiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamizaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqa aaGcbaWaaeWaaeaacaWGnbGaamyyaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@664D@

In this case the plastic strain cannot be determined from the stress increment: any dλ>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeU7aSjabg6da+iaaicdaaa a@353F@  is admissible.  In a situation where the total strain of the solid is prescribed, the plastic strain increment can be determined by first solving for the elastic strain increment, and subtracting it from the total strain.

 

If the stress lies outside the critical state g( σ ij )>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg6da+iaaicdaaaa@38BD@  and is at yield f( σ ij )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iaaicdaaaa@38BA@ , the material softens.  In this case it is impossible to distinguish unambiguously between elastic unloading and plastic flow accompanied by strain softening.  The deformation in this regime usually consists of intense plastic shearing along one or more discrete shear bands, while the rest of the material unloads elastically.   Boundary value problems with material behavior in the unstable regime are generally ill-posed and cannot be solved uniquely. However, attempting to load a soil past the critical state usually results in catastrophic collapse (such as a landslide), so detailed solutions to boundary value problems in this regime are not of much practical interest.  The critical state surface can be used as a failure criterion to avoid collapse.

 

 

 

3.11.3 Application of the critical state equations to simple 2D loading

 

The constitutive equations for soils are complicated, and a simple 2D example helps to interpret them. To this end, consider a solid subjected to a 2D stress state of the form σ ij =p δ ij +q( δ i1 δ j2 + δ i2 δ j1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabgkHiTiaadchacqaH0oazdaWgaaWcbaGaamyA aiaadQgaaeqaaOGaey4kaSIaamyCaiaacIcacqaH0oazdaWgaaWcba GaamyAaiaaigdaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQgacaaIYaaa beaakiabgUcaRiabes7aKnaaBaaaleaacaWGPbGaaGOmaaqabaGccq aH0oazdaWgaaWcbaGaamOAaiaaigdaaeqaaOGaaiykaaaa@4D7D@ , as illustrated in the figure below. Assume that the specimen is drained, so that the water pressure p w =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWG3baabeaaki abg2da9iaaicdaaaa@34C7@ .  In addition, assume that at time t=0 the solid has strength a 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaaaa a@32AC@


 

 

For this loading, the yield surface can be plotted in 2D, as a graph of the critical combinations of p and q that cause yield, as shown in the figure.  The yield surface is an ellipse, with semi-axes a and Ma.  The critical state surface is a straight line with slope M.

 

We can now examine the behavior of the solid as it is loaded.  Consider first the response to a constant pressure on the `wet’ side of critical state p> a 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiabg6da+iaadggadaWgaaWcba GaaGimaaqabaaaaa@34A9@ , together with a steadily increasing shear stress q.  In this case

 

1. The solid first reaches yield when p/ a 0 1 2 +3 q/M a 0 2 =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGWbGaai4laiaadggada WgaaWcbaGaaGimaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4mamaabmaabaGaamyCai aac+cacaWGnbGaamyyamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaigdaaaa@42AF@

 

2. If the shear stress is raised beyond yield, the solid will deform plastically.  Since the flow law is derived from the yield criterion, the plastic strain direction is normal to the yield surface.  That is to say, if the solid experiences a plastic shear strain dγ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo7aNbaa@3370@  and volumetric strain dv MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhaaaa@32C4@ , the vector ( dv,dγ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhacaGGSaGaamizaiabeo 7aNbaa@3604@  ) is normal to the yield surface, as shown in the picture.

 

 

3. On the `wet’ side of critical state, the volumetric plastic strain component dv is always compressive.  This means the solid compacts, and its strength increases (recall that da=cadv MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadggacqGH9aqpcqGHsislca WGJbGaamyyaiaadsgacaWG2baaaa@3854@  and dv<0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhacqGH8aapcaaIWaaaaa@3482@  during compaction). 

 

4. As the yield surface expands, the volumetric strain component associated with an increase in shear stress dq MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadghaaaa@32BF@  decreases (remember that we assume a constant pressure).    The hardening rate therefore decreases with strain, until the stress reaches the critical state.  At this point dv=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhacqGH9aqpcaaIWaaaaa@3484@ , so there is no further hardening.

 

 

Next, consider behavior on the `dry’ side of critical state. In this case

 

1. The solid first reaches yield when p/ a 0 1 2 +3 q/M a 0 2 =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacaWGWbGaai4laiaadggada WgaaWcbaGaaGimaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4mamaabmaabaGaamyCai aac+cacaWGnbGaamyyamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaigdaaaa@42AF@

 

2. As before, the direction of the plastic strain is normal to the yield surface.

 

3. Notice that on the `dry’ side of critical state, the volumetric plastic strain component dv is always dilatational.  This means its strength decreases with plastic straining, as shown in the figure below (recall that da=cadv MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadggacqGH9aqpcqGHsislca WGJbGaamyyaiaadsgacaWG2baaaa@3854@  and dv>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAhacqGH+aGpcaaIWaaaaa@3486@  during dilation). 

 

4. The yield surface contracts during plastic straining, and this process continues until the stress reaches the critical state.  At this point the solid continues to deform at a constant shear stress.

 


 

 

 

3.11.4 Typical values of material properties for soils

 

Soil properties are highly variable, and for accurate predictions you will need to measure directly the properties of the soil you are intending to model.  In addition, soil models that are used in practice are somewhat more sophisticated than the simplified version given here. As a rough guide, material properites estimated from data in D.M. Wood, “Soil Behavior and Critical State Soil Mechanics,” Cambridge University Press, Cambridge, 1990 are listed in the table below.