3.13 Constitutive models for contacting surfaces and interfaces in solids

 

Many practical problems involve two contacting surfaces that roll or slide against one another: examples include machine elements such as gears and bearings; machining and metal forming processes; or slip along a geological fault.  In addition, models of deformation and failure in materials must often account for the nucleation and growth of cracks in the solid.   In these applications, constitutive equations must be used to specify the forces transmitted across the interface or contacting surface as a function of their relative motion.  

 

The simplest and most familiar such constitutive law is Coulomb friction, which relates the normal and tangential tractions acting across a contacting surface.  More complex constitutive laws are also available, which can model very complex interactions between surfaces.   In this section, we outline two general classes of interface law: (i) Cohesive zone models, which are used to model interfaces in materials or adhesion between very clean (often nanoscale) surfaces; and (ii) Models that are intended to model contact and friction between two sliding surfaces.

 

 

 

3.13.1 Cohesive zone models of interfaces

 

Cohesive zone models are usually used to model the nucleation and propagation of cracks along an interface between two solids, and to model adhesion between two contacting surfaces.  The figure illustrates the problem to be solved.  We assume that

 

· Two solids meet at a surface S

 

· In the undeformed configuration, the interface is free of traction, and there is no overlap or separation between the solids along S

 

· When the solid is loaded, forces are transmitted across the interface, while the two solids may separate, slide, or overlap at the interface.  The notion that two solids may interpenetrate can be disturbing at first sight.  However, the surface S where the solids meet does not represent a plane of atoms MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it merely characterizes the equilibrium separation between the two solids when the interface is stress free.  If the two solids overlap, this means that the atomic or material planes just adjacent to the interface move closer together.

 

· We shall assume that the relative displacement of the two solids across S is small compared with any characteristic dimension of the solid; and also that the two contacting solids themselves experience small shape changes.

 

 

A “cohesive zone law” relates the relative motion of the two solids adjacent to S to the tractions transmitted across S.  A large number of such constitutive equations have been developed, but there are two general classes: (i) the first consists of reversible force-displacement laws, in which the traction is simply a function of the relative distance between the two surfaces, and independent of the history of loading.  These are often used to model nucleation and growth of a crack on an interface that is subjected to monotonically increasing loading, where irreversibility plays no role; and are also used to model interaction between surfaces of nanoscale structures, whose dimension can be comparable to the distance of action of long-range interatomic forces.  (ii) The second consists of irreversible force-displacement laws, which model failure processes that lead to the creation of new free surface in the solid.   These could include separation of atomic planes due to cleavage, or more complex processes such as rupture by void nucleation and coalescence, or fatigue.

 

 

Kinematics:  The relative motion of the two solids is characterized as follows:

 

1. Let n denote a unit vector normal to the interface.  The sense of n is arbitrary (i.e. it can point up or down, as you prefer).  Once n has been chosen, however, we designate the two material surfaces adjacent to S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaaaa@31B8@  by S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , with n the outward normal to S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ .

 

2. Introduce two mutually perpendicular unit vectors e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHXoqyaeqaaa aa@3399@  that are tangent to the interface.   

 

3. Let u + (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaey4kaScaaO GaaiikaiaahIhacaGGPaaaaa@3551@  and u (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaeyOeI0caaO GaaiikaiaahIhacaGGPaaaaa@355C@  denote the displacement of two material points that are just adjacent to a point x MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaaaa@31E1@  on S  in the undeformed solid.

 

4. Let Δ= u + u MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiLdiabg2da9iaahwhadaahaaWcbe qaaiabgUcaRaaakiabgkHiTiaahwhadaahaaWcbeqaaiabgkHiTaaa aaa@3822@  denote the relative displacement of two initially coincident points. To specify constitutive equations, it is convenient to characterize the relative displacement using the three scalar Cartesian components ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabfs5aenaaBaaaleaacaWGUb aabeaakiaacYcacqqHuoardaWgaaWcbaGaaGymaaqabaGccaGGSaGa euiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3AD7@  of Δ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiLdaaa@3200@  in the basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah6gacaGGSaGaaCyzamaaBa aaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqa aOGaaiyFaaaa@38F6@ .  If the interface is isotropic (i.e. its response is independent of the direction of the relative tangential displacement between the surfaces), the behavior of the interface depends only on Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaa aa@3365@  and Δ t = Δ 1 2 + Δ 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaO Gaeyypa0ZaaOaaaeaacqqHuoardaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkcqqHuoardaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabe aaaaa@3B8C@ .

 

 

Kinetics: The forces acting between the two surfaces are characterized as follows:

 

1. Two points that are initially coincident in the undeformed interface are assumed to exert equal and opposite tractions on one another.  Since the relative displacements of S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  are assumed to be small, and both solids are assumed to experience small shape changes, there is no need to distinguish between forces acting on the deformed and undeformed solids.  Let t (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaeyOeI0caaO GaaiikaiaahIhacaGGPaaaaa@355B@  and t + (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaey4kaScaaO GaaiikaiaahIhacaGGPaaaaa@3550@  denote the force per unit area acting on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  and S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ , respectively.

 

2. Since t + (x)= t (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaey4kaScaaO GaaiikaiaahIhacaGGPaGaeyypa0JaeyOeI0IaaCiDamaaCaaaleqa baGaeyOeI0caaOGaaiikaiaahIhacaGGPaaaaa@3BBE@ , the tractions can be characterized by the three scalar components ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsfadaWgaaWcbaGaamOBaa qabaGccaGGSaGaamivamaaBaaaleaacaaIXaaabeaakiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3930@  of t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaeyOeI0caaa aa@32F7@  in the basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah6gacaGGSaGaaCyzamaaBa aaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqa aOGaaiyFaaaa@38F6@ .

 

The constitutive equations for the interface must relate ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsfadaWgaaWcbaGaamOBaa qabaGccaGGSaGaamivamaaBaaaleaacaaIXaaabeaakiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3930@  to ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabfs5aenaaBaaaleaacaWGUb aabeaakiaacYcacqqHuoardaWgaaWcbaGaaGymaaqabaGccaGGSaGa euiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3AD7@

 

 

Constitutive equations representing reversible separation between interfaces are the simplest cohesive zone laws.  For these models, the tractions are a function only of the relative displacement of the material planes adjacent to the interface, and are independent of the history or rate of loading. This means that the traction-displacement relation for the interface is reversible.  The interface will heal if the two surfaces are brought back into contact after separation.

The constitutive equations relating ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsfadaWgaaWcbaGaamOBaa qabaGccaGGSaGaamivamaaBaaaleaacaaIXaaabeaakiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3930@  to ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabfs5aenaaBaaaleaacaWGUb aabeaakiaacYcacqqHuoardaWgaaWcbaGaaGymaaqabaGccaGGSaGa euiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3AD7@  for a reversible interface are constructed as follows:

 

1. The traction-displacement relation is most conveniently characterized by a scalar inter-planar potential Φ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiabfs5aenaaBaaale aacaWGUbaabeaakiaacYcacqqHuoardaWgaaWcbaGaaGymaaqabaGc caGGSaGaeuiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3C51@  by setting

T n = Φ Δ n T 1 = Φ Δ 1 T 2 = Φ Δ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg2da9maalaaabaGaeyOaIyRaeuOPdyeabaGaeyOaIyRaeuiLdq0a aSbaaSqaaiaad6gaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGubWaaSbaaSqa aiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacq GHciITcqqHuoardaWgaaWcbaGaaGymaaqabaaaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaWgaaWc baGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabfA6agbqaai abgkGi2kabfs5aenaaBaaaleaacaaIYaaabeaaaaaaaa@75DD@

 The value of Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@325A@  represents the work done per unit area in separating the interface by Δ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiLdaaa@3200@ .

 

2. A number of different functions are used to approximate Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@325A@ .  Here, we will just give one example (a simplified version of a potential developed by Xu and Needleman, 1995)

Φ( Δ n , Δ t )= ϕ n ϕ n 1+ Δ n δ n exp Δ n δ n exp β 2 Δ t 2 δ n 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiabfs5aenaaBaaale aacaWGUbaabeaakiaacYcacqqHuoardaWgaaWcbaGaamiDaaqabaGc caGGPaGaeyypa0Jaeqy1dy2aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0 Iaeqy1dy2aaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaaIXaGaey4k aSYaaSaaaeaacqqHuoardaWgaaWcbaGaamOBaaqabaaakeaacqaH0o azdaWgaaWcbaGaamOBaaqabaaaaaGccaGLOaGaayzkaaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabfs5aenaaBaaale aacaWGUbaabeaaaOqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaaa kiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTm aalaaabaGaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaeuiLdq0aa0ba aSqaaiaadshaaeaacaaIYaaaaaGcbaGaeqiTdq2aa0baaSqaaiaad6 gaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@637F@

Here, Δ t 2 = Δ 1 2 + Δ 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aa0baaSqaaiaadshaaeaaca aIYaaaaOGaeyypa0JaeuiLdq0aa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaeuiLdq0aa0baaSqaaiaaikdaaeaacaaIYaaaaaaa@3C39@ , while ϕ n , δ n ,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaad6gaaeqaaO Gaaiilaiabes7aKnaaBaaaleaacaWGUbaabeaakiaacYcacqaHYoGy aaa@39A0@  are material properties. Their physical significance is discussed below.

 

3. Formulas relating ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsfadaWgaaWcbaGaamOBaa qabaGccaGGSaGaamivamaaBaaaleaacaaIXaaabeaakiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3930@  to ( Δ n , Δ 1 , Δ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabfs5aenaaBaaaleaacaWGUb aabeaakiaacYcacqqHuoardaWgaaWcbaGaaGymaaqabaGccaGGSaGa euiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3AD7@  can be calculated by differentiating the potential.  The result is

T n = σ max Δ n δ n exp 1 Δ n δ n exp β 2 Δ t 2 δ n 2 T α =2 σ max β 2 Δ α δ n 1+ Δ n δ n exp 1 Δ n δ n exp β 2 Δ t 2 δ n 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGubWaaSbaaSqaaiaad6gaae qaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baGcdaWcaaqaaiabfs5aenaaBaaaleaacaWGUbaabeaaaOqaaiabes 7aKnaaBaaaleaacaWGUbaabeaaaaGcciGGLbGaaiiEaiaacchadaqa daqaaiaaigdacqGHsisldaWcaaqaaiabfs5aenaaBaaaleaacaWGUb aabeaaaOqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaaakiaawIca caGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaaba GaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaeuiLdq0aa0baaSqaaiaa dshaaeaacaaIYaaaaaGcbaGaeqiTdq2aa0baaSqaaiaad6gaaeaaca aIYaaaaaaaaOGaayjkaiaawMcaaaqaaiaadsfadaWgaaWcbaGaeqyS degabeaakiabg2da9iaaikdacqaHdpWCdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaakmaabmaabaWaaSaaaeaacqaHYoGydaahaaWcbeqa aiaaikdaaaGccqqHuoardaWgaaWcbaGaeqySdegabeaaaOqaaiabes 7aKnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaqadaqa aiaaigdacqGHRaWkdaWcaaqaaiabfs5aenaaBaaaleaacaWGUbaabe aaaOqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGL PaaaciGGLbGaaiiEaiaacchadaqadaqaaiaaigdacqGHsisldaWcaa qaaiabfs5aenaaBaaaleaacaWGUbaabeaaaOqaaiabes7aKnaaBaaa leaacaWGUbaabeaaaaaakiaawIcacaGLPaaaciGGLbGaaiiEaiaacc hadaqadaqaaiabgkHiTmaalaaabaGaeqOSdi2aaWbaaSqabeaacaaI YaaaaOGaeuiLdq0aa0baaSqaaiaadshaaeaacaaIYaaaaaGcbaGaeq iTdq2aa0baaSqaaiaad6gaaeaacaaIYaaaaaaaaOGaayjkaiaawMca aaaaaa@8EC4@

where σ max = ϕ n / δ n exp(1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaGccqGH9aqpcqaHvpGzdaWgaaWcbaGaamOBaaqabaGc caGGVaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaOGaciyzaiaacIhaca GGWbGaaiikaiaaigdacaGGPaaaaa@4214@ .  The traction-displacement relations are plotted below. Under purely normal tensile loading, the interface has work of separation ϕ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaad6gaaeqaaa aa@33C7@ , and the noremal traction reaches a value of σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@  at an interface separation Δ n = δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0JaeqiTdq2aaSbaaSqaaiaad6gaaeqaaaaa@3739@ .  Under purely shear loading, the tangential traction has a maximum value τ max =β ϕ n 2 /( δ n exp(1) ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaGccqGH9aqpcqaHYoGycqaHvpGzdaWgaaWcbaGaamOB aaqabaGcdaGcaaqaaiaaikdaaSqabaGccaGGVaGaaiikaiabes7aKn aaBaaaleaacaWGUbaabeaakmaakaaabaGaciyzaiaacIhacaGGWbGa aiikaiaaigdacaGGPaaaleqaaOGaaiykaaaa@4616@  at a tangential shear displacement Δ t = δ n / 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaO Gaeyypa0JaeqiTdq2aaSbaaSqaaiaad6gaaeqaaOGaai4lamaakaaa baGaaGOmaaWcbeaaaaa@38D3@ .


 

 

Constitutive equations modeling irreversible separation between interfaces. Most interfaces do not heal when brought back into contact after separation.   In applications where interfaces are subjected to cyclic loading, more complicated constitutive equations must be used to account for this irreversible behavior.   Again, a very large number of such constitutive equations have been developed: we will illustrate their general features using a model adapted from Ortiz and Pandolfi, (1999) as a representative example.

 

The behavior of the interface can be illustrated using its response to a purely normal tensile traction, shown in the traction-separation law in the figure.  The interface initially responds elastically, with a constant stiffness k 0 = σ max / d 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaaIWaaabeaaki abg2da9iabeo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGa ai4laiaadsgadaWgaaWcbaGaaGymaaqabaaaaa@3B16@ , so that T n = k 0 Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg2da9iaadUgadaWgaaWcbaGaaGimaaqabaGccqqHuoardaWgaaWc baGaamOBaaqabaaaaa@384D@ .   As long as Δ n d 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO GaeyizImQaamizamaaBaaaleaacaaIXaaabeaaaaa@36F4@  the interface is reversible and undamaged.   If the displacement exceeds   Δ n = d 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0JaamizamaaBaaaleaacaaIXaaabeaaaaa@3645@ , the interface begins to accumulate irreversible damage, which causes the stress to drop.  At the same time, the damage reduces the stiffness of the interface, so that during unloading the traction-displacement relation remains linear, but with a reduced slope. Note that the total work of separation for the interface under tensile loading is ϕ 0 = σ max ( d 1 + d 2 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGc caGGOaGaamizamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgada WgaaWcbaGaaGOmaaqabaGccaGGPaGaai4laiaaikdaaaa@40CA@ . The constitutive equation is constructed as follows:

 

1. The material surfaces S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  are completely prevented from overlapping, by enforcing the constraint Δ n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO GaeyyzImRaaGimaaaa@35EF@

 

2. The magnitude of the relative displacement between S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  is quantified by a scalar parameter λ= Δ n 2 + β 2 ( Δ 1 2 + Δ 2 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0ZaaOaaaeaacqqHuo ardaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHRaWkcqaHYoGydaah aaWcbeqaaiaaikdaaaGccaGGOaGaeuiLdq0aa0baaSqaaiaaigdaae aacaaIYaaaaOGaey4kaSIaeuiLdq0aa0baaSqaaiaaikdaaeaacaaI YaaaaOGaaiykaaWcbeaaaaa@42DB@ , where β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  is a material property, which controls the relative stiffness and strength of the interface under normal and shear loading.

 

 

3. Similarly, the magnitude of the traction can be quantified by an effective stress τ= T n 2 +( T 1 2 + T 2 2 )/ β 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0ZaaOaaaeaacaWGub Waa0baaSqaaiaad6gaaeaacaaIYaaaaOGaey4kaSIaaiikaiaadsfa daqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWGubWaa0baaS qaaiaaikdaaeaacaaIYaaaaOGaaiykaiaac+cacqaHYoGydaahaaWc beqaaiaaikdaaaaabeaaaaa@41E3@

 

4. The tractions acting between S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  are related to the relative displacement by an elastic potential   Φ( Δ n , Δ 1 , Δ 2 ,D) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiabfs5aenaaBaaale aacaWGUbaabeaakiaacYcacqqHuoardaWgaaWcbaGaaGymaaqabaGc caGGSaGaeuiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadseaca GGPaaaaa@3DCA@  by setting

T n = Φ Δ n T 1 = Φ Δ 1 T 2 = Φ Δ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg2da9maalaaabaGaeyOaIyRaeuOPdyeabaGaeyOaIyRaeuiLdq0a aSbaaSqaaiaad6gaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGubWaaSbaaSqa aiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacq GHciITcqqHuoardaWgaaWcbaGaaGymaaqabaaaaOGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaWgaaWc baGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabfA6agbqaai abgkGi2kabfs5aenaaBaaaleaacaaIYaaabeaaaaaaaa@75DD@

Here, 0D1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabgsMiJkaadseacqGHKjYOca aIXaaaaa@3688@  is a scalar parameter that quantifies the irreversible damage accumulated by the interface. 

 

5. A linear traction-displacement relation is constructed by making Φ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@325A@  a quadratic function of λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@ , as follows

Φ= k 0 (1D) λ 2 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaeyypa0Jaam4AamaaBaaale aacaaIWaaabeaakiaacIcacaaIXaGaeyOeI0IaamiraiaacMcacqaH 7oaBdaahaaWcbeqaaiaaikdaaaGccaGGVaGaaGOmaaaa@3D20@

Here, k 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaaIWaaabeaaaa a@32B6@  is a material property that corresponds to the slope of the traction-displacement relation for the undamaged interface.  It follows that the tractions are related to the displacements by

T n = k 0 (1D) Δ n T 1 = β 2 k 0 (1D) Δ 1 T 2 = β 2 k 0 (1D) Δ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg2da9iaadUgadaWgaaWcbaGaaGimaaqabaGccaGGOaGaaGymaiab gkHiTiaadseacaGGPaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadsfadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaHYo GydaahaaWcbeqaaiaaikdaaaGccaWGRbWaaSbaaSqaaiaaicdaaeqa aOGaaiikaiaaigdacqGHsislcaWGebGaaiykaiabfs5aenaaBaaale aacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWGubWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja eqOSdi2aaWbaaSqabeaacaaIYaaaaOGaam4AamaaBaaaleaacaaIWa aabeaakiaacIcacaaIXaGaeyOeI0IaamiraiaacMcacqqHuoardaWg aaWcbaGaaGOmaaqabaaaaa@7F01@

 

6. The constitutive law is completed by devising an appropriate equation governing the evolution of D.    D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiraaaa@31A9@  remains constant if: the traction on the interface is less than its current strength; or if the interface is unloaded; or if D reaches 1.  Otherwise, D must evolve so that the strength of the interface decreases linearly from its initial value σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@  to zero as the effective displacement λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  increases from λ= d 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaamizamaaBaaale aacaaIXaaabeaaaaa@356A@  to λ= d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0JaamizamaaBaaale aacaaIYaaabeaaaaa@356B@ . This requires

dD dt = 0τ< (1D)(1+ d 1 / d 2 ) σ max 1D+ d 1 / d 2 or dλ/dt<0orD=1 (1D)+ d 1 d 2 1 λ dλ dt Otherwise MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamiraaqaaiaads gacaWG0baaaiabg2da9maaceaabaqbaeqabiqaaaqaaiaaicdacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes 8a0jabgYda8maalaaabaGaaiikaiaaigdacqGHsislcaWGebGaaiyk aiaacIcacaaIXaGaey4kaSIaamizamaaBaaaleaacaaIXaaabeaaki aac+cacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabeo8aZnaa BaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaGcbaGaaGymaiabgkHiTi aadseacqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaa dsgadaWgaaWcbaGaaGOmaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caqGVbGaaeOCaiaabccacaaMc8UaaGPaVlaaykW7caWG KbGaeq4UdWMaai4laiaadsgacaWG0bGaeyipaWJaaGimaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa b+gacaqGYbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam iraiabg2da9iaaigdacaaMc8UaaGPaVdqaamaabmaabaGaaiikaiaa igdacqGHsislcaWGebGaaiykaiabgUcaRmaalaaabaGaamizamaaBa aaleaacaaIXaaabeaaaOqaaiaadsgadaWgaaWcbaGaaGOmaaqabaaa aaGccaGLOaGaayzkaaWaaSaaaeaacaaIXaaabaGaeq4UdWgaamaala aabaGaamizaiabeU7aSbqaaiaadsgacaWG0baaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4taiaabsha caqGObGaaeyzaiaabkhacaqG3bGaaeyAaiaabohacaqGLbGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8oaaaGaay5Eaaaaaa@22F6@

 

 

 

Representative values for properties of cohesive zones. The two constitutive laws contain the following parameters:

 

1. The reversible interface can be conveniently characterized by its strength, σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@ ; the total work of tensile separation ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@ , and the parameter β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  that controls the ratio of shear to normal strength. 

 

2. The irreversible interface can be characterized by its strength, σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@ ; the total work of tensile separation ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@ , the parameter β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  and the displacement d 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIXaaabeaaaa a@32B0@  at the instant of maximum stress.

 

It is difficult to give precise values for these material properties.  This is partly because the constitutive equations are used to model a variety of physical processes that lead to failure, and partly because there is no simple way to measure the values of the parameters.   The following guidelines are usually followed:

 

1. If the cohesive zone is used to model atomic-scale cleavage in a brittle elastic material, or adhesion between two elastic solids, then ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@  is set equal to the fracture toughness of the interface (typically ϕ 0 1 Jm -2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaO GaeyisISRaaGymaiaaykW7caaMc8UaaeOsaiaab2gadaahaaWcbeqa aiaab2cacaqGYaaaaaaa@3C69@  ), and the peak strength of the material σ max E/100 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaGccqGHijYUcaWGfbGaai4laiaaigdacaaIWaGaaGim aaaa@3B0A@  where E is the Young’s modulus.  Available data suggests that interfaces are stronger in shear than in tension so β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  is usually taken to be slightly less than 1 ( β0.7 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyisISRaaGimaiaac6caca aI3aaaaa@365F@  ).   Computations are usually not strongly sensitive to the shape of the cohesive zone, so d 1 / d 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIXaaabeaaki aac+cacaWGKbWaaSbaaSqaaiaaikdaaeqaaaaa@353E@  can be taken to be approximately 1 in the irreversible model.

 

2. If the cohesive zone is intended to model both the plastic zone and the failure process at the tip of a crack in an otherwise elastic solid, then ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@  is set equal to the fracture toughness of the solid (fracture toughness values are tabulated in Section 9.3.6), while σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@  is taken to be roughly three times the yield stress of the solid in uniaxial tension (yield stress values are tabulated in Section 3.6.9).  Again, β0.7 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyisISRaaGimaiaac6caca aI3aaaaa@365F@ , while d 1 / d 2 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIXaaabeaaki aac+cacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaeyisISRaaGymaaaa @37B4@  in the irreversible model.

 

3. Cohesive zones are sometimes used to model material separation at the tip of a crack in a plastic solid, together with an elastic-plastic constitutive equation for the two solids adjacent to the cohesive interface.   In this case it is not usually clear what process the cohesive zone represents.  Experience shows that if the strength σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@  of the cohesive zone is taken to be too high (greater than approximately three times the yield stress of the plastic material) the crack will never propagate.  If the strength of the cohesive zone is less than the yield stress, there is no plasticity.  Consequently 3Y< σ max <Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaG4maiaadMfacqGH8aapcqaHdpWCda WgaaWcbaGaciyBaiaacggacaGG4baabeaakiabgYda8iaadMfaaaa@3A2E@ .  It is difficult to interpret the meaning of ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@  in these models, but fortunately simulations tend to be relatively insensitive to ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@ .  A value for ϕ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaa aa@338E@  is usually estimated by choosing a sensible characteristic length (between 1μm MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaykW7caaMc8UaeqiVd0Maae yBaaaa@3757@  and   10μm MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdacaaMc8UaaGPaVlabeY 7aTjaab2gaaaa@3811@  ) for δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaa aa@33A4@  or d 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIXaaabeaaaa a@32B0@  and setting ϕ n = σ max δ n exp(1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGc cqaH0oazdaWgaaWcbaGaamOBaaqabaGcciGGLbGaaiiEaiaacchaca GGOaGaaGymaiaacMcaaaa@4161@  for the reversible model; or ϕ 0 = σ max ( d 1 + d 2 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGc caGGOaGaamizamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgada WgaaWcbaGaaGOmaaqabaGccaGGPaGaai4laiaaikdaaaa@40CA@  for the irreversible version.

 

 

 

3.13.2 Models of contact and friction between surfaces

 

Experimental observations of friction between contacting surfaces: A friction experiment is conceptually very simple: two surfaces are pressed into contact by a controlled normal pressure p, and the specimens are loaded so as to induce a state of uniform shear traction T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivaaaa@31B9@  acting between the contacting surfaces as shown below.

 


 

 

The experiment seeks to answer the following questions:

 

1. What is the critical combination of normal and tangential forces cause the surfaces to start to slide?

 

2. If the two surfaces do start to slip, what tangential force is required to keep them sliding? 

 

3. If the surfaces are slipping, how does the tangential force vary with sliding velocity and normal pressure, and how does the surface respond to changes in sliding velocity and pressure?

 

4. How does friction depend on the contact area, the properties of the two contacting surfaces; surface roughness; environment; lubricant films, etc?

 

The results of these experiments show that, for most engineering surfaces which make contact over a nominal area exceeding 100μ m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdacaaIWaGaeqiVd0Maae yBamaaCaaaleqabaGaaeOmaaaaaaa@3697@  or so:

 

· The critical tangential traction required to initiate sliding between two surfaces is proportional to the normal pressure.  If the normal force is zero, the contact can’t support any tangential force.  Doubling the normal force will double the critical tangential force that initiates slip.

 

· Surface roughness has a very modest effect on friction.  Doubling the surface roughness might change the friction force by a few percent.

 

· Contaminants or lubricant on the two surfaces has a big effect on friction.  Even a little moisture on the surfaces can reduce friction by 20-30%.  If there is a thin layer of grease on the surfaces it can cut friction by a factor of 10.  If the contaminants are removed,  friction forces can be huge, and the two surfaces can seize together completely. 

 

· Friction forces depend quite strongly on what the two surfaces are made from.  Some materials like to bond with each other (metals generally bond well to other metals, for example) and so have high friction forces.  Some materials (e.g. Teflon) don’t bond well to other materials.  In this case friction forces will be smaller.

 

· If the surfaces start to slide, the tangential force often (but not always) drops slightly.  Thus, kinetic friction forces are often a little lower than static friction forces.  Otherwise, kinetic friction forces behave just like static friction MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  they are proportional to the normal force, etc.

 

· The steady-state kinetic friction force usually (but not always) decreases slightly as the sliding speed increases.  Increasing sliding speed by a factor of 10 might drop the friction force by a few percent.

 

· The transient response to changes in sliding speed has been extensively studied in geological materials, motivated by the need to understand earthquakes. In these materials, increasing the sliding speed causes an instantaneous increase in shear traction, which then gradually decays to a lower steady-state value, as illustrated in the figure.  If the sliding speed is reduced, there is an instantaneous drop in the friction force, which subsequently increases towards a steady state.  The transients occur over a sliding distance of order 10-50 microns.   This behavior has been observed in other materials (including metals) as well, but is not universal MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for example Gearing, Moon and Anand (2001) observe an increase in steady state friction forces with sliding speed in sliding of Al against steel.

 

· The transient response to a change in contact pressure has not been studied as extensively as the response to changes in sliding speed.  The data of Prakash (1998) indicates that when the contact pressure is suddenly increased, the shear traction is initially unchanged, and subsequently asymptotes towards a value proportional to the new contact pressure as the relative distance of sliding between the two surfaces increases, as illustrated in the figure.

 

These trends can be attributed to the effects of surface roughness.   All surfaces are rough, and when brought into contact meet only at highest points on the two surfaces, as shown below. The true area of contact between the two surfaces is much less than the nominal contact area, and increases roughly in proportion to the nominal contact pressure acting between the surfaces.   The nominal tangential traction is proportional to the product of the true contact area and the shear strength of the contacting surfaces, and is therefore approximately proportional to the nominal contact pressure.  The transient response is determined by the way in which contact area and shear strength change in response to changes in pressure and sliding speed.

 


 

There are some situations where the true area of contact approaches the nominal contact area. Examples include (i) the tip of an atomic force microscope, which has roughness comparable to atomic scale dimensions; (ii) friction between the tool and workpiece in metal forming applications.  In these situations the traction acting tangent to the surface is relatively insensitive to the contact pressure.  

 

 

Kinematics:  Constitutive laws for friction must account for large relative motion between the contacting surfaces. Consequently, the contact is best characterized by the relative position and motion of the two surfaces in the deformed configuration.

 


 

1. One of the two surfaces is arbitrarily designated the `master’ surface, and labeled S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , as shown above. The other surface is designated the ‘slave’, and is labeled S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ .  Note that in some friction models (e.g. the plasticity model described below) exchanging the master and slave surface will have a small influence on the behavior of the interface. 

 

2. At a representative point y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaCaaaleqabaGaeyOeI0caaa aa@32FC@  on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , we let n denote a unit vector normal to S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  and introduce two mutually perpendicular unit vectors e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHXoqyaeqaaa aa@3399@  that are tangent to S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ .  We take e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@  to point along a characteristic material direction in S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , i.e. if m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BD@  is a unit vector tangent to S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  in the undeformed slave surface, e 1 =(F m 1 )/ F m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki abg2da9iaacIcacaWHgbGaeyyXICTaaCyBamaaBaaaleaacaaIXaaa beaakiaacMcacaGGVaWaaqWaaeaacaWHgbGaeyyXICTaaCyBamaaBa aaleaacaaIXaaabeaaaOGaay5bSlaawIa7aaaa@42F3@  in the deformed surface.

 

3. The gap between the two surfaces is characterized by the points on the two surfaces that lie along n, i.e. y + = y + Δ n n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaCaaaleqabaGaey4kaScaaO Gaeyypa0JaaCyEamaaCaaaleqabaGaeyOeI0caaOGaey4kaSIaeuiL dq0aaSbaaSqaaiaad6gaaeqaaOGaaCOBaaaa@3A8F@   

 

4. The relative velocity of the two surfaces is defined as

v= d dt ( y + y ) Δ n dn dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9maalaaabaGaamizaa qaaiaadsgacaWG0baaaiaacIcacaWH5bWaaWbaaSqabeaacqGHRaWk aaGccqGHsislcaWH5bWaaWbaaSqabeaacqGHsislaaGccaGGPaGaaG PaVlabgkHiTiabfs5aenaaBaaaleaacaWGUbaabeaakmaalaaabaGa amizaiaah6gaaeaacaWGKbGaamiDaaaaaaa@4520@

It is convenient to separate the relative velocity into components normal and tangent to the surface v n =d Δ n /dt=vn MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGUbaabeaaki abg2da9iaadsgacqqHuoardaWgaaWcbaGaamOBaaqabaGccaGGVaGa amizaiaadshacqGH9aqpcaWH2bGaeyyXICTaaCOBaaaa@3F5D@ ,   v 1 =v e 1 v 2 =v e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaaIXaaabeaaki abg2da9iaahAhacqGHflY1caWHLbWaaSbaaSqaaiaaigdaaeqaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamODamaaBaaale aacaaIYaaabeaakiabg2da9iaahAhacqGHflY1caWHLbWaaSbaaSqa aiaaikdaaeqaaaaa@4A4E@ .

 

5. In finite element computations it is sometimes convenient to introduce a small elastic compliance for the interface.   In this case, the relative velocity of the surfaces is divided into a reversible elastic part and an irreversible (plastic) part by defining

v= v e + v p v n = v n e + v n p v α = v α e + v α p α=1,2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahAhadaahaaWcbe qaaiaadwgaaaGccqGHRaWkcaWH2bWaaWbaaSqabeaacaWGWbaaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamODamaaBaaale aacaWGUbaabeaakiabg2da9iaadAhadaqhaaWcbaGaamOBaaqaaiaa dwgaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaad6gaaeaacaWGWbaaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamODamaaBaaa leaacqaHXoqyaeqaaOGaeyypa0JaamODamaaDaaaleaacqaHXoqyae aacaWGLbaaaOGaey4kaSIaamODamaaDaaaleaacqaHXoqyaeaacaWG WbaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7cqaHXoqycqGH9aqpcaaIXaGaaiilaiaaikdaaaa@7228@

 

 

 

Kinetics: The forces acting between the two surfaces are characterized as follows:

 

1. The points on the two surfaces at position y + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaCaaaleqabaGaey4kaScaaa aa@32F1@  and y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaCaaaleqabaGaeyOeI0caaa aa@32FC@  are assumed to exert equal and opposite tractions on one another. We let t + ( y + ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaey4kaScaaO GaaiikaiaahMhadaahaaWcbeqaaiabgUcaRaaakiaacMcaaaa@366A@ , t ( y ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaeyOeI0caaO GaaiikaiaahMhadaahaaWcbeqaaiabgkHiTaaakiaacMcaaaa@3680@  denote the tractions on S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , respectively.

 

2. Since t + ( y + )= t ( y ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaey4kaScaaO GaaiikaiaahMhadaahaaWcbeqaaiabgUcaRaaakiaacMcacqGH9aqp cqGHsislcaWH0bWaaWbaaSqabeaacqGHsislaaGccaGGOaGaaCyEam aaCaaaleqabaGaeyOeI0caaOGaaiykaaaa@3DFD@ , the tractions can be characterized by the three scalar components ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsfadaWgaaWcbaGaamOBaa qabaGccaGGSaGaamivamaaBaaaleaacaaIXaaabeaakiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3930@  of t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaeyOeI0caaa aa@32F7@  in the basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4Eaiaah6gacaGGSaGaaCyzamaaBa aaleaacaaIXaaabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqa aOGaaiyFaaaa@38F6@ .

 

 

 

Constitutive equations for sliding friction must specify relationships between ( Δ n , v i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabfs5aenaaBaaaleaacaWGUb aabeaakiaacYcacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaaaa @3797@  and ( T n , T 1 , T 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadsfadaWgaaWcbaGaamOBaa qabaGccaGGSaGaamivamaaBaaaleaacaaIXaaabeaakiaacYcacaWG ubWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3930@ .  Various alternatives are summarized briefly below.

 

Coulomb Friction:  This is the most familiar friction law.  For this model

 

1. The interface separates, with an indeterminate Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaa aa@3365@  if T n >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg6da+iaaicdaaaa@34A4@ ;

 

2. The surfaces are prevented from inter-penetrating Δ n =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0JaaGimaaaa@352F@  if T n <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abgYda8iaaicdaaaa@34A0@ ;

 

3. No slip occurs between the surfaces v i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki abg2da9iaaicdaaaa@34BF@  if T 1 2 + T 2 2 <μ T n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaWGubWaa0baaSqaaiaaig daaeaacaaIYaaaaOGaey4kaSIaamivamaaDaaaleaacaaIYaaabaGa aGOmaaaaaeqaaOGaeyipaWJaeqiVd02aaqWaaeaacaWGubWaaSbaaS qaaiaad6gaaeqaaaGccaGLhWUaayjcSdaaaa@3EBF@ , where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is the coefficient of friction;

 

4. The tangential traction is proportional to the normal pressure and opposes the direction of slip if the two surfaces slide T 1 =μ T n v 1 / v 1 2 + v 2 2 T 2 =μ T n v 2 / v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaki abg2da9iabeY7aTnaaemaabaGaamivamaaBaaaleaacaWGUbaabeaa aOGaay5bSlaawIa7aiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGVa WaaOaaaeaacaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4k aSIaamODamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua amivamaaBaaaleaacaaIYaaabeaakiabg2da9iabeY7aTnaaemaaba GaamivamaaBaaaleaacaWGUbaabeaaaOGaay5bSlaawIa7aiaadAha daWgaaWcbaGaaGOmaaqabaGccaGGVaWaaOaaaeaacaWG2bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaI YaaabaGaaGOmaaaaaeqaaaaa@63D7@ .

 

 

Table 3.17 <Table 3.17 near here> lists rough values for friction coefficients for a few material pairs.  These are rough guides only MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  friction coefficients for a given material can by highly variable (for example, friction for a steel/steel contact can vary anywhere between 0.001 to 3), and can even vary significantly with time or sliding distance during an experiment.

 

 

HEALTH WARNING: Descriptions of Coulomb friction in elementary mechanics and physics texts often distinguish between kinetic and static friction coefficients.  It is not advisable to do adopt this approach when posing a boundary value problem in continuum mechanics, as it is likely to make the problem ill-posed (with either no solution, or an infinite number of solutions).  In fact, even with a single friction coefficient the Coulomb friction model can be ill-posed and should be used with caution.

 

 

 

Coulomb Friction with a shear cutoff: In metal forming applications contacting surfaces can be subjected to extremely high pressure, with the result that the true area of contact approaches the nominal area.  Under these conditions, the shear traction is no longer proportional to the contact pressure.  Behavior at high pressure is often approximated by truncating the shear traction at a critical value (usually taken to be somewhat lower than the shear yield strength of the softer of the two contacting surfaces).  The modified friction has the following constitutive equations:

 

1. The interface separates, with an indeterminate Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaa aa@3365@  if T n >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg6da+iaaicdaaaa@34A4@ ;

 

2. The surfaces are prevented from inter-penetrating Δ n =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0JaaGimaaaa@352F@  if T n <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abgYda8iaaicdaaaa@34A0@ ;

 

3. We introduce the shear resistance of the interface τ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaa aa@338B@  defined as

τ= μ T n μ T n τ 0 τ 0 μ T n τ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0Zaaiqaaeaafaqabe GabaaabaGaeqiVd02aaqWaaeaacaWGubWaaSbaaSqaaiaad6gaaeqa aaGccaGLhWUaayjcSdGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeqiVd02aaqWaaeaacaWGubWaaSbaaSqaaiaad6gaae qaaaGccaGLhWUaayjcSdGaeyizImQaeqiXdq3aaSbaaSqaaiaaicda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVd qaaiabes8a0naaBaaaleaacaaIWaaabeaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqiVd02aaqWa aeaacaWGubWaaSbaaSqaaiaad6gaaeqaaaGccaGLhWUaayjcSdGaey yzImRaeqiXdq3aaSbaaSqaaiaaicdaaeqaaaaaaOGaay5Eaaaaaa@9127@

 

4. No slip occurs between the surfaces v i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki abg2da9iaaicdaaaa@34BF@  if T 1 2 + T 2 2 <τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaWGubWaa0baaSqaaiaaig daaeaacaaIYaaaaOGaey4kaSIaamivamaaDaaaleaacaaIYaaabaGa aGOmaaaaaeqaaOGaeyipaWJaeqiXdqhaaa@39AA@ , where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is the coefficient of friction;

 

5. The tangential traction is proportional to the normal pressure and opposes the direction of slip if the two surfaces slide T 1 =τ v 1 / v 1 2 + v 2 2 T 2 =τ v 2 / v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaki abg2da9iabes8a0jaadAhadaWgaaWcbaGaaGymaaqabaGccaGGVaWa aOaaaeaacaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaS IaamODamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam ivamaaBaaaleaacaaIYaaabeaakiabg2da9iabes8a0jaadAhadaWg aaWcbaGaaGOmaaqabaGccaGGVaWaaOaaaeaacaWG2bWaa0baaSqaai aaigdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaIYaaa baGaaGOmaaaaaeqaaaaa@59AD@ .

 

 

Rate and state variable models of friction: The variation of friction with sliding velocity and transient behavior following changes in contact pressure play an important role in controlling the stability of sliding on an interface.   Several friction laws have been developed to describe this behavior, and are widely used in geophysics applications.  As a representative example, we outline a constitutive law based loosely on work of Dieterich, (1979), Ruina, (1983) and Prakash (1998). 

 

The transient behavior of sliding friction is modeled by introducing two `state variables’ ω ± , p ± MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaWbaaSqabeaacqGHXcqSaa GccaGGSaGaamiCamaaCaaaleqabaGaeyySaelaaaaa@3892@  for each material point on S ± MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyySaelaaa aa@33D3@ .  The state variables evolve according to

dω dt = v s ω v s L v + 1 t v dp dt = T n +p v s L p + 1 t p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyYdChabaGaam izaiaadshaaaGaeyypa0ZaaeWaaeaacaWG2bWaaSbaaSqaaiaadoha aeqaaOGaeyOeI0IaeqyYdChacaGLOaGaayzkaaWaaeWaaeaadaWcaa qaaiaadAhadaWgaaWcbaGaam4CaaqabaaakeaacaWGmbWaaSbaaSqa aiaadAhaaeqaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaadshada WgaaWcbaGaamODaaqabaaaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWGWb aabaGaamizaiaadshaaaGaeyypa0JaeyOeI0YaaeWaaeaacaWGubWa aSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamiCaaGaayjkaiaawMcaam aabmaabaWaaSaaaeaacaWG2bWaaSbaaSqaaiaadohaaeqaaaGcbaGa amitamaaBaaaleaacaWGWbaabeaaaaGccqGHRaWkdaWcaaqaaiaaig daaeaacaWG0bWaaSbaaSqaaiaadchaaeqaaaaaaOGaayjkaiaawMca aaaa@7EC6@

where v s = v 1 p 2 + v 2 p 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGZbaabeaaki abg2da9maakaaabaWaaeWaaeaacaWG2bWaa0baaSqaaiaaigdaaeaa caWGWbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWG2bWaa0baaSqaaiaaikdaaeaacaWGWbaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@3FB4@ , ( L v , L p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadYeadaWgaaWcbaGaamODaa qabaGccaGGSaGaamitamaaBaaaleaacaWGWbaabeaakiaacMcaaaa@36E7@  are material properties with units of length, and ( t v , t p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadshadaWgaaWcbaGaamODaa qabaGccaGGSaGaamiDamaaBaaaleaacaWGWbaabeaakiaacMcaaaa@3737@  are material properties with units of time.  The two surfaces S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  may have different properties. To interpret these equations, note that

 

1. Both ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  and p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaaaa@31D5@  evolve with time and the sliding distance.

 

2. If the surfaces slide at constant speed, then ω v s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyOKH4QaamODamaaBaaale aacaWGZbaabeaaaaa@36B9@  in the steady state, while if the surfaces are subjected to a time independent normal traction p T n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiabgkziUkabgkHiTiaadsfada WgaaWcbaGaamOBaaqabaaaaa@36A7@ .

 

3. The two constants  ( t v , t p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadshadaWgaaWcbaGaamODaa qabaGccaGGSaGaamiDamaaBaaaleaacaWGWbaabeaakiaacMcaaaa@3737@  control the time-scale associated with this evolution for a static contact; while ( L v , L p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadYeadaWgaaWcbaGaamODaa qabaGccaGGSaGaamitamaaBaaaleaacaWGWbaabeaakiaacMcaaaa@36E7@  control the distance required for ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  and p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaaaa@31D5@  to reach their steady state values under a rapidly sliding contact.

 

 

HEALTH WARNING: Note that (i) state variables must be introduced to characterize both contacting surfaces, because coincident points on the two surfaces experience different histories of contact pressure and slip velocity.  To see this, note that as you slide your finger over the surface of a table, a point on your finger sees a constant contact pressure, while a point on the table experiences a cycle of loading.  (ii) the time derivatives of the state variables should be interpreted as the rate of change experienced by an observer traveling with a particular material particle in each surface.

 

The variation of steady-state friction coefficient with sliding velocity is modeled by introducing a friction coefficient that is a function of the state variables ω ± MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdC3aaWbaaSqabeaacqGHXcqSaa aaaa@34C8@

μ( ω ¯ )= μ k +( μ s μ k )exp ( ω ¯ / V 1 ) n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0MaaiikaiqbeM8a3zaaraGaai ykaiabg2da9iabeY7aTnaaBaaaleaacaWGRbaabeaakiabgUcaRiaa cIcacqaH8oqBdaWgaaWcbaGaam4CaaqabaGccqGHsislcqaH8oqBda WgaaWcbaGaam4AaaqabaGccaGGPaGaciyzaiaacIhacaGGWbWaamWa aeaacqGHsislcaGGOaGafqyYdCNbaebacaGGVaGaamOvamaaBaaale aacaaIXaaabeaakiaacMcadaahaaWcbeqaaiaad6gaaaaakiaawUfa caGLDbaaaaa@4F3F@

where ω ¯ =( ω + + ω )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyYdCNbaebacqGH9aqpcaGGOaGaeq yYdC3aaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcqaHjpWDdaahaaWc beqaaiabgkHiTaaakiaacMcacaGGVaGaaGOmaaaa@3D4C@ , and μ k , μ s , V 1 ,n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaO GaaiilaiabeY7aTnaaBaaaleaacaWGZbaabeaakiaacYcacaWGwbWa aSbaaSqaaiaaigdaaeqaaOGaaiilaiaad6gaaaa@3B6F@  are all material properties.  The constant μ k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadUgaaeqaaa aa@33B2@  represents the limiting value of the friction coefficient as sliding velocity approaches infinity (it can be interpreted as the kinetic friction coefficient), while μ s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadohaaeqaaa aa@33BA@  is the steady-state value of friction coefficient for a static contact (and can be interpreted as the static friction coefficient).  The two constants V 1 ,n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaaki aacYcacaWGUbaaaa@344F@  control the rate at which the friction transitions from one value to the other.

 

 

The friction law can be conveniently expressed as a relationship between the tractions and the relative velocity of the contact, as follows.  For Δ n >0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO GaeyOpa4JaaGimaaaa@3531@  the surfaces are traction free T n = T 1 = T 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg2da9iaadsfadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGubWa aSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3A43@ .  For Δ n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO GaeyizImQaaGimaaaa@35DE@ :

 

1. The elastic part of the relative velocity is related to the traction components by

v n e = 1 k n d T n dt v 1 e = 1 k t d T 1 dt v 2 e = 1 k t d T 2 dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGUbaabaGaam yzaaaakiabg2da9maalaaabaGaaGymaaqaaiaadUgadaWgaaWcbaGa amOBaaqabaaaaOWaaSaaaeaacaWGKbGaamivamaaBaaaleaacaWGUb aabeaaaOqaaiaadsgacaWG0baaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWG2bWaa0baaSqaaiaaigdaaeaa caWGLbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4AamaaBaaale aacaWG0baabeaaaaGcdaWcaaqaaiaadsgacaWGubWaaSbaaSqaaiaa igdaaeqaaaGcbaGaamizaiaadshaaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaqhaaWcbaGaaGOmaa qaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRbWaaSba aSqaaiaadshaaeqaaaaakmaalaaabaGaamizaiaadsfadaWgaaWcba GaaGOmaaqabaaakeaacaWGKbGaamiDaaaaaaa@84F0@

where k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@  and k t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWG0baabeaaaa a@32F5@  are two elastic stiffnesses.  Note that these equations assume that the elastic distorsion of the interface occurs on the slave surface (the time derivatives correspond to the traction rate experienced by an observer fixed to the slave surface).

 

2. The irreversible part of the normal component of velocity v n p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGUbaabaGaam iCaaaakiabg2da9iaaicdaaaa@35BA@

 

3. The irreversible part of the tangential component of velocity is calculated from

v α p = V 0 ω ¯ V 0 +1 T t μ p ¯ m 1 T α T t T t μ p ¯ 0 T t <μ p ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacqaHXoqyaeaaca WGWbaaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGaamOvamaaBaaa leaacaaIWaaabeaakmaadmaabaWaaeWaaeaadaWcaaqaaiqbeM8a3z aaraaabaGaamOvamaaBaaaleaacaaIWaaabeaaaaGccqGHRaWkcaaI XaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaadsfadaWgaaWcba GaamiDaaqabaaakeaacqaH8oqBceWGWbGbaebaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaaGymaaGaay5waiaaw2 faamaalaaabaGaamivamaaBaaaleaacqaHXoqyaeqaaaGcbaGaamiv amaaBaaaleaacaWG0baabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamivamaaBaaaleaacaWG0baabeaakiabgwMiZkab eY7aTjqadchagaqeaaqaaiaaicdacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGub WaaSbaaSqaaiaadshaaeqaaOGaeyipaWJaeqiVd0MabmiCayaaraaa aaGaay5Eaaaaaa@0019@

where T t = T 1 2 + T 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWG0baabeaaki abg2da9maakaaabaGaamivamaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgUcaRiaadsfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaaaa a@39E5@ , ω ¯ =( ω + + ω )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyYdCNbaebacqGH9aqpcaGGOaGaeq yYdC3aaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcqaHjpWDdaahaaWc beqaaiabgkHiTaaakiaacMcacaGGVaGaaGOmaaaa@3D4C@ , p ¯ =( p + + p )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiCayaaraGaeyypa0Jaaiikaiaadc hadaahaaWcbeqaaiabgUcaRaaakiabgUcaRiaadchadaahaaWcbeqa aiabgkHiTaaakiaacMcacaGGVaGaaGOmaaaa@3AC4@  and V 0 ,m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaki aacYcacaWGTbaaaa@344D@  are two constants that control the variation of shear stress to a step change in sliding velocity.

 

 

To interpret this equation, suppose that the interface is subjected to a constant (i.e. time independent) pressure, and is constrained to slip at a rate v s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGZbaabeaaaa a@32FF@ .  The magnitude of the shear traction follows as

T t =μ( ω ¯ ) p ¯ v s / V 0 +1 ω ¯ / V 0 +1 1/m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWG0baabeaaki abg2da9iabeY7aTjabgIcaOiqbeM8a3zaaraGaaiykaiqadchagaqe amaabmaabaWaaSaaaeaacaWG2bWaaSbaaSqaaiaadohaaeqaaOGaai 4laiaadAfadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaaabaGa fqyYdCNbaebacaGGVaGaamOvamaaBaaaleaacaaIWaaabeaakiabgU caRiaaigdaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4l aiaad2gaaaaaaa@4A89@

The steady state value is T t =μ( v s ) p ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWG0baabeaaki abg2da9iabeY7aTjaacIcacaWG2bWaaSbaaSqaaiaadohaaeqaaOGa aiykaiqadchagaqeaaaa@3A33@ .   Following an instantaneous increase in sliding speed, the shear traction first jumps to a new, higher value, then progressively decreases to a lower steady-state value as ω ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyYdCNbaebaaaa@32C5@  approaches the new value of sliding speed.  Similarly, if the sliding speed is suddenly reduced, the shear stress first drops to a lower value, and subsequently increases gradually to a higher steady-state. 

 

 

Representative values of material properties for state variable model of friction.  The subtle features of friction captured by this constitutive equation are very sensitive to the materials involved, the surface finish, and the environment.  Extensive tests are required to characterize a particular contacting pair.  As a rough guide to the orders of magnitudes of the various material parameters, Table 3.18 <Table 3.18 near here> lists rough estimates for parameters based on a discussion by Coker, et al (2005) of transient friction in Homalite. 

 

 

 

Friction laws based on plasticity theory: The general framework of viscoplasticity can easily be adapted to construct friction laws that approximate the variation of friction with sliding speed and the evolution of friction with slip.   Laws of this kind are often used in metal forming simulations.   Several such models exist, but will not be described in detail here.  Instead, we will illustrate the general idea by adapting the critical state theory of plasticity outlined in Section 3.10, together with the viscoplasticity law described in Section 3.7 to construct a friction law that captures the transient behavior of a sliding interface, as follows:

 

1. The normal traction must satisfy T n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abgsMiJkaaicdaaaa@3551@ : if T n =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGUbaabeaaki abg2da9iaaicdaaaa@34A2@  the surfaces separate and T 1 = T 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaki abg2da9iaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaa aa@373B@

 

2. The relative velocity of the two surfaces is divided into elastic and plastic parts

v n = v n e + v n p v α = v α e + v α p α=1,2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGUbaabeaaki abg2da9iaadAhadaqhaaWcbaGaamOBaaqaaiaadwgaaaGccqGHRaWk caWG2bWaa0baaSqaaiaad6gaaeaacaWGWbaaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dAhadaWgaaWcbaGaeqySdegabeaakiabg2da9iaadAhadaqhaaWcba GaeqySdegabaGaamyzaaaakiabgUcaRiaadAhadaqhaaWcbaGaeqyS degabaGaamiCaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeqySdeMaeyypa0JaaGymaiaacYcacaaIYaaa aa@67E0@

 

3. The elastic part of the relative velocity is related to the traction components by

v n e = 1 k n d T n dt v 1 e = 1 k t d T 1 dt v 2 e = 1 k t d T 2 dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGUbaabaGaam yzaaaakiabg2da9maalaaabaGaaGymaaqaaiaadUgadaWgaaWcbaGa amOBaaqabaaaaOWaaSaaaeaacaWGKbGaamivamaaBaaaleaacaWGUb aabeaaaOqaaiaadsgacaWG0baaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWG2bWaa0baaSqaaiaaigdaaeaa caWGLbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4AamaaBaaale aacaWG0baabeaaaaGcdaWcaaqaaiaadsgacaWGubWaaSbaaSqaaiaa igdaaeqaaaGcbaGaamizaiaadshaaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAhadaqhaaWcbaGaaGOmaa qaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGRbWaaSba aSqaaiaadshaaeqaaaaakmaalaaabaGaamizaiaadsfadaWgaaWcba GaaGOmaaqabaaakeaacaWGKbGaamiDaaaaaaa@84F0@

where k n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGUbaabeaaaa a@32EF@  and k t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWG0baabeaaaa a@32F5@  are two elastic stiffnesses.  Note that these equations assume that the elastic distorsion occurs on the slave surface (the time derivatives correspond to the traction rate experienced by an observer fixed to the slave surface).

 

4. Three state variables p ± , ω ± , s ± MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaeyySaelaaO GaaiilaiabeM8a3naaCaaaleqabaGaeyySaelaaOGaaiilaiaadoha daahaaWcbeqaaiabgglaXcaaaaa@3C5F@  are introduced to track the history of contact pressure, sliding speed and sliding distance on each of the two contacting surfaces.   The state variables evolve according to

dp dt =cp v n p ds dt = v s dω dt = v s ω v s L v + 1 t v MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamiCaaqaaiaads gacaWG0baaaiabg2da9iabgkHiTiaadogacaWGWbGaamODamaaDaaa leaacaWGUbaabaGaamiCaaaakiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizaiaadoha aeaacaWGKbGaamiDaaaacqGH9aqpcaWG2bWaaSbaaSqaaiaadohaae qaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVpaalaaabaGaamizaiabeM8a3bqaaiaadsgacaWG0baaaiabg2da 9maabmaabaGaamODamaaBaaaleaacaWGZbaabeaakiabgkHiTiabeM 8a3bGaayjkaiaawMcaamaabmaabaWaaSaaaeaacaWG2bWaaSbaaSqa aiaadohaaeqaaaGcbaGaamitamaaBaaaleaacaWG2baabeaaaaGccq GHRaWkdaWcaaqaaiaaigdaaeaacaWG0bWaaSbaaSqaaiaadAhaaeqa aaaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8oaaa@A261@

where v s = v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGZbaabeaaki abg2da9maakaaabaGaamODamaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgUcaRiaadAhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaaaa a@3A4A@ , and c, L v , t v MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiaacYcacaWGmbWaaSbaaSqaai aadAhaaeqaaOGaaiilaiaadshadaWgaaWcbaGaamODaaqabaaaaa@374A@  are material properties.  Naturally, the two surfaces may have different values of c, L v , t v MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiaacYcacaWGmbWaaSbaaSqaai aadAhaaeqaaOGaaiilaiaadshadaWgaaWcbaGaamODaaqabaaaaa@374A@ .  The governing equations for the evolution of the state variables have been designed so that p T n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiabgkziUkabgkHiTiaadsfada WgaaWcbaGaamOBaaqabaaaaa@36A7@  and ω v s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyOKH4QaamODamaaBaaale aacaWGZbaabeaaaaa@36B9@  under conditions of steady sliding.

 

5. The variation of relative velocity between the surfaces with traction is approximated using a slip potential (similar to the viscoplastic potential described in 3.7), defined as

g( T n , T t )= V 0 τ 0 m+1 1+ T n p ¯ 2 + T t τ 0 2 1 (m+1)/2 1+ T n p ¯ 2 + T t τ 0 2 10 0 1+ T n p ¯ 2 + T t τ 0 2 10 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacaWGubWaaSbaaSqaai aad6gaaeqaaOGaaiilaiaadsfadaWgaaWcbaGaamiDaaqabaGccaGG PaGaeyypa0ZaaiqaaeaafaqabeGabaaabaWaaSaaaeaacaWGwbWaaS baaSqaaiaaicdaaeqaaOGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaaGc baGaamyBaiabgUcaRiaaigdaaaWaamWaaeaadaqadaqaaiaaigdacq GHRaWkdaWcaaqaaiaadsfadaWgaaWcbaGaamOBaaqabaaakeaaceWG WbGbaebaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaadaWcaaqaaiaadsfadaWgaaWcbaGaamiDaaqabaaa keaacqaHepaDdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaGaay5waiaaw2fa amaaCaaaleqabaGaaiikaiaad2gacqGHRaWkcaaIXaGaaiykaiaac+ cacaaIYaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7daqadaqaaiaaigdacqGHRa WkdaWcaaqaaiaadsfadaWgaaWcbaGaamOBaaqabaaakeaaceWGWbGb aebaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaS YaaeWaaeaadaWcaaqaaiaadsfadaWgaaWcbaGaamiDaaqabaaakeaa cqaHepaDdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiabgwMiZkaaicdaaeaa caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaacaaIXaGaey4k aSYaaSaaaeaacaWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGabmiCay aaraaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUca RmaabmaabaWaaSaaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaaGcba GaeqiXdq3aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacqGHKjYOcaaIWaaaaa Gaay5Eaaaaaa@21ED@

where V 0 ,m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaki aacYcacaWGTbaaaa@344D@  are material properties which control the response of the interface to an instantaneous change in traction, p ¯ =( p + + p )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiCayaaraGaeyypa0Jaaiikaiaadc hadaahaaWcbeqaaiabgUcaRaaakiabgUcaRiaadchadaahaaWcbeqa aiabgkHiTaaakiaacMcacaGGVaGaaGOmaaaa@3AC4@ , and τ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaa aa@338B@  is a representative shear strength which may be a function of one or more of the state variables, as discussed further below.   The state variable p ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiCayaaraaaaa@31ED@  plays the role of a in the critical state soil model outlined in Section 3.11.

 

6. The plastic part of the relative velocity between the surfaces is related to g through an associated flow law

v n p = g T n v α p = g T α α=1,2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGUbaabaGaam iCaaaakiabg2da9maalaaabaGaeyOaIyRaam4zaaqaaiabgkGi2kaa dsfadaWgaaWcbaGaamOBaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG 2bWaa0baaSqaaiabeg7aHbqaaiaadchaaaGccqGH9aqpdaWcaaqaai abgkGi2kaadEgaaeaacqGHciITcaWGubWaaSbaaSqaaiabeg7aHbqa baaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqaHXoqycqGH9aqpcaaIXaGaaiil aiaaikdaaaa@6CCA@

Evaluating the derivatives gives

 


 

7. Finally, the variation of the tangential force with contact pressure, sliding speed, and slip distance must be specified by an appropriate equation for τ 0 ( p ¯ , ω ¯ , s ¯ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaO GaaiikaiqadchagaqeaiaacYcacuaHjpWDgaqeaiaacYcaceWGZbGb aebacaGGPaaaaa@3A50@ .  Any sensible function can be chosen, depending on the behavior that you would like to approximate.   For example,

 

· Setting τ 0 =μ p ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaeqiVd0MabmiCayaaraaaaa@375E@  will produce Coulomb friction like behavior, with a delayed response to changes in contact pressure.   To see this, note that the model behaves like the critical state soil model discussed in Section 3.10, with `volumetric strain’ replaced by the normal separation between the surfaces, and μM MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0MaeyyyIORaamytaaaa@3531@ .

 

· Setting τ 0 = μ k +( μ s μ k )exp ( ω ¯ / V 1 ) n p ¯ /f( ω ¯ / V 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0ZaaiWaaeaacqaH8oqBdaWgaaWcbaGaam4AaaqabaGccqGH RaWkcaGGOaGaeqiVd02aaSbaaSqaaiaadohaaeqaaOGaeyOeI0Iaeq iVd02aaSbaaSqaaiaadUgaaeqaaOGaaiykaiGacwgacaGG4bGaaiiC amaadmaabaGaeyOeI0IaaiikaiqbeM8a3zaaraGaai4laiaadAfada WgaaWcbaGaaGymaaqabaGccaGGPaWaaWbaaSqabeaacaWGUbaaaaGc caGLBbGaayzxaaaacaGL7bGaayzFaaGabmiCayaaraGaai4laiaadA gacaGGOaGafqyYdCNbaebacaGGVaGaamOvamaaBaaaleaacaaIWaaa beaakiaacMcaaaa@5798@ , where f(y) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWG5bGaaiykaaaa@3422@  is the root of the equation y=x ( x 2 1) (m1)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEaiabg2da9iaadIhacaGGOaGaam iEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaWaaWba aSqabeaacaGGOaGaamyBaiabgkHiTiaaigdacaGGPaGaai4laiaaik daaaaaaa@3E61@  will give a Coulomb-like friction law with a velocity dependent friction coefficient similar to the rate-and state-variable model outlined earlier.

 

 

There is very little to distinguish the rate- and state-variable model from the plasticity based model.  The plasticity model has some advantages for numerical simulations, because (a) the transition from stick to slip is gradual; (b) The plasticity model has a `soft’ relationship between the normal displacement of the surfaces and the normal pressure; (c) the plasticity model has an associated flow rule.  All these tend to stabilize numerical computations.