3.2 Linear elastic material behavior

 

Linear elastic stress-strain laws are used to describe the behavior of materials that experience small, reversible strains when subjected to modest stress. You are probably familiar with the behavior of a linear elastic material from introductory materials courses. Their main features are reviewed briefly below.

 

 

 

3.2.1 Isotropic, linear elastic material behavior

If you conduct a uniaxial tensile test on almost any material, and keep the stress levels sufficiently low, you will observe the following behavior:

 

· The specimen deforms reversibly:  if you remove the loads, the solid returns to its original shape.

 

· The strain in the specimen depends only on the stress applied to it MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it doesn’t depend on the rate of loading, or the history of loading.

 

· For most materials, the stress is a linear function of strain, as shown in the figure. Because the strains are small, this is true whatever stress measure is adopted (Cauchy stress or nominal stress), and is true whatever strain measure is adopted (Lagrange strain or infinitesimal strain).

 

· For most, but not all, materials, the material has no characteristic orientation.  Thus, if you cut a tensile specimen out of a block of material, as shown in the figure, the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve will be independent of the orientation of the specimen relative to the block of material.  Such materials are said to be isotropic.

 

· If you heat a specimen of the material, increasing its temperature uniformly, it will generally change its shape slightly.  If the material is isotropic (no preferred material orientation) and homogeneous, then the specimen will simply increase in size, without shape change.

 

 

 

3.2.2 Stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B9@ strain relations for isotropic, linear elastic materials. Young’s Modulus, Poissons ratio and the Thermal Expansion Coefficient.

 

Before writing down stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relations, we need to decide what strain and stress measures we want to use.  Because the model only works for small shape changes

 

· Deformation is characterized using the infinitesimal strain tensor ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdaaaa@48F8@  defined in Section 2.1.7.  This is convenient for calculations, but has the disadvantage that linear elastic constitutive equations can only be used if the solid experiences small rotations, as well as small shape changes. 

 

· All stress measures are taken to be equal.  We can use the Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  as the stress measure.

 

You probably already know the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relations for an isotropic, linear elastic solid.  They are repeated below for convenience.

 


 

Here, E and ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3297@  are Young’s modulus and Poisson’s ratio, α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  is the coefficient of thermal expansion, and ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamivaaaa@331E@  is the increase in temperature of the solid.  The remaining relations can be deduced from the fact that both σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  and ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@348F@  are symmetric. 

 

The inverse relationship can be expressed as


 

HEALTH WARNING: Note the factor of 2 in the strain vector.  Most texts, and most finite element codes use this factor of two, but not all.  In addition, shear strains and stresses are often listed in a different order in the strain and stress vectors.  For isotropic materials this makes no difference, but you need to be careful when listing material constants for anisotropic materials.

 

We can write this expression in a much more convenient form using index notation.  Verify for yourself that the matrix expression above is equivalent to

ε ij = 1+ν E σ ij ν E σ kk δ ij +αΔT δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaa dweaaaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTm aalaaabaGaeqyVd4gabaGaamyraaaacqaHdpWCdaWgaaWcbaGaam4A aiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaki abgUcaRiabeg7aHjabfs5aejaadsfacqaH0oazdaWgaaWcbaGaamyA aiaadQgaaeqaaaaa@5122@

 

The inverse relation is

σ ij = E 1+ν ε ij + ν 12ν ε kk δ ij EαΔT 12ν δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaWaaiWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiab e27aUbaacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaay5Eaiaaw2haaiabgkHi TmaalaaabaGaamyraiabeg7aHjabfs5aejaadsfaaeaacaaIXaGaey OeI0IaaGOmaiabe27aUbaacqaH0oazdaWgaaWcbaGaamyAaiaadQga aeqaaaaa@5B7F@

 

The stress-strain relations are often expressed using the elastic modulus tensor C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  or the elastic compliance tensor S ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@35A2@  as

σ ij = C ijkl ε kl αΔT δ kl ε ij = S ijkl σ kl +αΔT δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGRbGaamiBaa qabaGccqGHsislcqaHXoqycqqHuoarcaWGubGaeqiTdq2aaSbaaSqa aiaadUgacaWGSbaabeaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9a qpcaWGtbWaaSbaaSqaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOGa eq4Wdm3aaSbaaSqaaiaadUgacaWGSbaabeaakiabgUcaRiabeg7aHj abfs5aejaadsfacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa @709E@

In terms of elastic constants, C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  and S ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@35A2@  are

C ijkl = E 2 1+ν δ il δ jk + δ ik δ jl + Eν 1+ν 12ν δ ij δ kl S ijkl = 1+ν 2E δ il δ jk + δ ik δ jl ν E δ ij δ kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGdbWaaSbaaSqaaiaadMgaca WGQbGaam4AaiaadYgaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGa aGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaa aadaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaamiBaaqabaGccqaH 0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaOGaey4kaSIaeqiTdq2aaS baaSqaaiaadMgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGQbGa amiBaaqabaaakiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaadweacq aH9oGBaeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGL PaaadaqadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaay zkaaaaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqaH0oaz daWgaaWcbaGaam4AaiaadYgaaeqaaaGcbaGaam4uamaaBaaaleaaca WGPbGaamOAaiaadUgacaWGSbaabeaakiabg2da9maalaaabaGaaGym aiabgUcaRiabe27aUbqaaiaaikdacaWGfbaaamaabmaabaGaeqiTdq 2aaSbaaSqaaiaadMgacaWGSbaabeaakiabes7aKnaaBaaaleaacaWG QbGaam4AaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGaamyAaiaadU gaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQgacaWGSbaabeaaaOGaayjk aiaawMcaaiabgkHiTmaalaaabaGaeqyVd4gabaGaamyraaaacqaH0o azdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdq2aaSbaaSqaaiaa dUgacaWGSbaabeaaaaaa@8AD4@

 

 

 

3.2.3 Reduced stress-strain equations for plane deformation of isotropic solids

 

For plane strain or plane stress deformations, some strain or stress components are always zero (by definition) so the stress-strain laws can be simplified. 

 

· For a plane strain deformation ε 33 = ε 23 = ε 13 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaG4maaqabaGc cqGH9aqpcqaH1oqzdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaeyypa0 JaaGimaaaa@3EAE@ .  The stress strain laws are therefore

ε 11 ε 22 2 ε 12 = (1+ν) E 1ν ν 0 ν 1ν 0 0 0 2 σ 11 σ 22 σ 12 + 1+ν αΔT 1 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeqyTdu 2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabew7aLnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaig dacaaIYaaabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaa cIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaqaaiaadweaaaWaamWaae aafaqabeWadaaabaGaaGymaiabgkHiTiabe27aUbqaaiabgkHiTiab e27aUbqaaiaaicdaaeaacqGHsislcqaH9oGBaeaacaaIXaGaeyOeI0 IaeqyVd4gabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmaaaa aiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacqaHdpWCdaWgaa WcbaGaaGymaiaaigdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikda caaIYaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqaba aaaaGccaGLBbGaayzxaaGaey4kaSYaaeWaaeaacaaIXaGaey4kaSIa eqyVd4gacaGLOaGaayzkaaGaeqySdeMaeuiLdqKaamivamaadmaaba qbaeqabmqaaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaaaaiaawUfa caGLDbaaaaa@6FFE@

σ 11 σ 22 σ 12 = E (1+ν)(12ν) 1ν ν 0 ν 1ν 0 0 0 12ν 2 ε 11 ε 22 2 ε 12 EαΔT 12ν 1 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyraaqa aiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaey OeI0IaaGOmaiabe27aUjaacMcaaaWaamWaaeaafaqabeWadaaabaGa aGymaiabgkHiTiabe27aUbqaaiabe27aUbqaaiaaicdaaeaacqaH9o GBaeaacaaIXaGaeyOeI0IaeqyVd4gabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaWaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbqaai aaikdaaaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiab ew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaa WcbaGaaGOmaiaaikdaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaa caaIXaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaGaeyOeI0YaaSaaae aacaWGfbGaeqySdeMaeuiLdqKaamivaaqaaiaaigdacqGHsislcaaI YaGaeqyVd4gaamaadmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIXa aabaGaaGimaaaaaiaawUfacaGLDbaaaaa@77E8@

σ 33 = Eν ε 11 + ε 22 12ν 1+ν + EαΔT 12ν , σ 13 = σ 23 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9maalaaabaGaamyraiabe27aUnaabmaabaGaeqyT du2aaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRiabew7aLnaaBa aaleaacaaIYaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaadaqadaqa aiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaWaaeWaae aacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaaaiabgUcaRmaa laaabaGaamyraiabeg7aHjabfs5aejaadsfaaeaacaaIXaGaeyOeI0 IaaGOmaiabe27aUbaacaGGSaGaaGPaVlaaykW7cqaHdpWCdaWgaaWc baGaaGymaiaaiodaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaik dacaaIZaaabeaakiabg2da9iaaicdaaaa@62A6@

In index notation

ε αβ = 1+ν E σ αβ ν σ γγ δ αβ + 1+ν αΔT δ αβ σ αβ = E 1+ν ε αβ + ν 12ν ε γγ δ αβ EαΔT 12ν δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27a UbqaaiaadweaaaWaaiWaaeaacqaHdpWCdaWgaaWcbaGaeqySdeMaeq OSdigabeaakiabgkHiTiabe27aUjabeo8aZnaaBaaaleaacqaHZoWz cqaHZoWzaeqaaOGaeqiTdq2aaSbaaSqaaiabeg7aHjabek7aIbqaba aakiaawUhacaGL9baacqGHRaWkdaqadaqaaiaaigdacqGHRaWkcqaH 9oGBaiaawIcacaGLPaaacqaHXoqycqqHuoarcaWGubGaeqiTdq2aaS baaSqaaiabeg7aHjabek7aIbqabaGccaaMc8oabaGaeq4Wdm3aaSba aSqaaiabeg7aHjabek7aIbqabaGccqGH9aqpdaWcaaqaaiaadweaae aacaaIXaGaey4kaSIaeqyVd4gaamaacmaabaGaeqyTdu2aaSbaaSqa aiabeg7aHjabek7aIbqabaGccqGHRaWkdaWcaaqaaiabe27aUbqaai aaigdacqGHsislcaaIYaGaeqyVd4gaaiabew7aLnaaBaaaleaacqaH ZoWzcqaHZoWzaeqaaOGaeqiTdq2aaSbaaSqaaiabeg7aHjabek7aIb qabaaakiaawUhacaGL9baacqGHsisldaWcaaqaaiaadweacqaHXoqy cqqHuoarcaWGubaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaaGaeq iTdq2aaSbaaSqaaiabeg7aHjabek7aIbqabaaaaaa@9187@

where Greek subscripts α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@  can have values 1 or 2.

 

· For a plane stress deformation σ 33 = σ 23 = σ 13 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaGc cqGH9aqpcqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaeyypa0 JaaGimaaaa@3F02@ , and the stres-strain relations are

ε 11 ε 22 2 ε 12 = 1 E 1 ν 0 ν 1 0 0 0 2(1+ν) σ 11 σ 22 σ 12 +αΔT 1 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeqyTdu 2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabew7aLnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaig dacaaIYaaabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaa igdaaeaacaWGfbaaamaadmaabaqbaeqabmWaaaqaaiaaigdaaeaacq GHsislcqaH9oGBaeaacaaIWaaabaGaeyOeI0IaeqyVd4gabaGaaGym aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikdacaGGOaGaaG ymaiabgUcaRiabe27aUjaacMcaaaaacaGLBbGaayzxaaWaamWaaeaa faqabeWabaaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaaO qaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaHdpWC daWgaaWcbaGaaGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabgU caRiabeg7aHjabfs5aejaadsfadaWadaqaauaabeqadeaaaeaacaaI XaaabaGaaGymaaqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@6691@

σ 11 σ 22 σ 12 = E (1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 ε 11 ε 22 2 ε 12 EαΔT 1ν 1 1 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyraaqa aiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaO GaaiykaaaadaWadaqaauaabeqadmaaaeaacaaIXaaabaGaeqyVd4ga baGaaGimaaqaaiabe27aUbqaaiaaigdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacaGG VaGaaGOmaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacq aH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeqyTdu2aaSba aSqaaiaaikdacaaIYaaabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcba GaaGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabgkHiTmaalaaa baGaamyraiabeg7aHjabfs5aejaadsfaaeaadaqadaqaaiaaigdacq GHsislcqaH9oGBaiaawIcacaGLPaaaaaWaamWaaeaafaqabeWabaaa baGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaay5waiaaw2faaaaa@7034@

ε 33 = ν E σ 11 + σ 22 +αΔT MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iabgkHiTmaalaaabaGaeqyVd4gabaGaamyraaaa daqadaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRa WkcqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzk aaGaey4kaSIaeqySdeMaeuiLdqKaamivaaaa@46C7@

ε αβ = 1+ν E σ αβ ν 1+ν σ γγ δ αβ +αΔT δ αβ σ αβ = E 1+ν ε αβ + ν 1ν ε γγ δ αβ EαΔT 1ν δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27a UbqaaiaadweaaaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaeqySdeMaeq OSdigabeaakiabgkHiTmaalaaabaGaeqyVd4gabaGaaGymaiabgUca Riabe27aUbaacqaHdpWCdaWgaaWcbaGaeq4SdCMaeq4SdCgabeaaki abes7aKnaaBaaaleaacqaHXoqycqaHYoGyaeqaaaGccaGLOaGaayzk aaGaey4kaSIaeqySdeMaeuiLdqKaamivaiabes7aKnaaBaaaleaacq aHXoqycqaHYoGyaeqaaOGaaGPaVdqaaiabeo8aZnaaBaaaleaacqaH XoqycqaHYoGyaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGymai abgUcaRiabe27aUbaadaGadaqaaiabew7aLnaaBaaaleaacqaHXoqy cqaHYoGyaeqaaOGaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaey OeI0IaeqyVd4gaaiabew7aLnaaBaaaleaacqaHZoWzcqaHZoWzaeqa aOGaeqiTdq2aaSbaaSqaaiabeg7aHjabek7aIbqabaaakiaawUhaca GL9baacqGHsisldaWcaaqaaiaadweacqaHXoqycqqHuoarcaWGubaa baGaaGymaiabgkHiTiabe27aUbaacqaH0oazdaWgaaWcbaGaeqySde MaeqOSdigabeaaaaaa@8DEE@

 

 

 

3.2.4 Representative values for density, and elastic constants of isotropic solids

 

The table below shows representative elastic constants for a range of different materials. The data are partly from Jones and Ashby (2019), and partly from manufacturers data sheets.

 

Note the units MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  values of E are given in GN/ m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaad6eacaGGVaGaamyBamaaCa aaleqabaGaaGOmaaaaaaa@350D@ ; the G stands for Giga, and is short for 10 9 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdadaahaaWcbeqaaiaaiM daaaaaaa@3345@ .  The units for density are in Mg m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytaiaadEgacaWGTbWaaWbaaSqabe aacqGHsislcaaIZaaaaaaa@3567@  - that’s Mega grams.  One mega gram is 1000 kg.

 

 


 

 

3.2.5 Other Elastic Constants MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B8@  bulk, shear and Lame modulus.

 

Young’s modulus and Poisson’s ratio are the most common properties used to characterize elastic solids, but other measures are also used.  For example, we define the shear modulusbulk modulus and Lame modulus of an elastic solid as follows:

Bulk Modulus K= E 3 12ν Shear Modulus μ= E 2 1+ν Lame Modulus λ= νE 1+ν 12ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaqGcbGaaeyDaiaabYgacaqGRb Gaaeiiaiaab2eacaqGVbGaaeizaiaabwhacaqGSbGaaeyDaiaaboha caqGGaGaam4saiabg2da9maalaaabaGaamyraaqaaiaaiodadaqada qaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaaaaqa aiaabofacaqGObGaaeyzaiaabggacaqGYbGaaeiiaiaab2eacaqGVb GaaeizaiaabwhacaqGSbGaaeyDaiaabohacaqGGaGaeqiVd0Maaeyp amaalaaabaGaamyraaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcq aH9oGBaiaawIcacaGLPaaaaaaabaGaaeitaiaabggacaqGTbGaaeyz aiaabccacaqGnbGaae4BaiaabsgacaqG1bGaaeiBaiaabwhacaqGZb GaaeiiaiabeU7aSjabg2da9maalaaabaGaeqyVd4Maamyraaqaamaa bmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaamaabmaaba GaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaaaaaaa@75A5@

The table below relates all the possible combinations of moduli to all other possible combinations.  Enjoy!

 


 

 

 

3.2.6 Physical interpretation of elastic constants for isotropic solids

 

It is important to have a feel for the physical significance of the various elastic constants.  They can be interpreted as follows

 

· Young’s modulus E is the slope of the stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain curve in uniaxial tension.  It has dimensions of stress ( N/ m 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtaiaac+cacaWGTbWaaWbaaSqabe aacaaIYaaaaaaa@3440@  ) and is usually large MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for steel, E=210× 10 9 N/m 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiabg2da9iaaikdacaaIXaGaaG imaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaI5aaaaOGaaGPa Vlaab6eacaqGVaGaaeyBamaaCaaaleqabaGaaeOmaaaaaaa@3E46@ . You can think of E as a measure of the stiffness of the solid. The larger the value of E, the stiffer the solid.  For a stable material, the Young’s modulus must satisfy E>0.

 

· Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3297@  is the ratio of lateral to longitudinal strain in uniaxial tensile stress. It is dimensionless and typically ranges from 0.2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ 0.49, and is around 0.3 for most metals.  For a stable material, Poisson’s ratio is in the range 1<ν<0.5 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGymaiabgYda8iabe27aUj abgYda8iaaicdacaGGUaGaaGynaaaa@3872@ . It is a measure of the compressibility of the solid.  If ν=0.5 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aI1aaaaa@35C8@ , the solid is incompressible MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  its volume remains constant, no matter how it is deformed.  If ν=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaaaa@3457@ , then stretching a specimen causes no lateral contraction.  Some bizarre materials have ν<0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4MaeyipaWJaaGimaaaa@3455@  --  if you stretch a round bar of such a material, the bar increases in diameter!!

 

· Thermal expansion coefficient quantifies the change in volume of a material if it is heated in the absence of stress.  It has dimensions of (degrees Kelvin)-1 and is usually very small.  For steel, α610× 10 6 K -1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyisISRaaGOnaiabgkHiTi aaigdacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHi TiaaiAdaaaGccaaMc8Uaae4samaaCaaaleqabaGaaeylaiaabgdaaa aaaa@40AB@

 

· The bulk modulus quantifies the resistance of the solid to volume changes.  It has a large value (usually bigger than E).

 

· The shear modulus quantifies its resistance to volume preserving shear deformations.  Its value is usually somewhat smaller than E

 

 

 

3.2.7 Strain Energy Density for Isotropic Solids

 

The following observations are the basis for defining the strain energy density of an elastic material

 

· If you deform a block of material, you do work on it (or, in some cases, it may do work on you…)

 

· In an elastic material, the work done during loading is stored as recoverable strain energy in the solid.  If you unload the material, the specimen does work on you, and when it reaches its initial configuration you come out even.

 

· The work done to deform a specimen depends only on the state of strain at the end of the test.  It is independent of the history of loading. 

 

Based on these observations, we define the strain energy density of a solid as the work done per unit volume to deform a material from a stress free reference state to a loaded state.

 

To write down an expression for the strain energy density, it is convenient to separate the strain into two parts

ε ij = ε ij e + ε ij T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dwgaaaGccqGHRaWkcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaaca WGubaaaaaa@3FB0@

where, for an isotropic solid,

ε ij T =αΔT δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaGaamivaaaakiabg2da9iabeg7aHjabfs5aejaadsfacqaH0oaz daWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3E05@

represents the strain due to thermal expansion (known as thermal strain), and

ε ij e = 1+ν E σ ij ν E σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaGaamyzaaaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27a UbqaaiaadweaaaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaki abgkHiTmaalaaabaGaeqyVd4gabaGaamyraaaacqaHdpWCdaWgaaWc baGaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@4995@

is the strain due to mechanical loading (known as elastic strain).

 

Work is done on the specimen only during mechanical loading.  It is straightforward to show that the strain energy density is

U= 1 2 σ ij ε ij e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiab ew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadwgaaaaaaa@3CB7@

You can also re-write this as

U= 1+ν 2E σ ij σ ij ν 2E σ kk σ jj U= E 2 1+ν ε ij e ε ij e + Eν 2 1+ν 12ν ε jj e ε kk e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGvbGaeyypa0ZaaSaaaeaaca aIXaGaey4kaSIaeqyVd4gabaGaaGOmaiaadweaaaGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakiabeo8aZnaaBaaaleaacaWGPbGaam OAaaqabaGccqGHsisldaWcaaqaaiabe27aUbqaaiaaikdacaWGfbaa aiabeo8aZnaaBaaaleaacaWGRbGaam4AaaqabaGccqaHdpWCdaWgaa WcbaGaamOAaiaadQgaaeqaaaGcbaGaamyvaiabg2da9maalaaabaGa amyraaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawI cacaGLPaaaaaGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaamyz aaaakiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadwgaaaGccq GHRaWkdaWcaaqaaiaadweacqaH9oGBaeaacaaIYaWaaeWaaeaacaaI XaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey OeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaaacqaH1oqzdaqhaaWc baGaamOAaiaadQgaaeaacaWGLbaaaOGaeqyTdu2aa0baaSqaaiaadU gacaWGRbaabaGaamyzaaaaaaaa@74DD@

Observe that

ε ij e = U σ ij σ ij = U ε ij e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadMgacaWGQb aabaGaamyzaaaakiabg2da9maalaaabaGaeyOaIyRaamyvaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq aHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaa cqGHciITcaWGvbaabaGaeyOaIyRaeqyTdu2aa0baaSqaaiaadMgaca WGQbaabaGaamyzaaaaaaaaaa@657E@

 

 

 

3.2.8 Stress-strain relation for a general anisotropic linear elastic material MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B8@  the elastic stiffness and compliance tensors

 

The simple isotropic model described in the preceding section is unable to describe the response of some materials accurately, even though the material may deform elastically.  This is because some materials do have a characteristic orientation.  For example, in a block of wood, the grain is oriented in a particular direction in the specimen.  The block will be stiffer if it is loaded parallel to the grain than if it is loaded perpendicular to the grain.  The same observation applies to fiber reinforced composite materials. Generally, single crystal specimens of a material will also be anisotropic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this is important when modeling stress effects in small structures such as microelectronic circuits. Even polycrystalline metals may be anisotropic, because a preferred texture may form in the specimen during processing.

 

A more general stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relation is needed to describe anisotropic solids. 

 

The most general linear stress MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFuacaaa@31B8@ strain relation has the form

σ ij = C ijkl ε kl α kl ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGRbGaamiBaa qabaGccqGHsislcqaHXoqydaWgaaWcbaGaam4AaiaadYgaaeqaaOGa euiLdqKaamivaaGaayjkaiaawMcaaaaa@46A0@

Here, C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3591@  is a fourth order tensor (horrors!), known as the elastic stiffness tensor, and α kl = α lk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aaSbaaSqaaiaadUgacaWGSb aabeaakiabg2da9iabeg7aHnaaBaaaleaacaWGSbGaam4Aaaqabaaa aa@3948@  is the thermal expansion coefficient tensor. The stress strain relation is invertible:

ε ij = S ijkl σ kl + α ij ΔT MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadofadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccqaHdpWCdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaey 4kaSIaeqySde2aaSbaaSqaaiaadMgacaWGQbaabeaakiabfs5aejaa dsfaaaa@4518@

where S ijkl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@35A1@  is known as the elastic compliance tensor

 

At first sight it appears that the stiffness tensor has 81 components.  Imagine having to measure and keep track of 81 material properties!  Fortunately, C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3591@  must have the following symmetries

C ijkl = C klij = C jikl = C ijlk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaGccqGH9aqpcaWGdbWaaSbaaSqaaiaadQ gacaWGPbGaam4AaiaadYgaaeqaaOGaeyypa0Jaam4qamaaBaaaleaa caWGPbGaamOAaiaadYgacaWGRbaabeaaaaa@46D7@

This reduces the number of material constants to 21. The compliance tensor has the same symmetries as C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3591@ .

 

To see the origin of the symmetries of C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3591@ , note that

 

· The stress tensor is symmetric, which is only possible if C ijkl = C jikl . MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaamOAaiaa dMgacaWGRbGaamiBaaqabaGccaGGUaaaaa@3C0F@

 

· If a strain energy density exists for the material, the elastic stiffness tensor must satisfy C ijkl = C klij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B53@

 

· The previous two symmetries imply C ijkl = C ijlk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaa dQgacaWGSbGaam4Aaaqabaaaaa@3B53@ , since C ijkl = C jikl = C klji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaamOAaiaa dMgacaWGRbGaamiBaaqabaGccqGH9aqpcaWGdbWaaSbaaSqaaiaadU gacaWGSbGaamOAaiaadMgaaeqaaaaa@4115@  and . C ijkl = C lkij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaamiBaiaa dUgacaWGPbGaamOAaaqabaaaaa@3B53@

 

 

To see that C ijkl = C klij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B53@ , note that by definition

C ijkl = σ ij ε kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9maalaaabaGaeyOaIyRaeq4Wdm3a aSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kabew7aLnaaBa aaleaacaWGRbGaamiBaaqabaaaaaaa@4107@

and recall further that the stress is the derivative of the strain energy density with respect to strain

σ ij = U ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeyOaIyRaamyvaaqaaiabgkGi2kab ew7aLnaaBaaaleaacaWGPbGaamOAaaqabaaaaaaa@3D21@

Combining these,

C ijkl = 2 U ε ij ε kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9maalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamyvaaqaaiabgkGi2kabew7aLnaaBaaaleaaca WGPbGaamOAaaqabaGccqGHciITcqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaaaaaaa@441E@

Now, note that

2 U ε ij ε kl = 2 U ε kl ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWGvbaabaGaeyOaIyRaeqyTdu2aaSbaaSqaaiaadMga caWGQbaabeaakiabgkGi2kabew7aLnaaBaaaleaacaWGRbGaamiBaa qabaaaaOGaeyypa0ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWGvbaabaGaeyOaIyRaeqyTdu2aaSbaaSqaaiaadUgacaWGSb aabeaakiabgkGi2kabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaaa aaaa@4CE9@

so that

C ijkl = C klij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadoeadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B53@

These symmetries allow us to write the stress-strain relations in a more compact matrix form as

σ=C(εαΔT) σ= σ 11 σ 22 σ 33 σ 23 σ 13 σ 12 ε= ε 11 ε 22 ε 33 2 ε 23 2 ε 13 2 ε 12 α= α 11 α 22 α 33 2 α 23 2 α 13 2 α 12 C= c 11 c 12 c 13 c 14 c 15 c 16 c 12 c 22 c 23 c 24 c 25 c 26 c 13 c 23 c 33 c 34 c 35 c 36 c 14 c 24 c 34 c 44 c 45 c 46 c 15 c 25 c 35 c 45 c 55 c 56 c 16 c 26 c 36 c 46 c 56 c 66 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWHdpGaeyypa0JaaC4qaiaacI cacaWH1oGaeyOeI0IaaCySdiabfs5aejaadsfacaGGPaaabaGaaC4W diabg2da9iaaykW7daWadaqaauaabeqageaaaaqaaiabeo8aZnaaBa aaleaacaaIXaGaaGymaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGOm aiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabe aaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacqaH dpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaeq4Wdm3aaSbaaS qaaiaaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaahw7acqGH9aqpdaWadaqaauaabeqageaaaaqaaiabew7a LnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaaWcba GaaGOmaiaaikdaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaaiodacaaI ZaaabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGaaGOmaiaaiodaae qaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaaIXaGaaG4maaqabaaa keaacaaIYaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabeaaaaaaki aawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaahg7acqGH9aqpdaWadaqaauaabeqageaaaaqaai abeg7aHnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaHXoqydaWg aaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeqySde2aaSbaaSqaaiaaio dacaaIZaaabeaaaOqaaiaaikdacqaHXoqydaWgaaWcbaGaaGOmaiaa iodaaeqaaaGcbaGaaGOmaiabeg7aHnaaBaaaleaacaaIXaGaaG4maa qabaaakeaacaaIYaGaeqySde2aaSbaaSqaaiaaigdacaaIYaaabeaa aaaakiaawUfacaGLDbaaaeaacaaMc8UaaC4qaiabg2da9maadmaaba qbaeqabyGbaaaaaeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaa aOqaaiaadogadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4yam aaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGJbWaaSbaaSqaaiaa igdacaaI0aaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaiwdaae qaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOnaaqabaaakeaacaWG JbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadogadaWgaaWcba GaaGOmaiaaikdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaG4m aaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI0aaabeaaaOqaai aadogadaWgaaWcbaGaaGOmaiaaiwdaaeqaaaGcbaGaam4yamaaBaaa leaacaaIYaGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdaca aIZaaabeaaaOqaaiaadogadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGc baGaam4yamaaBaaaleaacaaIZaGaaG4maaqabaaakeaacaWGJbWaaS baaSqaaiaaiodacaaI0aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4m aiaaiwdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIZaGaaGOnaaqaba aakeaacaWGJbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaadoga daWgaaWcbaGaaGOmaiaaisdaaeqaaaGcbaGaam4yamaaBaaaleaaca aIZaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaisdacaaI0aaa beaaaOqaaiaadogadaWgaaWcbaGaaGinaiaaiwdaaeqaaaGcbaGaam 4yamaaBaaaleaacaaI0aGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqa aiaaigdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGOmaiaaiw daaeqaaaGcbaGaam4yamaaBaaaleaacaaIZaGaaGynaaqabaaakeaa caWGJbWaaSbaaSqaaiaaisdacaaI1aaabeaaaOqaaiaadogadaWgaa WcbaGaaGynaiaaiwdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI1aGa aGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaI2aaabeaaaO qaaiaadogadaWgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGaam4yamaa BaaaleaacaaIZaGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaais dacaaI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaGynaiaaiAdaaeqa aaGcbaGaam4yamaaBaaaleaacaaI2aGaaGOnaaqabaaaaaGccaGLBb Gaayzxaaaaaaa@0AC2@

where c 11 C 1111 c 12 C 1122 = C 2211 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGymaa qabaGccqGHHjIUcaWGdbWaaSbaaSqaaiaaigdacaaIXaGaaGymaiaa igdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaadogadaWgaaWcba GaaGymaiaaikdaaeqaaOGaeyyyIORaam4qamaaBaaaleaacaaIXaGa aGymaiaaikdacaaIYaaabeaakiabg2da9iaadoeadaWgaaWcbaGaaG OmaiaaikdacaaIXaGaaGymaaqabaaaaa@4C85@ , etc are the elastic stiffnesses of the material.  The inverse has the form

ε=Sσ+αΔT S= s 11 s 12 s 13 s 14 s 15 s 16 s 12 s 22 s 23 s 24 s 25 s 26 s 13 s 23 s 33 s 34 s 35 s 36 s 14 s 24 s 34 s 44 s 45 s 46 s 15 s 25 s 35 s 45 s 55 s 56 s 16 s 26 s 36 s 46 s 56 s 66 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWH1oGaeyypa0JaaC4uaiaaho 8acqGHRaWkcaWHXoGaeuiLdqKaamivaaqaaiaahofacqGH9aqpdaWa daqaauaabeqagyaaaaaabaGaam4CamaaBaaaleaacaaIXaGaaGymaa qabaaakeaacaWGZbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaa dohadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4CamaaBaaale aacaaIXaGaaGinaaqabaaakeaacaWGZbWaaSbaaSqaaiaaigdacaaI 1aaabeaaaOqaaiaadohadaWgaaWcbaGaaGymaiaaiAdaaeqaaaGcba Gaam4CamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGZbWaaSba aSqaaiaaikdacaaIYaaabeaaaOqaaiaadohadaWgaaWcbaGaaGOmai aaiodaaeqaaaGcbaGaam4CamaaBaaaleaacaaIYaGaaGinaaqabaaa keaacaWGZbWaaSbaaSqaaiaaikdacaaI1aaabeaaaOqaaiaadohada WgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGaam4CamaaBaaaleaacaaI XaGaaG4maaqabaaakeaacaWGZbWaaSbaaSqaaiaaikdacaaIZaaabe aaaOqaaiaadohadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaam4C amaaBaaaleaacaaIZaGaaGinaaqabaaakeaacaWGZbWaaSbaaSqaai aaiodacaaI1aaabeaaaOqaaiaadohadaWgaaWcbaGaaG4maiaaiAda aeqaaaGcbaGaam4CamaaBaaaleaacaaIXaGaaGinaaqabaaakeaaca WGZbWaaSbaaSqaaiaaikdacaaI0aaabeaaaOqaaiaadohadaWgaaWc baGaaG4maiaaisdaaeqaaaGcbaGaam4CamaaBaaaleaacaaI0aGaaG inaaqabaaakeaacaWGZbWaaSbaaSqaaiaaisdacaaI1aaabeaaaOqa aiaadohadaWgaaWcbaGaaGinaiaaiAdaaeqaaaGcbaGaam4CamaaBa aaleaacaaIXaGaaGynaaqabaaakeaacaWGZbWaaSbaaSqaaiaaikda caaI1aaabeaaaOqaaiaadohadaWgaaWcbaGaaG4maiaaiwdaaeqaaa GcbaGaam4CamaaBaaaleaacaaI0aGaaGynaaqabaaakeaacaWGZbWa aSbaaSqaaiaaiwdacaaI1aaabeaaaOqaaiaadohadaWgaaWcbaGaaG ynaiaaiAdaaeqaaaGcbaGaam4CamaaBaaaleaacaaIXaGaaGOnaaqa baaakeaacaWGZbWaaSbaaSqaaiaaikdacaaI2aaabeaaaOqaaiaado hadaWgaaWcbaGaaG4maiaaiAdaaeqaaaGcbaGaam4CamaaBaaaleaa caaI0aGaaGOnaaqabaaakeaacaWGZbWaaSbaaSqaaiaaiwdacaaI2a aabeaaaOqaaiaadohadaWgaaWcbaGaaGOnaiaaiAdaaeqaaaaaaOGa ay5waiaaw2faaaaaaa@9D87@

where s 11 = S 1111 , s 12 = S 1122 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcaWGtbWaaSbaaSqaaiaaigdacaaIXaGaaGymaiaa igdaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaadohadaWgaaWcba GaaGymaiaaikdaaeqaaOGaeyypa0Jaam4uamaaBaaaleaacaaIXaGa aGymaiaaikdacaaIYaaabeaaaaa@4572@ , etc are the elastic compliances of the material.

 

To satisfy Drucker stability, the eigenvalues of the elastic stiffness and compliance matrices must all be greater than zero.

 

HEALTH WARNING: The shear strain and shear stress components are not always listed in the order given when defining the elastic and compliance matrices.  The conventions used here are common and are particularly convenient in analytical calculations involving anisotropic solids.  But many sources use other conventions.  Be careful to enter material data in the correct order when specifying properties for anisotropic solids.

 

 

 

3.2.9 Physical Interpretation of the Anisotropic Elastic Constants.

 

It is easiest to interpret s 11 , s 12 .... s 66 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaBaaaleaacaaIXaGaaGymaa qabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaadohadaWgaaWc baGaaGymaiaaikdaaeqaaOGaaiOlaiaac6cacaGGUaGaaiOlaiaado hadaWgaaWcbaGaaGOnaiaaiAdaaeqaaaaa@4270@ , rather than c 11 , c `12 ,... c 66 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGymaa qabaGccaGGSaGaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaccgacaaI XaGaaGOmaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaam4yamaaBa aaleaacaaI2aGaaGOnaaqabaaaaa@400C@ .  Imagine applying a uniaxial stress, say σ 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaaaaa@3444@ , to an anisotropic specimen.  In general, this would induce both extensional and shear deformation in the solid, as shown in the figure.

 

The strain induced by  the uniaxial stress would be

ε 11 = s 11 σ 11 , ε 22 = s 12 σ 11 , ε 33 = s 13 σ 11 ε 23 = s 14 σ 11 , ε 13 = s 15 σ 11 , ε 12 = s 16 σ 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0Jaam4CamaaBaaaleaacaaIXaGaaGymaaqa baGccqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaaiilaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyT du2aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iaadohadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeq4Wdm3aaSbaaSqaaiaaigdacaaI XaaabeaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqaH1oqzdaWgaaWcbaGaaG4maiaaioda aeqaaOGaeyypa0Jaam4CamaaBaaaleaacaaIXaGaaG4maaqabaGccq aHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeqyTdu2aaSba aSqaaiaaikdacaaIZaaabeaakiabg2da9iaadohadaWgaaWcbaGaaG ymaiaaisdaaeqaaOGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaa kiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabew7aLnaaBaaaleaacaaIXaGaaG4maaqabaGccqGH9aqp caWGZbWaaSbaaSqaaiaaigdacaaI1aaabeaakiabeo8aZnaaBaaale aacaaIXaGaaGymaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLnaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaWGZbWaaSbaaSqaaiaa igdacaaI2aaabeaakiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqaba aaaaa@A840@

All the constants have dimensions m 2 /N MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaCaaaleqabaGaaGOmaaaaki aac+cacaWGobaaaa@344A@ .  The constant s 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaBaaaleaacaaIXaGaaGymaa qabaaaaa@3379@  looks like a uniaxial compliance, (like 1/E MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaac+cacaWGfbaaaa@3317@  ), while the ratios s 12 / s 11 , s 13 / s 11 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaBaaaleaacaaIXaGaaGOmaa qabaGccaGGVaGaam4CamaaBaaaleaacaaIXaGaaGymaaqabaGccaGG SaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGZbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaac+cacaWGZbWa aSbaaSqaaiaaigdacaaIXaaabeaaaaa@49D6@  are generalized versions of Poisson’s ratio: they quantify the lateral contraction of a uniaxial tensile specimen.   The shear terms are new MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  in an isotropic material, no shear strain is induced by uniaxial tension.

 

 

 

3.2.10 Strain energy density for anisotropic, linear elastic solids

 

The strain energy density of an anisotropic material is

U= 1 2 C ijkl ε ij α ij ΔT ε kl α kl ΔT = 1 2 S ijkl σ ij σ kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGvbGaeyypa0ZaaSaaaeaaca aIXaaabaGaaGOmaaaacaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4A aiaadYgaaeqaaOWaaeWaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyOeI0IaeqySde2aaSbaaSqaaiaadMgacaWGQbaabeaa kiabfs5aejaadsfaaiaawIcacaGLPaaadaqadaqaaiabew7aLnaaBa aaleaacaWGRbGaamiBaaqabaGccqGHsislcqaHXoqydaWgaaWcbaGa am4AaiaadYgaaeqaaOGaeuiLdqKaamivaaGaayjkaiaawMcaaaqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9maalaaa baGaaGymaaqaaiaaikdaaaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGccqaHdpWCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaaaa@6995@

 

 

 

3.2.11 Basis change formulas for anisotropic elastic constants

 

The material constants c ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33D1@  or s ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4CamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33E1@  for a particular material are usually specified in a basis with coordinate axes aligned with particular symmetry planes (if any) in the material.  When solving problems involving anisotropic materials it is frequently necessary to transform these values to a coordinate system that is oriented in some convenient way relative to the boundaries of the solid.  Since C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  is a fourth rank tensor, the basis change formulas are highly tedious, unfortunately. 

 

Suppose that the components of the stiffness tensor are given in a basis e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@ , and we wish to determine its components in a second basis, m 1 , m 2 , m 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHTbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaah2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyBamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A29@ , as shown in the figure. We define the usual transformation tensor Ω ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdC1aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3477@  with components Ω ij = m i e j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdC1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaah2gadaWgaaWcbaGaamyAaaqabaGccqGHflY1 caWHLbWaaSbaaSqaaiaadQgaaeqaaaaa@3BF4@ , or in matrix form

Ω = m 1 e 1 m 1 e 2 m 1 e 3 m 2 e 1 m 2 e 2 m 2 e 3 m 3 e 1 m 3 e 2 m 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHPoWvaiaawUfacaGLDb aacqGH9aqpdaWadaabaeqabaGaaCyBamaaBaaaleaacaaIXaaabeaa kiabgwSixlaahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaigdaaeqa aOGaeyyXICTaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaGymaaqa baGccqGHflY1caWHLbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaCyBam aaBaaaleaacaaIYaaabeaakiabgwSixlaahwgadaWgaaWcbaGaaGym aaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHTb WaaSbaaSqaaiaaikdaaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaaI YaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2 gadaWgaaWcbaGaaGOmaaqabaGccqGHflY1caWHLbWaaSbaaSqaaiaa iodaaeqaaaGcbaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgwSixl aahwgadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caWHTbWaaSbaaSqaaiaaiodaaeqaaOGaeyyXIC TaaCyzamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaah2gadaWgaaWcbaGaaG4maaqabaGccqGHfl Y1caWHLbWaaSbaaSqaaiaaiodaaeqaaaaakiaawUfacaGLDbaaaaa@A58D@

This is an orthogonal matrix satisfying Ω Ω T = Ω T Ω=I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyQdCLaeuyQdC1aaWbaaSqabeaaca WGubaaaOGaeyypa0JaeuyQdC1aaWbaaSqabeaacaWGubaaaOGaeuyQ dCLaeyypa0JaaCysaaaa@3C16@ . In practice, the matrix can be computed in terms of the angles between the basis vectors. It is straightforward to show that stress, strain, thermal expansion and elasticity tensors transform as

σ ij (m) = Ω ik σ kl (e) Ω jl ε ij (m) = Ω ik ε kl (e) Ω jl α ij (m) = Ω ik α kl (e) Ω jl C ijkl (m) = Ω ip Ω jq C pqrs (e) Ω kr Ω ls MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaqhaaWcbaGaamyAai aadQgaaeaacaGGOaGaaCyBaiaacMcaaaGccqGH9aqpcqqHPoWvdaWg aaWcbaGaamyAaiaadUgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadUgaca WGSbaabaGaaiikaiaahwgacaGGPaaaaOGaeuyQdC1aaSbaaSqaaiaa dQgacaWGSbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWHTbGa aiykaaaakiabg2da9iabfM6axnaaBaaaleaacaWGPbGaam4Aaaqaba GccqaH1oqzdaqhaaWcbaGaam4AaiaadYgaaeaacaGGOaGaaCyzaiaa cMcaaaGccqqHPoWvdaWgaaWcbaGaamOAaiaadYgaaeqaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeg7aHnaaDaaa leaacaWGPbGaamOAaaqaaiaacIcacaWHTbGaaiykaaaakiabg2da9i abfM6axnaaBaaaleaacaWGPbGaam4AaaqabaGccqaHXoqydaqhaaWc baGaam4AaiaadYgaaeaacaGGOaGaaCyzaiaacMcaaaGccqqHPoWvda WgaaWcbaGaamOAaiaadYgaaeqaaaGcbaGaam4qamaaDaaaleaacaWG PbGaamOAaiaadUgacaWGSbaabaGaaiikaiaah2gacaGGPaaaaOGaey ypa0JaeuyQdC1aaSbaaSqaaiaadMgacaWGWbaabeaakiabfM6axnaa BaaaleaacaWGQbGaamyCaaqabaGccaWGdbWaa0baaSqaaiaadchaca WGXbGaamOCaiaadohaaeaacaGGOaGaaCyzaiaacMcaaaGccqqHPoWv daWgaaWcbaGaam4AaiaadkhaaeqaaOGaeuyQdC1aaSbaaSqaaiaadY gacaWGZbaabeaaaaaa@A002@

 

The basis change formula for the elasticity tensor in matrix form can be expressed as

C (m) =K C (e) K T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qamaaCaaaleqabaGaaiikaiaah2 gacaGGPaaaaOGaeyypa0JaaC4saiaahoeadaahaaWcbeqaaiaacIca caWHLbGaaiykaaaakiaahUeadaahaaWcbeqaaiaadsfaaaaaaa@3B30@

where the basis change matrix K is computed as

K= K (1) 2 K (2) K (3) K (4) K ij (1) = Ω ij 2 K ij (2) = Ω imod(j+1,3) Ω imod(j+2,3) K ij (3) = Ω mod(i+1,3)j Ω mod(i+2,3)j K ij (4) = Ω mod(i+1,3)mod(j+1,3) Ω mod(i+2,3)mod(j+2,3) + Ω mod(i+1,3)mod(j+2,3) Ω mod(i+2,3)mod(j+1,3) i,j=1..3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHlbGaeyypa0ZaamWaaeaafa qabeGacaaabaGaaC4samaaCaaaleqabaGaaiikaiaaigdacaGGPaaa aaGcbaGaaGOmaiaahUeadaahaaWcbeqaaiaacIcacaaIYaGaaiykaa aaaOqaaiaahUeadaahaaWcbeqaaiaacIcacaaIZaGaaiykaaaaaOqa aiaahUeadaahaaWcbeqaaiaacIcacaaI0aGaaiykaaaaaaaakiaawU facaGLDbaaaeaadaGacaabaeqabaGaam4samaaDaaaleaacaWGPbGa amOAaaqaaiaacIcacaaIXaGaaiykaaaakiabg2da9iabfM6axnaaDa aaleaacaWGPbGaamOAaaqaaiaaikdaaaGccaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadUeadaqhaaWcbaGaam yAaiaadQgaaeaacaGGOaGaaGOmaiaacMcaaaGccqGH9aqpcqqHPoWv daWgaaWcbaGaamyAaiGac2gacaGGVbGaaiizaiaacIcacaWGQbGaey 4kaSIaaGymaiaacYcacaaIZaGaaiykaaqabaGccqqHPoWvdaWgaaWc baGaamyAaiGac2gacaGGVbGaaiizaiaacIcacaWGQbGaey4kaSIaaG OmaiaacYcacaaIZaGaaiykaaqabaaakeaacaWGlbWaa0baaSqaaiaa dMgacaWGQbaabaGaaiikaiaaiodacaGGPaaaaOGaeyypa0JaeuyQdC 1aaSbaaSqaaiGac2gacaGGVbGaaiizaiaacIcacaWGPbGaey4kaSIa aGymaiaacYcacaaIZaGaaiykaiaadQgaaeqaaOGaeuyQdC1aaSbaaS qaaiGac2gacaGGVbGaaiizaiaacIcacaWGPbGaey4kaSIaaGOmaiaa cYcacaaIZaGaaiykaiaadQgaaeqaaaGcbaGaam4samaaDaaaleaaca WGPbGaamOAaaqaaiaacIcacaaI0aGaaiykaaaakiabg2da9iabfM6a xnaaBaaaleaaciGGTbGaai4BaiaacsgacaGGOaGaamyAaiabgUcaRi aaigdacaGGSaGaaG4maiaacMcaciGGTbGaai4BaiaacsgacaGGOaGa amOAaiabgUcaRiaaigdacaGGSaGaaG4maiaacMcaaeqaaOGaeuyQdC 1aaSbaaSqaaiGac2gacaGGVbGaaiizaiaacIcacaWGPbGaey4kaSIa aGOmaiaacYcacaaIZaGaaiykaiGac2gacaGGVbGaaiizaiaacIcaca WGQbGaey4kaSIaaGOmaiaacYcacaaIZaGaaiykaaqabaGccaaMc8Ua aGPaVlaaykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaM c8UaaGPaVlaaykW7cqqHPoWvdaWgaaWcbaGaciyBaiaac+gacaGGKb GaaiikaiaadMgacqGHRaWkcaaIXaGaaiilaiaaiodacaGGPaGaciyB aiaac+gacaGGKbGaaiikaiaadQgacqGHRaWkcaaIYaGaaiilaiaaio dacaGGPaaabeaakiabfM6axnaaBaaaleaaciGGTbGaai4Baiaacsga caGGOaGaamyAaiabgUcaRiaaikdacaGGSaGaaG4maiaacMcaciGGTb Gaai4BaiaacsgacaGGOaGaamOAaiabgUcaRiaaigdacaGGSaGaaG4m aiaacMcaaeqaaaaakiaaw2haaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamyAaiaacYcacaWGQbGaeyypa0Ja aGymaiaac6cacaGGUaGaaG4maaaaaa@0EA4@

and the modulo function satisfies

mod(i,3)= ii3 i3i>3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciyBaiaac+gacaGGKbGaaiikaiaadM gacaGGSaGaaG4maiaacMcacqGH9aqpdaGabaqaauaabeqaceaaaeaa caWGPbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMgacqGHKjYO caaIZaaabaGaamyAaiabgkHiTiaaiodacaaMc8UaaGPaVlaaykW7ca aMc8UaamyAaiabg6da+iaaiodaaaaacaGL7baaaaa@5D63@

Although these expressions look cumbersome they are quite easy to code in a computer program.

 

The basis change for the compliance tensor follows as

S (m) = K T S (e) K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaaiikaiaah2 gacaGGPaaaaOGaeyypa0JaaC4samaaCaaaleqabaGaeyOeI0Iaamiv aaaakiaahofadaahaaWcbeqaaiaacIcacaWHLbGaaiykaaaakiaahU eadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@3E1C@

where

K T = K (1) K (2) 2 K (3) K (4) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4samaaCaaaleqabaGaeyOeI0Iaam ivaaaakiabg2da9maadmaabaqbaeqabiGaaaqaaiaahUeadaahaaWc beqaaiaacIcacaaIXaGaaiykaaaaaOqaaiaahUeadaahaaWcbeqaai aacIcacaaIYaGaaiykaaaaaOqaaiaaikdacaWHlbWaaWbaaSqabeaa caGGOaGaaG4maiaacMcaaaaakeaacaWHlbWaaWbaaSqabeaacaGGOa GaaGinaiaacMcaaaaaaaGccaGLBbGaayzxaaaaaa@43F7@

 

The proof of these expressions is merely tiresome algebra and will not be given here.  Ting (1996) has a nice clear discussion.

 

For the particular case of rotation through an angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  with right hand screw convention about the e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaahwgadaWg aaWcbaGaaG4maaqabaaaaa@37D6@  axes, respectively, the rotation matrix for the elasticity tensor reduces to

 

Rotation about e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@

 

1 0 0 0 0 0 0 c 2 s 2 2cs 0 0 0 s 2 c 2 2cs 0 0 0 cs cs c 2 s 2 0 0 0 0 0 0 c s 0 0 0 0 s c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGbgaaaaaqaaiaaig daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaGcbaGaam 4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGJbGaam4Caaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadohadaahaaWcbeqaai aaikdaaaaakeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaGcbaGaeyOe I0IaaGOmaiaadogacaWGZbaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaeyOeI0Iaam4yaiaadohaaeaacaWGJbGaam4Caaqaaiaadoga daahaaWcbeqaaiaaikdaaaGccqGHsislcaWGZbWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaam4yaaqaaiabgkHiTiaadohaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4Caaqaaiaa dogaaaaacaGLBbGaayzxaaaaaa@5F7F@

Rotation about e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@

 

   c 2 0 s 2 0 2cs 0 0 1 0 0 0 0 s 2 0 c 2 0 2cs 0 0 0 0 c 0 s cs 0 cs 0 c 2 s 2 0 0 0 0 s 0 c MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGbgaaaaaqaaiaado gadaahaaWcbeqaaiaaikdaaaaakeaacaaIWaaabaGaam4CamaaCaaa leqabaGaaGOmaaaaaOqaaiaaicdaaeaacqGHsislcaaIYaGaam4yai aadohaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaam4CamaaCaaaleqabaGaaG OmaaaaaOqaaiaaicdaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaGc baGaaGimaaqaaiaaikdacaWGJbGaam4CaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGJbaabaGaaGimaaqaaiaadoha aeaacaWGJbGaam4CaaqaaiaaicdaaeaacqGHsislcaWGJbGaam4Caa qaaiaaicdaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia am4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacqGHsislcaWGZbaabaGaaGimaaqaaiaa dogaaaaacaGLBbGaayzxaaaaaa@5F7F@

Rotation about e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@

 

     c 2 s 2 0 0 0 2cs s 2 c 2 0 0 0 2cs 0 0 1 0 0 0 0 0 0 c s 0 0 0 0 s c 0 cs cs 0 0 0 c 2 s 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGbgaaaaaqaaiaado gadaahaaWcbeqaaiaaikdaaaaakeaacaWGZbWaaWbaaSqabeaacaaI YaaaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmaiaado gacaWGZbaabaGaam4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaadoga daahaaWcbeqaaiaaikdaaaaakeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqGHsislcaaIYaGaam4yaiaadohaaeaacaaIWaaabaGaaGim aaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGJbaabaGaam4Caaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislcaWGZbaaba Gaam4yaaqaaiaaicdaaeaacqGHsislcaWGJbGaam4Caaqaaiaadoga caWGZbaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaam4yamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadohadaahaaWcbeqaaiaaikda aaaaaaGccaGLBbGaayzxaaaaaa@5F7F@

where c=cosθs=sinθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yaiabg2da9iGacogacaGGVbGaai 4CaiabeI7aXjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaam4Caiabg2da9iGacohacaGGPbGaaiOBaiabeI7aXb aa@4A3B@ . The inverse matrix K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4samaaCaaaleqabaGaeyOeI0IaaG ymaaaaaaa@3389@  can be obtained simply by changing the sign of the angle θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  in each rotation matrix.  Applying the three rotations successively can produce an arbitrary orientation change.

 

For an isotropic material, the elastic stress-strain relations, the elasticity matrices and thermal expansion coefficient are unaffected by basis changes.

 

 

 

3.2.12 The effect of material symmetry on stress-strain relations for anisotropic materials

 

A general anisotropic solid has 21 independent elastic constants. Note that, in general, tensile stress may induce shear strain, and shear stress may cause extension.

 


 

If a material has a symmetry plane, then applying stress normal or parallel to this plane, as shown in the figure,  induces only extension in direction normal and parallel to the plane.

 

For example, suppose the material contains a single symmetry plane, and let e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B4@   be normal to this plane. Then the components of the elastic stiffnes matrix

c 15 = c 16 = c 25 = c 26 = c 35 = c 36 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGynaa qabaGccqGH9aqpcaWGJbWaaSbaaSqaaiaaigdacaaI2aaabeaakiab g2da9iaadogadaWgaaWcbaGaaGOmaiaaiwdaaeqaaOGaeyypa0Jaam 4yamaaBaaaleaacaaIYaGaaGOnaaqabaGccqGH9aqpcaWGJbWaaSba aSqaaiaaiodacaaI1aaabeaakiabg2da9iaadogadaWgaaWcbaGaaG 4maiaaiAdaaeqaaOGaeyypa0JaaGimaaaa@4756@

Or equivalently

C 1112 = C 1113 = C 2212 = C 2213 = C 3312 = C 3313 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaGaaGymai aaigdacaaIYaaabeaakiabg2da9iaadoeadaWgaaWcbaGaaGymaiaa igdacaaIXaGaaG4maaqabaGccqGH9aqpcaWGdbWaaSbaaSqaaiaaik dacaaIYaGaaGymaiaaikdaaeqaaOGaeyypa0Jaam4qamaaBaaaleaa caaIYaGaaGOmaiaaigdacaaIZaaabeaakiabg2da9iaadoeadaWgaa WcbaGaaG4maiaaiodacaaIXaGaaGOmaaqabaGccqGH9aqpcaWGdbWa aSbaaSqaaiaaiodacaaIZaGaaGymaiaaiodaaeqaaOGaeyypa0JaaG imaaaa@4F4E@

 (symmetrical terms also vanish, of course). This leaves 13 independent constants.

 

Similar restrictions on the thermal expansion coefficient can be determined using symmetry conditions.  Details are left as an exercise.

 

In the following sections, we list the stress-strain relations for anisotropic materials with various numbers of symmetry planes.

 

 

 

3.2.13 Stress-strain relations for linear elastic orthotropic materials

 

An orthotropic material has three mutually perpendicular symmetry planes. This type of material has 9 independent material constants.  With basis vectors perpendicular to the symmetry planes, as shown in the figure,  the elastic stiffness matrix has the form

C= c 11 c 12 c 13 0 0 0 c 22 c 23 0 0 0 c 33 0 0 0 sym c 44 0 0 0 c 55 0 0 0 c 66 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9maadmaabaqbaeqaby GbaaaaaeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaa dogadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaam4yamaaBaaale aacaaIXaGaaG4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicda aeaaaeaacaWGJbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaado gadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicda aeaacaaIWaaabaaabaaabaGaam4yamaaBaaaleaacaaIZaGaaG4maa qabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaaeaacaWGZbGa amyEaiaad2gaaeaaaeaacaWGJbWaaSbaaSqaaiaaisdacaaI0aaabe aaaOqaaiaaicdaaeaacaaIWaaabaaabaaabaaabaGaaGimaaqaaiaa dogadaWgaaWcbaGaaGynaiaaiwdaaeqaaaGcbaGaaGimaaqaaaqaaa qaaaqaaiaaicdaaeaacaaIWaaabaGaam4yamaaBaaaleaacaaI2aGa aGOnaaqabaaaaaGccaGLBbGaayzxaaaaaa@5A02@

This relationship is sometimes expressed in inverse form, in terms of generalized Young’s moduli and Poisson’s ratios (which have the same significance as Young’s modulus and Poisson’s ratio for uniaxial loading along the three basis vectors) as follows                                                                    

S= 1/ E 1 ν 21 / E 2 ν 31 / E 3 0 0 0 ν 12 / E 1 1/ E 2 ν 32 / E 3 0 0 0 ν 13 / E 1 ν 23 / E 2 1/E 3 0 0 0 0 0 0 1/ μ 23 0 0 0 0 0 0 1/ μ 13 0 0 0 0 0 0 1/ μ 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9maadmaabaqbaeqaby GbaaaaaeaacaaIXaGaai4laiaadweadaWgaaWcbaGaaGymaaqabaaa keaacqGHsislcqaH9oGBdaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaai 4laiaadweadaWgaaWcbaGaaGOmaaqabaaakeaacqGHsislcqaH9oGB daWgaaWcbaGaaG4maiaaigdaaeqaaOGaai4laiaadweadaWgaaWcba GaaG4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGH sislcqaH9oGBdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaai4laiaadw eadaWgaaWcbaGaaGymaaqabaaakeaacaaIXaGaai4laiaadweadaWg aaWcbaGaaGOmaaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcbaGaaG 4maiaaikdaaeqaaOGaai4laiaadweadaWgaaWcbaGaaG4maaqabaaa keaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislcqaH9oGBda WgaaWcbaGaaGymaiaaiodaaeqaaOGaai4laiaadweadaWgaaWcbaGa aGymaaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcbaGaaGOmaiaaio daaeqaaOGaai4laiaadweadaWgaaWcbaGaaGOmaaqabaaakeaacaaI XaGaai4laiaadweacaWLa8+aaSbaaSqaaiaaiodaaeqaaaGcbaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGymaiaac+cacqaH8oqBdaWgaaWcbaGaaGOmaiaaiodaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGymaiaac+cacqaH8oqBdaWgaaWcbaGaaG ymaiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaiaac+cacqaH8oqBda WgaaWcbaGaaGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaaa@8864@

Here the generalized Poisson’s ratios are not symmetric but instead satisfy ν ij / E i = ν ji / E j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd42aaSbaaSqaaiaadMgacaWGQb aabeaakiaac+cacaWGfbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Ja eqyVd42aaSbaaSqaaiaadQgacaWGPbaabeaakiaac+cacaWGfbWaaS baaSqaaiaadQgaaeqaaaaa@3EB5@  (no sums). This ensures that the stiffness matrix is symmetric.

 

The engineering constants are related to the components of the compliance tensor by

c 11 = E 1 1 ν 23 ν 32 ϒ c 22 = E 2 1 ν 13 ν 31 ϒ c 33 = E 3 1 ν 12 ν 21 ϒ c 12 = E 1 ν 21 + ν 31 ν 23 ϒ= E 2 ν 12 + ν 32 ν 13 ϒ c 13 = E 1 ν 31 + ν 21 ν 32 ϒ= E 3 ν 13 + ν 12 ν 23 ϒ c 23 = E 2 ν 32 + ν 12 ν 31 ϒ= E 3 ν 23 + ν 21 ν 13 ϒ c 44 = μ 23 c 55 = μ 13 c 66 = μ 12 ϒ= 1 1 ν 12 ν 21 ν 23 ν 32 ν 31 ν 13 2 ν 21 ν 32 ν 13 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGJbWaaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9iaadweadaWgaaWcbaGaaGymaaqabaGcdaqa daqaaiaaigdacqGHsislcqaH9oGBdaWgaaWcbaGaaGOmaiaaiodaae qaaOGaeqyVd42aaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaa wMcaaiabfk9aHkaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaaiaaikdacaaI Yaaabeaakiabg2da9iaadweadaWgaaWcbaGaaGOmaaqabaGcdaqada qaaiaaigdacqGHsislcqaH9oGBdaWgaaWcbaGaaGymaiaaiodaaeqa aOGaeqyVd42aaSbaaSqaaiaaiodacaaIXaaabeaaaOGaayjkaiaawM caaiabfk9aHkaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGJbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabg2da9iaadw eadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaaigdacqGHsislcqaH 9oGBdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeqyVd42aaSbaaSqaai aaikdacaaIXaaabeaaaOGaayjkaiaawMcaaiabfk9aHcqaaiaadoga daWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaamyramaaBaaale aacaaIXaaabeaakmaabmaabaGaeqyVd42aaSbaaSqaaiaaikdacaaI XaaabeaakiabgUcaRiabe27aUnaaBaaaleaacaaIZaGaaGymaaqaba GccqaH9oGBdaWgaaWcbaGaaGOmaiaaiodaaeqaaaGccaGLOaGaayzk aaGaeuO0deQaeyypa0JaamyramaaBaaaleaacaaIYaaabeaakmaabm aabaGaeqyVd42aaSbaaSqaaiaaigdacaaIYaaabeaakiabgUcaRiab e27aUnaaBaaaleaacaaIZaGaaGOmaaqabaGccqaH9oGBdaWgaaWcba GaaGymaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeuO0dekabaGaam4y amaaBaaaleaacaaIXaGaaG4maaqabaGccqGH9aqpcaWGfbWaaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacqaH9oGBdaWgaaWcbaGaaG4maiaa igdaaeqaaOGaey4kaSIaeqyVd42aaSbaaSqaaiaaikdacaaIXaaabe aakiabe27aUnaaBaaaleaacaaIZaGaaGOmaaqabaaakiaawIcacaGL PaaacqqHspqOcqGH9aqpcaWGfbWaaSbaaSqaaiaaiodaaeqaaOWaae WaaeaacqaH9oGBdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaey4kaSIa eqyVd42aaSbaaSqaaiaaigdacaaIYaaabeaakiabe27aUnaaBaaale aacaaIYaGaaG4maaqabaaakiaawIcacaGLPaaacqqHspqOaeaacaWG JbWaaSbaaSqaaiaaikdacaaIZaaabeaakiabg2da9iaadweadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiabe27aUnaaBaaaleaacaaIZaGa aGOmaaqabaGccqGHRaWkcqaH9oGBdaWgaaWcbaGaaGymaiaaikdaae qaaOGaeqyVd42aaSbaaSqaaiaaiodacaaIXaaabeaaaOGaayjkaiaa wMcaaiabfk9aHkabg2da9iaadweadaWgaaWcbaGaaG4maaqabaGcda qadaqaaiabe27aUnaaBaaaleaacaaIYaGaaG4maaqabaGccqGHRaWk cqaH9oGBdaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaeqyVd42aaSbaaS qaaiaaigdacaaIZaaabeaaaOGaayjkaiaawMcaaiabfk9aHcqaaiaa dogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaeyypa0JaeqiVd02aaS baaSqaaiaaikdacaaIZaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaaleaacaaI1aGaaG ynaaqabaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaaGymaiaaiodaaeqa aOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaam4yamaaBaaaleaacaaI2aGaaGOnaaqabaGccqGH9aqp cqaH8oqBdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeuO0deQaey ypa0ZaaSaaaeaacaaIXaaabaGaaGymaiabgkHiTiabe27aUnaaBaaa leaacaaIXaGaaGOmaaqabaGccqaH9oGBdaWgaaWcbaGaaGOmaiaaig daaeqaaOGaeyOeI0IaeqyVd42aaSbaaSqaaiaaikdacaaIZaaabeaa kiabe27aUnaaBaaaleaacaaIZaGaaGOmaaqabaGccqGHsislcqaH9o GBdaWgaaWcbaGaaG4maiaaigdaaeqaaOGaeqyVd42aaSbaaSqaaiaa igdacaaIZaaabeaakiabgkHiTiaaikdacqaH9oGBdaWgaaWcbaGaaG OmaiaaigdaaeqaaOGaeqyVd42aaSbaaSqaaiaaiodacaaIYaaabeaa kiabe27aUnaaBaaaleaacaaIXaGaaG4maaqabaaaaaaaaa@4600@

or in inverse form

E 1 = c 11 c 22 c 33 +2 c 23 c 12 c 13 c 11 c 23 2 c 22 c 13 2 c 33 c 12 2 / c 22 c 33 c 23 2 E 2 = c 11 c 22 c 33 +2 c 23 c 12 c 13 c 11 c 23 2 c 22 c 13 2 c 33 c 12 2 / c 11 c 33 c 13 2 E 3 = c 11 c 22 c 33 +2 c 23 c 12 c 13 c 11 c 23 2 c 22 c 13 2 c 33 c 12 2 / c 11 c 22 c 12 2 ν 21 =( c 12 c 33 c 13 c 23 )/( c 11 c 33 c 13 2 ) ν 12 =( c 12 c 33 c 13 c 23 )/( c 22 c 33 c 23 2 ) ν 31 =( c 13 c 22 c 12 c 23 )/( c 11 c 22 c 12 2 ) ν 13 =( c 22 c 13 c 12 c 23 )/( c 22 c 33 c 23 2 ) ν 23 =( c 11 c 23 c 12 c 13 )/( c 11 c 33 c 13 2 ) ν 32 =( c 11 c 23 c 12 c 13 )/( c 11 c 22 c 12 2 ) μ 23 = c 44 , μ 13 = c 55 μ 12 = c 66 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaeWaaeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaa beaakiaadogadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaam4yamaaBa aaleaacaaIZaGaaG4maaqabaGccqGHRaWkcaaIYaGaam4yamaaBaaa leaacaaIYaGaaG4maaqabaGccaWGJbWaaSbaaSqaaiaaigdacaaIYa aabeaakiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaeyOeI0Ia am4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGJbWaa0baaSqaai aaikdacaaIZaaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaam4yamaaDaaaleaacaaIXaGaaG4maaqaai aaikdaaaGccqGHsislcaWGJbWaaSbaaSqaaiaaiodacaaIZaaabeaa kiaadogadaqhaaWcbaGaaGymaiaaikdaaeaacaaIYaaaaaGccaGLOa GaayzkaaGaai4lamaabmaabaGaam4yamaaBaaaleaacaaIYaGaaGOm aaqabaGccaWGJbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabgkHiTi aadogadaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaaaaGccaGLOaGa ayzkaaaabaGaamyramaaBaaaleaacaaIYaaabeaakiabg2da9maabm aabaGaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGJbWaaSba aSqaaiaaikdacaaIYaaabeaakiaadogadaWgaaWcbaGaaG4maiaaio daaeqaaOGaey4kaSIaaGOmaiaadogadaWgaaWcbaGaaGOmaiaaioda aeqaaOGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGJbWaaS baaSqaaiaaigdacaaIZaaabeaakiabgkHiTiaadogadaWgaaWcbaGa aGymaiaaigdaaeqaaOGaam4yamaaDaaaleaacaaIYaGaaG4maaqaai aaikdaaaGccqGHsislcaWGJbWaaSbaaSqaaiaaikdacaaIYaaabeaa kiaadogadaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaaaOGaeyOeI0 Iaam4yamaaBaaaleaacaaIZaGaaG4maaqabaGccaWGJbWaa0baaSqa aiaaigdacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaac+cada qadaqaaiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaam4yamaa BaaaleaacaaIZaGaaG4maaqabaGccqGHsislcaWGJbWaa0baaSqaai aaigdacaaIZaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaadwea daWgaaWcbaGaaG4maaqabaGccqGH9aqpdaqadaqaaiaadogadaWgaa WcbaGaaGymaiaaigdaaeqaaOGaam4yamaaBaaaleaacaaIYaGaaGOm aaqabaGccaWGJbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabgUcaRi aaikdacaWGJbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaadogadaWg aaWcbaGaaGymaiaaikdaaeqaaOGaam4yamaaBaaaleaacaaIXaGaaG 4maaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaa kiaadogadaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaaaOGaeyOeI0 Iaam4yamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGJbWaa0baaSqa aiaaigdacaaIZaaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWcba GaaG4maiaaiodaaeqaaOGaam4yamaaDaaaleaacaaIXaGaaGOmaaqa aiaaikdaaaaakiaawIcacaGLPaaacaGGVaWaaeWaaeaacaWGJbWaaS baaSqaaiaaigdacaaIXaaabeaakiaadogadaWgaaWcbaGaaGOmaiaa ikdaaeqaaOGaeyOeI0Iaam4yamaaDaaaleaacaaIXaGaaGOmaaqaai aaikdaaaaakiaawIcacaGLPaaaaeaacqaH9oGBdaWgaaWcbaGaaGOm aiaaigdaaeqaaOGaeyypa0JaaiikaiaadogadaWgaaWcbaGaaGymai aaikdaaeqaaOGaam4yamaaBaaaleaacaaIZaGaaG4maaqabaGccqGH sislcaWGJbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaadogadaWgaa WcbaGaaGOmaiaaiodaaeqaaOGaaiykaiaac+cacaGGOaGaam4yamaa BaaaleaacaaIXaGaaGymaaqabaGccaWGJbWaaSbaaSqaaiaaiodaca aIZaaabeaakiabgkHiTiaadogadaqhaaWcbaGaaGymaiaaiodaaeaa caaIYaaaaOGaaiykaiaaykW7aeaacqaH9oGBdaWgaaWcbaGaaGymai aaikdaaeqaaOGaeyypa0JaaiikaiaadogadaWgaaWcbaGaaGymaiaa ikdaaeqaaOGaam4yamaaBaaaleaacaaIZaGaaG4maaqabaGccqGHsi slcaWGJbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaadogadaWgaaWc baGaaGOmaiaaiodaaeqaaOGaaiykaiaac+cacaGGOaGaam4yamaaBa aaleaacaaIYaGaaGOmaaqabaGccaWGJbWaaSbaaSqaaiaaiodacaaI ZaaabeaakiabgkHiTiaadogadaqhaaWcbaGaaGOmaiaaiodaaeaaca aIYaaaaOGaaiykaaqaaiabe27aUnaaBaaaleaacaaIZaGaaGymaaqa baGccqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIXaGaaG4maaqaba GccaWGJbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadoga daWgaaWcbaGaaGymaiaaikdaaeqaaOGaam4yamaaBaaaleaacaaIYa GaaG4maaqabaGccaGGPaGaai4laiaacIcacaWGJbWaaSbaaSqaaiaa igdacaaIXaaabeaakiaadogadaWgaaWcbaGaaGOmaiaaikdaaeqaaO GaeyOeI0Iaam4yamaaDaaaleaacaaIXaGaaGOmaaqaaiaaikdaaaGc caGGPaGaaGPaVdqaaiabe27aUnaaBaaaleaacaaIXaGaaG4maaqaba GccqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIYaGaaGOmaaqabaGc caWGJbWaaSbaaSqaaiaaigdacaaIZaaabeaakiabgkHiTiaadogada WgaaWcbaGaaGymaiaaikdaaeqaaOGaam4yamaaBaaaleaacaaIYaGa aG4maaqabaGccaGGPaGaai4laiaacIcacaWGJbWaaSbaaSqaaiaaik dacaaIYaaabeaakiaadogadaWgaaWcbaGaaG4maiaaiodaaeqaaOGa eyOeI0Iaam4yamaaDaaaleaacaaIYaGaaG4maaqaaiaaikdaaaGcca GGPaaabaGaeqyVd42aaSbaaSqaaiaaikdacaaIZaaabeaakiabg2da 9iaacIcacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadogada WgaaWcbaGaaGOmaiaaiodaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaa caaIXaGaaGOmaaqabaGccaWGJbWaaSbaaSqaaiaaigdacaaIZaaabe aakiaacMcacaGGVaGaaiikaiaadogadaWgaaWcbaGaaGymaiaaigda aeqaaOGaam4yamaaBaaaleaacaaIZaGaaG4maaqabaGccqGHsislca WGJbWaa0baaSqaaiaaigdacaaIZaaabaGaaGOmaaaakiaacMcaaeaa cqaH9oGBdaWgaaWcbaGaaG4maiaaikdaaeqaaOGaeyypa0Jaaiikai aadogadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaam4yamaaBaaaleaa caaIYaGaaG4maaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaigdaca aIYaaabeaakiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaiyk aiaac+cacaGGOaGaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGcca WGJbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadogadaqh aaWcbaGaaGymaiaaikdaaeaacaaIYaaaaOGaaiykaaqaaiabeY7aTn aaBaaaleaacaaIYaGaaG4maaqabaGccqGH9aqpcaWGJbWaaSbaaSqa aiaaisdacaaI0aaabeaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqiVd02aaSba aSqaaiaaigdacaaIZaaabeaakiabg2da9iaadogadaWgaaWcbaGaaG ynaiaaiwdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqaH8oqBdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Jaam4y amaaBaaaleaacaaI2aGaaGOnaaqabaaaaaa@BA96@

 

For an orthotropic material thermal expansion cannot induce shear (in this basis) but the expansion in the three directions need not be equal.  Consequently the thermal expansion coefficient tensor has the form

α 1 0 0 0 α 2 0 0 0 α 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaeqySde 2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaeqySde2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaeqySde2aaSbaaSqaaiaaiodaaeqaaaaa aOGaay5waiaaw2faaaaa@3EF8@

 

 

 

3.2.14 Stress-strain relations for linear elastic Transversely Isotropic Material

 

A special case of an orthotropic solid is one that contains a plane of isotropy (this implies that the solid can be rotated with respect to the loading direction about one axis without measurable effect on the solid’s response).  Choose e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  perpendicular to this symmetry plane.  Then, transverse isotropy requires that c 22 = c 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaGOmaa qabaGccqGH9aqpcaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaaaaa@3706@ , c 23 = c 13 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaG4maa qabaGccqGH9aqpcaWGJbWaaSbaaSqaaiaaigdacaaIZaaabeaaaaa@3709@ , c 55 = c 44 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaI1aGaaGynaa qabaGccqGH9aqpcaWGJbWaaSbaaSqaaiaaisdacaaI0aaabeaaaaa@3712@ , c 66 =( c 11 c 12 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4yamaaBaaaleaacaaI2aGaaGOnaa qabaGccqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIXaGaaGymaaqa baGccqGHsislcaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaacM cacaGGVaGaaGOmaaaa@3D62@ , so that the stiffness matrix has the form

 


The engineering constants must satisfy

E 1 = E 2 = E p E 3 = E t ν 12 = ν 21 = ν p ν 31 = ν 32 = ν tp ν 13 = ν 23 = ν pt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaamyramaaBaaaleaacaaIYaaabeaakiabg2da9iaa dweadaWgaaWcbaGaamiCaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamyramaaBaaaleaacaaIZaaabeaakiab g2da9iaadweadaWgaaWcbaGaamiDaaqabaaakeaacqaH9oGBdaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaeqyVd42aaSbaaSqaaiaa ikdacaaIXaaabeaakiabg2da9iabe27aUnaaBaaaleaacaWGWbaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqaH9oGBdaWgaaWcbaGaaG4maiaaigdaaeqaaO Gaeyypa0JaeqyVd42aaSbaaSqaaiaaiodacaaIYaaabeaakiabg2da 9iabe27aUnaaBaaaleaacaWG0bGaamiCaaqabaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaiodaaeqaaOGaeyypa0JaeqyVd42aaSbaaSqa aiaaikdacaaIZaaabeaakiabg2da9iabe27aUnaaBaaaleaacaWGWb GaamiDaaqabaGccaaMc8oaaaa@7E05@

and the compliance matrix has the form

S= 1/ E p ν p / E p ν tp / E t 0 0 0 ν p / E p 1/ E p ν tp / E t 0 0 0 ν pt / E p ν pt / E p 1/ E t 0 0 0 0 0 0 1/ μ t 0 0 0 0 0 0 1/ μ t 0 0 0 0 0 0 1/ μ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9maadmaabaqbaeqaby GbaaaaaeaacaaIXaGaai4laiaadweadaWgaaWcbaGaamiCaaqabaaa keaacqGHsislcqaH9oGBdaWgaaWcbaGaamiCaaqabaGccaGGVaGaam yramaaBaaaleaacaWGWbaabeaaaOqaaiabgkHiTiabe27aUnaaBaaa leaacaWG0bGaamiCaaqabaGccaGGVaGaamyramaaBaaaleaacaWG0b aabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiab e27aUnaaBaaaleaacaWGWbaabeaakiaac+cacaWGfbWaaSbaaSqaai aadchaaeqaaaGcbaGaaGymaiaac+cacaWGfbWaaSbaaSqaaiaadcha aeqaaaGcbaGaeyOeI0IaeqyVd42aaSbaaSqaaiaadshacaWGWbaabe aakiaac+cacaWGfbWaaSbaaSqaaiaadshaaeqaaaGcbaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaeyOeI0IaeqyVd42aaSbaaSqaaiaadc hacaWG0baabeaakiaac+cacaWGfbWaaSbaaSqaaiaadchaaeqaaaGc baGaeyOeI0IaeqyVd42aaSbaaSqaaiaadchacaWG0baabeaakiaac+ cacaWGfbWaaSbaaSqaaiaadchaaeqaaaGcbaGaaGymaiaac+cacaWG fbWaaSbaaSqaaiaadshaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaiaac+ca cqaH8oqBdaWgaaWcbaGaamiDaaqabaaakeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaGa ai4laiabeY7aTnaaBaaaleaacaWG0baabeaaaOqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa igdacaGGVaGaeqiVd02aaSbaaSqaaiaadchaaeqaaaaaaOGaay5wai aaw2faaaaa@883A@

where μ p = E p /2(1+ ν p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadchaaeqaaO Gaeyypa0JaamyramaaBaaaleaacaWGWbaabeaakiaac+cacaaIYaGa aiikaiaaigdacqGHRaWkcqaH9oGBdaWgaaWcbaGaamiCaaqabaGcca GGPaaaaa@3E04@ .  As before the Poisson’s ratios are not symmetric, but satisfy ν tp / E t = ν pt / E p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd42aaSbaaSqaaiaadshacaWGWb aabeaakiaac+cacaWGfbWaaSbaaSqaaiaadshaaeqaaOGaeyypa0Ja eqyVd42aaSbaaSqaaiaadchacaWG0baabeaakiaac+cacaWGfbWaaS baaSqaaiaadchaaeqaaaaa@3EE8@

 

The engineering constants and stiffnesses are related by

c 11 = c 22 = E p 1 ν pt ν tp ϒ c 33 = E t 1 ν p 2 ϒ c 12 = E p ν p + ν pt ν tp ϒ c 13 = c 23 = E p ν tp + ν p ν tp ϒ= E t ν pt + ν p ν pt ϒ c 44 = μ t c 66 = μ p ϒ= 1 1 ν p 2 2 ν pt ν tp 2 ν p ν pt ν tp MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGJbWaaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9iaadogadaWgaaWcbaGaaGOmaiaaikdaaeqa aOGaeyypa0JaamyramaaBaaaleaacaWGWbaabeaakmaabmaabaGaaG ymaiabgkHiTiabe27aUnaaBaaaleaacaWGWbGaamiDaaqabaGccqaH 9oGBdaWgaaWcbaGaamiDaiaadchaaeqaaaGccaGLOaGaayzkaaGaeu O0deQaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGJbWaaSbaaSqaaiaaiodacaaIZaaabeaakiabg2da9iaadw eadaWgaaWcbaGaamiDaaqabaGcdaqadaqaaiaaigdacqGHsislcqaH 9oGBdaqhaaWcbaGaamiCaaqaaiaaikdaaaaakiaawIcacaGLPaaacq qHspqOcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua am4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaWGfbWaaS baaSqaaiaadchaaeqaaOWaaeWaaeaacqaH9oGBdaWgaaWcbaGaamiC aaqabaGccqGHRaWkcqaH9oGBdaWgaaWcbaGaamiCaiaadshaaeqaaO GaeqyVd42aaSbaaSqaaiaadshacaWGWbaabeaaaOGaayjkaiaawMca aiabfk9aHcqaaiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaey ypa0Jaam4yamaaBaaaleaacaaIYaGaaG4maaqabaGccqGH9aqpcaWG fbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacqaH9oGBdaWgaaWcba GaamiDaiaadchaaeqaaOGaey4kaSIaeqyVd42aaSbaaSqaaiaadcha aeqaaOGaeqyVd42aaSbaaSqaaiaadshacaWGWbaabeaaaOGaayjkai aawMcaaiabfk9aHkabg2da9iaadweadaWgaaWcbaGaamiDaaqabaGc daqadaqaaiabe27aUnaaBaaaleaacaWGWbGaamiDaaqabaGccqGHRa WkcqaH9oGBdaWgaaWcbaGaamiCaaqabaGccqaH9oGBdaWgaaWcbaGa amiCaiaadshaaeqaaaGccaGLOaGaayzkaaGaeuO0deQaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaadogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaeyypa0JaeqiVd0 2aaSbaaSqaaiaadshaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaadogadaWgaaWcbaGaaGOnaiaaiAda aeqaaOGaeyypa0JaeqiVd02aaSbaaSqaaiaadchaaeqaaaGcbaGaeu O0deQaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymaiabgkHiTiabe27a UnaaDaaaleaacaWGWbaabaGaaGOmaaaakiabgkHiTiaaikdacqaH9o GBdaWgaaWcbaGaamiCaiaadshaaeqaaOGaeqyVd42aaSbaaSqaaiaa dshacaWGWbaabeaakiabgkHiTiaaikdacqaH9oGBdaWgaaWcbaGaam iCaaqabaGccqaH9oGBdaWgaaWcbaGaamiCaiaadshaaeqaaOGaeqyV d42aaSbaaSqaaiaadshacaWGWbaabeaaaaaaaaa@FF3A@

E p = c 11 2 c 33 +2 c 13 2 c 12 2 c 11 c 13 2 c 33 c 12 2 / c 11 c 33 c 13 2 E t = c 11 2 c 33 +2 c 13 2 c 12 2 c 11 c 13 2 c 33 c 12 2 / c 11 2 c 12 2 ν p =( c 12 c 33 c 13 2 )/( c 11 c 33 c 13 2 ) ν tp =( c 13 c 11 c 12 c 13 )/( c 11 2 c 12 2 ) ν pt =( c 11 c 13 c 12 c 13 )/( c 11 c 33 c 13 2 ) μ t = c 44 μ p = c 66 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbWaaSbaaSqaaiaadchaae qaaOGaeyypa0ZaaeWaaeaacaWGJbWaa0baaSqaaiaaigdacaaIXaaa baGaaGOmaaaakiaadogadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaey 4kaSIaaGOmaiaadogadaqhaaWcbaGaaGymaiaaiodaaeaacaaIYaaa aOGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHsislcaaIYa Gaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGJbWaa0baaSqa aiaaigdacaaIZaaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWcba GaaG4maiaaiodaaeqaaOGaam4yamaaDaaaleaacaaIXaGaaGOmaaqa aiaaikdaaaaakiaawIcacaGLPaaacaGGVaWaaeWaaeaacaWGJbWaaS baaSqaaiaaigdacaaIXaaabeaakiaadogadaWgaaWcbaGaaG4maiaa iodaaeqaaOGaeyOeI0Iaam4yamaaDaaaleaacaaIXaGaaG4maaqaai aaikdaaaaakiaawIcacaGLPaaaaeaacaWGfbWaaSbaaSqaaiaadsha aeqaaOGaeyypa0ZaaeWaaeaacaWGJbWaa0baaSqaaiaaigdacaaIXa aabaGaaGOmaaaakiaadogadaWgaaWcbaGaaG4maiaaiodaaeqaaOGa ey4kaSIaaGOmaiaadogadaqhaaWcbaGaaGymaiaaiodaaeaacaaIYa aaaOGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHsislcaaI YaGaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGJbWaa0baaS qaaiaaigdacaaIZaaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWc baGaaG4maiaaiodaaeqaaOGaam4yamaaDaaaleaacaaIXaGaaGOmaa qaaiaaikdaaaaakiaawIcacaGLPaaacaGGVaWaaeWaaeaacaWGJbWa a0baaSqaaiaaigdacaaIXaaabaGaaGOmaaaakiabgkHiTiaadogada qhaaWcbaGaaGymaiaaikdaaeaacaaIYaaaaaGccaGLOaGaayzkaaaa baGaeqyVd42aaSbaaSqaaiaadchaaeqaaOGaeyypa0Jaaiikaiaado gadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaam4yamaaBaaaleaacaaI ZaGaaG4maaqabaGccqGHsislcaWGJbWaa0baaSqaaiaaigdacaaIZa aabaGaaGOmaaaakiaacMcacaGGVaGaaiikaiaadogadaWgaaWcbaGa aGymaiaaigdaaeqaaOGaam4yamaaBaaaleaacaaIZaGaaG4maaqaba GccqGHsislcaWGJbWaa0baaSqaaiaaigdacaaIZaaabaGaaGOmaaaa kiaacMcaaeaacqaH9oGBdaWgaaWcbaGaamiDaiaadchaaeqaaOGaey ypa0JaaiikaiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaam4y amaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaS qaaiaaigdacaaIYaaabeaakiaadogadaWgaaWcbaGaaGymaiaaioda aeqaaOGaaiykaiaac+cacaGGOaGaam4yamaaDaaaleaacaaIXaGaaG ymaaqaaiaaikdaaaGccqGHsislcaWGJbWaa0baaSqaaiaaigdacaaI YaaabaGaaGOmaaaakiaacMcaaeaacqaH9oGBdaWgaaWcbaGaamiCai aadshaaeqaaOGaeyypa0JaaiikaiaadogadaWgaaWcbaGaaGymaiaa igdaaeqaaOGaam4yamaaBaaaleaacaaIXaGaaG4maaqabaGccqGHsi slcaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaadogadaWgaaWc baGaaGymaiaaiodaaeqaaOGaaiykaiaac+cacaGGOaGaam4yamaaBa aaleaacaaIXaGaaGymaaqabaGccaWGJbWaaSbaaSqaaiaaiodacaaI ZaaabeaakiabgkHiTiaadogadaqhaaWcbaGaaGymaiaaiodaaeaaca aIYaaaaOGaaiykaaqaaiabeY7aTnaaBaaaleaacaWG0baabeaakiab g2da9iaadogadaWgaaWcbaGaaGinaiaaisdaaeqaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaeqiVd02aaSbaaSqaaiaadchaaeqaaOGaeyypa0 Jaam4yamaaBaaaleaacaaI2aGaaGOnaaqabaaaaaa@F8CF@

 

For this material the two thermal expansion coefficients in the symmetry plane must be equal, so the thermal expansion coefficient tensor has the form

α 1 0 0 0 α 1 0 0 0 α 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWadaaabaGaeqySde 2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaeqySde2aaSbaaSqaaiaaiodaaeqaaaaa aOGaay5waiaaw2faaaaa@3EF7@

 

 

 

3.2.15 Representative values for elastic constants of transversely isotropic hexagonal close packed crystals

 

Hexagonal close-packed crystals are an example of transversely isotropic materials.  The e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis must be taken to be perpendicular to the basal (0001) plane of the crystal, as shown in the figure.  Since the plane perpendicular to e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  is isotropic the orientation of e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  and e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  is arbitrary.


 

 

A table of values of stiffnesses for a few hexagonal materials is listed in the table below

 


 

The engineering constants can be calculated and are listed in the table below

 


 

 

3.2.16 Linear elastic stress-strain relations for cubic materials

 

A huge number of materials have cubic symmetry MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  all the FCC and BCC metals, for example.  The constitutive law for such a material is particularly simple, and can be parameterized by only 3 material constants.  Pick basis vectors perpendicular to the symmetry planes, as shown in Figure 3.12. <Figure 3.12 near here>

 


 

Then

σ 11 σ 22 σ 33 σ 23 σ 13 σ 11 = c 11 c 12 c 12 0 0 0 c 11 c 12 0 0 0 c 11 0 0 0 sym c 44 0 0 0 c 44 0 0 0 c 44 ε 11 ε 22 ε 33 2 ε 23 2 ε 13 2 ε 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGbbaaaaeaacqaHdp WCdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqa aiaaikdacaaIYaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG 4maaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaiodaaeqaaaGc baGaeq4Wdm3aaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaaaaaGccaGLBbGaayzxaaGaeyyp a0ZaamWaaeaafaqabeGbgaaaaaqaaiaadogadaWgaaWcbaGaaGymai aaigdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaaa keaacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaaqaaiaadogadaWgaaWcbaGaaGymaiaa igdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaaake aacaaIWaaabaGaaGimaaqaaiaaicdaaeaaaeaaaeaacaWGJbWaaSba aSqaaiaaigdacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaaqaaiaadohacaWG5bGaamyBaaqaaaqaaiaadogadaWgaaWc baGaaGinaiaaisdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaaeaaae aaaeaacaaIWaaabaGaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaa keaacaaIWaaabaaabaaabaaabaGaaGimaaqaaiaaicdaaeaacaWGJb WaaSbaaSqaaiaaisdacaaI0aaabeaaaaaakiaawUfacaGLDbaadaWa daqaauaabeqageaaaaqaaiabew7aLnaaBaaaleaacaaIXaGaaGymaa qabaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGa eqyTdu2aaSbaaSqaaiaaiodacaaIZaaabeaaaOqaaiaaikdacqaH1o qzdaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaaGOmaiabew7aLnaa BaaaleaacaaIXaGaaG4maaqabaaakeaacaaIYaGaeqyTdu2aaSbaaS qaaiaaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaaaaa@880C@

or in terms of engineering constants

ε 11 ε 22 ε 33 2 ε 23 2 ε 13 2 ε 12 = 1/E ν/E ν/E 0 0 0 ν/E 1/E ν/E 0 0 0 ν/E ν/E 1/E 0 0 0 0 0 0 1/μ 0 0 0 0 0 0 1/μ 0 0 0 0 0 0 1/μ σ 11 σ 22 σ 33 σ 23 σ 13 σ 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGbbaaaaeaacqaH1o qzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeqyTdu2aaSbaaSqa aiaaikdacaaIYaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIZaGaaG 4maaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaikdacaaIZaaa beaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGaaGymaiaaiodaaeqaaa GcbaGaaGOmaiabew7aLnaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGc caGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGbgaaaaaqaaiaaig dacaGGVaGaamyraaqaaiabgkHiTiabe27aUjaac+cacaWGfbaabaGa eyOeI0IaeqyVd4Maai4laiaadweaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacqGHsislcqaH9oGBcaGGVaGaamyraaqaaiaaigdacaGG VaGaamyraaqaaiabgkHiTiabe27aUjaac+cacaWGfbaabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaeyOeI0IaeqyVd4Maai4laiaadwea aeaacqGHsislcqaH9oGBcaGGVaGaamyraaqaaiaaigdacaGGVaGaam yraaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaigdacaGGVaGaeqiVd0gabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGymaiaac+cacqaH8oqBaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaGaai4laiabeY7a TbaaaiaawUfacaGLDbaadaWadaqaauaabeqageaaaaqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaaakeaa cqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaaaaa@9D46@

This is virtually identical to the constitutive law for an isotropic solid, except that the shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is not related to the Poisson’s ratio and Young’s modulus through the usual relation given in Section 3.1.6.   In fact, the ratio

A= 2μ(1+ν) E = 2 c 44 c 11 c 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9maalaaabaGaaGOmai abeY7aTjaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaaqaaiaadwea aaGaeyypa0ZaaSaaaeaacaaIYaGaam4yamaaBaaaleaacaaI0aGaaG inaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiab gkHiTiaadogadaWgaaWcbaGaaGymaiaaikdaaeqaaaaaaaa@451E@

provides a convenient measure of anisotropy.  For A=1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9iaaigdaaaa@3367@  the material is isotropic. 

 

The thermal expansion coefficient matrix must be isotropic for materials with cubic symmetry.

 

The relationships between the elastic constants are

E= c 11 2 + c 12 c 11 2 c 12 2 / c 11 + c 12 ν= c 12 /( c 11 + c 12 )μ= c 44 c 11 =E(1ν)/(1ν2 ν 2 ) c 12 =Eν/(1ν2 ν 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbGaeyypa0ZaaeWaaeaaca WGJbWaa0baaSqaaiaaigdacaaIXaaabaGaaGOmaaaakiabgUcaRiaa dogadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaam4yamaaBaaaleaaca aIXaGaaGymaaqabaGccqGHsislcaaIYaGaam4yamaaDaaaleaacaaI XaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGVaWaaeWaae aacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRiaadoga daWgaaWcbaGaaGymaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqaH9oGBcqGH9aqpcaWGJbWaaSbaaSqaaiaaigdaca aIYaaabeaakiaac+cacaGGOaGaam4yamaaBaaaleaacaaIXaGaaGym aaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaaki aacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaeqiVd0Maeyypa0Jaam4yamaaBaaaleaacaaI0aGaaGinaaqa baaakeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9i aadweacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacaGGVaGaaiik aiaaigdacqGHsislcqaH9oGBcqGHsislcaaIYaGaeqyVd42aaWbaaS qabeaacaaIYaaaaOGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaadwea cqaH9oGBcaGGVaGaaiikaiaaigdacqGHsislcqaH9oGBcqGHsislca aIYaGaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaaaa@BE10@

 

 

 

3.2.17 Representative values for elastic properties of cubic crystals and compounds

 

The table below lists values of elastic constants for various cubic crystals and compounds. The elastic constants   E,ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacYcacqaH9oGBaaa@3412@  were calculated using the formulas in the preceding section.