3.3 Hypoelasticity MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzahaeaaaaaaaaa8qacaWFtacaaa@3218@  elastic materials with a nonlinear stress-strain relation under small deformation

 

Hypoelasticity is used to model materials that exhibit nonlinear, but reversible, stress strain behavior even at small strains.  Its most common application is in the so-called `deformation theory of plasticity,’ which is a crude approximation of the behavior of metals loaded beyond the elastic limit.

 

A hypoelastic material has the following properties:

 

· The solid has a preferred shape;

 

· The specimen deforms reversibly:  if you remove the loads, the solid returns to its original shape;

 

· The strain in the specimen depends only on the stress applied to it MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it doesn’t depend on the rate of loading, or the history of loading;

 

· The stress is a nonlinear function of strain, even when the strains are small, as shown in the figure. Because the strains are small, this is true whatever stress measure we adopt (Cauchy stress or nominal stress), and is true whatever strain measure we adopt (Lagrange strain or infinitesimal strain);

 

· We will assume here that the material is isotropic (i.e. the response of a material is independent of its orientation with respect to the loading direction).  In principle, it would be possible to develop anisotropic hypoelastic models, but this is rarely done.

 

 

The stress strain law is constructed as follows:

 

· Strains and rotations are assumed to be small.  Consequently, deformation is characterized using the infinitesimal strain tensor ε ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3490@  defined in Section 2.2.10.   In addition, all stress measures are taken to be approximately equal.  We can use the Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  as the stress measure.

 

· When we develop constitutive equations for nonlinear elastic materials, it is usually best to find an equation for the strain energy density of the material as a function of the strain, instead of trying to write down stress-strain laws directly.  This has several advantages: (i) we can work with a scalar function; and (ii) the existence of a strain energy density guarantees that deformations of the material are perfectly reversible.  

 

· If the material is isotropic, the strain energy density can only be a function strain measures that do not depend on the direction of loading with respect to the material.   One can show that this means that the strain energy can only be a function of invariants of the strain tensor MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  that is to say, combinations of strain components that have the same value in any basis (see Appendix B).  The strain tensor always has three independent invariants: these could be the three principal strains, for example.   In practice it is usually more convenient to use the three fundamental scalar invariants:

I 1 = ε kk I 2 = 1 2 ε ij ε ij ε kk ε pp /3 I 3 =det ε = 1 6 ijk lmn ε li ε mj ε nk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki abg2da9iabew7aLnaaBaaaleaacaWGRbGaam4AaaqabaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWc aaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeqyTdu2aaSbaaSqaai aadMgacaWGQbaabeaakiabew7aLnaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeq yTdu2aaSbaaSqaaiaadchacaWGWbaabeaakiaac+cacaaIZaaacaGL OaGaayzkaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaamysamaaBaaaleaacaaIZaaabeaakiabg2da 9iGacsgacaGGLbGaaiiDamaabmaajaaWbaGaaCyTdaGccaGLOaGaay zkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOnaaaacqGHiiIZdaWg aaWcbaGaamyAaiaadQgacaWGRbaabeaakiabgIGiopaaBaaaleaaca WGSbGaamyBaiaad6gaaeqaaOGaeqyTdu2aaSbaaSqaaiaadYgacaWG Pbaabeaakiabew7aLnaaBaaaleaacaWGTbGaamOAaaqabaGccqaH1o qzdaWgaaWcbaGaamOBaiaadUgaaeqaaaaa@8D70@

Here, I 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaaa a@3295@  is a measure of the volume change associated with the strain; I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIYaaabeaaaa a@3296@  is a measure of the shearing caused by the strain, and I can’t think of a good physical interpretation for I 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIZaaabeaaaa a@3297@ .  Fortunately, it doesn’t often appear in constitutive equations.

 

 

Strain energy density: In principle, the strain energy density could be any sensible function U( I 1 , I 2 , I 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWGjbWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamysamaaBaaaleaacaaIZaaabeaakiaacMcaaaa@39B3@ .   In most practical applications, nonlinear behavior is only observed when the material is subjected to shear deformation (characterized by I 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIYaaabeaaaa a@3296@  ); while stress varies linearly with volume changes (characterized by I 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaaa a@3295@  ).   This behavior can be characterized by a strain energy density

U= 1 6 K I 1 2 + 2n σ 0 ε 0 n+1 I 2 ε 0 2 (n+1)/2n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiabg2da9maalaaabaGaaGymaa qaaiaaiAdaaaGaam4saiaadMeadaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkdaWcaaqaaiaaikdacaWGUbGaeq4Wdm3aaSbaaSqaai aaicdaaeqaaOGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaGcbaGaamOB aiabgUcaRiaaigdaaaWaaeWaaeaadaWcaaqaaiaadMeadaWgaaWcba GaaGOmaaqabaaakeaacqaH1oqzdaqhaaWcbaGaaGimaaqaaiaaikda aaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaGGOaGaamOBaiabgU caRiaaigdacaGGPaGaai4laiaaikdacaWGUbaaaaaa@4F37@

where K, σ 0 , ε 0 ,n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiaacYcacqaHdpWCdaWgaaWcba GaaGimaaqabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGa aiilaiaad6gaaaa@39FD@  are material properties (see below for a physical interpretation).

 

 

Stress-strain behavior: For this strain energy density function, the stress follows as

σ ij = U ε ij = K 3 ε kk δ ij + σ 0 I 2 ε 0 2 (1n)/2n ε ij ε kk δ ij /3 ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeyOaIyRaamyvaaqaaiabgkGi2kab ew7aLnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0ZaaSaaae aacaWGlbaabaGaaG4maaaacqaH1oqzdaWgaaWcbaGaam4AaiaadUga aeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRi abeo8aZnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacaWG jbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeqyTdu2aa0baaSqaaiaaic daaeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaiik aiaaigdacqGHsislcaWGUbGaaiykaiaac+cacaaIYaGaamOBaaaakm aabmaabaWaaSaaaeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqa aOGaeyOeI0IaeqyTdu2aaSbaaSqaaiaadUgacaWGRbaabeaakiabes 7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaqaaiab ew7aLnaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaaaaa@69CF@

The strain can also be calculated in terms of stress

ε ij = 1 3K σ kk δ ij + ε 0 J 2 σ 0 2 (n1)/2 σ ij σ kk δ ij /3 σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaiodacaWGlbaaaiab eo8aZnaaBaaaleaacaWGRbGaam4AaaqabaGccqaH0oazdaWgaaWcba GaamyAaiaadQgaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiaaicda aeqaaOWaaeWaaeaadaWcaaqaaiaadQeadaWgaaWcbaGaaGOmaaqaba aakeaacqaHdpWCdaqhaaWcbaGaaGimaaqaaiaaikdaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaGGOaGaamOBaiabgkHiTiaaigdaca GGPaGaai4laiaaikdaaaGcdaqadaqaamaalaaabaGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakiabgkHiTiabeo8aZnaaBaaaleaaca WGRbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqa aOGaai4laiaaiodaaeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaa GccaGLOaGaayzkaaaaaa@6176@

where J 2 =( σ ij σ ij σ kk σ pp /3)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaaIYaaabeaaki abg2da9iaacIcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiabeo8aZn aaBaaaleaacaWGRbGaam4AaaqabaGccqaHdpWCdaWgaaWcbaGaamiC aiaadchaaeqaaOGaai4laiaaiodacaGGPaGaai4laiaaikdaaaa@4834@  is the second invariant of the stress tensor. 

 

To interpret these results, note that

 

· If the solid is subjected to uniaxial tension, (with stress σ 11 =σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZbaa@3718@  and all other stress components zero); the nonzero strain components are

ε 11 = σ 3K + 2 3 ε 0 σ 3 σ 0 n ε 22 = ε 33 = σ 3K 1 3 ε 0 σ 3 σ 0 n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9maalaaabaGaeq4WdmhabaGaaG4maiaadUeaaaGa ey4kaSYaaSaaaeaacaaIYaaabaWaaOaaaeaacaaIZaaaleqaaaaaki abew7aLnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacqaH dpWCaeaadaGcaaqaaiaaiodaaSqabaGccqaHdpWCdaWgaaWcbaGaaG imaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbaaaOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLn aaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpcqaH1oqzdaWgaaWc baGaaG4maiaaiodaaeqaaOGaeyypa0ZaaSaaaeaacqaHdpWCaeaaca aIZaGaam4saaaacqGHsisldaWcaaqaaiaaigdaaeaadaGcaaqaaiaa iodaaSqabaaaaOGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOWaaeWaae aadaWcaaqaaiabeo8aZbqaamaakaaabaGaaG4maaWcbeaakiabeo8a ZnaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiaad6gaaaaaaa@6A02@

 

· If the solid is subjected to hydrostatic stress (with σ 11 = σ 22 = σ 33 =σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 Jaeq4Wdmhaaa@4008@  and all other stress components zero) the nonzero strain components are

ε 11 = ε 22 = ε 33 = σ K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaH1oqzdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 ZaaSaaaeaacqaHdpWCaeaacaWGlbaaaaaa@4094@

 

· If the solid is subjected to pure shear stress (with σ 12 = σ 21 =τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGymaaqabaGc cqGH9aqpcqaHepaDaaa@3B91@  and all other stress components zero) the nonzero strains are

ε 12 = ε 21 = ε 0 τ σ 0 n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaGymaaqabaGc cqGH9aqpcqaH1oqzdaWgaaWcbaGaaGimaaqabaGcdaqadaqaamaala aabaGaeqiXdqhabaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaamOBaaaaaaa@435C@

Thus, the solid responds linearly to pressure loading, with a bulk modulus K.  The relationship between shear stress and shear strain is a power law, with exponent n

 

 

This is just an example of a hypoelastic stress-strain law MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  many other forms could be used.  Another example, which gives a good approximation to an elastic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  power law hardening stress strain curve that resembles that of a strain hardening metal (but without accounting properly for permanent plastic deformation), is described In Section 8.3.