3.4 Generalized Hooke’s law MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B8@   elastic materials subjected to small stretches but large rotations

 

Recall that the stress-strain law for an anisotropic, linear elastic material (Sect 3.2) has the form

σ ij = C ijkl ε kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3E2C@

where σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  is stress (any stress measure you like), ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdaaaa@48F8@  is the infinitesimal strain, and C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  is the tensor of elastic moduli.

 

This stress-strain relation can only be used if the material is subjected to small deformations, and small rotations.  This is partly because the infinitesimal strain ε ij 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabgcMi5kaaicdaaaa@371B@  for a finite rotation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  so the law predicts that a nonzero stress is required to rotate a solid, but also because the constitutive law does not predict that the (in an anisotropic material) the elastic moduli may change as the material rotates.

 

There are some situations where a solid is subjected to small shape changes, but large rotations.  For example, the figure shows a long slender beam bent into a circle by moments applied to its ends.  The strains in the beam are of order h/R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiAaiaac+cacaWGsbaaaa@3357@ , where h is the thickness of the beam and R is its curvature.   The ends of the beam have rotated through a full 90 degrees, however.   The linear elastic constitutive equations would not predict the correct stress in the beam.

 

 It is easy to fix this problem: provided we choose a sensible (nonlinear) strain measure, together with the appropriate work-conjugate stress measure, we can still use a linear stress-strain relation.  To make this precise, suppose that a solid is subjected to a displacement field u i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaa@367A@ , as shown below.


 

 

 Define

· The deformation gradient and its Jacobian

F ij = δ ij + u i x j J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadQeacqGH9aqpciGGKbGaaiyzaiaacshaca GGOaGaaCOraiaacMcaaaa@661E@

 

· The Lagrange strain

E ij = 1 2 ( F ki F kj δ ij )= 1 2 u i x j + u j x i + u k x i u k x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWG gbWaaSbaaSqaaiaadUgacaWGPbaabeaakiaadAeadaWgaaWcbaGaam 4AaiaadQgaaeqaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaadMgacaWG QbaabeaakiaacMcacaaMc8UaaGPaVlabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaae qaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWG QbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaO Gaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadUgaaeqa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGcdaWcaa qaaiabgkGi2kaadwhadaWgaaWcbaGaam4AaaqabaaakeaacqGHciIT caWG4bWaaSbaaSqaaiaadQgaaeqaaaaaaOGaayjkaiaawMcaaaaa@676A@

 

· The Eulerian strain E ij * =( δ ij F ki 1 F kj 1 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7caaMc8UaamyramaaDa aaleaacaWGPbGaamOAaaqaaiaacQcaaaGccqGH9aqpcaGGOaGaeqiT dq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadAeadaqhaa WcbaGaam4AaiaadMgaaeaacqGHsislcaaIXaaaaOGaamOramaaDaaa leaacaWGRbGaamOAaaqaaiabgkHiTiaaigdaaaGccaGGPaGaai4lai aaikdaaaa@4A90@

 

· The rotation tensor (see 2.1.13 for the best way to compute R in practice)

R ij = F ik U kj 1 U= F T F 1/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaa dwfadaqhaaWcbaGaam4AaiaadQgaaeaacqGHsislcaaIXaaaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaahwfacqGH9aqpdaqadaqaaiaahAeadaahaaWcbeqaai aadsfaaaGccaWHgbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGa ai4laiaaikdaaaaaaa@5427@

 

· The Cauchy (“true”) stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@ , defined so that 

n i σ ij = Lim dA0 d P j (n) dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWfqaqa aiaadYeacaWGPbGaamyBaaWcbaGaamizaiaadgeacqGHsgIRcaaIWa aabeaakmaalaaabaGaamizaiaadcfadaqhaaWcbaGaamOAaaqaaiaa cIcacaWHUbGaaiykaaaaaOqaaiaadsgacaWGbbaaaaaa@4610@

 

· The Material stress (work conjugate to Lagrange strain)  Σ ij =J F ik 1 σ kl F jl 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWGRbaa baGaeyOeI0IaaGymaaaakiabeo8aZnaaBaaaleaacaWGRbGaamiBaa qabaGccaWGgbWaa0baaSqaaiaadQgacaWGSbaabaGaeyOeI0IaaGym aaaaaaa@432D@

 

 

The Material stress-Lagrange strain relation can be expressed as

Σ ij = C ijkl E kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccaWGfbWaaSbaaSqaaiaadUgacaWGSbaabeaaaaa@3D10@

where C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  is the tensor of elastic moduli for the material with orientation in the undeformed configuration.  This is identical to the stress-strain relation for a linear elastic solid, except that the stress measure has been replaced by Material stress, and the strain measure has been replaced by Lagrange strain. You can therefore use all the matrix representations and tables of data given in Section 3.1 to apply the constitutive equation. The Cauchy (“true”) stress can be computed from the material stress as

σ ij = 1 J F ik Σ kl F jl R ik Σ kl R jl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGccqqHJoWudaWgaaWcbaGaam4Aai aadYgaaeqaaOGaamOramaaBaaaleaacaWGQbGaamiBaaqabaGccqGH ijYUcaWGsbWaaSbaaSqaaiaadMgacaWGRbaabeaakiabfo6atnaaBa aaleaacaWGRbGaamiBaaqabaGccaWGsbWaaSbaaSqaaiaadQgacaWG Sbaabeaaaaa@4BCB@

 

The Cauchy stress-Eulerian strain relation: Alternatively, the stress-strain relation can be expressed in terms of stress and deformation measures that characterize the deformed solid, as

σ ij = C ijkl * E kl * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaqhaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqaaiaacQcaaaGccaWGfbWaa0baaSqaaiaadUgacaWGSbaaba GaaiOkaaaaaaa@3EAD@

where C ijkl * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaWGPbGaamOAai aadUgacaWGSbaabaGaaiOkaaaaaaa@3641@  is the tensor of elastic moduli for the material with orientation of the deformed configuration.  This tensor is related to C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  by

C ijmn * = 1 J F ip F jq C pqkl F mk F nl R ip R jq C pqkl R mk R nl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaWGPbGaamOAai aad2gacaWGUbaabaGaaiOkaaaakiabg2da9maalaaabaGaaGymaaqa aiaadQeaaaGaamOramaaBaaaleaacaWGPbGaamiCaaqabaGccaWGgb WaaSbaaSqaaiaadQgacaWGXbaabeaakiaadoeadaWgaaWcbaGaamiC aiaadghacaWGRbGaamiBaaqabaGccaWGgbWaaSbaaSqaaiaad2gaca WGRbaabeaakiaadAeadaWgaaWcbaGaamOBaiaadYgaaeqaaOGaeyis ISRaamOuamaaBaaaleaacaWGPbGaamiCaaqabaGccaWGsbWaaSbaaS qaaiaadQgacaWGXbaabeaakiaadoeadaWgaaWcbaGaamiCaiaadgha caWGRbGaamiBaaqabaGccaWGsbWaaSbaaSqaaiaad2gacaWGRbaabe aakiaadkfadaWgaaWcbaGaamOBaiaadYgaaeqaaaaa@5B7E@

 

For the special case of an isotropic material with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@

Σ ij = E 1+ν E ij + ν 12ν E kk δ ij σ ij = E 1+ν E ij * + ν 12ν E kk * δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqqHJoWudaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGymaiabgUca Riabe27aUbaadaGadaqaaiaadweadaWgaaWcbaGaamyAaiaadQgaae qaaOGaey4kaSYaaSaaaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOm aiabe27aUbaacaWGfbWaaSbaaSqaaiaadUgacaWGRbaabeaakiabes 7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawUhacaGL9baacaaM c8oabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9m aalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH9oGBaaWaaiWaaeaa caWGfbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaaaakiabgUcaRm aalaaabaGaeqyVd4gabaGaaGymaiabgkHiTiaaikdacqaH9oGBaaGa amyramaaDaaaleaacaWGRbGaam4AaaqaaiaacQcaaaGccqaH0oazda WgaaWcbaGaamyAaiaadQgaaeqaaaGccaGL7bGaayzFaaaaaaa@6A7E@