3.8 Small strain viscoplasticity: creep and high strain rate deformation of crystalline solids

 

Viscoplastic constitutive equations are used to model the behavior of polycrystalline materials (metals and ceramics) that are subjected to stress at high temperatures (greater than half the melting point of the solid), and also to model the behavior of metals that are deformed at high rates of strain (greater than 100 per second). 

 

Viscoplasticity theory is a relatively simple extension of the rate independent plasticity model discussed in Section 3.7.  You may find it helpful to review this material before attempting to read this section.

 

 

 

3.8.1 Features of creep behavior

 

 

Creep under uniaxial loading

 

1. If a tensile specimen of a crystalline solid is subjected to a time independent stress, it will progressively increase in length.  A typical series of length-v-time curves is illustrated below


 

 

2. The length-v-time plot has three stages: a transient period of primary creep, where the creep rate is high; a longer period of secondary creep, where the extension rate is constant; and finally a period of tertiary creep, where the creep rate again increases.   Most creep laws focus on modeling primary and secondary creep.  In fact, it is often sufficient to model only secondary creep.

 

 

3. The rate of extension increases with stress.  A typical plot of secondary creep rate as a function of stress is shown in the figure below.  There are usually three regimes of behavior: each regime can be fit (over a range of stress) by a power-law with the form ε ˙ A σ m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaacqGHijYUcaWGbbGaeq 4Wdm3aaWbaaSqabeaacaWGTbaaaaaa@37E9@ .  At low stresses, m12.5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabgIKi7kaaigdacqGHsislca aIYaGaaiOlaiaaiwdaaaa@3758@ ; at intermediate stresses m2.57 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabgIKi7kaaikdacaGGUaGaaG ynaiabgkHiTiaaiEdaaaa@375E@ , and at high stress m increases rapidly and can exceed 10-20.  


 

 

4. The rate of extension increases with temperature.   At a fixed stress, the temperature dependence of strain rate can be fit by an equation of the form ε ˙ = ε ˙ 0 exp(Q/kT) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaacqGH9aqpcuaH1oqzga GaamaaBaaaleaacaaIWaaabeaakiGacwgacaGG4bGaaiiCaiaacIca cqGHsislcaWGrbGaai4laiaadUgacaWGubGaaiykaaaa@3EA9@ , where Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuaaaa@31B6@  is an activation energy; k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaaaa@31D0@  is the Boltzmann constant, and T is temperature.  Like the stress exponent m,   the activation energy Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuaaaa@31B6@   can transition from one value to another as the temperature and stress level is varied.

 

 

5. The various regimes for m and Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuaaaa@31B6@  are associated with different mechanisms of creep.  At low stress, creep occurs mostly by grain boundary sliding and diffusion.  At higher stresses it occurs as a result of thermally activated dislocation motion.   H.J. Frost and M.F. Ashby (1982) plot charts that are helpful to get a rough idea of which mechanism is likely to be active in a particular application. 

 

6. The creep behavior of a material is strongly sensitive to its microstructure (especially grain size and the size and distribution of precipitates) and composition.

 

 

Creep under multi-axial loading

 

Under proportional multi-axial loading, creep shows all the same characteristics as rate independent plasticity: (i) plastic strains are volume preserving; (ii) creep rates are insensitive to hydrostatic pressure; (iii) the principal strain rates are parallel to the principal stresses; (iv) plastic flow obeys the Levy-Mises flow rule.   These features of behavior are discussed in more detail in Sect 3.7.1.  

 

 

 

3.8.2 Features of high-strain rate behavior

 

Stress-strain curves for metals have been measured for strain rates as high as 10 7 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdadaahaaWcbeqaaiaaiE daaaaaaa@3343@  /sec.  The general form of the stress-strain curve is essentially identical to that measured at quasi-static strain rates (see Sect 3.7.1 for an example), but the flow stress increases with strain rate.  A schematic of typical stress-v-strain rate curve for a ductile material such as Al or Cu is shown in the figure below. The flow stress rises slowly with strain rate up to a strain rate of about 10 6 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdadaahaaWcbeqaaiaaiA daaaaaaa@3342@  s-1, and then begins to rise rapidly.


 

 

3.8.3 Small-strain, viscoplastic constitutive equations

 

Viscoplastic constitutive equations are almost identical to the rate independent plastic equations in Section 3.7.  The main concepts in viscoplasticity are,

 

1. Strain rate decomposition into elastic and plastic components;

 

2. Elastic stress-strain law, which specifies the elastic part of the strain rate in terms of stress rate;

 

3. The plastic flow potential, which determines the magnitude of the plastic strain rate, given the stresses and the resistance of the material to flow.

 

4.  State Variables which characterize the resistance of the material to flow (analogous to yield stress)

 

5. The plastic flow rule, which specifies the components of plastic strain rate under multiaxial loading. Recall that in rate independent plasticity the flow rule was expressed as the derivative of the yield surface with respect to stress.  In viscoplasticity, the flow rule involves the derivative of the plastic flow potential

 

6. Hardening laws which specify the evolution of the state variables with plastic strain.

 

 

These are discussed in more detail below.

 

 

Strain rate decomposition

 

We assume infinitesimal deformation, so shape changes are characterized by the infinitesimal strain tensor ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdaaaa@48F8@ .

 

The strain rate is decomposed into elastic and plastic parts as

d ε ij dt = d ε ij e dt + d ε ij p dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aa0baaS qaaiaadMgacaWGQbaabaaaaaGcbaGaamizaiaadshaaaGaeyypa0Za aSaaaeaacaWGKbGaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam yzaaaaaOqaaiaadsgacaWG0baaaiabgUcaRmaalaaabaGaamizaiab ew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaaakeaacaWGKb GaamiDaaaaaaa@4869@

 

 

Elastic constitutive equations

 

The elastic strains are related to the stresses using the standard linear elastic stress-strain law.   The elastic strain rate follows as

d ε ˙ ij e dt = S ijkl d σ kl dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGafqyTduMbaiaada qhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaaGcbaGaamizaiaadsha aaGaeyypa0Jaam4uamaaBaaaleaacaWGPbGaamOAaiaadUgacaWGSb aabeaakmaalaaabaGaamizaiabeo8aZnaaBaaaleaacaWGRbGaamiB aaqabaaakeaacaWGKbGaamiDaaaaaaa@44F0@

where S ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@35A2@  are the components of the elastic compliance tensor.  For the special case of an isotropic material with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@

d ε ij e dt = 1+ν E d σ ij dt ν E d σ kk dt δ ij +α dΔT dt δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aa0baaS qaaiaadMgacaWGQbaabaGaamyzaaaaaOqaaiaadsgacaWG0baaaiab g2da9maalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaadweaaaWaaS aaaeaacaWGKbGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaOqa aiaadsgacaWG0baaaiabgkHiTmaalaaabaGaeqyVd4gabaGaamyraa aadaWcaaqaaiaadsgacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqa aaGcbaGaamizaiaadshaaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQb aabeaakiabgUcaRiabeg7aHnaalaaabaGaamizaiabfs5aejaadsfa aeaacaWGKbGaamiDaaaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaae qaaaaa@5D79@

 

 

Plastic flow potential

 

The plastic flow potential specifies the magnitude of the plastic strain rate, as a function of stress and the resistance of the material to plastic flow.   It is very similar to the yield surface for a rate independent material.   The plastic flow potential is constructed as follows.

 

1. Define the plastic strain rate magnitude as ε ˙ e = 2 ε ˙ ij p ε ˙ ij p /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyzaa qabaGccqGH9aqpdaGcaaqaaiaaikdacuaH1oqzgaGaamaaDaaaleaa caWGPbGaamOAaaqaaiaadchaaaGccuaH1oqzgaGaamaaDaaaleaaca WGPbGaamOAaaqaaiaadchaaaGccaGGVaGaaG4maaWcbeaaaaa@406F@

 

2. Let σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  denote the stresses acting on the material, and let σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO Gaaiilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaacYcacqaHdpWC daWgaaWcbaGaaG4maaqabaaaaa@3A55@  denote the principal stresses;

 

3. Experiments show that the plastic strain rate is independent of hydrostatic pressure.  The strain rate must be a function of only the deviatoric stress components, defined as

S ij = σ ij 1 3 σ kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqaHdpWCdaWgaaWcba Gaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaa beaaaaa@42A3@

 

4. Assume that the material is isotropic.  The strain rate can therefore only depend on the invariants of the deviatoric stress tensor.   The deviatoric stress has only two nonzero invariants. It is convenient to choose

σ e = 3 2 S ij S ij σ III =det(S) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaiaadofa daWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaaBaaaleaacaWGPb GaamOAaaqabaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab eo8aZnaaBaaaleaacaWGjbGaamysaiaadMeaaeqaaOGaeyypa0Jaci izaiaacwgacaGG0bGaaiikaiaahofacaGGPaaaaa@6708@

In practice, only the first of these (the von Mises effective stress) is used in most flow potentials.

 

5. The plastic flow potential can be represented graphically by plotting it as a function of the three principal stresses, exactly as the yield surface is shown graphically for a rate independent material.   An example is shown in the figure.  The lines show contours of constant plastic strain rate.

 

6. For Drucker stability, the contours of constant strain rate must be convex, and the plastic strain rate must increase with strain rate in the direction shown in the figure.

 

 

7. Just as the yield stress of a rate independent material can increase with plastic strain, the resistance of a viscoplastic material to plastic straining can also increase with strain.   The resistance to flow is characterized by one or more material state variables, which may evolve with plastic straining. 

 

 

The most general form for the flow potential of an isotropic material is thus

ε ˙ e =g( σ e , σ III ,State variables) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyzaa qabaGccqGH9aqpcaWGNbGaaiikaiabeo8aZnaaBaaaleaacaWGLbaa beaakiaacYcacqaHdpWCdaWgaaWcbaGaamysaiaadMeacaWGjbaabe aakiaacYcacaqGtbGaaeiDaiaabggacaqG0bGaaeyzaiaabccacaqG 2bGaaeyyaiaabkhacaqGPbGaaeyyaiaabkgacaqGSbGaaeyzaiaabo hacaqGPaaaaa@4D27@

where g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaaaa@31CC@  must satisfy g(α σ e ,α σ III ,State vars)g( σ e , σ III ,State vars) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHXoqycqaHdpWCda WgaaWcbaGaamyzaaqabaGccaGGSaGaeqySdeMaeq4Wdm3aaSbaaSqa aiaadMeacaWGjbGaamysaaqabaGccaGGSaGaae4uaiaabshacaqGHb GaaeiDaiaabwgacaqGGaGaaeODaiaabggacaqGYbGaae4CaiaabMca cqGHLjYScaWGNbGaaiikaiabeo8aZnaaBaaaleaacaWGLbaabeaaki aacYcacqaHdpWCdaWgaaWcbaGaamysaiaadMeacaWGjbaabeaakiaa cYcacaqGtbGaaeiDaiaabggacaqG0bGaaeyzaiaabccacaqG2bGaae yyaiaabkhacaqGZbGaaeykaaaa@5DAE@  for all α1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyyzImRaaGymaaaa@3500@  (with state variables held fixed), and must also be a convex function of σ e , σ III MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaO Gaaiilaiabeo8aZnaaBaaaleaacaWGjbGaamysaiaadMeaaeqaaaaa @38CC@

 

 

Examples of flow potentials: Von-Mises flow potential with power-law rate sensitivity

 

Creep is often modeled using the a flow potential of the form

g( σ e , σ 0 (i) )= i=1 N ε ˙ 0 (i) exp( Q i /kT) σ e σ 0 (i) m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyzaaqabaGccaGGSaWaaiWaaeaacqaHdpWCdaqhaaWcbaGaaGim aaqaaiaacIcacaWGPbGaaiykaaaaaOGaay5Eaiaaw2haaiaacMcacq GH9aqpdaaeWbqaaiqbew7aLzaacaWaa0baaSqaaiaaicdaaeaacaGG OaGaamyAaiaacMcaaaGcciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0 IaamyuamaaBaaaleaacaWGPbaabeaakiaac+cacaWGRbGaamivaiaa cMcadaqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaa GcbaGaeq4Wdm3aa0baaSqaaiaaicdaaeaacaGGOaGaamyAaiaacMca aaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGTbWaaSbaaWqaai aadMgaaeqaaaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqd cqGHris5aaaa@5EDE@

where ε ˙ 0 (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaaGimaa qaaiaacIcacaWGPbGaaiykaaaaaaa@35BE@ , Q i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbaabeaaaa a@32D0@  and m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaWGPbaabeaaaa a@32EC@ , i=1..N are material properties ( Q i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGPbaabeaaaa a@32D0@  are the activation energies for the various mechanisms that contribute to creep); k is the Boltzmann constant and T is temperature.  The model is most often used with N=1, but more terms are required to fit material behavior over a wide range of temperatures and strain rates. The potential has several state variables, σ 0 (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaicdaaeaaca GGOaGaamyAaiaacMcaaaaaaa@35D1@ .   To model steady state creep, you can take σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  to be constant; to model transient creep, σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  must increase with strain.  An example of an evolution law for σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  is given below. 

 

High strain rate deformation is also modeled using a power law Mises flow potential: the following form is sometimes used:

g( σ e , σ 0 )= 00< σ e / σ 0 <1 ε ˙ 0 (1) σ e / σ 0 m 1 1 1< σ e / σ 0 <α ε ˙ 0 (2) σ e / σ 0 m 2 1 α< σ e / σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyzaaqabaGccaGGSaGaeq4Wdm3aa0baaSqaaiaaicdaaeaaaaGc caGGPaGaeyypa0ZaaiqaaeaafaqabeWabaaabaGaaGimaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaicdacqGH8aapcqaHdpWCdaWgaaWcbaGaamyzaa qabaGccaGGVaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaeyipaWJa aGymaaqaaiqbew7aLzaacaWaa0baaSqaaiaaicdaaeaacaGGOaGaaG ymaiaacMcaaaGcdaWadaqaamaabmaabaGaeq4Wdm3aaSbaaSqaaiaa dwgaaeqaaOGaai4laiabeo8aZnaaBaaaleaacaaIWaaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaamyBamaaBaaameaacaaIXaaabeaa aaGccqGHsislcaaIXaaacaGLBbGaayzxaaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaigdacqGH8aapcqaHdpWCdaWgaaWcbaGaamyzaa qabaGccaGGVaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaeyipaWJa eqySdegabaGafqyTduMbaiaadaqhaaWcbaGaaGimaaqaaiaacIcaca aIYaGaaiykaaaakmaadmaabaWaaeWaaeaacqaHdpWCdaWgaaWcbaGa amyzaaqabaGccaGGVaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaWGTbWaaSbaaWqaaiaaikdaaeqa aaaakiabgkHiTiaaigdaaiaawUfacaGLDbaacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabeg7aHjabgYda8iabeo8aZnaaBaaaleaacaWGLbaabeaa kiaac+cacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaaGccaGL7baaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaa@2330@

where ε ˙ 0 (2) = ε ˙ 0 (1) ( α m 1 1)/( α m 2 1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaaGimaa qaaiaacIcacaaIYaGaaiykaaaakiabg2da9iqbew7aLzaacaWaa0ba aSqaaiaaicdaaeaacaGGOaGaaGymaiaacMcaaaGccaGGOaGaeqySde 2aaWbaaSqabeaacaWGTbWaaSbaaWqaaiaaigdaaeqaaaaakiabgkHi TiaaigdacaGGPaGaai4laiaacIcacqaHXoqydaahaaWcbeqaaiaad2 gadaWgaaadbaGaaGOmaaqabaaaaOGaeyOeI0IaaGymaiaacMcaaaa@4967@  and ε ˙ 0 (1) ,α, m 1 , m 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaaGimaa qaaiaacIcacaaIXaGaaiykaaaakiaacYcacqaHXoqycaGGSaGaamyB amaaBaaaleaacaaIXaaabeaakiaacYcacaWGTbWaaSbaaSqaaiaaik daaeqaaaaa@3D01@  are material properties, while σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  is a strain, strain rate and temperature dependent state variable, which represents the quasi-static yield stress of the material and evolves with deformation as described below.  In this equation, m 2 < m 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaaIYaaabeaaki abgYda8iaad2gadaWgaaWcbaGaaGymaaqabaaaaa@35A1@  so as to model the transition in strain rate sensitivity at high strain rates; while α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  controls the point at which the transition occurs.

 

 

Plastic flow rule

 

The plastic flow rule specifies the components of plastic strain rate resulting from a multiaxial state of stress.   It is constructed so that:

 

1. The plastic strain rate satisfies the Levy-Mises plastic flow rule

 

2. The viscoplastic stress-strain law satisfies the Drucker stability criterion

 

3. The flow rule predicts a plastic strain magnitude consistent with the flow potential.

 

 

Both (1) and (2) are satisfied by

ε ˙ ij p = 3 2 g( σ e , σ III ,State vars) g/ σ kl g/ σ kl g σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaaioda aeaacaaIYaaaaaWcbeaakmaalaaabaGaam4zaiaacIcacqaHdpWCda WgaaWcbaGaamyzaaqabaGccaGGSaGaeq4Wdm3aaSbaaSqaaiaadMea caWGjbGaamysaaqabaGccaGGSaGaae4uaiaabshacaqGHbGaaeiDai aabwgacaqGGaGaaeODaiaabggacaqGYbGaae4CaiaabMcaaeaadaWa daqaamaabmaabaGaeyOaIyRaam4zaiaac+cacqGHciITcqaHdpWCda WgaaWcbaGaam4AaiaadYgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaa cqGHciITcaWGNbGaai4laiabgkGi2kabeo8aZnaaBaaaleaacaWGRb GaamiBaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaWaaSaa aeaacqGHciITcaWGNbaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaaaaaaaa@6964@

If g depends on stress only through the Von-Mises effective stress, this expression can be simplified to

ε ˙ ij p =g( σ e ,State vars) 3 S ij 2 σ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0Jaam4zaiaacIcacqaHdpWCdaWg aaWcbaGaamyzaaqabaGccaGGSaGaae4uaiaabshacaqGHbGaaeiDai aabwgacaqGGaGaaeODaiaabggacaqGYbGaae4CaiaabMcadaWcaaqa aiaaiodacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiaaik dacqaHdpWCdaWgaaWcbaGaamyzaaqabaaaaaaa@4CBE@

For the particular case of the Power-law von Mises flow potential this gives

ε ˙ ij p = n=1 N ε ˙ 0 (n) exp( Q n /kT) σ e σ 0 (n) m n 3 S ij 2 σ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGaeyypa0ZaaabCaeaacuaH1oqzgaGaamaa DaaaleaacaaIWaaabaGaaiikaiaad6gacaGGPaaaaOGaciyzaiaacI hacaGGWbGaaiikaiabgkHiTiaadgfadaWgaaWcbaGaamOBaaqabaGc caGGVaGaam4AaiaadsfacaGGPaWaaeWaaeaadaWcaaqaaiabeo8aZn aaBaaaleaacaWGLbaabeaaaOqaaiabeo8aZnaaDaaaleaacaaIWaaa baGaaiikaiaad6gacaGGPaaaaaaaaOGaayjkaiaawMcaamaaCaaale qabaGaamyBamaaBaaameaacaWGUbaabeaaaaaaleaacaWGUbGaeyyp a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalaaabaGaaG4maiaado fadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaaGOmaiabeo8aZnaa BaaaleaacaWGLbaabeaaaaaaaa@5E03@

 

 

Hardening rule

 

The hardening rule specifies the evolution of state variables with plastic straining.   Many different forms of hardening rule are used (including kinematic hardening laws such as those discussed in 3.7.5).   A simple example of an isotropic hardening law which is often used to model transient creep is

σ 0 (i) = Y i 1+ ε e (i) ε 0 (i) 1/ n i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaicdaaeaaca GGOaGaamyAaiaacMcaaaGccqGH9aqpcaWGzbWaaSbaaSqaaiaadMga aeqaaOWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacqaH1oqzdaqhaa WcbaGaamyzaaqaaiaacIcacaWGPbGaaiykaaaaaOqaaiabew7aLnaa DaaaleaacaaIWaaabaGaaiikaiaadMgacaGGPaaaaaaaaOGaayjkai aawMcaamaaCaaaleqabaGaaGymaiaac+cacaWGUbWaaSbaaWqaaiaa dMgaaeqaaaaaaaa@49B0@

Where

ε e (i) = ε ˙ 0 (i) exp( Q i /kT) ( σ e / σ 0 (i) ) m i dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadwgaaeaaca GGOaGaamyAaiaacMcaaaGccqGH9aqpdaWdbaqaaiqbew7aLzaacaWa a0baaSqaaiaaicdaaeaacaGGOaGaamyAaiaacMcaaaGcciGGLbGaai iEaiaacchacaGGOaGaeyOeI0IaamyuamaaBaaaleaacaWGPbaabeaa kiaac+cacaWGRbGaamivaiaacMcacaGGOaGaeq4Wdm3aaSbaaSqaai aadwgaaeqaaOGaai4laiabeo8aZnaaDaaaleaacaaIWaaabaGaaiik aiaadMgacaGGPaaaaOGaaiykamaaCaaaleqabaGaamyBamaaBaaame aacaWGPbaabeaaaaGccaWGKbGaamiDaaWcbeqab0Gaey4kIipaaaa@557F@

is the accumulated strain associated with each mechanism of creep, and Y i , ε 0 (i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywamaaBaaaleaacaWGPbaabeaaki aacYcacaaMc8UaaGPaVlaaykW7cqaH1oqzdaqhaaWcbaGaaGimaaqa aiaacIcacaWGPbGaaiykaaaaaaa@3D08@  and n i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaaa a@32ED@  are material constants.  The law is usually used only with N=1.

 

Similar hardening laws are used in constitutive equations for high strain rate deformation; but in this case the flow strength is made temperature dependent.  The following formula is sometimes used

σ 0 =Y[1β(T T 0 )] 1+ ε e ε 0 1/n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaamywaiaacUfacaaIXaGaeyOeI0IaeqOSdiMaaiikaiaa dsfacqGHsislcaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaac2 fadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiabew7aLnaaDaaaleaa caWGLbaabaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaicdaaeaaaaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad6gaaaaa aa@4A8C@

where ε e = 3 ε ˙ ij p ε ˙ ij p /2 dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0Zaa8qaaeaadaGcaaqaaiaaiodacuaH1oqzgaGaamaaDaaa leaacaWGPbGaamOAaaqaaiaadchaaaGccuaH1oqzgaGaamaaDaaale aacaWGPbGaamOAaaqaaiaadchaaaGccaGGVaGaaGOmaaWcbeaakiaa dsgacaWG0baaleqabeqdcqGHRiI8aaaa@444D@  is the total accumulated strain, T is temperature, and Y,n, T 0 ,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiaacYcacaWGUbGaaiilaiaads fadaWgaaWcbaGaaGimaaqabaGccaGGSaGaeqOSdigaaa@382B@  are material properties.  More sophisticated hardening laws make the flow stress a function of strain rate MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  see Clifton (1990) for more details.

 

 

 

3.8.4 Representative values of parameters for viscoplastic models of creeping solids

 

Fitting material parameters to test data is conceptually straightforward: the flow potential has been constructed so that for a uniaxial tension test with σ 11 =σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZbaa@3718@ , all other stress components zero, the uniaxial plastic strain rate is

ε ˙ 11 p = n=1 N ε ˙ 0 (n) exp( Q n /kT) σ σ 0 (n) m n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaaGymai aaigdaaeaacaWGWbaaaOGaeyypa0ZaaabCaeaacuaH1oqzgaGaamaa DaaaleaacaaIWaaabaGaaiikaiaad6gacaGGPaaaaOGaciyzaiaacI hacaGGWbGaaiikaiabgkHiTiaadgfadaWgaaWcbaGaamOBaaqabaGc caGGVaGaam4AaiaadsfacaGGPaWaaeWaaeaadaWcaaqaaiabeo8aZb qaaiabeo8aZnaaDaaaleaacaaIWaaabaGaaiikaiaad6gacaGGPaaa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamyBamaaBaaameaaca WGUbaabeaaaaaaleaacaWGUbGaeyypa0JaaGymaaqaaiaad6eaa0Ga eyyeIuoaaaa@5525@

so the properties can be fit directly to the results of a series of uniaxial tensile tests conducted at different temperatures and applied stresses. To model steady-state creep  σ 0 (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaicdaaeaaca GGOaGaamOBaiaacMcaaaaaaa@35D6@  can be taken to be constant.  One, or two terms in the series is usually sufficient to fit material behavior over a reasonable range of temperature and stress. 

 

Creep rates are very sensitive to the microstructure and composition of a material, so for accurate predictions you will need to find data for the particular material you plan to use.  Frost and Ashby “Deformation Mechanism Maps,” Pergamon Press, 1982 provide approximate expressions for creep rates of a wide range of materials, as well as references to experimental data.  As a rough guide, approximate values for a 1-term fit to creep data for polycrystalline Al alloys subjected to stresses in the range 5-60MPa are listed in the table below.

 


 

 

 

3.8.5 Representative values of parameters for viscoplastic models of high strain rate deformation

 

The material parameters in constitutive models for high strain rate deformation can also be fit to the results of a uniaxial tension or compression test.  For the model described in Section 3.7.3, the steady-state uniaxial strain rate as a function of stress is

ε ˙ = 00<σ/ σ 0 <1 ε ˙ 0 (1) σ/ σ 0 m 1 1 1<σ/ σ 0 <α ε ˙ 0 (2) σ/ σ 0 m 2 1 α<σ/ σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaacqGH9aqpdaGabaqaau aabeqadeaaaeaacaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiabgY da8iabeo8aZjaac+cacqaHdpWCdaWgaaWcbaGaaGimaaqabaGccqGH 8aapcaaIXaaabaGafqyTduMbaiaadaqhaaWcbaGaaGimaaqaaiaacI cacaaIXaGaaiykaaaakmaadmaabaWaaeWaaeaacqaHdpWCcaGGVaGa eq4Wdm3aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaWGTbWaaSbaaWqaaiaaigdaaeqaaaaakiabgkHiTiaaigda aiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGym aiabgYda8iabeo8aZjaac+cacqaHdpWCdaWgaaWcbaGaaGimaaqaba GccqGH8aapcqaHXoqyaeaacuaH1oqzgaGaamaaDaaaleaacaaIWaaa baGaaiikaiaaikdacaGGPaaaaOWaamWaaeaadaqadaqaaiabeo8aZj aac+cacqaHdpWCdaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa daahaaWcbeqaaiaad2gadaWgaaadbaGaaGOmaaqabaaaaOGaeyOeI0 IaaGymaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyS deMaeyipaWJaeq4WdmNaai4laiabeo8aZnaaBaaaleaacaaIWaaabe aaaaaakiaawUhaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 oaaa@16B4@

The material constants m 1 , m 2 ,α, ε ˙ 0 (1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaaIXaaabeaaki aacYcacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiabeg7aHjaa cYcacuaH1oqzgaGaamaaDaaaleaacaaIWaaabaGaaiikaiaaigdaca GGPaaaaaaa@3D01@ , and the flow stress σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  can be determined from a series of uniaxial tension tests conducted at different temperatures and levels of applied stress; while ε ˙ 0 (2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaaGimaa qaaiaacIcacaaIYaGaaiykaaaaaaa@358C@  can be found from ε ˙ 0 (2) = ε ˙ 0 (1) ( α m 1 1)/( α m 2 1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaaGimaa qaaiaacIcacaaIYaGaaiykaaaakiabg2da9iqbew7aLzaacaWaa0ba aSqaaiaaicdaaeaacaGGOaGaaGymaiaacMcaaaGccaGGOaGaeqySde 2aaWbaaSqabeaacaWGTbWaaSbaaWqaaiaaigdaaeqaaaaakiabgkHi TiaaigdacaGGPaGaai4laiaacIcacqaHXoqydaahaaWcbeqaaiaad2 gadaWgaaadbaGaaGOmaaqabaaaaOGaeyOeI0IaaGymaiaacMcaaaa@4967@ . If strain hardening can be neglected, σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  is a temperature dependent constant, which could be approximated crudely as σ 0 =Y 1β(T T 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaamywamaabmaabaGaaGymaiabgkHiTiabek7aIjaacIca caWGubGaeyOeI0IaamivamaaBaaaleaacaaIWaaabeaakiaacMcaai aawIcacaGLPaaaaaa@3F31@ , where Y,β, T 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiaacYcacqaHYoGycaGGSaGaam ivamaaBaaaleaacaaIWaaabeaaaaa@367E@  are constants and T is temperature.  Viscoplastic properties of materials are very strongly dependent on their composition and microstructure, so for accurate predictions you will need to find data for the actual material you intend to use.  Clifton (1990)  describes several experimental techniques for testing material at high strain rates, and contains references to experimental data.  As a rough guide, parameter values for 1100-0 Al alloy (fit to data in Clifton 1990) are listed in the table below.  The value of β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  was estimated by assuming that the solid loses all strength at the melting point of Al (approximately 650C).