3.9 Large Strain, Rate Dependent Plasticity

 

This section describes the constitutive equations that are used to model large, permanent deformations in polycrystalline solids.  Representative applications include models of metal forming; crash simulations, and various military applications that are best left to the imagination.  The constitutive equations are used mostly in numerical simulations.  It is usually preferable to use a rate dependent, viscoplasticity model for in computations, because they are less prone to instabilities than rate independent models.  The rate independent limit can always be approximated by using a high strain rate sensitivity.

 

The constitutive equations outlined in this section make use of many concepts from Sections 3.7 and 3.8, so you may find it convenient to read these sections before the material to follow. 

 

 

 

3.9.1 Kinematics of finite strain plasticity

 

Let x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaa a@32F7@  be the position of a material particle in the undeformed solid. Suppose that the solid is subjected to a displacement field u i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaa@367A@ , so that the point moves to y i = x i + u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaki abg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadMgaaeqaaaaa@391F@ , as shown below.

 


 

 Define

 

· The deformation gradient and its jacobian

F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@4070@        J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaaaa@37A8@

 

· The velocity gradient

L ij = u ˙ i y j = F ˙ ik F kj 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2kqadwhagaGaamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqaba aaaOGaeyypa0JabmOrayaacaWaaSbaaSqaaiaadMgacaWGRbaabeaa kiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaacqGHsislcaaIXaaaaa aa@445D@

 

· The stretch rate and spin

D ij =( L ij + L ji )/2 W ij =( L ij L ji )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaGGOaGaamitamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHRaWkcaWGmbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaacM cacaGGVaGaaGOmaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadEfadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey ypa0JaaiikaiaadYeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOe I0IaamitamaaBaaaleaacaWGQbGaamyAaaqabaGccaGGPaGaai4lai aaikdaaaa@70AE@

 

· Recall that F ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B4@  relates infinitesimal material fibers d y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaaaaa@33E1@  and d x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIhadaWgaaWcbaGaamyAaa qabaaaaa@33E0@  in the deformed and undeformed solid, respectively, as

d y i = F ij d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa@3AD0@

 

· To decompose the deformation gradient into elastic and plastic parts, we borrow ideas from crystal plasticity.  The plastic strain is assumed to shear the lattice, without stretching or rotating it.  The elastic deformation rotates and stretches the lattice. We think of these two events occurring in sequence, with the plastic deformation first, and the stretch and rotation second, giving

d y i = F ij d x j = F ik e F kj p d x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadMhadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa dsgacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaamOramaaDa aaleaacaWGPbGaam4AaaqaaiaadwgaaaGccaWGgbWaa0baaSqaaiaa dUgacaWGQbaabaGaamiCaaaakiaadsgacaWG4bWaaSbaaSqaaiaadQ gaaeqaaaaa@4681@

 

· To decompose the velocity gradient into elastic and plastic parts, note that

L ij = F ˙ ik F kj 1 = F ˙ ik e F kl p + F ik e F ˙ kl p F lm p1 F mj e1 = F ˙ ik e F kj e1 + F ik e F ˙ kl p F lm p1 F mj e1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGmbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iqadAeagaGaamaaBaaaleaacaWGPbGaam4A aaqabaGccaWGgbWaa0baaSqaaiaadUgacaWGQbaabaGaeyOeI0IaaG ymaaaakiabg2da9maabmaabaGabmOrayaacaWaa0baaSqaaiaadMga caWGRbaabaGaamyzaaaakiaadAeadaqhaaWcbaGaam4AaiaadYgaae aacaWGWbaaaOGaey4kaSIaamOramaaDaaaleaacaWGPbGaam4Aaaqa aiaadwgaaaGcceWGgbGbaiaadaqhaaWcbaGaam4AaiaadYgaaeaaca WGWbaaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGgbWaa0baaSqaaiaa dYgacaWGTbaabaGaamiCaiabgkHiTiaaigdaaaGccaWGgbWaa0baaS qaaiaad2gacaWGQbaabaGaamyzaiabgkHiTiaaigdaaaaakiaawIca caGLPaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqGH9aqpceWGgbGbaiaadaqhaaWcbaGaamyAai aadUgaaeaacaWGLbaaaOGaamOramaaDaaaleaacaWGRbGaamOAaaqa aiaadwgacqGHsislcaaIXaaaaOGaey4kaSIaamOramaaDaaaleaaca WGPbGaam4AaaqaaiaadwgaaaGcceWGgbGbaiaadaqhaaWcbaGaam4A aiaadYgaaeaacaWGWbaaaOGaamOramaaDaaaleaacaWGSbGaamyBaa qaaiaadchacqGHsislcaaIXaaaaOGaamOramaaDaaaleaacaWGTbGa amOAaaqaaiaadwgacqGHsislcaaIXaaaaaaaaa@AC3A@

 

Thus the velocity gradient contains two terms, one of which involves only measures of elastic deformation, while the other contains measures of plastic deformation.  We use this to decompose L into elastic and plastic parts

L ij = L ij e + L ij p L ij e = F ˙ ik e F kj e1 L ij p = F ik e F ˙ kl p F lm p1 F mj e1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcaWGmbWaa0baaSqaaiaadMgacaWGQbaabaGaamyz aaaakiabgUcaRiaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWb aaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGmbWaa0baaSqaaiaadMgacaWGQb aabaGaamyzaaaakiabg2da9iqadAeagaGaamaaDaaaleaacaWGPbGa am4AaaqaaiaadwgaaaGccaWGgbWaa0baaSqaaiaadUgacaWGQbaaba GaamyzaiabgkHiTiaaigdaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaa aOGaeyypa0JaamOramaaDaaaleaacaWGPbGaam4Aaaqaaiaadwgaaa GcceWGgbGbaiaadaqhaaWcbaGaam4AaiaadYgaaeaacaWGWbaaaOGa amOramaaDaaaleaacaWGSbGaamyBaaqaaiaadchacqGHsislcaaIXa aaaOGaamOramaaDaaaleaacaWGTbGaamOAaaqaaiaadwgacqGHsisl caaIXaaaaaaa@897B@

 

· Define the elastic and plastic stretch rates and spin rates as

D ij e =( L ij e + L ji e )/2 W ij e =( L ij e L ji e )/2 D ij p =( L ij p + L ji p )/2 W ij p =( L ij p L ji p )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGebWaa0baaSqaaiaadMgaca WGQbaabaGaamyzaaaakiabg2da9iaacIcacaWGmbWaa0baaSqaaiaa dMgacaWGQbaabaGaamyzaaaakiabgUcaRiaadYeadaqhaaWcbaGaam OAaiaadMgaaeaacaWGLbaaaOGaaiykaiaac+cacaaIYaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4vamaaDa aaleaacaWGPbGaamOAaaqaaiaadwgaaaGccqGH9aqpcaGGOaGaamit amaaDaaaleaacaWGPbGaamOAaaqaaiaadwgaaaGccqGHsislcaWGmb Waa0baaSqaaiaadQgacaWGPbaabaGaamyzaaaakiaacMcacaGGVaGa aGOmaaqaaiaadseadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaO Gaeyypa0JaaiikaiaadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWG WbaaaOGaey4kaSIaamitamaaDaaaleaacaWGQbGaamyAaaqaaiaadc haaaGccaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGxbWaa0baaSqaaiaadMgacaWGQb aabaGaamiCaaaakiabg2da9iaacIcacaWGmbWaa0baaSqaaiaadMga caWGQbaabaGaamiCaaaakiabgkHiTiaadYeadaqhaaWcbaGaamOAai aadMgaaeaacaWGWbaaaOGaaiykaiaac+cacaaIYaaaaaa@BBC8@

 

 

Constitutive equations must specify relations between the stresses (as defined below) and the elastic and plastic parts of the deformation gradient.   The equations are usually written in rate form, in which case the elastic and plastic stretch rates and spin are related to the stress rate.

 

 

 

3.9.2 Stress measures for finite deformation plasticity

 

Stress measures that appear in descriptions of finite strain plasticity are summarized below:

 

· The Cauchy (“true”) stress represents the force per unit deformed area in the solid and is defined by

n i σ ij = Lim dA0 d P j (n) dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWfqaqa aiaadYeacaWGPbGaamyBaaWcbaGaamizaiaadgeacqGHsgIRcaaIWa aabeaakmaalaaabaGaamizaiaadcfadaqhaaWcbaGaamOAaaqaaiaa cIcacaWHUbGaaiykaaaaaOqaaiaadsgacaWGbbaaaaaa@4610@

 

· Kirchhoff stress  τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaGPaVlabes8a0PWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaaaa@3CB7@

 

· Material stress for intermediate configuration   Σ ij =J F ik e1 σ kl F jl e1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWGRbaa baGaamyzaiabgkHiTiaaigdaaaGccqaHdpWCdaWgaaWcbaGaam4Aai aadYgaaeqaaOGaamOramaaDaaaleaacaWGQbGaamiBaaqaaiaadwga cqGHsislcaaIXaaaaaaa@4501@

 

 

 

Note that the material stress tensor is related to the Cauchy stress by a function of F e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaGPaVRGaaCOramaaCaaaleqaba Gaamyzaaaaaaa@3524@ , not F as in the usual definition. This stress should be interpreted physically as a material stress associated with the intermediate configuration, as show in the figure. This stress measure is introduced because the elastic constitutive equations require an internal force measure that is work-conjugate to an appropriate function of F e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaGPaVRGaaCOramaaCaaaleqaba Gaamyzaaaaaaa@3524@ .

 

In addition, viscoplastic constitutive equations are often written in rate form (as in 3.8), relating stain rate to stress and (for the elastic part) stress rate.   Stress rates are difficult to work with in finite strain problems.  At first sight, it might appear that stress rate can be calculated by simply taking the time derivative of the stress components d σ ij /dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaGccaGGVaGaamizaiaadshaaaa@3834@ , but in fact this is not a useful measure of stress rate.  To see this, imagine applying a uniaxial tensile stress to a material, and then rotating the entire test apparatus (so the applied force and specimen rotate together).   The time derivatives of the stress components are nonzero, but the material actually experiences a time independent force per unit area.   As shown below, the correct stress rate is the Jaumann rate with respect to the elastic spin, defined as

σ ij e = d σ ij dt W ik e σ kj + σ ik W kj e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaOGaeyypa0ZaaSaa aeaacaWGKbGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaai aadsgacaWG0baaaiabgkHiTiaadEfadaqhaaWcbaGaamyAaiaadUga aeaacaWGLbaaaOGaeq4Wdm3aaSbaaSqaaiaadUgacaWGQbaabeaaki abgUcaRiabeo8aZnaaBaaaleaacaWGPbGaam4AaaqabaGccaWGxbWa a0baaSqaaiaadUgacaWGQbaabaGaamyzaaaaaaa@5046@

 

 

 

3.9.3 Elastic stress-strain relation for finite strain plasticity

 

Plastically deforming metals may experience large strains.  The stresses remain modest, however, and are usually substantially lower than the elastic modulus of the solid.   The elastic strains are small, but the  material may experience large rotations. Under these conditions, the small-strain elastic constitutive equations of 3.2 cannot be used, but the simple generalized Hooke’s law described in Section 3.4 can be used.  This law relates the elastic part of the deformation gradient to stress, as follows

 

1. Define the Lagrangean elastic strain as E ij e =( F ki e F kj e δ ij )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaGccqGH9aqpcaGGOaGaamOramaaDaaaleaacaWGRbGa amyAaaqaaiaadwgaaaGccaWGgbWaa0baaSqaaiaadUgacaWGQbaaba GaamyzaaaakiabgkHiTiabes7aKnaaBaaaleaacaWGPbGaamOAaaqa baGccaGGPaGaai4laiaaikdaaaa@44B0@

 

2. Assume that the material stress is proportional to Lagrange strain, as Σ ij = C ijkl E kl e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccaWGfbWaa0baaSqaaiaadUgacaWGSbaabaGaamyzaa aaaaa@3DFB@ , where C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@  are the components of the elastic stiffness tensor (as defined and tabulated in Section 3.2), for the material with orientation in the undeformed configuration. 

 

 

3. For the special case of an elastically isotropic material, with Young’s modulus E and Poission ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ , the stress-strain law is

Σ ij = E 1+ν E ij e + ν 12ν E kk e δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaWaaiWaaeaacaWGfbWaa0baaSqaaiaadMgacaWGQbaabaGaam yzaaaakiabgUcaRmaalaaabaGaeqyVd4gabaGaaGymaiabgkHiTiaa ikdacqaH9oGBaaGaamyramaaDaaaleaacaWGRbGaam4Aaaqaaiaadw gaaaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGL7bGa ayzFaaaaaa@4DED@

 

4. The elastic stress-strain law is often expressed in rate form, as follows

τ ij e C ijkl e D kl e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaOGaeyisISRaam4q amaaDaaaleaacaWGPbGaamOAaiaadUgacaWGSbaabaGaamyzaaaaki aadseadaqhaaWcbaGaam4AaiaadYgaaeaacaWGLbaaaaaa@427F@

where τ ij e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaaaa@375C@  is the Jaumann rate of Kirchhoff stress; C ijkl e = F in e F jm e C nmpq F kp e F lq e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaWGPbGaamOAai aadUgacaWGSbaabaGaamyzaaaakiabg2da9iaadAeadaqhaaWcbaGa amyAaiaad6gaaeaacaWGLbaaaOGaamOramaaDaaaleaacaWGQbGaam yBaaqaaiaadwgaaaGccaWGdbWaaSbaaSqaaiaad6gacaWGTbGaamiC aiaadghaaeqaaOGaamOramaaDaaaleaacaWGRbGaamiCaaqaaiaadw gaaaGccaWGgbWaa0baaSqaaiaadYgacaWGXbaabaGaamyzaaaaaaa@4B8F@  (this can be thought of as the components of the elastic compliance tensor for material with orientation in the deformed configuration), and D ij e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaaaaa@349D@  is the elastic stretch rate.  For the particular case of an isotropic material, the stress rate can be approximated further as

τ ij e E 1+ν D ij e + ν 12ν D kk e δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaOGaeyisIS7aaSaa aeaacaWGfbaabaGaaGymaiabgUcaRiabe27aUbaadaGadaqaaiaads eadaqhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaOGaey4kaSYaaSaa aeaacqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacaWGeb Waa0baaSqaaiaadUgacaWGRbaabaGaamyzaaaakiabes7aKnaaBaaa leaacaWGPbGaamOAaaqabaaakiaawUhacaGL9baaaaa@5185@

 

 

Derivation of the rate form of the elastic stress-strain law: Our goal is to derive the expression in (4) above, starting from the stress-strain law in (2).  To this end:

 

1. Take the time-derivative of the constitutive equation: d Σ ij dt = C ijkl d E kl e dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeu4Odm1aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiaadsgacaWG0baaaiabg2da9iaa doeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGcdaWcaa qaaiaadsgacaWGfbWaa0baaSqaaiaadUgacaWGSbaabaGaamyzaaaa aOqaaiaadsgacaWG0baaaaaa@43BB@

 

2. Take the time derivative of the formula relating material and Kirchhoff stress

τ ij = F ik e Σ kl F jl e d τ ij dt = d F ik e dt Σ kl F jl e + F ik e d Σ kl dt F jl e + F ik e Σ kl d F jl e dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHepaDdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaamOramaaDaaaleaacaWGPbGaam4Aaaqa aiaadwgaaaGccqqHJoWudaWgaaWcbaGaam4AaiaadYgaaeqaaOGaam OramaaDaaaleaacaWGQbGaamiBaaqaaiaadwgaaaaakeaacqGHshI3 daWcaaqaaiaadsgacqaHepaDdaWgaaWcbaGaamyAaiaadQgaaeqaaa GcbaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaacaWGKbGaamOramaa DaaaleaacaWGPbGaam4AaaqaaiaadwgaaaaakeaacaWGKbGaamiDaa aacqqHJoWudaWgaaWcbaGaam4AaiaadYgaaeqaaOGaamOramaaDaaa leaacaWGQbGaamiBaaqaaiaadwgaaaGccqGHRaWkcaWGgbWaa0baaS qaaiaadMgacaWGRbaabaGaamyzaaaakmaalaaabaGaamizaiabfo6a tnaaBaaaleaacaWGRbGaamiBaaqabaaakeaacaWGKbGaamiDaaaaca WGgbWaa0baaSqaaiaadQgacaWGSbaabaGaamyzaaaakiabgUcaRiaa dAeadaqhaaWcbaGaamyAaiaadUgaaeaacaWGLbaaaOGaeu4Odm1aaS baaSqaaiaadUgacaWGSbaabeaakmaalaaabaGaamizaiaadAeadaqh aaWcbaGaamOAaiaadYgaaeaacaWGLbaaaaGcbaGaamizaiaadshaaa aaaaa@76F4@

 

3. Substitute for material stress in terms of Kirchoff stress

d τ ij dt = d F ik e dt F kl e1 τ lj + F ik e d Σ kl dt F jl e + τ il F lk e1 d F jk e dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqiXdq3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiaadsgacaWG0baaaiabg2da9maa laaabaGaamizaiaadAeadaqhaaWcbaGaamyAaiaadUgaaeaacaWGLb aaaaGcbaGaamizaiaadshaaaGaamOramaaDaaaleaacaWGRbGaamiB aaqaaiaadwgacqGHsislcaaIXaaaaOGaeqiXdq3aaSbaaSqaaiaadY gacaWGQbaabeaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaiaadUga aeaacaWGLbaaaOWaaSaaaeaacaWGKbGaeu4Odm1aaSbaaSqaaiaadU gacaWGSbaabeaaaOqaaiaadsgacaWG0baaaiaadAeadaqhaaWcbaGa amOAaiaadYgaaeaacaWGLbaaaOGaey4kaSIaeqiXdq3aaSbaaSqaai aadMgacaWGSbaabeaakiaadAeadaqhaaWcbaGaamiBaiaadUgaaeaa caWGLbGaeyOeI0IaaGymaaaakmaalaaabaGaamizaiaadAeadaqhaa WcbaGaamOAaiaadUgaaeaacaWGLbaaaaGcbaGaamizaiaadshaaaaa aa@6853@

 

4. Recall that F ˙ ik e F kj e1 = L ij e = D ij e + W ij e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOrayaacaWaa0baaSqaaiaadMgaca WGRbaabaGaamyzaaaakiaadAeadaqhaaWcbaGaam4AaiaadQgaaeaa caWGLbGaeyOeI0IaaGymaaaakiabg2da9iaadYeadaqhaaWcbaGaam yAaiaadQgaaeaacaWGLbaaaOGaeyypa0JaamiramaaDaaaleaacaWG PbGaamOAaaqaaiaadwgaaaGccqGHRaWkcaWGxbWaa0baaSqaaiaadM gacaWGQbaabaGaamyzaaaaaaa@487A@ , observe that W ij e = W ji e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vamaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaGccqGH9aqpcqGHsislcaWGxbWaa0baaSqaaiaadQga caWGPbaabaGaamyzaaaaaaa@3A7D@ , D ij e = D ji e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaGccqGH9aqpcaWGebWaa0baaSqaaiaadQgacaWGPbaa baGaamyzaaaaaaa@396A@ , and substitute from (1)

d τ ij dt = D ik e + W ik e τ kj + F ik e C klmn d E mn e dt F jl e + τ ik D kj e W kj e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqiXdq3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiaadsgacaWG0baaaiabg2da9maa bmaabaGaamiramaaDaaaleaacaWGPbGaam4AaaqaaiaadwgaaaGccq GHRaWkcaWGxbWaa0baaSqaaiaadMgacaWGRbaabaGaamyzaaaaaOGa ayjkaiaawMcaaiabes8a0naaBaaaleaacaWGRbGaamOAaaqabaGccq GHRaWkcaWGgbWaa0baaSqaaiaadMgacaWGRbaabaGaamyzaaaakiaa doeadaWgaaWcbaGaam4AaiaadYgacaWGTbGaamOBaaqabaGcdaWcaa qaaiaadsgacaWGfbWaa0baaSqaaiaad2gacaWGUbaabaGaamyzaaaa aOqaaiaadsgacaWG0baaaiaadAeadaqhaaWcbaGaamOAaiaadYgaae aacaWGLbaaaOGaey4kaSIaeqiXdq3aaSbaaSqaaiaadMgacaWGRbaa beaakmaabmaabaGaamiramaaDaaaleaacaWGRbGaamOAaaqaaiaadw gaaaGccqGHsislcaWGxbWaa0baaSqaaiaadUgacaWGQbaabaGaamyz aaaaaOGaayjkaiaawMcaaaaa@693E@

 

5. Next, note that

d E mn e dt = F pm e D pq e F qn e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamyramaaDaaale aacaWGTbGaamOBaaqaaiaadwgaaaaakeaacaWGKbGaamiDaaaacqGH 9aqpcaWGgbWaa0baaSqaaiaadchacaWGTbaabaGaamyzaaaakiaads eadaqhaaWcbaGaamiCaiaadghaaeaacaWGLbaaaOGaamOramaaDaaa leaacaWGXbGaamOBaaqaaiaadwgaaaaaaa@4404@

so

d τ ij dt = D ik e + W ik e τ kj + F ik e F jl e C klmn F pm e F qn e D pq e + τ ik D kj e W kj e d τ ij dt + τ ik W kj e W ik e τ kj = C ijpq e D pq e + D ik e τ kj + τ ik D kj e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacqaHepaDda WgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaamizaiaadshaaaGaeyyp a0ZaaeWaaeaacaWGebWaa0baaSqaaiaadMgacaWGRbaabaGaamyzaa aakiabgUcaRiaadEfadaqhaaWcbaGaamyAaiaadUgaaeaacaWGLbaa aaGccaGLOaGaayzkaaGaeqiXdq3aaSbaaSqaaiaadUgacaWGQbaabe aakiabgUcaRiaadAeadaqhaaWcbaGaamyAaiaadUgaaeaacaWGLbaa aOGaamOramaaDaaaleaacaWGQbGaamiBaaqaaiaadwgaaaGccaWGdb WaaSbaaSqaaiaadUgacaWGSbGaamyBaiaad6gaaeqaaOGaamOramaa DaaaleaacaWGWbGaamyBaaqaaiaadwgaaaGccaWGgbWaa0baaSqaai aadghacaWGUbaabaGaamyzaaaakiaadseadaqhaaWcbaGaamiCaiaa dghaaeaacaWGLbaaaOGaey4kaSIaeqiXdq3aaSbaaSqaaiaadMgaca WGRbaabeaakmaabmaabaGaamiramaaDaaaleaacaWGRbGaamOAaaqa aiaadwgaaaGccqGHsislcaWGxbWaa0baaSqaaiaadUgacaWGQbaaba GaamyzaaaaaOGaayjkaiaawMcaaaqaaiabgkDiEpaalaaabaGaamiz aiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGKbGaam iDaaaacqGHRaWkcqaHepaDdaWgaaWcbaGaamyAaiaadUgaaeqaaOGa am4vamaaDaaaleaacaWGRbGaamOAaaqaaiaadwgaaaGccqGHsislca WGxbWaa0baaSqaaiaadMgacaWGRbaabaGaamyzaaaakiabes8a0naa BaaaleaacaWGRbGaamOAaaqabaGccqGH9aqpcaWGdbWaa0baaSqaai aadMgacaWGQbGaamiCaiaadghaaeaacaWGLbaaaOGaamiramaaDaaa leaacaWGWbGaamyCaaqaaiaadwgaaaGccqGHRaWkcaWGebWaa0baaS qaaiaadMgacaWGRbaabaGaamyzaaaakiabes8a0naaBaaaleaacaWG RbGaamOAaaqabaGccqGHRaWkcqaHepaDdaWgaaWcbaGaamyAaiaadU gaaeqaaOGaamiramaaDaaaleaacaWGRbGaamOAaaqaaiaadwgaaaaa aaa@A3EA@

 

6. Finally, assume that τ ik D kj e << C ijpq e D pq e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadMgacaWGRb aabeaakiaadseadaqhaaWcbaGaam4AaiaadQgaaeaacaWGLbaaaOGa eyipaWJaeyipaWJaam4qamaaDaaaleaacaWGPbGaamOAaiaadchaca WGXbaabaGaamyzaaaakiaadseadaqhaaWcbaGaamiCaiaadghaaeaa caWGLbaaaaaa@4406@  since the stresses are much less than the modulus. This shows that

τ ij e C ijkl e D kl e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaaqabeaacqGHhis0caWGLbaaaOGaeyisISRaam4q amaaDaaaleaacaWGPbGaamOAaiaadUgacaWGSbaabaGaamyzaaaaki aadseadaqhaaWcbaGaam4AaiaadYgaaeaacaWGLbaaaaaa@427F@

 

 

 

3.9.4 Plastic constitutive law for finite strain viscoplasticity

 

Next, we turn to developing an appropriate plastic constitutive law for finite deformations.  The constitutive equations must specify a relationship between work conjugate measures of stress and strain MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  recall that τ ij L ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadYeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3792@  is the rate of work done by stresses per unit reference volume.  Consequently, the constitutive equations must relate D p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaCaaaleqabaGaamiCaaaaaa a@32CF@ , W p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vamaaCaaaleqabaGaamiCaaaaaa a@32E2@  to τ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiXdaaa@3230@  and its rate.

 

Usually, plastic constitutive laws for finite deformations are just simple extensions of small strain plasticity.  For example, for a finite strain, rate dependent, Mises solid with isotropic hardening power-law hardening we set

D ij p = ε ˙ 0 τ e σ 0 m 3 τ ij 2 τ e W ij p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaGccqGH9aqpcuaH1oqzgaGaamaaBaaaleaacaaIWaaa beaakmaabmaabaWaaSaaaeaacqaHepaDdaWgaaWcbaGaamyzaaqaba aakeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaWGTbaaaOWaaSaaaeaacaaIZaGafqiXdqNbau aadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaaGOmaiabes8a0naa BaaaleaacaWGLbaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadE fadaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaaaOGaeyypa0JaaGim aaaa@6D85@

where τ ij = τ ij τ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqiXdqNbauaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaeqiXdq3aaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiabes8a0naaBaaaleaacaWGRbGaam4AaaqabaGccq aH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaai4laiaaiodaaaa@4392@  and τ e = 3 τ ij τ ij /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0ZaaOaaaeaacaaIZaGafqiXdqNbauaadaWgaaWcbaGaamyA aiaadQgaaeqaaOGafqiXdqNbauaadaWgaaWcbaGaamyAaiaadQgaae qaaOGaai4laiaaikdaaSqabaaaaa@3EDA@ .  The hardening rule is

σ 0 =Y 1+ ε e ε 0 1/n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaamywamaabmaabaGaaGymaiabgUcaRmaalaaabaGaeqyT du2aaSbaaSqaaiaadwgaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaaic daaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+ca caWGUbaaaaaa@4099@

Where

ε e = ε ˙ 0 ( τ e / σ 0 ) m dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0Zaa8qaaeaacuaH1oqzgaGaamaaBaaaleaacaaIWaaabeaa kiaacIcacqaHepaDdaWgaaWcbaGaamyzaaqabaGccaGGVaGaeq4Wdm 3aaSbaaSqaaiaaicdaaeqaaOGaaiykamaaCaaaleqabaGaamyBaaaa kiaadsgacaWG0baaleqabeqdcqGHRiI8aaaa@43F7@

is the accumulated effective plastic strain.

 

Finite strain plasticity models disagree on the correct way to prescribe W p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vamaaCaaaleqabaGaamiCaaaaaa a@32E2@ .  Many theories simply set W p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vamaaCaaaleqabaGaamiCaaaaki abg2da9iaaicdaaaa@34AC@ . Simple models of polycrystals give some support for this assumption, but it may not be appropriate in materials that develop a significant texture.  More complex models have also been developed.  For isotropically hardening solids with isotropic elastic behavior, predictions are relatively insensitive to the choice of W p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vamaaCaaaleqabaGaamiCaaaaaa a@32E2@ , but any attempt to capture evolution of elastic or plastic anisotropy would need to specify W p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4vamaaCaaaleqabaGaamiCaaaaaa a@32E2@  carefully.  Crystal plasticity based models provide a way out of this difficulty, because they have a clearer (but not completely unambiguous) definition of the plastic spin.