8.3 Finite element method for nonlinear (hypoelastic) materials

 

The finite element method can also solve boundary value problems for inelastic solids.  In this section, we show how to extend the finite element method to nonlinear problems. For the time being, we restrict attention to small deformations.  Furthermore, before attempting to solve problems involving the rather complex (load history dependent) plastic stress-strain relations, we begin by setting up the finite element method for static, hypoelastic problems.   We will idealize the stress-strain behavior of the material using the simple hypoelastic constitutive law described in Section 3.2.

 

 

 

8.3.1 Summary of governing equations

 

We shall solve the following boundary value problem.  A generic hypoelastic boundary value problem is illustrated in the figure.  We are given:

 

1. The shape of the solid in its unloaded condition R 0 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIWaaabeaaki abgIKi7kaadkfaaaa@352F@

 

2. A body force distribution b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CB@  acting on the solid (Note that in this section we will use b to denote force per unit volume rather than force per unit mass, to avoid having to write out the mass density all the time)

 

3. Boundary conditions, specifying displacements u * (x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiykaaaa@351D@  on a portion 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  or tractions on a portion 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  of the boundary of R;

 

4. The material constants n, σ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaa aa@3389@  and ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaa aa@336D@  for the hypoelastic constitutive law described in Section 3.3;

 

 

 

We then wish to calculate displacements, strains and stresses u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  satisfying the following equations

 

1. Strain-displacement equation ε ij = 1 2 ( u i / x j + u j / x i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiaacMcaaaa@48E0@

 

2. The equation of static equilibrium for stresses σ ij / x i + b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGQbaabeaakiabg2da9i aaicdaaaa@3F04@

 

3. The boundary conditions on displacement and stress

u i = u i * on 1 R σ ij n i = t j * on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaaMc8Ua aGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq GHciITdaWgaaWcbaGaaGymaaqabaGccaWGsbGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaad6ga daWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWaa0baaSqaaiaadQ gaaeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHciITdaWgaaWcbaGaaGOmaaqabaGccaWGsbaaaa@7A89@

 

4. The hypoelastic constitutive law, which relates stress to strain as follows

σ ij = S ij + σ kk δ ij /3 S ij = 2 3 σ e e ij ε e σ kk = E 12ν 1 3 ε kk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSIaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maa aacqaHdpWCdaWgaaWcbaGaamyzaaqabaGcdaWcaaqaaiaadwgadaWg aaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaadw gaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabg2da9maalaaabaGa amyraaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaamaalaaabaGaaG ymaaqaaiaaiodaaaGaeqyTdu2aaSbaaSqaaiaadUgacaWGRbaabeaa aaa@8C8A@

where

e ij = ε ij 1 3 ε kk δ ij ε e = 2 3 e ij e ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacqaH1oqzdaWgaaWcba Gaam4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaa beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab ew7aLnaaBaaaleaacaWGLbaabeaakiabg2da9maakaaabaWaaSaaae aacaaIYaaabaGaaG4maaaacaWGLbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaadwgadaWgaaWcbaGaamyAaiaadQgaaeqaaaqabaaaaa@6502@

σ e σ 0 = 1+ n 2 (n1) 2 n n1 ε e ε 0 2 1 n1 ε e ε 0 ε e ε 0 1/n ε e ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaam yzaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaOGaeyyp a0ZaaiqaaeaafaqabeGabaaabaWaaOaaaeaadaWcaaqaaiaaigdacq GHRaWkcaWGUbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaiikaiaad6ga cqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGHsi sldaqadaqaamaalaaabaGaamOBaaqaaiaad6gacqGHsislcaaIXaaa aiabgkHiTmaalaaabaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGcba GaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaaaeqaaOGaaGPaVlaaykW7caaMc8UaeyOeI0 IaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaaGymaaqaaiaad6ga cqGHsislcaaIXaaaaiaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqzda WgaaWcbaGaamyzaaqabaGccqGHKjYOcqaH1oqzdaWgaaWcbaGaaGim aaqabaaakeaadaqadaqaamaalaaabaGaeqyTdu2aaSbaaSqaaiaadw gaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaWGUbaaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1o qzdaWgaaWcbaGaamyzaaqabaGccqGHLjYScqaH1oqzdaWgaaWcbaGa aGimaaqabaaaaaGccaGL7baaaaa@DFFC@

and E=n σ 0 / ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiabg2da9iaad6gacqaHdpWCda WgaaWcbaGaaGimaaqabaGccaGGVaGaeqyTdu2aaSbaaSqaaiaaicda aeqaaaaa@3996@  is the slope of the uniaxial stress-strain curve at ε e =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaO Gaeyypa0JaaGimaaaa@3567@

 

The uniaxial stress-strain curve for this material is illustrated in the figure.  The material is elastic, in that it is perfectly reversible, but the stresses are related to strains by a nonlinear function (a power-law in this case).  This material model does not describe any actual material, but is sometimes used to approximate the more complicated stress-strain laws for plastic materials.


 

 

8.3.2 Governing equations in terms of the Virtual Work Principle

 

As in all FEM analysis, the stress equilibrium equation is replaced by the equivalent statement of the principle of  virtual work.  Thus, u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  are determined as follows. 

 

1. First, calculate a displacement field that satisfies

R σ ij [ u k ] δ v i x j dV R b i δ v i dV 2 R t i * δ v i dA=0 u i = u i * on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGBbGaamyDamaaBaaaleaacaWGRbaa beaakiaac2fadaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcba GaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqa aaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWGIbWaaSbaaSqaai aadMgaaeqaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaa dsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaae aacaGGQaaaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaa dsgacaWGbbGaeyypa0JaaGimaaWcbaGaeyOaIy7aaSbaaWqaaiaaik daaeqaaSGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIi YdaaleaacaWGsbaabeqdcqGHRiI8aaGcbaGaamyDamaaBaaaleaaca WGPbaabeaakiabg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQca aaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaae4Baiaab6gacaaMc8UaaGPaVlabgkGi2oaa BaaaleaacaaIXaaabeaakiaadkfaaaaa@7FDC@

for all virtual velocity fields δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  that satisfy δ v i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9iaaicdaaaa@3664@  on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@ .   Here, the notation σ ij [ u k ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaacUfacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaiyxaaaa @3896@  is used to show that the stress in the solid depends on the displacement field (through the strain-displacement relation and the constitutive equations).

 

2. Compute the strains from the definition ε ij = 1 2 ( u i / x j + u j / x i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiaacMcaaaa@48E0@

 

3. Compute the stresses from the stress-strain law

 

 

The stress will automatically satisfy the equation of equilibrium, so all the field equations and boundary conditions will be satisfied.

 

The procedure to solve the equations is conceptually identical to the linear elastic solution found in Section 8.1.1 and 8.1.2.  The only complication is that the stress is now a nonlinear function of the strains, so the virtual work equation is a nonlinear function of the displacement field.  It must therefore be solved by iteration.

 

 

 

8.3.3 Finite element equations

 

The finite solution follows almost exactly the same procedure as before.  We first discretize the displacement field, by choosing to calculate the displacement field at a set of n nodes, as shown in the figure.  We will denote the coordinates of these special points by x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DE@ , where the superscript a ranges from 1 to n.  The unknown displacement vector at each nodal point will be denoted by u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DB@ .  The finite element equations are then set up as follows

 

1. The displacement field at an arbitrary point within the solid is again specified by interpolating between nodal values in some convenient way. 

u i (x)= a=1 n N a (x) u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaaCaaaleqa baGaamyyaaaakiaacIcacaWH4bGaaiykaiaadwhadaqhaaWcbaGaam yAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaaigdaaeaacaWGUbaa niabggHiLdaaaa@4374@               δ v i (x)= a=1 n N a (x)δ v i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiaacIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaa CaaaleqabaGaamyyaaaakiaacIcacaWH4bGaaiykaiabes7aKjaadA hadaqhaaWcbaGaamyAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdaaaa@46C0@

 

2. Observe that we can compute the stress corresponding to a given displacement field by first computing the strain

ε ij = 1 2 u i x j + u j x i = 1 2 a=1 n N a x j u i a + N a x i u j a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaeyyp a0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaaeWbqaamaabmaabaWaaS aaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOa IyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccaWG1bWaa0baaSqaai aadMgaaeaacaWGHbaaaOGaey4kaSYaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaaaaGccaWG1bWaa0baaSqaaiaadQgaaeaacaWGHbaaaaGc caGLOaGaayzkaaaaleaacaWGHbGaeyypa0JaaGymaaqaaiaad6gaa0 GaeyyeIuoaaaa@6684@

and then using the constitutive law to compute the stresses. We write this functional relationship as

σ ij = σ ij ε kl ( u i a ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGc daWadaqaaiabew7aLnaaBaaaleaacaWGRbGaamiBaaqabaGccaGGOa GaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaakiaacMcaaiaawUfa caGLDbaaaaa@43A0@

 

3. Substituting into the principle of virtual work, we see that

R σ ij ε kl ( u i a ) N a x j dV R b i N a dV R t i * N a dA δ v i a =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaadaWdrbqaaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabew7aLnaaBaaaleaa caWGRbGaamiBaaqabaGccaGGOaGaamyDamaaDaaaleaacaWGPbaaba GaamyyaaaakiaacMcaaiaawUfacaGLDbaadaWcaaqaaiabgkGi2kaa d6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaSbaaS qaaiaadQgaaeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG IbWaaSbaaSqaaiaadMgaaeqaaOGaamOtamaaCaaaleqabaGaamyyaa aakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaa dMgaaeaacaGGQaaaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaads gacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aaWcbaGaamOu aaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYdaakiaawUhaca GL9baacqaH0oazcaWG2bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGa eyypa0JaaGimaaaa@68E9@

and since this must hold for all δ v i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3581@  we must ensure that

R σ ij ε kl ( u i a ) N a x j dV R b i N a dV R t i * N a dA =0{a,i}: x k a not on  1 R u i a = u i * ( x i a ){a,i}: x k a on  1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGcdaWadaqaaiabew7aLnaaBaaaleaacaWG RbGaamiBaaqabaGccaGGOaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacMcaaiaawUfacaGLDbaadaWcaaqaaiabgkGi2kaad6ea daahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaSbaaSqaai aadQgaaeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWGIbWa aSbaaSqaaiaadMgaaeqaaOGaamOtamaaCaaaleqabaGaamyyaaaaki aadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMga aeaacaGGQaaaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsgaca WGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aaWcbaGaamOuaaqa b0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYdGccqGH9aqpcaaIWa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabgcGiIiaacUhacaWGHbGaaiilaiaadMga caGG9bGaaGPaVlaaykW7caaMc8UaaiOoaiaaykW7caaMc8UaaGPaVl aadIhadaqhaaWcbaGaam4AaaqaaiaadggaaaGccaaMc8UaaeOBaiaa b+gacaqG0bGaaeiiaiaab+gacaqGUbGaaeiiaiabgkGi2oaaBaaale aacaqGXaaabeaakiaadkfaaeaacaWG1bWaa0baaSqaaiaadMgaaeaa caWGHbaaaOGaeyypa0JaamyDamaaDaaaleaacaWGPbaabaGaaiOkaa aakiaacIcacaWG4bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiyk aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgcGiIiaacUhacaWGHb GaaiilaiaadMgacaGG9bGaaGPaVlaaykW7caaMc8UaaiOoaiaaykW7 caaMc8UaamiEamaaDaaaleaacaWGRbaabaGaamyyaaaakiaaykW7ca aMc8Uaae4Baiaab6gacaqGGaGaeyOaIy7aaSbaaSqaaiaabgdaaeqa aOGaamOuaaaaaa@E1AE@

 

This is a set of n equations in n unknowns, very similar to those we obtained for linear elastostatic problems, but now the equations are nonlinear, because the stress is a nonlinear function of the unknown nodal displacements u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DB@ .

 

 

 

8.3.4 Solving the finite element equations using Newton Raphson Iteration

 

We can solve the nonlinear equations using Newton-Raphson iteration, as follows.

 

1. We start with some initial guess for u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DB@  - say w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DD@  (we can start with zero displacements, or for incremental solutions we can use the solution at the end of the preceding increment).

 

2. We then attempt to correct this guess to bring it closer to the proper solution by setting w i a w i a +d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaakiabgkziUkaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc cqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaaaa a@3DA3@ .  Ideally, of course, we would want the correction to satisfy

R σ ij ε kl ( w i a +d w i a ) N a x j dV R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaa kiaacMcaaiaawUfacaGLDbaadaWcaaqaaiabgkGi2kaad6eadaahaa WcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWGIbWaaSbaaS qaaiaadMgaaeqaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsga caWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGbbaa leaacqGHciITcaWGsbaabeqdcqGHRiI8aaWcbaGaamOuaaqab0Gaey 4kIipaaSqaaiaadkfaaeqaniabgUIiYdGccqGH9aqpcaaIWaaaaa@66E1@

but since we can’t solve this, we linearize in d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  and set

R σ ij ε kl ( w i b ) + σ ij ε lm ε lm u k b d w k b N a x j dV R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaGadaqaaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabew7aLnaaBaaaleaa caWGRbGaamiBaaqabaGccaGGOaGaam4DamaaDaaaleaacaWGPbaaba GaamOyaaaakiaacMcaaiaawUfacaGLDbaacqGHRaWkdaWcaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHci ITcqaH1oqzdaWgaaWcbaGaamiBaiaad2gaaeqaaaaakmaalaaabaGa eyOaIyRaeqyTdu2aaSbaaSqaaiaadYgacaWGTbaabeaaaOqaaiabgk Gi2kaadwhadaqhaaWcbaGaam4AaaqaaiaadkgaaaaaaOGaamizaiaa dEhadaqhaaWcbaGaam4AaaqaaiaadkgaaaaakiaawUhacaGL9baada WcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbGaey OeI0Yaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOtamaa CaaaleqabaGaamyyaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaaca WG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaamOtamaaCaaaleqa baGaamyyaaaakiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcq GHRiI8aaWcbaGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniab gUIiYdGccqGH9aqpcaaIWaaaaa@7D2C@

 

3. Recall that

ε lm = 1 2 a=1 n N a x m u l a + N a x l u m a ε lm u k b = 1 2 a=1 n N a x m δ ab δ lk + N a x l δ ab δ mk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaH1oqzdaWgaaWcbaGaamiBai aad2gaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaae WbqaamaabmaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaaca WGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGTbaabeaaaaGc caWG1bWaa0baaSqaaiaadYgaaeaacaWGHbaaaOGaey4kaSYaaSaaae aacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaWGSbaabeaaaaGccaWG1bWaa0baaSqaaiaad2 gaaeaacaWGHbaaaaGccaGLOaGaayzkaaaaleaacaWGHbGaeyypa0Ja aGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaiabgkDiEpaalaaabaGaey OaIyRaeqyTdu2aaSbaaSqaaiaadYgacaWGTbaabeaaaOqaaiabgkGi 2kaadwhadaqhaaWcbaGaam4AaaqaaiaadkgaaaaaaOGaeyypa0ZaaS aaaeaacaaIXaaabaGaaGOmaaaadaaeWbqaamaabmaabaWaaSaaaeaa cqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaWGTbaabeaaaaGccqaH0oazdaWgaaWcbaGaamyy aiaadkgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadYgacaWGRbaabeaaki abgUcaRmaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaamyyaaaa aOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaaqabaaaaOGaeqiTdq 2aaSbaaSqaaiaadggacaWGIbaabeaakiabes7aKnaaBaaaleaacaWG TbGaam4AaaqabaaakiaawIcacaGLPaaaaSqaaiaadggacqGH9aqpca aIXaaabaGaamOBaaqdcqGHris5aaaaaa@86F5@

Note also that

σ ij ε ml = σ ij ε lm MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaeqyTdu2aaSbaaSqa aiaad2gacaWGSbaabeaaaaGccqGH9aqpdaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcqaH1oqz daWgaaWcbaGaamiBaiaad2gaaeqaaaaaaaa@46C0@

so

σ ij ε lm ε lm u k b = σ ij ε km N b x m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaeqyTdu2aaSbaaSqa aiaadYgacaWGTbaabeaaaaGcdaWcaaqaaiabgkGi2kabew7aLnaaBa aaleaacaWGSbGaamyBaaqabaaakeaacqGHciITcaWG1bWaa0baaSqa aiaadUgaaeaacaWGIbaaaaaakiabg2da9maalaaabaGaeyOaIyRaeq 4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kabew7a LnaaBaaaleaacaWGRbGaamyBaaqabaaaaOWaaSaaaeaacqGHciITca WGobWaaWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaWGTbaabeaaaaaaaa@5755@

and finally

R σ ij ε kl N a x j N b x l dVd w k b + R σ ij ε kl ( w i b ) N a x j dV R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcqaH1oqz daWgaaWcbaGaam4AaiaadYgaaeqaaaaakmaalaaabaGaeyOaIyRaam OtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaaaaOWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabe aacaWGIbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGSbaabeaa aaGccaWGKbGaamOvaiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaaca WGIbaaaaqaaiaadkfaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabew7aLn aaBaaaleaacaWGRbGaamiBaaqabaGccaGGOaGaam4DamaaDaaaleaa caWGPbaabaGaamOyaaaakiaacMcaaiaawUfacaGLDbaadaWcaaqaai abgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8 quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOtamaaCaaaleqa baGaamyyaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0 baaSqaaiaadMgaaeaacaGGQaaaaOGaamOtamaaCaaaleqabaGaamyy aaaakiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aa WcbaGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYdGc cqGH9aqpcaaIWaaaaa@840E@

 

4. This is evidently a system of linear equations for the correction d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  of the form

K aibk d w k b + R i a F i a =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaey4kaSIaamOuamaaDaaaleaacaWGPbaabaGaamyyaa aakiabgkHiTiaadAeadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH 9aqpcaaIWaaaaa@42CB@

with

K aibk = R σ ij ε kl N a x j N b x l dV R i a = R σ ij ε kl ( w i b ) N a x j dV F i a = R b i N a dV+ R t i * N a dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaeyypa0Zaa8quaeaadaWcaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHci ITcqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaakmaalaaabaGa eyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaamOAaaqabaaaaOWaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGSbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaadkfada qhaaWcbaGaamyAaaqaaiaadggaaaGccqGH9aqpdaWdrbqaaiabeo8a ZnaaBaaaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabew7aLnaaBa aaleaacaWGRbGaamiBaaqabaGccaGGOaGaam4DamaaDaaaleaacaWG PbaabaGaamOyaaaakiaacMcaaiaawUfacaGLDbaadaWcaaqaaiabgk Gi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbaaleaacaWGsbaabe qdcqGHRiI8aOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadAeadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH9aqpda WdrbqaaiaadkgadaWgaaWcbaGaamyAaaqabaGccaWGobWaaWbaaSqa beaacaWGHbaaaOGaamizaiaadAfacqGHRaWkdaWdrbqaaiaadshada qhaaWcbaGaamyAaaqaaiaacQcaaaGccaWGobWaaWbaaSqabeaacaWG HbaaaOGaamizaiaadgeaaSqaaiabgkGi2kaadkfaaeqaniabgUIiYd aaleaacaWGsbaabeqdcqGHRiI8aaaaaa@9E27@

 

 

These expressions are almost identical to the equations we needed to solve for linear elastostatic problems.  There are only two differences: the stiffness contains the (strain dependent) material tangent moduli σ ij / ε kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcqaH1oqzdaWgaaWcbaGaam4A aiaadYgaaeqaaaaa@3BE9@  instead of the elastic constants C ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@3592@ , and we need to compute an extra term R i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33B8@  in the residual force vector.  This is a straightforward exercise MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the integral is divided up into contributions from each element, and evaluated numerically using Gaussian quadrature.

 

 

 

8.3.5 Tangent moduli for the hypoelastic solid

 

One painful aspect of nonlinear FEM is that the material tangent moduli σ ij / ε kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcqaH1oqzdaWgaaWcbaGaam4A aiaadYgaaeqaaaaa@3BE9@  must be calculated.  This is usually a tedious algebraic exercise.  For the hypoelastic constitutive law used in our example, one can show that

d σ ij d ε kl = 4 9 E t E s e ij e kl ε e 2 + 2 3 E s ( δ ik δ jl + δ il δ jk 2 δ ij δ kl 3 )+ E 9(12ν) δ kl δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiaadsgacqaH1oqzdaWgaaWcbaGa am4AaiaadYgaaeqaaaaakiabg2da9maalaaabaGaaGinaaqaaiaaiM daaaWaaeWaaeaacaWGfbWaaSbaaSqaaiaadshaaeqaaOGaeyOeI0Ia amyramaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaamaalaaaba GaamyzamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGLbWaaSbaaSqa aiaadUgacaWGSbaabeaaaOqaaiabew7aLnaaDaaaleaacaWGLbaaba GaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaikdaaeaacaaIZaaaaiaa dweadaWgaaWcbaGaam4CaaqabaGccaGGOaWaaSaaaeaacqaH0oazda WgaaWcbaGaamyAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQga caWGSbaabeaakiabgUcaRiabes7aKnaaBaaaleaacaWGPbGaamiBaa qabaGccqaH0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaaGcbaGaaGOm aaaacqGHsisldaWcaaqaaiabes7aKnaaBaaaleaacaWGPbGaamOAaa qabaGccqaH0oazdaWgaaWcbaGaam4AaiaadYgaaeqaaaGcbaGaaG4m aaaacaGGPaGaey4kaSYaaSaaaeaacaWGfbaabaGaaGyoaiaacIcaca aIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaGaeqiTdq2aaSbaaSqa aiaadUgacaWGSbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@7BC4@

 

where E s = σ e / ε e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGZbaabeaaki abg2da9iabeo8aZnaaBaaaleaacaWGLbaabeaakiaac+cacqaH1oqz daWgaaWcbaGaamyzaaqabaaaaa@3A31@  is the secant modulus, and E t =d σ e /d ε e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWG0baabeaaki abg2da9iaadsgacqaHdpWCdaWgaaWcbaGaamyzaaqabaGccaGGVaGa amizaiabew7aLnaaBaaaleaacaWGLbaabeaaaaa@3C04@  is the tangent modulus of the uniaxial stress-strain curve, as shown in the figure.  You can calculate formulas for the tangent and secant moduli using the relationships between σ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaa aa@33B9@  and ε e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaa aa@339D@  given in 8.3.1.

 

If you try to re-derive these expressions yourself, you may end up with a different answer for d S ij /d ε kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadofadaWgaaWcbaGaamyAai aadQgaaeqaaOGaai4laiaadsgacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaaaa@3A04@ .  This is because derivatives of a symmetric tensor with respect to another symmetric tensor are not unique (it has an indeterminate skew part).  It is convenient to make the tangent modulus symmetric, so that the element (and global) stiffness matrices are symmetric.

 

 

 

8.3.6 Summary of the Newton-Raphson procedure for hypoelastic solids

 

It is evidently quite straightforward to extend a linear elasticity code to nonlinear problems.  The Newton-Raphson loop looks like this:

 

1. Start with an initial guess for the solution w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DD@

 

2. For the current guess, compute K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaaaaa@3587@ , R i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33B8@  and F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33AC@ , where

K aibk = R σ ij ε kl N a x j N b x l dV R i a = R σ ij ε kl ( w i b ) N a x j dV F i a = R b i N a dV+ R t i * N a dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaeyypa0Zaa8quaeaadaWcaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHci ITcqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaakmaalaaabaGa eyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaamOAaaqabaaaaOWaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGSbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipa kiaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGaamOuamaaDaaale aacaWGPbaabaGaamyyaaaakiabg2da9maapefabaGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakmaadmaabaGaeqyTdu2aaSbaaSqaai aadUgacaWGSbaabeaakiaacIcacaWG3bWaa0baaSqaaiaadMgaaeaa caWGIbaaaOGaaiykaaGaay5waiaaw2faamaalaaabaGaeyOaIyRaam OtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaaaaOGaamizaiaadAfacaaMc8UaaGPaVlaaykW7aS qaaiaadkfaaeqaniabgUIiYdGccaaMc8UaamOramaaDaaaleaacaWG PbaabaGaamyyaaaakiabg2da9maapefabaGaamOyamaaBaaaleaaca WGPbaabeaakiaad6eadaahaaWcbeqaaiaadggaaaGccaWGKbGaamOv aiabgUcaRmaapefabaGaamiDamaaDaaaleaacaWGPbaabaGaaiOkaa aakiaad6eadaahaaWcbeqaaiaadggaaaGccaWGKbGaamyqaaWcbaGa eyOaIyRaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYd aaaaa@97FC@

and formulas for the tangent σ ij / ε kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcqaH1oqzdaWgaaWcbaGaam4A aiaadYgaaeqaaaaa@3BE9@  are given in the preceding section.

 

3. Modify the system of equations to enforce any displacement boundary constraints

 

4. Solve K aibk d w k b = R i a + F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaeyypa0JaeyOeI0IaamOuamaaDaaaleaacaWGPbaaba GaamyyaaaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaaqaaiaadgga aaaaaa@4207@

 

5. Let w i a = w i a +d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaakiabg2da9iaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc cqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaaaa a@3CBC@

 

6. Check for convergence (more on this below)  - go to 2 if the solution has not yet converged.

 

 

 

Two methods may be used to check for convergence.

 

1. You can check and see if the residual forces R i a + F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamOuamaaDaaaleaacaWGPb aabaGaamyyaaaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaaqaaiaa dggaaaaaaa@385D@  are sufficiently small (they should vanish for an equilibrium stress field).  You could find the maximum value at any node, and ensure that it falls below a user defined tolerance, or you could use the rms error

e= 1 n a=1 n R i a F i a R i a F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzaiabg2da9maakaaabaWaaSaaae aacaaIXaaabaGaamOBaaaadaaeWbqaamaabmaabaGaamOuamaaDaaa leaacaWGPbaabaGaamyyaaaakiabgkHiTiaadAeadaqhaaWcbaGaam yAaaqaaiaadggaaaaakiaawIcacaGLPaaadaqadaqaaiaadkfadaqh aaWcbaGaamyAaaqaaiaadggaaaGccqGHsislcaWGgbWaa0baaSqaai aadMgaaeaacaWGHbaaaaGccaGLOaGaayzkaaaaleaacaWGHbGaeyyp a0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaSqabaaaaa@4AE1@

(where n is the number of nodes in the mesh) as an error measure.

 

2. Alternatively, you can check the magnitude of the correction d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  and stop iterating when either the maximum correction at any node or the rms correction falls below some specified tolerance.

 

 

In practice both criteria are often used.

 

As discussed in Section 8.1.13, it is simplest to calculate the element stiffness and force vector by re-writing them in matrix form.   The element stiffness is calculated by summing contributions from each integration point in the element

k el = I=1 N i B T DBJ w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeWbqaaiaahkeadaahaaWcbeqaaiaadsfaaaGc caWHebGaaCOqaiaadQeacaWG3bWaaSbaaSqaaiaadMeaaeqaaaqaai aadMeacqGH9aqpcaaIXaaabaGaamOtamaaBaaameaacaWGPbaabeaa a0GaeyyeIuoaaaa@41D7@

where the matrix B and the Jacobian J must be calculated using the procedure discussed in Section 8.1.13, w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaWGjbaabeaaaa a@32D6@  are the integration weights, and the tangent stiffness matrix is

D= 4 9 ε e 2 E t E s ee+ 1 3 E s 2 2 0 2 1 0 1 1 + K 2 9 E s 1 1 1 1 1 1 0 1 1 1 0 0 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiraiabg2da9maalaaabaGaaGinaa qaaiaaiMdacqaH1oqzdaqhaaWcbaGaamyzaaqaaiaaikdaaaaaaOWa aeWaaeaacaWGfbWaaSbaaSqaaiaadshaaeqaaOGaeyOeI0Iaamyram aaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiaahwgacqGHxkcX caWHLbGaey4kaSYaaSaaaeaacaaIXaaabaGaaG4maaaacaWGfbWaaS baaSqaaiaadohaaeqaaOWaamWaaeaafaqabeGbgaaaaaqaaiaaikda aeaaaeaaaeaaaeaaaeaaaeaaaeaacaaIYaaabaaabaaabaGaaGimaa qaaaqaaaqaaaqaaiaaikdaaeaaaeaaaeaaaeaaaeaaaeaaaeaacaaI XaaabaaabaaabaaabaGaaGimaaqaaaqaaaqaaiaaigdaaeaaaeaaae aaaeaaaeaaaeaaaeaacaaIXaaaaaGaay5waiaaw2faaiabgUcaRmaa bmaabaGaam4saiabgkHiTmaalaaabaGaaGOmaaqaaiaaiMdaaaGaam yramaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaamaadmaabaqb aeqabyGbaaaaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaeaaaeaaae aaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaeaaaeaacaaIWaaabaaa baGaaGymaaqaaiaaigdaaeaacaaIXaaabaaabaaabaaabaaabaaaba aabaGaaGimaaqaaaqaaaqaaaqaaiaaicdaaeaaaeaaaeaacaaIWaaa baaabaaabaaabaaabaaabaaabaGaaGimaaaaaiaawUfacaGLDbaaaa a@6287@

where  MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4LIqmaaa@32E9@  denotes an outer product, and e is a deviatoric strain vector

e= e 11 , e 22 , e 33 , e 12 , e 13 , e 23 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzaiabg2da9maadmaabaGaamyzam aaBaaaleaacaaIXaGaaGymaaqabaGccaGGSaGaamyzamaaBaaaleaa caaIYaGaaGOmaaqabaGccaGGSaGaamyzamaaBaaaleaacaaIZaGaaG 4maaqabaGccaGGSaGaamyzamaaBaaaleaacaaIXaGaaGOmaaqabaGc caGGSaGaamyzamaaBaaaleaacaaIXaGaaG4maaqabaGccaGGSaGaam yzamaaBaaaleaacaaIYaGaaG4maaqabaaakiaawUfacaGLDbaaaaa@47C6@

Note that the shear strains are not doubled in this vector, unlike the conventional strain vector used in FEA.   The secant modulus E s = σ e / ε e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWGZbaabeaaki abg2da9iabeo8aZnaaBaaaleaacaWGLbaabeaakiaac+cacqaH1oqz daWgaaWcbaGaamyzaaqabaaaaa@3A31@  and tangent modulus E t =d σ e /d ε e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyramaaBaaaleaacaWG0baabeaaki abg2da9iaadsgacqaHdpWCdaWgaaWcbaGaamyzaaqabaGccaGGVaGa amizaiabew7aLnaaBaaaleaacaWGLbaabeaaaaa@3C04@  are shown in Fig 8.26, and K=n σ 0 /[3 ε 0 (12ν)] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiabg2da9iaad6gacqaHdpWCda WgaaWcbaGaaGimaaqabaGccaGGVaGaai4waiaaiodacqaH1oqzdaWg aaWcbaGaaGimaaqabaGccaGGOaGaaGymaiabgkHiTiaaikdacqaH9o GBcaGGPaGaaiyxaaaa@4198@  is the bulk modulus. 

 

 

The residual force vector can be calculated in much the same way:

r el = I=1 N i B T σJ w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeWbqaaiaahkeadaahaaWcbeqaaiaadsfaaaGc caWHdpGaamOsaiaadEhadaWgaaWcbaGaamysaaqabaaabaGaamysai abg2da9iaaigdaaeaacaWGobWaaSbaaWqaaiaadMgaaeqaaaqdcqGH ris5aaaa@4195@

where σ= σ 11 , σ 22 , σ 33 , σ 12 , σ 13 , σ 23 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9maadmaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaakiaacYcacqaHdpWCdaWgaaWc baGaaGOmaiaaikdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIZa GaaG4maaqabaGccaGGSaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaa beaakiaacYcacqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaOGaai ilaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaaakiaawUfacaGL Dbaaaaa@4D3D@  is the stress vector.

 

 

Health Warning: The procedure outlined here will not give good results for materials with large values of the stress exponent n.  This is because in this limit the material has a very large ratio of bulk modulus to tangent shear modulus, which causes standard fully integrated elements to ‘lock,’  with a spuriously high stiffness.   Several methods for correcting this problem are discussed in Section 8.6.    See also problems 8.30-8.32 in the problem sets.  

 

 

 

8.3.7 What to do if the Newton-Raphson iterations don’t converge

 

There is no guarantee that the Newton-Raphson method will converge.  It will converge quadratically to the exact solution if the initial guess is sufficiently close to the correct answer, but if you are unlucky it may diverge or spiral hopelessly around forever without finding the correct solution.

 

The most common way to fix this is to apply the load in a series of increments instead of all at once.  The solution at the end of the preceding increment is used as the initial guess for the solution at the end of the next.  Convergence can sometimes be accelerated by extrapolating the solution from preceding time steps to find a better initial guess for the solution.

 

The other approach (used in desperation) is to update the approximation to the solution as w i a = w i a +αd w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaakiabg2da9iaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc cqGHRaWkcqaHXoqycaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@3E5B@ , where α<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaeyipaWJaaGymaaaa@343E@  is a numerical relaxation factor.  This slows convergence of the Newton-Raphson iterations, but increases the radius of convergence.

 

 

 

8.3.8 Variations on Newton-Raphson iteration

 

There are several variants on the fully consistent Newton Raphson scheme outlined in the preceding section MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  some are obvious and some are subtle.  These techniques are known collectively as `Quasi-Newton’ methods.

 

All these variations attempt to address the two major limitations of the fully consistent Newton method, which are (i) that the tangent matrix K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaaaaa@3587@  must be recomputed during each iteration, and (ii) it is necessary to solve the system of equations K aibk d w k b = R i a + F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaeyypa0JaeyOeI0IaamOuamaaDaaaleaacaWGPbaaba GaamyyaaaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaaqaaiaadgga aaaaaa@4207@  repeatedly to obtain a convergent solution. 

 

A simple fix is not to bother recomputing K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaaaaa@3587@ , or to recompute it occasionally.  This gives a quasi-Newton method as follows

 

1. Start with an initial guess for the solution w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DD@

 

2. Compute K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaaaaa@3587@  

 

3. Compute R i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33B8@  for the current solution

 

4. Modify the system of equations to enforce any displacement boundary constraints

 

5. Solve K aibk d w k b = R i a + F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaeyypa0JaeyOeI0IaamOuamaaDaaaleaacaWGPbaaba GaamyyaaaakiabgUcaRiaadAeadaqhaaWcbaGaamyAaaqaaiaadgga aaaaaa@4207@

 

6. Let w i a = w i a +d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaakiabg2da9iaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc cqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaaaa a@3CBC@

 

7. Check for convergence - go to 3 if the solution has not yet converged; go to 2 if you feel like doing some extra work to speed up convergence.

 

 

In this method equation solution can be speeded up further, by computing and storing the LU decomposition of K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaaaaa@3587@  instead of K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaaaaa@3587@  itself.  Equation solution then just involves back-substitution, which can be accomplished quite quickly.

 

A more subtle approach is to obtain a succession of improved approximations to K aibk 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaDaaaleaacaWGHbGaamyAai aadkgacaWGRbaabaGaeyOeI0IaaGymaaaaaaa@3730@  directly, from the changes in residual F i a R i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaDaaaleaacaWGPbaabaGaam yyaaaakiabgkHiTiaadkfadaqhaaWcbaGaamyAaaqaaiaadggaaaaa aa@377B@   and solution increments d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  during successive iterations.   A very efficient implementation of the so-called BFGS algorithm is described by Matthies and Strang, (1979).

 

 

 

8.3.9 Example hypoelastic FEM code

 

As always, we provide a simple example FEM code to illustrate the actual implementation.  The codes can be downloaded from

https://github.com/albower/Applied_Mechanics_of_Solids

 

1. The code is in the file FEM_2Dor3D_hypoelastic_static.m

 

2. An example input file is in Hypoelastic_quad4.txt

 

Some notes on the example:

 

1. The code and sample input file are set up to solve the problem illustrated in the figure.

 

2.  The element deforms in plane strain and has the hypoelastic constitutive response described earlier with σ 0 =10, ε 0 =0.001n=10ν=0.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaaGymaiaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaeqyT du2aaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWa GaaGimaiaaigdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad6ga cqGH9aqpcaaIXaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeqyVd4Maeyypa0JaaGimaiaac6cacaaIZaaaaa@5A5A@  (although this uses a large value of stress exponent n,  this particular problem is not affected by locking, because the strain field in the solid is uniform).

 

3. The program applies load in a series of 5 increments, and uses consistent Newton-Raphson iteration to solve the nonlinear equations at each step.  When  you get to the appropriate part of the code,  you will see it printing out values for the error measures at each iteration. 

 

4. Element strains and stresses are printed to a file on completion, and the stress-v-displacement curve for the element is plotted, as shown in the figure.

 


 

 

HEALTH WARNING: This demonstration code uses fully integrated elements and will in general perform very poorly because of volumetric locking.  For details of locking and how to avoid it see section 8.6.